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1 Introduction

This paper is concerned with the calculation of the deformed configuration of
a drillstring during drilling, which critically hinges on accurately identifying the
contacts between the drillstring and the borehole walls. For this study, we assume
that the position of the bit relative to rig is fixed and that a known axial force
is imposed at the rig. A mathematically related problem is the insertion (or the
pulling) of the drillstring into (or out of) the borehole, as the nature of the axial
boundary conditions at both ends of the drillstring is exchanged.

This subject matter is part of a larger class of problems involving a priori
unknown contacts between an elastica and a rigid boundary. These problems are
computationally challenging, especially in the context of the drilling applications.
Indeed, the large deflections of the drillstring from a stress-free configuration re-
quire consideration of a geometrically non-linear model. Furthermore, application
of standard numerical tools to this problem results in an ill-conditioned system
of equations, owing mainly to the narrowness of the borehole compared to its
length, but also to the large flexibility of the drillstring and the assumed rigid
nature of the borehole walls.

We propose here a novel mathematical formulation of this problem, which
takes advantage of the extreme slenderness of the borehole and which is based
on expressing the deformed configuration of the drillstring as a perturbation of
the borehole axis.

2 Problem Definition

We consider a borehole of length L and radius A, assumed to be contained in
a vertical plane. Tts known geometry is completely defined by the inclination
©(S) of the borehole on the vertical axis e;, where S (0 < S < L) is the
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Figure 1: Problem definition.

borehole curvilinear coordinate with origin on the ground surface, see Fig. 1.
A drillstring of external radius a, bending stiffness EI, and weight per unit
length w is contained within the wellbore, with the bit at the hole bottom.
Assuming that the position of the bit is fixed, we seek to determine the length
¢ and the deformed configuration of the drillstring, defined by its inclination
0.(s) on ej, where s (0 < s < ¢) is the drillstring curvilinear coordinate. For
simplicity, we refer to .S as the Eulerian coordinate and to s as the Lagrangian
coordinate. The constraint on the drillstring to deform inside the borehole leads
to the appearance of contacts between the borehole and the drillstring, either
discrete or continuous. The contacts, which can be assumed to be frictionless
as the drillstring is rotating, impose conditions on the distance A between the
borehole and the drillstring axes, on the inclination 6, and also on the curvature
for continuous contacts, namely A = A —a, 6, = O, and 0, = ©'.

The deformation of the drillstring (assumed to be inextensible) is governed by
the classical geometrically nonlinear beam equations, which outside the contacts
read

F0, + F), —wsinf, = 0,
o0, — F|, —wcosf, = 0,
M, 4+ F. = 0,

EI0, = M,, (1)

where Fi, (s), Fas (s) and M, (s) denote the axial force, transverse force and
bending moment, respectively. This system of equations can be reduced to a 4th
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order nonlinear differential equation
EI (6.0 —0l0) + 0;30;/) =w (6 sinf, — 20'? cos 0.) - (2)

The formulation of this problem is closed, with the imposition of the bound-
ary conditions at the rig (s = S = 0) and at the bit (s = ¢, S = L), besides the
conditions at the a priori unknown contacts. At the rig, the boundary conditions
take the form F1, = H, A =0, and 0, = © , while at the bit, A =0, 6, = © (for
example) in addition to an integral constraint on sin #, and on cos 6, that express
that bit is positioned at the hole bottom. The problem of determining 6,.(s), ¢,
and the contacts is thus well posed, in principle [1]. However, semi-analytical
or numerical methods that are directly based on solving the non-linear differen-
tial equation (2) result in ill-conditionned sets of equations that fail to converge
when the dimensionless parameter ET/wl®, where [ is the distance between two
contacts, becomes too small ( ~ 0.2).

3 Perturbed Eulerian Formulation

The approach proposed in this paper overcomes the above issues by expressing the
drillstring configuration as a perturbation from the geometry of the borehole using
the variable A, rather than in terms of 6, and by reformulating the problem in
terms of the Eulerian coordinate S. Furthermore, as already proposed in [1], both
the drillstring and the borehole are divided into segments limited by contacts and
the global problem is expressed as a connected set of elementary problems. The
number of elementary problems is a priori unknown, however. The critical aspect
of these computations involve the determination of the positions of the contact
points, which are used to segment the original problem into elementary ones.
Each elementary problem is solved by assuming the positions of the contacts to
be given; these positions are then recalculated at the reconnection stage in order
to satisfy some continuity conditions at the contacts. The solution of the global
problem requires therefore iterations to solve for the positions of the contacts,
and each iteration requires the solution of a succession of elementary problems.
Evidently, all the elementary problems can be treated similary, by means of
what we refer to as the auxiliary problem, namely the problem of finding the
deformed configuration of the drillstring in a segment of the borehole between
two contact points. First, we introduce the following dimensionless quantities:
€ =(S—S;_1)/L; where L; = S; — S;_1 is the length of the borehole segment
situated between contacts i — 1 and i, « = (A — a)/L;, €2 = EI/wL3, and the
scaled distance §(§) = A[S ()] /(A — a). With the introduction of §(&) as the
fundamental unknown, we have expressed the drillstring deformed configuration
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as a perturbation of the borehole geometry. We also introduce the borehole
inclination ¥(§) = © [S (§)], which is readily deduced from O(S).

Formulated in terms of §(§), the differential equation (2) becomes after drop-
ping terms of order O(a?) and above

aD[6(§);9(8); el + F0(€);¢] =0 (3)

where D is a 5th order linear differential operator on ¢ () and F' is a functional
of ¥(§) given by

F=¢ (00" —9"9" +929") — 9" sind + 20 cos . (4)

It can readily be seen by setting § (£) = 0 in (3), that F is actually a measure
of the out-of-balance forces that need to be applied on the drillstring so that it
is espouses exactly the borehole geometry. Because (3) results from the consid-
eration that € is a small perturbation of 9, the function aD(J) is necessarily of
the same order as F(¢), as otherwise the deviation of 6 from ¥ would be too
large and there would be an intermediate contact between the two ends £ = 0
and £ = 1. This is an application of the so-called method of dominant balance
[2]. The boundary conditions for the differential equation (3) are that 6 =6’ =0
at both ends. Furthermore the axial force at one end is known, which provides a
supplementary condition on a linear combination of §” and 6”” .

With the perturbed Eulerian formulation, the integro-restrained nonlinear
boundary value problem in 6, (2) has been transformed into a classical linear
boundary value problem in ¢ (3). The advantages of the new formulation are
therefore obvious but are further clarified next by solving (2) and (3) with a
similar shooting method.

4 Examples

The shooting method consists in transforming the 2-point boundary value prob-
lem into an initial value one by collecting the boundary conditions at the second
end and, eventually, the restraining conditions in the form of objective func-
tions G(Y'), where T represents the assumed initial conditions. Enforcement of
the conditions that have been discarded in the formulation of the initial value
problem is done by imposing that G(Y) = 0. This method is used to solve the
auxiliary problem expressed in Lagrangean coordinates (2) and in Eulerian coor-
dinates with the perturbed formulation (3).

As an example, let us consider the auxiliary problem with © (S) = S/R,
So =0, S1 = L = Rn/2, which corresponds to a quadrant of a circular borehole.
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Since there are only two contact points, we dispense of the subscript 1, when
referring to the borehole or beam segment; i.e., £ =¥¢; and L = L.

In the Lagrangean formulation (2), the problem is solved with the following
boundary conditions

l
/sin 0. (s)ds=R ; cosb, (s)ds =R (5)
0

o

expressing the compliance of inclination between the drillstring and the borehole
at both ends as well as the constraints related to the offset between both beam
ends. Conditions (5) are expressed as functions of the unknown beam length
¢. A supplementary condition, related to the axial force Fi, = mwlL (with
a given number m1) at s = 0, or equivalently to €7/ (0), is therefore added to
obtain a closed set of equations. With this approach, the augmented initial
conditions vector Y, collects @, (0) and 607 (0), as well as the unknown beam
length ¢, while the objective function G,(Y ) gathers the second end condition
and both constraints in (5).

In the perturbed Eulerian formulation, these boundary conditions are simply

5(0) = §(L) = §'(0) = §'(L) = 0. (6)

They need also to be complemented, in order to close the system of equations,
by a fifth condition on the axial force at S = 0, which is equivalently written
as a function of 8" (0) . In this case, the augmented initial condition vector Y
contains §”(0) and §”(0), whereas the objective function expresses both second
end conditions in (6).

Figure 2 shows contour levels of functions G.(Y,) and G(Y) for m = 1,
e =1 and o = 0.001. The solution of the problems with the shooting method
is geometrically illustrated as the computation of the intersections of zero level
curves of G«(Y ) and G(Y). This is typically performed with a non-linear solver.
The complexity of the level curves is a reflection of the convergence rate. Figure
2 illustrates therefore the advantages of the Fulerian approach of the problem,
combined with a perturbation formulation.

5 Outlook

The Eulerian view of the drillstring flow into the borehole is especially advan-
tageous within the context of a propagating borehole, when this model is used
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Figure 2: Level curves of G« (Y,) for T, (1) = ¢ = 1.5697 (the solution) and
level curves of G (Y) for m = 1, e = 1 and a = 0.001. Thick lines represent
zero level curves. They intersect at the white dots, the solution of the shooting

method.
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to calculate successive equilibrium configurations of the drillstring. Indeed, the
position of any contact becomes stationary in reference to the borehole with in-
creasing distance between this contact and the bit, whilst it continues to slide
along the moving drillstring.

The motivation to analyze this particular problem is multifold. First, there
is the question of determining the transmission of forces between the rig and
the bit (known as the torque-and-drag problem in the Petroleum Industry [3]),
which is essentially controlled by the contacts between the drillstring and the
borehole. Second, modeling the evolution of the borehole during drilling requires
determination of the forces acting on the bit, which themselves depend on the
deformed configuration of the drillstring. Finally, any analysis of the surface
vibrations of the drillstring would benefit from a prior: knowledge of the positions
of the contacts along the string.
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