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In current wind design practice, static wind loads are usually defined to obtain, by simple static
analyses, the extreme values of any structural response that would be formally obtained with a strict
dynamic buffeting analysis. The minimum and maximum values that may reach any response define
the envelope. Equivalent static wind loads (ESWLs) allow to recover extreme responses in the envelope.
As a first objective, this paper formalizes a general method to determine ESWL, in a nodal basis,
by extending the concept of load-response correlation, which is only valid in the background range.
The general method, the displacement-response correlation (DRC) method, covers the background and
resonant contributions of the considered response. As a second objective, the paper addresses the
problem of building a set of static wind loads that adequately reconstructs the envelopes of responses.
The concept of principal static wind loads (PSWL) is introduced to form a reduced basis of
representative loads well-suited for envelope reconstruction. Its optimality is demonstrated both
analytically and with a detailed illustrative example.
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1. Introduction

Since 1960s, buffeting wind analysis of large civil structures has
been being handled by stochastic dynamic methods (Liepmann,
1952; Davenport, 1962) which cope with the random nature of the
wind excitation and the dynamic behavior of the structures. Con-
venient ways to characterize the probabilistic nature of wind
pressures on civil structures are wind tunnel or in situ measure-
ments. Alternatively, a number of stochastic models for wind
turbulence and admittances are available, see Dyrbye and Hansen
(1997), Von Karman (1958), Solari and Piccardo (2001). Computa-
tional fluid dynamics (Anderson et al., 2009) is another method yet
that provides both velocity and pressure fields. On the practical side,
structural engineers are used to work with static loads, a reason why
the complex probabilistic and time-space-dependent representation
of the wind loads mentioned above are commonly replaced by static
wind loads.

The use of such a static loading also recasts the design procedure
into the well-known format of codes and standards (Standards
Australia, 2002; Eurocode 1, 2005; International Standards Organi-
zation, 2009) and allows combination with other codified static
loads such as snow or self-weight.
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A way to develop static wind loads for these practical or
codification purposes consists in determining equivalent static
wind loads (ESWL) such that the application of this equivalent
static loading provides the same extreme value of a considered
structural response — such as an internal force - as what would
result from the dynamic buffeting analysis. Davenport (1967)
suggested the first method to determine an equivalent static wind
load, although not really termed as such, as the mean wind load
amplified by dynamic gust factors, determined specifically for
each response. An apparent limitation of this method obviously
concerns zero-mean responses.

Holmes (1988) introduced the notion of peak-load pressure
distributions and the fact that these distributions are specific for
each structural response. With the load-response correlation (LRC)
method, Kasperski (1992) established ESWLs, in a Gaussian frame-
work, and defined them as the most probable load profiles corre-
sponding to specific structural responses. These ESWLs are however
limited to structures with a background response only. Actually, the
[SO-document (International Standards Organization, 2009) has
incorporated the LRC method (Kasperski, 2009) and recommends
its use to set up design loads. For structures featuring a purely
resonant response, ESWLs were expressed as combinations of modal
inertial loads. The concept was sketched by Davenport (1985) and,
among others, further developed by Holmes (1996) and Zhou et al.
(1999). In case of an intermediate structural response between
background and resonant, Davenport (1995) and Holmes (1996)
underline the interest of using ESWLs as a combination of the two
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limiting cases. The concept was formalized by Chen and Kareem
(2001) who use a weighted combination of background and
resonant loadings in a hybrid structural analysis, i.e. with a nodal
basis analysis for the background component and a modal basis
analysis for the resonant component.

The first contribution of this paper concerns the formulation of
a method, termed the displacement-response correlation (DRC)
method, that computes ESWL in the nodal basis, i.e. without any
necessary recourse to the modal basis even if the structure has a
resonant behavior. The resulting ESWL is obtained with similar
concept of correlation as the LRC method but without the
limitation of background structural response. This method is
developed in Section 3.

Formally the dynamic analysis of a structure subjected to a
probabilistic loading somehow provides minimum and maximum
values of the numerous structural responses which are required
for the design of the structure. Their minimum and maximum
values define the envelope. The design of a structure by means of
static wind loads is thus nothing but an envelope reconstruction
problem, i.e. the determination of a set of static loadings together
with their static responses, such that their envelope matches as
best as possible the actual envelope resulting from a more
advanced dynamic analysis.

A first basic approach consists in computing the ESWLs
associated with every structural responses. For a large and
complex structure, the resulting set of loadings is huge but it
ensures that the entire envelope is covered. The size of this set is
expected to be prohibitive, as the application of an ESWL related
to a certain structural response may reconstruct a certain fraction
of the actual envelope, with an acceptable tolerance.

It appears thus that a more suitable approach could be to
identify, for instance from influence surfaces and some engineer-
ing judgement, some representative structural responses along
with their corresponding ESWLs. However consideration of only
few ESWLs may lead to important underestimation of the envel-
ope, especially if representative structural responses are not
selected with care, which is not simple for large structures.
Repetto and Solari (2004) have proposed a global loading techni-
que in order to provide global static wind loads that are not
associated with a unique structural response by imposing that
several selected responses reach their envelope values. The
method is however limited to cantilever vertical structures. The
same idea was pushed forward by Fiore and Monaco (2009) who
evaluate static wind loads as a combination of eigenmodes
calculated by spectral proper transformation (Carassale et al.,
2001) of fluctuating wind pressures. Recently, Katsumura et al.
(2007) have developed a universal static wind load which aims at
reproducing simultaneously the absolute maximum responses in
all structural members. The universal ESWL is computed as a
combination of eigenmodes calculated by covariance proper
transformation (CPT) (Best and Holmes, 1983; Bienkiewicz et al.,
1995; Solari et al., 2007) of fluctuating wind pressures. The
advantage of that method is to have a unique loading, rather
than several ESWLs for some chosen responses. Although the
concept is appealing, it has been criticized (Li et al., 2009; Zhou
et al,, 2011; Kasperski, 2009), because it leads to severe under-
estimations and overestimations of the envelope. Li et al. (2009)
have improved the universal static wind load by dividing the
responses into several groups based on their influence surfaces.
The main disadvantage is that a selection of relevant responses
has to be made by engineering judgement and only partially
solves the aforementioned drawbacks. Zhou et al. (2011) solve the
envelope reconstruction problem with a constrained least-square
optimization, with the reconstructed envelope expressed as the
structural response to linear combinations of equivalent static
load distributions. Ranges of variation of the combination

coefficients are obtained by “trial and error” [sic, Zhou et al.
(2011)] and the method globally relies on engineering judgement
too, which makes it hardly applicable to large structures.

As a second contribution of this paper, we introduce a novel
method for the establishment of an optimum set of loadings that
globally reproduces the envelope. These loadings are termed
principal static wind loads, because they are determined by
singular value decomposition. The way the principal static wind
loads are defined makes them naturally suitable to solve the
envelope reconstruction problem. The concept is introduced in
Section 4 and illustrated with a simple example in Section 5.

2. Statement of the problem
2.1. Generalities

We consider a stationary Gaussian random loading p;(t),
representing wind actions, although the concepts could be gen-
eralized to other loadings. For convenience the loading is split
into a mean part g, and a fluctuating part p(t)

Pror = H, +P- M

The dynamic motion x(t) of a linear structure loaded by this
random excitation, in the nodal basis, is obtained by solving the
equation of motion

Mx +CX +Kx =p, 2

where M, C and K are n x n mass, damping and stiffness matrices,
respectively.

From a conceptual viewpoint, the right-hand side in (2) is a
random process and could be represented as: a complete prob-
abilistic description, a set of synthesized times series, or simply a
materialized pressure field in an experimental context. Depend-
ing on the kind of representation of p, one or another analysis
method may be applied: a stochastic analysis, a sequence of
deterministic analyses followed by some statistical treatment or
the measurement of the mechanical response.

In any case, the mean nodal displacements u, and, secondarily,
the background contribution x®(t) may be determined by

n=K'u, x®=K'p 3)
and the total motion of the structure X,(t) is obtained by
Xtot = Uy +X. (€]

Some design quantities such as internal forces, reactions or
stresses, referred to as structural responses and denoted by r are
obtained by linear combinations of X (t)

I'ior = OXcot, )

where 1 (t) is the m x 1 vector of structural responses and O is
an mxn matrix of influence coefficients. Notice that if the
purpose is the design of an entire large structure, m can be quite
large and even larger than n, the total number of degrees-of-
freedom (DOF) of the structure. For simplicity, responses are
again split into mean g, and fluctuating r(t) contributions

Trot = M, +T. (6)

Depending on the selected analysis method, deterministic values,
minimum r™" and maximum ™%, of structural responses r are
established, that correspond to the envelope (r™m rma) Ulti-
mately, the design of the structural members is based on the
design envelope (r™i",r"%) obtained by

min min max max
Tior =M +T77, Tpp” = M +T . (7)
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2.2. Stochastic analysis for the determination of the envelope

In this section we clarify the establishment of the envelope
(rmin rmax) in the context of a stochastic analysis. We thus assume
wind loads are given by a complete probabilistic model.

In a second order analysis in the frequency domain, Eq. (2) is
written as

S,=HS,H', ®)

where H(w) = (—Mw? +iwC+K)~! is the nodal transfer function
with 7 as the imaginary unit and the overbar denotes the
complex conjugate operator. Symbols Sy(w) and Sp(w) represent
the power spectral density (PSD) matrices of nodal displacements
and external forces, respectively. Integration along circular
frequencies of (8) gives the covariance matrix of nodal
displacements

+ 00 T
C — / HS,H' do. 9
Secondarily, the covariance matrix of the background component
x® is given by

+o0
C® KK K’1< / S, dw)K‘T, (10)
J =00

where C, is the covariance matrix of the fluctuating part of wind
actions.

The deterministic design values r™" and r"® correspond to
expected values of extrema on a given observation window, e.g.
see Rice (1945). Although the formal application of those concepts
would yield a different peak factor for each structural response,
we consider that

"= _gg,, ¥ =go, (11)

with the assumption that g is a unique peak factor taken equal to
3.5, for the sake of simplicity, which is anyway the solution
adopted in Eurocode 1 (2005), and &, is an m x 1 vector with the
standard deviations of the structural responses collected from the
main diagonal of the associated covariance matrix

C,=0C0". (12)

Eq. (11) defines the envelope of the fluctuating response. The
assumption of Gaussian responses leads to a symmetric envelope,
see (11). At the opposite, the design envelope is not symmetric,
i.e. rjlin £ _pmex see (7), except for zero-mean responses.

2.3. Envelope reconstruction using static wind loads

In practice, engineers are used to design with a set of static
wind loads pj, with ie[1:d], d being the number of static
wind loads considered for the design. These loadings are expected
to reproduce sequentially, by static analyses, the envelope
(rmin pmaxy - obtained with a more advanced analysis, as
described in the previous section. With each static loading p; is
associated a vector of nodal displacements l(”pf and structural
responses

r; = OK 'p{ = Ap;, (13)

where A=OK™".

The sequential reconstruction of the envelope (™", ™)
after considering k static wind loads is expressed by the recursive
relations

~s,min ~s,min =s,max ws,max, . .
£ =min(f; ) —rf 175 0), 17 = max(®q); -5 155 0).  (14)

Notice that with (14), 2k load cases are associated with the k-th
reconstructed envelope.

Equivalent static wind loads are a particular set of static
loadings that may be used in the envelope reconstruction
problem. By analogy with (13), the structural responses under
the i-th equivalent static wind load reads

¢ = OK 'pf = Ap? (15)

with the important property now that the envelope value of the
i-th structural response is well recovered under application of pf.

Kasperski (1992) defined design static wind loads (u,—P5) and
(u,+pf) including the mean pressure field reproducing the mini-
mum rp¢% and maximum ri% values of the i-th structural
response. This formulation of the design loadings is appropriate
because the ESWL obviously has to be determined on the
fluctuating part of the response only, i.e. not including the
average, since first and second order statistics typically exhibit
significantly different patterns. The static analysis of the structure
under the two design wind loads provides two design static
responses (u,—rf) and (u.+r{) which might be used for the
structural design. Notice however that some other methods,
proposed by Katsumura et al. (2007) and Zhou et al. (2011), focus
on the reconstruction of the maximum absolute value of the
envelope by means of static wind loads. These methods encounter
some difficulties as the cost function may exhibit some disconti-
nuities, in particular with the least-square approach followed by
Zhou et al. (2011).

Although ESWLs are optimum to recover one specific value of
the envelope, they are clearly not optimum in the reconstruction
of the complete envelope. The objective of this paper is to provide
the optimum set of static loadings pj, with ie[1;d], so as to
provide the fastest convergence of the reconstructed envelope

(™" ™) towards the actual one (r™in,rmex),

3. Displacement-response correlation method

The DRC method aims at producing an ESWL p¢ for the i-th
structural response r;. The static analysis under p§ provides the
same maximum response r{"® as what would be obtained with a
dynamic buffeting analysis.

In a stochastic dynamic analysis, the covariance matrix
between responses and nodal displacements is expressed as

Cx = OCy, (16)

where C,; is an m x n displacement-response covariance matrix.
In a Gaussian framework, the conditional probability density
function of the displacement x, for given r; is

P, = 1 o TPy O /) 12 [T =P )0 a7
v 275\/ ¢! _p)%,(r,v)o-xk

where p, ., obtained from C, is the correlation coefficient
between the nodal displacement x, and response r;. Symbols oy,
and o, represent the standard deviations of the nodal displace-
ment and structural response, respectively. In fact, the conditional
probability density function (17) is the probability density
function of a new Gaussian random variable with a mean value
equal to

g.
My = ripxkr,o__):_(' (18)

which thus corresponds to the most probable displacement x
associated with a given response r;. The conditional expectation of
the nodal displacement of the k-th degree-of-freedom concomi-
tant with the maximum value of the i-th response /"™ = go,; is
thus obtained by

:uxk/rl"‘ax = gpxkri Oxy- (19)
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Therefore the i-th equivalent static wind loading associated with
the i-th structural response r; is defined as

pf =K, (20)

where g; is an n x 1 vector whose elements are given by (19).

A major difference, between the equivalent static wind load p{
and the one resulting from application of the LRC method, is that
our ESWL is not necessarily related to an instantaneous load
distribution (i.e. a snapshot, or any materialization of it). This
actually results from the consideration of viscous and inertial
forces in the developments, as shown by (9) and (16). Never-
theless, if the structure has a dominant background or resonant
behavior, the ESWL provided by the current DRC method reg-
ularly tends towards those obtained with the LRC method, or
towards combinations of the modal inertial loads as formalized
by Holmes (1996), respectively. Furthermore if the structure has
an intermediate background-resonant behavior and can be accu-
rately solved in a reduced modal basis for the resonant contribu-
tion, ESWLs obtained with the DRC method virtually correspond
to those obtained with the method proposed by Chen and Kareem
(2001). In fact, that method provides accurate results with very
few computational costs provided an accurate truncation of the
modal basis could be a priori formulated. This is not necessarily
simple, especially for large and complex structures, should the
design also concern secondary elements which could exhibit
vibrations in higher modes. With the DRC method, the computa-
tional costs are heavier but the question of modal truncation does
not arise anymore.

Finally, it should also be noticed that the LRC method provides
equivalent loads only where wind forces take place whilst the
DRC method can provide loads at any degree-of-freedom of the
structure as a result of inertial forces.

ESWLs are defined for each response and are gathered, for the
needs of the following developments, in an m x n matrix P. This
matrix could be large but does not require an excessive computa-
tional effort as it simply results from the algebraic transformation
(20). This set of equivalent static wind loads is mapped onto a set
of structural responses defined as

R¢ = AP°, (21)
where R® is an m x m matrix. Notice that

—goy, =1"" <R <1]"™ =gag,,  Vje[l,m], Vi, (22)
in words, that application of the i-th equivalent static wind load
does not result in an overestimation of the envelope anywhere. In
a Gaussian framework, this is demonstrated with the comple-
mentary condition

IRG| = [R| vie[l,m]. 23)

Indeed, the average of the conditional probability density function
of the structural response rj, given that the i-th structural
response reaches its maximum value, is given by

o jpmax = 8Py, Oy (24)

and it is thus clear that

__min max
—go‘rj = I’]- < ,ur]/r;nax < Tj

=80y (25)
As a consequence the j-th structural response also reaches its
maximum or minimum value only if it is correlated with a unit
coefficient, in absolute value (p,, = + 1), with the i-th structural
response. This indicates that the maximum dynamic responses
r" lie on the diagonal of R®, at least.

4. Principal static wind loads

We define the basis of principal static wind loads (PSWLs) as
the principal matrix PP resulting from the singular value decom-
position of P°

P* = PPSV. (26)

The matrix S has on its main diagonal the principal coordinates
and matrix V collects the combination coefficients to reconstruct
the ESWLs. Inspired by common applications of the proper
orthogonal decomposition, the principal coordinates in S are
arranged with decreasing magnitude so that only the first few
modes may be kept for a sufficiently accurate representation of
P°. A first main advantage is that the selection is straightforward
since they are ordered by decreasing importance. Moreover, each
loading mode (principal loading) is no longer associated with a
specific structural response, but rather aims at a global recon-
struction of the set of equivalent static wind loads and, as a
corollary, of the envelope of structural responses.

The j-th principal loading pjf’ is normalized such that the
corresponding static response rjp defined as

! =Ap?, R’=AP’ an
is somewhere tangent to the envelope. Mathematically

pinin < Rg, <r vie[l,m], Vje[l,m] 28)
and

vj,die[l,m]: RE =1 or RE= pinin, 29)

Consideration of the PSWL offers a global reconstruction of the
envelope. In a truncated basis, i.e. if only the first few PSWLs are
considered, combinations of the principal loadings could provide
a faster convergence to the envelope.

Notice also that, the principal loadings are well-suited for
combinations because they are orthogonal vectors due to the SVD
operation. The determination of these combination coefficients in
the context of the envelop reconstruction problem is addressed in
Blaise et al. (2012), while this paper just aims at the introduction
of the principal basis and the optimality of the linear subspace
they generate.

5. Illustrations
5.1. Structure and dynamic analysis

A four span bridge is analyzed under wind actions. Each span has
a length of 100 m. The finite element model is an assembly of
classical 2-D beam elements with two DOFs per node (rotation and
vertical displacement). Each span is uniformly divided into 30 finite
elements in order to obtain a fine representation of the profiles of
internal forces. The number of DOFs is thus equal to 242. Table 1
gives the characteristics of the deck and Fig. 1 depicts the vertical
displacements of the first six modes.

A one-dimensional Gaussian velocity field with a mean velo-
city U equal to 30 m/s and a turbulence intensity equal to 16% is
considered. The longitudinal turbulent component u of the
velocity field is described by the following power spectral density

Table 1
Characteristics of the deck: B=width; H=height; Q=section; I,=inertia;
E=Young’s modulus; p;=mass density; C,=lift coefficient.

B H Q I, E Pa G

30m 4m 1m? 10 m* 1e9 N/m? 2500 kg/m> —0.15
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Fig. 1. Modal vertical displacements and associated frequencies.

from Von Karman (1958):

s,
()% _ 4z
a2 [1+70.8(fL,/2)*1/%

(30)

where (w/2m) is the frequency, f=(w/2m)z/U is the Monin
coordinate, L, =200 m is the integral length scale of u and
z=100m is the height of the bridge above ground level. The
spanwise coherence function of u between two points of the deck
separated by a length ¢ is modeled by a decreasing exponential
(Vickery, 1970)

Fu _ e—(Z(u)/Zn)Cf)/ZU' (31)

where C is the coefficient of coherence taken equal to 8. For the
sake of simplicity, the bridge is analyzed under the lift aerody-
namic force and the longitudinal turbulence component only,
although from a structural design viewpoint, the vertical compo-
nent of the turbulence should also be included in the turbulence
model, as much as the drag and torque aerodynamic forces should
also be considered. The average lift force per unit length, y;, and
average nodal forces, u,, are respectively given by

Hy

1
ijB

=GU, p,=Fu, (32)

where F is an n x 1 vector that collects the coefficients which
transform the lift aerodynamic force per unit length to nodal
external forces for each element. This matrix is built up by
assuming a suitable interpolation between the nodes of the finite
element model, see Denoél and Maquoi (2012). The PSD of the lift
aerodynamic force is

S
%:4@;{55“, (33)
(o)
where y7 is the aerodynamic admittance proposed by Davenport
(1962)

(6)] (6)]
2 @B—l +exp —@B
2 = . 34
" (),)
—u B

Finally, the PSD matrix of nodal forces is expressed as a function of
the PSD of the lift aerodynamic force through

S, =FI'S;F", (35)

where I' is an n x n matrix of aerodynamic admittances that takes
into account the imperfect correlation of the turbulent component u
of the velocity field using (31).

A Rayleigh damping matrix C is constructed by imposing a
damping coefficient ¢ in the first and fourth modes. Three
damping ratios 0.5%, 1.5% and 4.5% are used to study a resonant,
a background-resonant and a background, behavior of the struc-
ture, respectively. In the sequel, it is chosen to focus exclusively
on the bending moment but the same developments could be
performed with several other types of responses. The number m is
thus equal to 121 and the bending moments are numbered from
left to right, as for the spans and supports.

Fig. 2(a) shows the bending moments under the uniform average
lift. The shape of this diagram is well-known. Fig. 2(b) depicts the
maximum dynamic bending moments, obtained as explained in
Section 2.2, for the three cases. As expected, maxima occur in
side spans at the extremities and the resonant case, &=0.5%,
provides the largest maximum fluctuating bending moments. In

order to evaluate the relative importance of the background ¢2®

and resonant (o*%—af'(B)) components in the responses, the

background-resonant ratio b= c2® /(g2—c?®) for each bending
moment is computed and given in Fig. 2(c). These ratios show the
same profile for the three cases. Near supports, the background
component for each case is more important than in the span which
simply results from the smallness of inertial forces near supports.

5.2. Equivalent static wind loads

For the case ¢ = 1.5%, equivalent static wind loads are computed
to recover the envelope for six considered bending moments which
are localized by dots in Fig. 2(b) with their associated number. They
correspond to the two maximum bending moments in the first two
spans, to the bending moment on the second support and to the three
local minima in the first and second spans. The corresponding
equivalent static wind loads p{ and responses rf (i {14,27,31,37,
46,57}) are computed with the DRC method, and shown in Fig. 3.
Although ESWLs comprise both transverse forces and moments, only
transverse forces are represented in Fig. 3; the same convention holds
in the following figures. Fig. 3 also illustrates the vertical displace-
ment component of the influence line a; corresponding to the i-th
bending moment and the correlation coefficient p; between the i-th
bending moment and the bending moment profile (obtained with the
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Fig. 2. Constant (a) and (b) maximum bending moments diagrams and (c) background-resonant ratios of the bending moments for the three studied cases.

stochastic dynamic analysis). Fig. 3 also depicts the sequential
reconstruction of the envelope ¥} using the responses for the
considered bending moments.

As expected, the shapes of the loads are related to the
influence lines of the considered responses. Actually, the loadings
do not match precisely the influence line due the coherence in the
velocity field. It could be observed that the less the coherence
there is, the more equivalent static wind loads match the
influence lines of the considered responses.

Notice that loads derived with the DRC method virtually
correspond to the ones obtained with the method proposed by
Chen and Kareem (2001), if the first four modes are considered in
the modal basis.

Fig. 3 illustrates that the response r{ under a specific equiva-
lent static wind load lies within the envelope but also partially
reconstructs the envelope at other sections than the considered
one, especially when the correlation is close to unity in magni-
tude, see (25). For example, minimum bending moments in the
first span are well reconstructed under the fourth load for which
the considered bending moment is strongly negatively correlated
with bending moments in the first span.

Although the reconstructed envelope f}, (k=1...6) monotoni-
cally converges towards the actual envelope, only bending
moments close to the considered sections are well represented
after six equivalent loadings. Indeed, in the third and fourth
spans, the reconstruction of the envelope is insufficient. It could
be improved by considering ESWL related to bending moments at
the intermediate and third supports, as well as the maxima and
local minima in the third and fourth spans. This would result in a
total of 13 bending moments to obtain an acceptable reconstruc-
tion of the envelope, globally.

For this simple structure, the selection of the bending moments
is accessible but can be grueling for a large one. Moreover, the
accuracy of the envelope reconstruction is tributary of the arbitrarily
chosen bending moments, which makes the basis of ESWLs ineffi-
cient for the envelope reconstruction problem.

5.3. Principal static wind loads

Fig. 4 shows the first four principal static wind loads (computed
from the 121 ESWLs) and the corresponding responses for the three

studied cases. The left column in Fig. 4, collects the static loads and
responses for a structure with a dominant resonant behavior
(¢ =0.5%). These loads are directly related to the vertical component
of the modal inertial loads introduced by Chen and Kareem (2001)
with slight dissimilarity at supports. In this simple case with uniform
mass and bending stiffness, the modal inertial loads are affine to the
mode shapes, see Fig. 1.

The right column in Fig. 4 corresponds to a dominant back-
ground behavior (¢ =4.5%). The same PSWL could be obtained by
SVD of the ESWLs computed with the LRC method. The middle
column in Fig. 4, represents the basis for an intermediate
background-resonant behavior. In that case, the singular value
decomposition automatically provides loads with similarities
with both limit cases. Also, some loadings in the three cases have
close shapes but differ in position because of the behavior of the
structure, see for example, the first and second loadings for the
cases £¢=0.5% and &=1.5%. In general, PSWLs are no longer
associated with a specific bending moment but are the principal
components, ordered by importance, of all the ESWLs. This is
confirmed by their symmetry with respect to the vertical center
of the bridge.

Consequently, several extrema are recovered with a single
loading. Moreover, the responses ensure a global reconstruction
of the envelope.

We now seek to confront the proposed PSWL basis with the
basis formed by the CPT modes used for the establishment of the
universal loading as suggested by Katsumura et al. (2007). The
covariance proper transformation (CPT) is applied to the covar-
iance matrix of external forces

(C,—CDHP° =0, (36)

where C. is a diagonal covariance matrix of principal components
ordered by decreasing variances, I is the identity matrix and P¢
collects the CPT loading modes. Fig. 5 shows the CPT loading
modes on the upper part and the associated bending moments on
the lower part. This time, envelopes of the structural responses
are not represented because the CPT loading modes should also
be normalized differently for each case.

The only similarity between the CPT loading modes and the
principal loadings is that the first CPT modes resemble the first
PSWL in case of a background behavior of the structure. The other
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Fig. 3. Equivalent static wind loads p{ (transverse forces at every 3rd nodes), influence line a; (vertical displacement component), correlation coefficients p;, equivalent
static bending moments r{ and reconstructed envelope iy, for the case ¢ =1.5%. Dots identify the considered bending moments.

two CPT modes do not exist in any of the three PSWL bases. The
CPT loading modes could thus be adequate in the reconstruction
of the structural response only if the structure exhibits a back-
ground behavior.

The main disadvantage of the CPT loading modes is that, in
contrast with principal static wind loads, they do not take into
account the mechanical behavior of the structure and a possible
resonant contribution in the response.

The normalized cumulative summation of the principal coor-
dinates S;; for the three cases and for the principal components
obtained with CPT C.; are shown in Fig. 6. The first four PSWL
reproduce more than 90% of the total sum of the principal
coordinates. For both bases, the selection of a minimum number
of representative static wind loads is automatic and straightfor-
ward because they are ordered by decreasing importance.

Fig. 7 gives the reconstruction ¥}"™* using PSWLs (upper half
of each graph) and the reconstruction #;™" (lower half of each
graph) using CPT loading modes.

The reconstruction of r™®* with PSWL and r™" with CPT
loading modes is represented only for an easier comparison on
the same graph of the envelope reconstruction using the two
different methods.

For any behavior of the structure, background, resonant or
combined, the first three principal loadings contribute signifi-
cantly to the reconstruction of the envelope. Actually, after
consideration of the first three principal loadings, any additional
principal loading just provides a marginal contribution. The same
remark holds for CPT loading modes, with four modes instead of
three, though.

Principal static wind loads globally perform better than CPT
loading modes, especially for the two cases ¢ =0.5% and 1.5%. For
the case &=4.5%, the reconstructed envelope using principal
loadings or CPT loading modes is very similar, which illustrates
that CPT modes indeed perform well with a background response.
In case of resonant response (¢=0.5%), the envelope recon-
structed with five CPT loading modes leads to important



N. Blaise, V. Denoél / J. Wind Eng. Ind. Aerodyn. 113 (2013) 29-39

36

4.5%

€=

1.5%

€=

0.5%

&=

and principal static bending moments r! for the three considered structural behavior (resonant, combined and background).

P
i

Fig. 4. First four principal static wind loads p¥

First three CPT loading modes and static bending moments.

Fig. 5.

5.4. Combinations of static wind loads

underestimation, especially in side spans and where the bending
moment is locally minimum in the second and third spans. These

correspond to abscissa where the bending moment is resonant,

see Fig. 2(c).

In the former section, we have studied the adequacy of the

principal loadings, each of them being considered separately, in
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the reconstruction of the envelope. However Eq. (26) suggests
that principal loadings PP are generated in view of possible linear
combinations. By essence, linear combinations of the principal
loadings allow the reconstruction of the full set of equivalent
static wind loads. The objective of this section is to assess the
optimality of the subspace spanned by a limited number of static
loadings, and not by some static loadings as in the former section.

More precisely, several combinations of the principal static
wind loads p® and the associated structural responses ré are
obtained by

pg:qup, l‘gZApg, (37)

where @P is a vector of arbitrary combination coefficients. The
only limitation on the combination coefficients is that the result-
ing structural response ré does not overestimate the actual
envelope and that the envelope is reached in at least one
particular abscissa (tangency condition). As a consequence, in
the multi-dimensional space related to the envelope, r¥ is a
parametric representation of the subspace spanned by the prin-
cipal static wind loadings collected in PP.

As an example, the area limited by the curve in Fig. 8(a) in the
(¢%.45) space represents the set of combination coefficients (¢f,q5)
that would result in a structural response ré lying inside the

#Modes

Fig. 6. Normalized cumulative summation of the principal coordinates of the
principal loadings and of the CPT loading modes.

actual envelope. Conversely, any combination outside that curve
results in an overestimation of the actual envelope. The some-
what circular shape of that border indicates that the principal
value decomposition has generated an isotropic combination
space. The same developments operated with the CPT loading
modes reveal a diamond-shaped border, see Fig. 8(b).

From a practical viewpoint, the curves in Fig. 8 are obtained by
shooting in a random direction (g¥,q5) generated with a Monte
Carlo simulation technique, then by scaling the generated combi-
nation in order to restore the tangency condition with the actual
envelope. The same technique is applied for the combination of
the first three principal loading modes and of the first three CPT
modes, see Fig. 9(a) and (b), respectively.

Fig. 9 depicts the scaled coefficients for the first three PSWLs
for the three cases and for the first three CPT loading modes for
the case £=1.5%. Only the case &=1.5% is shown for the CPT
loading modes because the allowed area is almost unchanged. On
the contrary, the allowed area for the combination coefficient of
the PSWLs adapts as a result of the automatic adaptation of the
PSWL basis to the structural behavior. Notice that the allowed
subspaces (¢1,9,), (9>,93) and (q3,q;) are represented with thick
lines as the equator and two principal meridians.

The envelopes F"™ and ™" reconstructed with the
allowed subspace of combination coefficients provide, for the
basis of principal loadings and for the basis of CPT modes, the
results given in Fig. 10. Combination of two principal loadings
offers, with few exceptions, a more accurate reconstructed

‘112 £€=1.5%

-1

Fig. 8. Scaled combination coefficients for (a) two PSWLs and (b) two CPT loadings
modes obtained for &= 1.5%.
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Fig. 7. Envelope reconstruction with PSWLs (upper half of each graph) and CPT loading modes (lower half of each graph). Each column corresponds to a behavior of the
structure associated with a specific damping ratio.
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Fig. 9. Scaled combination coefficients for (a) three PSWLs for the three cases and (b) three CPT loadings modes for the case & =1.5% (on the right).
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Fig. 10. Envelopes that may be reconstructed by combinations of two or three PSWLs (upper half of each graph) and CPT loading modes (lower half of each graph).

envelope f'gp'max than what could be obtained with up to five

principal loadings #;"™* (k=1,...,5) considered separately, as in
Fig. 7. Moreover, combination of the three principal loadings
provides a nearly perfect reproduction of the actual envelope.

On the contrary, the lower half of the plots indicates that two
or even three CPT loading modes and any combination of them do
not increase significantly the reconstruction of the envelope, in
comparison with Fig. 7, especially for the cases &=0.5% and
£=1.5%.

This demonstrates again the optimality of the basis of principal
static wind loads in the global reconstruction of the envelope of
structural responses. This may be partially attributed to the
versatility of the principal loadings with respect to the character-
istics of the structural response.

6. Conclusions

In structural engineering, static wind loads are used since
decades because of their numerous advantages. The static wind
loads aim at covering the envelope values of any structural
responses. If one response is considered, many methods have
been developed in order to build the equivalent static wind load.

In this context, we have extended the concept of load-
response correlation, confined in the background range, to a
dynamic nodal analysis by the displacement-response correlation
method.

Moreover, in order to reconstruct the entire envelope in a
whole structure with static analyses, a reduced basis of principal
loadings has been proposed. These loadings, obtained by singular
value decomposition, represent a more global information on the
static wind loads that maximize all of the structural responses for
any structure.

It has been demonstrated with an illustrative example that the
principal static wind loads or combination of them are well suited
for an accurate reconstruction of the envelope. This makes the
principal static wind loads an optimum basis for the structural
design.

The concept is robust in view of its mathematical definition
and is applicable to experimental or CFD data, probabilistic
description of the loading and codification purposes.
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