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ABSTRACT 

This paper presents an example of rack structure modelling accounting for structural non-
linearities and for the possible relative motion between the rack and the stored goods that 
occurs as soon as the inertial force exceeds the friction resistance. It evidences that the 
constant reduction factor proposed by the RMI should actually be modulated according to the 
structural typology (and in particular the first natural frequency of the system) and to the ratio 
ag/μ between the design acceleration and the friction coefficient of the pallets. 

1 INTRODUCTION 

Despite their lightness, storage racking systems made of thin-walled cold formed steel 
products are able to carry very high live load many times larger than the dead load, opposite 
to what happens in usual civil engineering structures. These racks can also raise considerable 
height. For these reasons, their use is nowadays very common in warehouses (see fig. 1). 
However, these structures have to be carefully designed. Indeed many difficulties arise in the 
prediction of their structural behaviour, such as instabilities (global, local and distortional) or 
modelling problems (beam-upright connection stiffness, base plate anchorages) [1]. 
Things become even more complicated when a storage rack is installed in a seismic zone 
where, subjected to an earthquake, it has to withstand horizontal dynamic forces (see fig. 2-a). 
In that case, in addition to usual seismic global and local mechanisms, another limit state of 
the system is the fall of pallets with subsequent damages to goods, people and to the structure 
itself (see fig. 2-b). Indeed the horizontal inertial forces acting on the pallets may be sufficient 
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to exceed the friction resistance. Nevertheless if the amplitude of the sliding movement is not 
too important, in such a way that pallets remain on the rack, this effect can benefit to the 
structure as it limits the horizontal forces on the rack to the friction force at the interface 
between pallet and beams. The American recommendations RMI propose to use in all 
situation a reduction coefficient equal to 0.67. 
Results presented in this paper are part of a wider research project "Seisracks – Storage racks 
in seismic area" [2] funded by the European Union (RFCS research program). This research 
program aims at constituting a scientific background document for the drafting of an 
European Standard [3] and includes therefore many items such as: 
- Experimental determination of friction properties of pallets lying on rack beams; 
- Statistical evaluation of the rate of occupancy of racks in order to define the design value 

of horizontal seismic action, which is directly related to the mass of stored goods; 
- Experimental study of the cyclic behaviour of beam-to-upright joints and of base anchor-

ages; 
- Experimental and numerical study of the global dynamic structural behaviour of racks 

subjected to earthquakes including sliding of pallets. 
The present paper intends to develop one of the main aspects of this research, namely the 
development of numerical tools dedicated to the non-linear dynamic time-history analysis of 
rack structures subjected to earthquake, accounting for the global geometrical non-linearities, 
for the non-linear material behaviour of the joints and for the possible sliding of the pallets 
with respect to the supporting structure. Additional comparisons with test results are also 
presented, as well as results of basic parameter studies. 
 

 

Figure 1: Example of a storage rack  
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Figure 2: (a) – Collapse of a rack structure during Northridge earthquake (1994) – (b) Fall of goods during 
Northridge earthquake (1994) – See Ref. [4] 

2 BASES OF THE NUMERICAL TOOL 

2.1 General context 

The advanced numerical tool has been developed in order to allow evaluating accurately the 
behaviour of racks subjected to seismic action with a due account for possible sliding of 
supported pallets. This tool has been developed in the main frame of the non linear finite 
element software FineLg developed at University of Liège for more than 30 years [5]. Indeed 
this software already included many possibilities regarding the step-by-step dynamic analysis 
of steel structures accounting for geometrical and material non-linearities. In particular it was 
already possible to study the response of strongly non-linear structures when subjected to an 
earthquake defined by the time-history of the ground acceleration. The main missing feature 
was the possibility to let the masses slide. 

2.2 Stick / slip model of the pallets 

The starting point of the development of the sliding-mass model is the use of the concept of 
“mathematical deck” already available in FineLg since its development by FH Yang [5]. The 
mathematical deck was originally elaborated to study the dynamic behaviour of structures 
subjected to moving loads or vehicles and particularly to study the bridge-vehicles 
interaction. 
In this approach, the interactive behaviour is obtained by solving two uncoupled sets of 
equations, respectively for the structure and for the vehicles, and then by ensuring 
compatibility and equilibrium at the contact points between the structure and the vehicles 
with an iterative procedure. In this scheme, the so-called mathematical deck acts as an 
interface element to evaluate the position of the vehicles with respect to the physical deck and 
to perform the iterative compatibility process (Fig. 3-a). 
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Regarding the possible motion of the vehicles, the horizontal displacement is imposed 
according to the own speed of the vehicle and to its traffic lane. The vertical displacement, 
velocity and acceleration are on the contrary the result of a dynamic computation and are 
obtained from the behaviour of the vehicle itself, of the underlying structure and of their 
possible interaction. 
The idea in elaborating the "sliding mass" model is to start from a "moving mass" vehicle 
without any user-imposed speed and to derive the horizontal behaviour of the mass through a 
dynamic computation according to a stick/slip model (Fig. 3-b). 
 

  vehicles 

 

 

Figure 3: General scheme of the mathematical deck – (a) Original formulation – (b) Evolution for the sliding 
mass model 

- "Stick" behaviour 

The procedure for solving the global system when the masses are assumed to be fixed on the 
structure is the following. For each time-step: 

1. Solve the structure assumed to be empty and subjected to the imposed ground 
acceleration. This is done by a classical Newmark procedure. 

2. Thank to the mathematical deck, calculate the acceleration of the structure at 
the location of the contact points between the structure and the pallets. The 
acceleration is computed in both horizontal and vertical directions. 

3. Estimate the inertial forces on the pallets corresponding to the level of 
acceleration computed in step 2. From these inertial forces, evaluate the 
contact force (horizontal and vertical) to be transferred from the pallets to the 
structure. 

4. Solve the structure subjected to the ground motion and to the estimated contact 
forces. Update the acceleration of the contact points. 

5. Go back to step 3 and loop until stabilization of the structural displacement. 
Fig. 4 presents a schematic picture of the final converged situation. 

6. From the converged value of the horizontal component of the contact force, 
define for each pallet if the next time-step has to be treated as "stick" or "slip".  

- "Slip" behaviour 

As soon as the horizontal contact force computed in step 6 exceeds the static friction 
resistance Rh,st, the mass starts sliding. The dynamic response of the two sub-systems (pallets 
and structure) are then evaluated separately under the combined effect of the imposed ground 
acceleration and of a constant contact force equal to the dynamic friction resistance Rh,dyn 
(Fig. 5). During this stage, the pallet moves on the mathematical deck and its position, 

structure 

Mathematical 
deck 

  

(a) 

Mass (pallet) 

Mathematical 
deck (b) 

structure 
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velocity and acceleration (= Rh,dyn/M) can be evaluated at any time step. The sliding 
behaviour lasts until the relative velocity between the pallet and the structure becomes equal 
to zero. So by estimating the relative velocity at the end of each time-step, it is possible to 
define if the next time-step has to be treated as "stick" or '"slip". 

 

  
Fh 

-Fh 
Ustr = Upallet 

 

Figure 4: Sliding mass model in "stick" phase at the end of the iterative procedure (equal displacements and 
contact forces) 

 

  
Rh,dyn 

- Rh,dyn 
Ustr ≠ Upallet 

 

Figure 5: Sliding mass model in "slip" phase 

- Note on the convergence of the iterative procedure used for the "stick" behaviour 

A strict application of the procedure described above may lead to strong convergence 
problems. This can be illustrated on the simple example of Fig. 6, where ks represents the 
stiffness of the structure and where ms and mp are respectively the mass of the structure and of 
one pallet. ag is the imposed ground acceleration, α is a parameter of the Newmark method 
and Δt is the time-step. 

 

ms mp
ks k = ∞

ms mp
ks k = ∞

 

Figure 6: Simple example to illustrate the convergence problem 

For this case, the steps of the iterative procedure are: 
1. Calculation of the motion of the empty structure with a Newmark procedure: 

0
2

s g NM s
s FNM

F

m a mx with k k
k tα

= − = +s Δ
     (1) 

2. Structural acceleration: 
0

0
2

s
s

xx
tα

=
Δ

        (2) 

3. Contact force applied by the pallet on the structure: 
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4. Update of the estimated structural displacement: 
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5. Resulting global iterative process: 
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The time-step being assumed small, the convergence is thus ensured if and only if: 

2 1p p

s s s

m m
e

m k t mα
=

+ Δ
<       (6) 

This is obviously not possible for pallets on a rack structure, as the weight of the pallets is 
usually around 40 to 50 times the self-weight of the structure. 
Therefore, the procedure is adapted and a relaxation parameter is introduced. The 
displacement at iteration k+1 is defined as a linear combination of the displacement at 
iteration k and of the results of equation (5). The new iterative process is thus: 

( ) ( )
( )

1 1

1 1

k k k
s s s

k
s

x x e x

e x C

η η

η η

+ = − + − −

= − + −⎡ ⎤⎣ ⎦

C
      (7) 

Convergence is now ensured provided that the relaxation parameter η is less than ηmax 
defined by: 

max
22

1
s

s p

m
e m m

η =
+ +

       (8) 

In the situation considered in this study, ηmax can reasonably be taken equal to 0.05. The main 
consequent problem is that, with such a small value of the relaxation parameter, the 
convergence of the iterative process is relatively slow. For a fully-loaded structure, the 
number of iterations required to reach a precision of 10-5 on the structural displacement, 
which is necessary to manage adequately the situation of a structure with many pallets, can go 
up to 100 iterations in the worst situations. This iterative procedure could therefore usefully 
be improved in order to speed up the calculation. 
Nevertheless, the main advantage of the proposed approach is to separate completely the 
resolution of the equations of motion for the structure and for the pallets. A same model can 
thus be used for both the "stick" and the "slip" behaviour, without any modification of the 
stiffness, mass and damping matrices characterizing the structure and the pallets. The only 
information required for computing the coupled effect is the relationship between the 
acceleration imposed at the base of the pallet and the reaction force applied by the pallet on 
its support [i.e. ( )p s pf fct acc→ = allet ]. This also allows a due account of the structural non-
linearities, since these latter only implies a modification of the structural stiffness matrix 
without additional consequences on the resolution procedure. 
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2.3 Simple validation examples 

In order to validate the sliding mass model, a series of very simple systems has been studied 
with FineLg and compared to equivalent MDOF systems solved with a semi-analytical 
approach (see ref. [7]). Some of the considered examples are presented in Fig. 7. 
The results obtained with FineLg and with the reference semi-analytical procedure are found 
in very good agreement. As illustration, results obtained with FineLg for case (c) are plotted 
in Fig. 8 for μ/α  = 1.00 (no sliding) and μ/α  = 0.5 (μ is the friction coefficient and α is the 
maximum imposed acceleration referred to gravity). In this second configuration, four sliding 
phases are observed, during which the relative displacement between M2 and M3 varies (see 
the green curve in Fig. 8). 

 

u(t) = (α g/ω²) sin (ω t) 
M 

μ 
 

M2

μ

M1

a(t) = α g sin (ω t)

M2

μ

M1

a(t) = α g sin (ω t)

 

 
M3

μ
P(t) = P° sin ωt

M1
M2

M3

μ
P(t) = P° sin ωt

M1
M2

 

Figure 7: Validation examples (a) 1DOF – (b) 2DOF – (c) 3DOF 
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Figure 8: Time-history of the displacements obtained for case (c) 

3 DOWN-AISLE BEHAVIOUR OF A RACK STRUCTURE 

3.1 Elastic behaviour with sliding 

This section intends to show an application of the numerical tool for the step-by-step analysis 
dynamic analysis of a very simple rack structure subjected to an imposed acceleration of the 
ground. At this stage, the structure is assumed to behave linearly (neither second-order 
geometrical effects nor yielding of any structural elements is taken into account). The main 

E253 



 

practical objective is to evidence the consequences on the global seismic behaviour of the 
structure when the pallets are likely to slide on the beams. 
The example comprises two spans and a number of levels equal to 1 or 3 with typical 
dimensions of rack structures (span = 1.8 m; height of a level = 2.0 m – see Fig. 9). The cross 
section properties of the structural elements (beams and uprights) are also typical of real rack 
structures. The beam-to-upright joints and base-anchorages are modelled by springs with 
appropriate rotational stiffness. Four masses of 750 kg are placed at each level. The damping 
ratio is considered equal to 3%. 
 

 

 CROSS SECTION PROPERTIES OF THE 
STRUCTURAL COMPONENTS OF THE RACK 

Element Area Inertia 
Beams 605.8 mm² 93.8 cm4 

Uprights 488.9 mm² 41.3 cm4 
 Equivalent spring stiffness 

Beam-to-
upright 

connection 

 
160 kNm 

Base 
anchorage 

160 kNm 

1.8 m 2.0 m1.8 m 2.0 m

Figure 9: Simple rack structures 

The structure is subjected to 7 artificial accelerograms with spectrum compatible with a 
reference spectrum having the following characteristics: 

- EC8 type I spectrum; 
- PGA varying from 0.05 g, 0.10 g or 0.15 g; 
- Soil type C; 
- Duration = 15 s. 

The friction coefficient of the pallets is varied from 2 (which is not physically relevant but 
corresponds to pallets fully fixed on the beams) to 0.25. 
Figures 10 and 11 present respectively the results obtained for 1 and 3 levels. Figure 10-a 
shows the evolution of the maximum transverse displacement of the structure when the 
friction coefficient decreases. This displacement is the average of the maximum 
displacements obtained from the 7 considered ground motions. Figure 10-b shows in parallel 
the maximum relative displacement of the pallets with respect to the supporting beam. 
Figures 11-a and 11-b present similar results for the displacement of the top of the 3-level 
structure. 
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(a) Maximum global displacement    (b) Maximum local sliding displacement 

Figure 10: Effect of sliding on the down-aisle behaviour of the one-level rack 
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(a) Maximum global top displacement   (b) Maximum local sliding displacement 

Figure 11: Effect of sliding on the down-aisle behaviour of the 3-level rack 

The main observations that can be drawn from these results are the following: 
- Sliding of the masses and subsequent limitation of the inertial forces to the friction force 

between pallets and beams is likely to significantly reduce the global displacements of the 
structure and hence the internal forces in the structure and the support reactions. For low 
friction coefficients, these displacements can be reduced to 20% of the values obtained if 
the pallets are supposed to be fully fixed on the beams. 

- However, this reduction cannot be considered as a general rule. Indeed it is strongly 
related to the PGA level and to the structural typology (i.e. the number of levels). For 
example, no reduction is observed for a 3-level structure subjected to an earthquake with 
PGA equal to 0.05 g, even for a friction coefficient equal to 0.25, while the reduction is 
about 50 % for the same structure but with a PGA equal to 0.15 g. Further, for a same PGA 
of 0.15 g and a same friction coefficient of 0.5, global displacements are reduced to about 
35 % of their fixed value for a one-level structure, while they are only reduced to 80 % for 
a 3-level structure. 

- Moreover the local sliding displacement of the pallets in the case of low friction 
coefficients can be very important and therefore non compatible with real conditions. For 
example, for a 3-level structure subjected to an earthquake with a PGA equal to 0.15 g, the 
local displacement of the pallets with respect to the structure can go up to 30 cm for a 
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friction coefficient equal to 0.25. Such a value of the displacement is obviously non 
admissible, since it corresponds either to a fall of the pallet or at least to an impact of the 
pallet against an upright. It is important to remind that a friction coefficient as small as 
0.25 can be rather frequent for usual practical situations (see ref. [2]). 

With this perspective, the most advantageous situation would be a structure with only one 
loaded level, with high design acceleration and with a very low friction coefficient. For 
example, if the ground acceleration ag is equal to 0.5g, the design acceleration of the structure 
may rise up to 1.25g. If only one level is loaded and if the friction coefficient μ is equal to 
0.25, the force acting on the structure is exactly limited to the friction force, which 
corresponds to an equivalent acceleration of 0.25g. The reduction factor is thus equal to 
0.25g/1.25g = 0.2. On the other hand, for structures with many loaded levels and for low 
values of ag, it can happen that no sliding occurs. The reduction factor is consequently equal 
to 1.0. The practical range of ED is therefore rather wide, between 0.2 and 1.0. It is interesting 
to note that the value proposed by the American RMI is equal to 0.67, which is somewhere in 
the middle of this interval. Some additional studies are still required to calibrate an expression 
of the reduction coefficient that would depend on the structural typology and on the ratio ag/μ. 

3.2 Hysteretic behaviour of the connections 

The numerical model has then been used to simulate test results obtained on the shaking table 
of the Laboratory of Earthquake Engineering of the NTU Athens. Figure 12 shows the tested 
specimen (2 bays – 3 levels non-braced structure) and the corresponding numerical model. 
It is obviously not possible to describe in this paper the whole series of test results and the 
numerous variations of the different parameters of the model that have been taken into 
consideration. Results for one intermediate level of acceleration are presented (i.e. peak 
ground acceleration of the table equal to 0.45g) and only the impact of the parameter having 
the main influence on the behaviour of the rack is commented (i.e. the resistance of the 
connections). It may be noted that even if the imposed acceleration is much higher than in the 
example of section 3.1, the resulting structural acceleration is lower due to different frequency 
content. The influence of the friction coefficient is therefore less important and not considered 
in this section. The extensive comparison between numerical and experimental results can be 
found in [2]. 
In this section, geometrical non-linearities and materially non-linear behaviour of beam-to-
upright joints and of base-anchorages are considered. Figure 13 presents a comparison of the 
displacement at the top level measured during the test on one hand and obtained with the 
numerical model (with different assumptions on the base resistance) on the other hand. In the 
numerical model, the friction coefficient was assumed equal to 0.5. No sliding was predicted 
by the numerical model, while very small sliding displacements were measured during the 
tests (about 1 mm). The input signal is the time-history of the acceleration recorded on the 
table during the test. Table 1 summarizes some interesting numerical values for comparison 
purposes. 
From these results, the following observations can be drawn: 
- The general shape of the time-history response of the structure is correctly predicted by the 

model. 
- It is necessary to account for the non-linear behaviour of the joints otherwise the residual 

displacements of the structure cannot be explained. 
- Displacements are slightly overestimated by the model (about 15%). However no sliding 

was accounted for in the numerical model, while some sliding actually occurred during the 
test and brought some additional damping to the structure. 
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Figure 12: test specimen and corresponding numerical model 
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Figure 13: Effect of the column-base resistance on the structural response (time-histories) 

  
Test 

Model (Base 
resistance = 
2.00 kNm) 

Model (Base 
resistance = 
1.75 kNm) 

Model (Base 
resistance = 
1.50 kNm) 

Model (Base 
resistance = 
1.25 kNm) 

Maximum 
displacement [mm] 

78.3 91.4 91.4 91.4 90.3 

Minimum 
displacement [mm] 

62.2 68.0 71.0 75.9 75.0 

Residual 
displacement [mm] 

4.7 0.4 1.5 0.9 7.1 

Table 1: Effect of the column-base resistance on the structural response (numerical values)  
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4 CONCLUSIONS AND PERSPECTIVE 

In this paper, a numerical model able to reproduce in a satisfactory manner the behaviour of 
storage racks subjected to earthquakes has been presented and compared with analytical 
examples and test results. The numerical model is base on a stick / slip model of the pallets 
solved by using an iterative procedure with relaxation. The method has been shown as robust, 
even if the numerical efficiency could be improved in the perspective of an acceleration of the 
resolution. 
The paper has then presented a short parameter study that shows the influence of the sliding 
of pallets on the global behaviour of the racks. The main outcome of this study is that the 
effect of the sliding can be very important (reduction of 80 % of the internal forces in the 
structure in some cases) but that this effect is also strongly related with the seismic intensity 
and the structural typology, contrary to what is proposed by the American RMI. Further the 
associated local displacements of the pallets may be unacceptable for practical reasons (fall of 
pallets or impacts against uprights). Finally a focus is put on the main parameters on which it 
is possible to act for calibrating the numerical model with respect to experimental tests, i.e. 
the behaviour of the connections (and in particular of the base anchorages), the friction 
coefficient of the pallets and the viscous damping (even if this last aspect was not commented 
into details in the paper). 
It will thus be possible in a next research step to consider extensive parameter studies with 
variations of all these parameters, in the perspective of developing backgrounds for design 
recommendations, and in particular to calibrate the reduction coefficient in case of sliding. 
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