

Metabolic Stress in Dairy Cows
International Symposium organised by BSAS/GIFT/BCVA
Edinburgh, October 28 - 30, 1998

Genetics of Lactation Persistency

Hermann H. Swalve and Nicolas Gengler

*Institut für Tierzucht
und Haustiergenetik*
University of Göttingen
D-37075 Göttingen
Germany
E-Mail: hswalve@gwdg.de

Unité de Zootechnie
Gembloux Agricultural
University (FUSAGx)
B-5030 Gembloux
Belgium
E-Mail: gengler.n@fsagx.ac.be

Lactation Persistency - Definition

No unique definition!

Consensus could be:

Ability of the cow to maintain a more or less constant yield in the course of the lactation

Therefore:

The lactation of a cow is more persistent if, for the same total yield, the peak yield is lower and the lactation curve is flatter

Impact of persistency

Improvements when persistency is increased:

- **health**
→ less (metabolic) stress → better health
- **feed costs**
→ ratio of roughage : concentrates that is necessary is improved
- **fertility**
→ better fertility when (metabolic) stress is reduced

Requirement for defining criteria

Criterion should be independent from lactation yield

- **economically: yield already considered in the aggregate genotype**
- **biologically: we wish to define ability of the cow to produce the same amount of milk with less metabolic stress**

→ **only very few authors have taken this approach**

Criteria that have been suggested

- **Derived from lactation curve functions**
- **Based on ratios of peak/partial/total yields**
- **Variation of partial yields or test day yields**
- **Derived from RR-TDM**
(Random Regression Test Day Models)

Criteria that have been suggested

Criteria derived from lactation curve functions

- coefficient of linear regression of test day yield on days in milk
(obviously not an ideal lactation curve model)
→ descending phase dominant, slope is negative - Question is: How negative?
- Wood's curve: $y^t = a t^b e^{-ct}$
Persistency:
 $S = c^{-(b+1)}$

Criteria that have been suggested

Criteria based on ratios of peak/partial/total yields

- involving maximum of test day yields (peak production)
 - mean (or total) / peak
→ higher values = higher Persistency
 - peak / mean
→ lower values = higher Persistency
- involving partial lactation yields P3:1, P2:1, P3:2
→ well known, often found

Criteria that have been suggested

Criteria measuring the variation of partial yields or test day yields

- **SD of test day yields:**
 - not only a measurement of Persistency, but also measuring if “conditions are stable”
- **yield variation:**
 - index of variation of partial yields

Criteria that have been suggested

Criteria derived from
Random Regression Test Day Models

RR-TDM: model curve by appropriate regression coefficients, allow for covariance structure among them

Criteria that have been suggested

RR-TDM (cont.)

Proposed RR-TDM (Guelph Group):

- **fixed regressions (nested within age-region, etc.)**
- **random regressions**
- **animal, pe (+ residual)**

RR-TDM produces 'genetic yields' per day or any combination of days

Proposed criterion of Persistency:

- **slope of 'genetic yields' from d 60 to d 280**

Environmental factors

- **Herd**
- **Parity**
- **Age at calving**
- **Season of calving**
- **Gestation**
- **Other?**

Persistency and reproductive performance

- **Before cow gets pregnant:**
better Persistency is assumed to positively affect reproductive performance
- **After cow is pregnant:**
pregnancy affects Persistency negatively (non-linear relationship)

Persistency and reproductive performance

Conclusion:

- the relationship between reproductive performance and Persistency should always be viewed as a two-way interaction

Lean et al., 1989: *Cows with high Persistency had lower reproductive performance*

Reasons behind this:

- rapidly getting pregnant again lowers Persistency
 - P ↓ Repro ↑
 - Repro ↑ P ↓

Persistency - genetic parameters

Traditional criteria

- **Wood's S, Ratios, SD**

h^2 : .05 to .30

r_g with 305-d yield: **positive for S and Ratios (around .50)**
negative for SD

(positive and negative in a sense of correlated response to selection)

- **Fat and Protein:** slightly lower heritabilities

Persistency - genetic parameters

Criteria derived from RR-TDM (Jamrozik et al., 1998)

h^2 : .30 to .40

r_g with 305-d yield: zero !

Persistency - genetic parameters

Genetic correlations among criteria for the same trait:

- **very high (close to 1.0)
even when including SD-criteria**

Genetic correlations of Persistency among yield traits:

- **.80 to .90**

Persistency - genetic parameters

Genetic correlations of Persistency in subsequent lactations:

- **very low (.00 to .30)**
- **is this an artefact?**
- **or due to incorrect modelling?**
- **or is Persistency in different lactations really a different trait?**

Discussion and conclusions

What are we really looking for?

A cow with

- high production performance
- good health
- sufficient reproductive performance
(No. of days open according to yield level)

- ➔ not necessarily a cow with a completely flat lactation curve
- ➔ desired: less pronounced peak and good maintenance of high yields

How to achieve this goal?

- **Management**
 - use bio-economic models
 - optimise feeding, reproductive performance and production
- **Selection**

Conclusions for genetic improvement

- **Reproductive complex has to be included in the models of analysis**
- **RR-TDM is a very flexible and powerful tool**
 - **use criteria derived from RR-TDM**
 - **examine critical part of the lactation**
- **Evaluate Persistency in the context of metabolic stress**
(definitions of metabolic stress?)

Conclusions for genetic improvement

Will a genetic improvement of Persistency also improve longevity?

- **little is known about this up to now:**
 - **Reents et al. (1996):**
slightly positive relationship exists
 - **Druet (1998):**
genetic correlations .20 to .30
- **exploit latest methodology to analyse this:**
 - **survival analysis (SURVIVAL KIT)**
 - **RR-TDM**

Conclusions for genetic improvement

Problem of low repeatability of Persistency has to be solved!

- **is it an artefact?**
- **is it due to selection bias?**
- **is it found only because of incorrect modelling?
(reproductive complex mishandled?)**

Important issue for correct lactation curve modelling:

→ **Multi-lactation RR-TDM**

Conclusions

- Still more questions than answers in the genetics of lactation Persistency
- Needed:
 - more collaboration between geneticists and physiologists
 - better methods and models
 - better data
- Recommendation on the inclusion of Persistency into selection programs is premature