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Foreword

The development of efficient techniques to drill deep boreholes to access the
Earth’s underground energy resources requires solving formidable technical chal-
lenges that do not pale in comparison with complex undertakings in other ad-
vanced areas of the Industry such as aerospace. Bits that survive drilling he-
terogeneous environments for hundreds of meters, downhole robots that auto-
matically steer the drillhead to stay within the hydrocarbon reservoir, downhole
instruments that collect data during drilling and send them back to the surface us-
ing the circulating mud as the wave transmission medium are examples of creative
technologies that have been deployed to meet these challenges. However, scien-
tific challenges as daunting as the technical ones also exist, even though they have
not received as much attention and resources. Developments of robust methods
to control and mitigate the self-excited vibrations of drilling systems, formulation
of comprehensive models for predicting borehole trajectories that can be used to
optimize the control of rotary steerable systems, and understanding of efficient
means to fragment rocks in the pressure environment of deep holes are examples
of such scientific challenges that are not yet resolved. While the solution to these
scientific puzzles may not yet be in sight, progress in achieving these goals will
most likely accelerate by inviting expertise from disciplines outside of those that
have traditionally been brought about to address these problems. We hope that
this Colloquium will be a step in that direction, bringing together a small but
eclectic group of engineers and scientists willing to share knowledge and expertise
on subjects that are relevant to the theme of this Colloquium. With technical
sessions including topics as varied as chatters in machining, bouncing balls and
impact oscillators, numerical methods for non-smooth dynamics, and borehole
propagation models, we hope that lively and open discussions will emerge. The
secluded setting offered by the Chéateau de Colonster, located on the Sart-Tilman
Campus of the University of Liége, will no doubt offer a superb environment for
the working of this Colloquium. Whether this workshop will remain le Collo-
quium on “Nonlinear Dynamics of Deep Drilling Systems” or the first one of a
series of such meetings is our challenge to you! We warmly welcome you to Liege!

Vincent Denoél, Emmanuel Detournay and Geoff Downton
Acknowledgments
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AN INTRODUCTION TO NUMERICAL METHODS FOR NONSMOOTH
MECHANICAL SYSTEMS WITH IMPACTS AND FRICTION

Bernard Brogliato

INRIA, BIPOP team-project, ZIRST Montbonnot, 655 avenue de I'Europe, 38334
Saint Ismier, France

1 Introduction

Non-smooth dynamical systems (NSDS) usually embed systems whose trajecto-
ries are not at least continuously differentiable everywhere, and for which powerful
tools like tangential linearization at a point, or the (classical) implicit function
theorem, do not apply because of the lack of differentiability of their right-hand-
side. There are many types of NSDS. Here we shall focus on two particular, yet
important because they represent common physical systems, classes of NSDS:
systems with Coulomb friction (discontinuous acceleration), and systems with
impacts or, better said, complementarity lagrangian systems (discontinuous ve-
locities). Our aim is to introduce on two very simple examples a class of im-
plicit time-discretizations: the Euler backward scheme and Moreau’s catching-up
scheme. We shall deal with time-stepping (or event-capturing) algorithms only.
For event-driven schemes see [1| and references therein. The sicoNo0s platform
for the simulation of NSDS is briefly presented.

2 A simple variable structure system

The simplest variable-structure system one may imagine is given by the differen-
tial inclusion

-1 it >0
x(t) € —sgn(x(t)) = 1 if z<0 (1)

[~1,1] if =0
As shown recently in [6] in a more general setting than (1), the ezplicit Euler
discretization of (1), i.e. xg41 € xp — h sgn(xg), h > 0 the time-step, yields

oscillations in the neighbordhood of the sliding surface (in this simple example
the origin) x = 0, despite the algorithm converges. This is because the switches of
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the vector field are led in the implicit method, by the state x;. Such oscillations
(or limit cycles) are a pure numerical artefact that should be avoided. If one
considers for instance that (1) is a Filippov’s differential inclusion, then after a
finite time t* and whatever x(0), the solution is z(t) = 0 for all ¢ > ¢*. Also
all the derivatives z()(t) = 0 on (t*,+oc). Clearly the Filippov’s solution is
not well approximated by the explicit method on the sliding surface because its
derivatives will not be zero at all. This is quite disturbing in many cases where
one would like a smooth stabilization on the sliding surface. From a contact
mechanics perspective, this means that the explicit numerical method is not able
to correctly simulate the sticking mode, i.e. when the reaction force lies in the
interior of the friction cone (see simulated examples in the survey [5] for systems
of the form #(t) € —sgn(&(¢))). In other words, the multivalued part of the sgn(-)
multifunction is not correctly handled by the explicit Euler method.
Let us investigate now the backward Euler discretization of (1), i.e.

Ty1 € o — hosgn(zpy1) (2)

The interpretation of (2) is that x4 is the solution of a generalized equation.
Using for instance maximal monotonicity arguments, it can be shown that this
GE possesses a unique solution for any z; and any h > 0. To advance from step
k to step k + 1, one has to find zpy; as the intersection between the graph of
the multifunction xgy1 — —h sgn(zkr1) and the graph of the function zj1 —
ZTk11 — Tk- As shown on figure 1, the intersection is indeed always unique, and
the method always converges in a finite number of steps k* to zp«1, = 0 (at
the machine precision) for all n > 1 (on the figure one has xp_o = zp_3 — h,
Tp—1 = Tg—o — h, xp = xp_1 — h, r11 = 0). The numerical solution smoothly
stabilizes on the sliding surface, without any spurious oscillations.

This is in fact a generic property of implicit Euler schemes, which can be
shown to hold true in more general differential inclusions involving the sign multi-
function. In more general cases, the GE for x;11 (which is a one-step nonsmooth
problem (OSNSP) to be solved iteratively at each step k) is rewritten after a
Newton’s linearization as a mixed complementarity problem (MCP), that may
be solved by many existing linear complementarity solvers. The main features of
the implicit Euler method are:

e The switches are monitored by a multiplier Ag; computed as the solution
of a MCP, not by the state x: this is a kind of dual method.

e It extends to multiple switching surfaces (or multiple contact points in
mechanics with Coulomb friction).

12



step k + 1/
step k — 2

step k — 1

Figure 1: Iterations of the backward Euler method.

e It can handle accumulations of events (stick/slip transitions). A single
time-step may even contain an infinity of events!

e It converges and is or maximal order 1 (not very accurate if few events and
long smooth motion periods, then prefer an event-driven method).

e It does not need an accurate detection of the events and an accurate com-
putation of the events times.

o It encapsulates the multivalued part of the characteristic. This is funda-
mental when the system reaches its equilibrium right inside the multivalued
part !

As a general remark, higher order schemes (Runge-Kutta, multistep, Newmark)
may be used, however they do not improve the accuracy of the method because
non-smoothness decreases the order.

3 The bouncing-ball system

We now turn our attention to the simplest non-smooth mechanical system with
impacts: the bouncing-ball, whose dynamics is given by

mi(t) + mg = A
0<ALlg>0 (3)
G(t") = —eq(t”) if q(t) =0 and 4(t7) <0
One may first try a direct implicit discretization of this dynamics, like this
is done for some classes of linear complementarity systems [4]. However this
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doesn’t work for mechanical systems, because the velocity may jump and the
restitution law (third line of (3)) has to be taken into account. One way to solve
this problem has been proposed by J.J. Moreau [8, 9, 10] (see also [1, 3] for non-
mathematical introduction to the sweeping process), who introduced so-called
measure differential inclusions in the framework of the second-order sweeping
process. It consists in a first step in rewriting the dynamics as

v(th) +ev(tT)
1+e > )

with e € [0,1], ® = RT, dv is the differential measure of the velocity ¢(-) (a
sort of generalized derivative equal to ¢(¢1)dt outside impacts, and to a Dirac
measure at impact times), dt is the Lebesgue measure, T (q) is the tangent cone
to ® at g, Nk is the normal cone to a convex set K. The main features of this
differential inclusions are:

— dv — g dt € Ny (q)) (

e It is an inclusion of measures. The normal cone in the right-hand-side!
contains impulses of the contact force, denoted as dA, which are measures.

Therefore one may read (4) as — dv—g dt = d\, d\ € NTq)(q(t))(%i’(r)).

e It is a velocity/impulse formulation of the dynamics. At impact times
dA({t}) is a positive bounded quantity.

o [t is very well suited for the development of a time-stepping method, since
it encapsulates in one-shot all the motions of the system.

e It may be seen as a kind of pre-conditionning of the contact force (that
is a Dirac measure at the impact times), similarly to what is done for the
simulation of differential-algebraic equations (DAE) to reduce the index.

e [t extends to n—degree of freedom systems with very large number of uni-
lateral contacts with multivalued friction (e.g. granular material).

The implicit time-discretization of the inclusion (4) is:

Vk+1 + evg

o ) t € [kh, (k + 1)h] (5)

—Vg4+1 + U — hg € NT@(qk) (
and gr4+1 = qx + hvgy1, where v plays the role of v(t7), vgy1 plays the role of
v(t*), h > 0. Similarly to (2) one has to solve a generalized equation in vg,1.
Using some basic result of convex analysis it may be shown that (5) is equivalent
to

!The mass m has been dropped since multiplying a cone by a positive constant does not
change the cone.
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hg
6
1+e ()

When v < 0 and g = 0 € 0P, one gets vpy1 = —evy: this is known as
Newton’s impact law [3]. Therefore the OSNSP to be iteratively solved at each
step k is a projection onto a convex set. This generalizes to n—degree of freedom
systems with multiple contacts with friction (see [1, Chapters 12 and 14] for a
thorough review on OSNSPs and solvers). The major features of the discrete
inclusion (5) are:

Vg1 = —evg + (1 +¢) proj |To(qr); v —

e the element in the normal cone of the right-hand-side is dA([hk, h(k+1)]) =
f[hk,h(k—i—l)] d\, that is the measure of the interval [hk, h(k+1)] by the contact
force impulse. This is always a bounded quantity. Therefore, this time-
stepping algorithm does not try at approximating a Dirac measure at the
impacts.

e Convergence results as h — 0 have been proved [7].

e It handles accumulations of events (impacts, stick/slip transitions) without
slowing down the computations.

e It has low accuracy on smooth portions of the motion.
e It allows for phenomena like Painlevé paradoxes (frictional paroxisms).

e In the n—dimensional case with very large number of unilateral contacts
with friction (possibly several thousands in granular matter), the method
still performs very well.

See |1, §10.2| for a summary of the existing applications of this numerical method.

4 The sICONOS platform

The sicoNos Platform is a scientific computing software dedicated to the simula-
tion of non-smooth dynamical systems (NSDS). Especially, the following classes
of NSDS are addressed: Mechanical systems with contact, impact and fric-
tion, electrical circuits with ideal and piecewise linear components, differen-
tial inclusions and complementarity systems. This is written in C++ with
an API in Python, and GPL licensed. The platform can be downloaded at
http://siconos.gforge.inria.fr/ .

Both Moreau’s time-stepping scheme, and an event-driven method are im-
plemented in SICONOS. The OSNSP solvers that are implemented are QP, LCP,

15



MLCP and NCP solvers: splitting based methods, Lemke’s method, various non-
smooth Newton’s methods, PATH; and frictional contact solvers (projection-type,
Alart-Curnier’s algorithm, NSGS splitting method). 2D and 3D unilateral fric-
tional contacts are implemented, without faceting the friction cone (a procedure
that should be avoided, see [1, §13.3.7]). For more details and examples see [2]
and [1, Chapter 14].

5 Conclusions

The numerical simulation of non-smooth mechanical system requires specific
methods, which are able to handle phenomena like events accumulation, slid-
ing modes on codimension m > 1 surfaces, impulsive contact forces. Above all
the numerical method should be able to well approximate the multivalued parts
of the piecewise smooth laws entering the dynamics. The implicit Euler method
and the implicit Moreau’s method are an example of such algorithms.
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BI-STABLE REGION ESTIMATIONS FOR CUTTING

Gabor Stépan®, Zoltan Dombovaril?, Eddie R. Wilson?

! Department of Applied Mechanics, Budapest University of Technology and Eco-
nomics, Hungary
2 IDEKO Technological Centre

3 Department of Engineering Mathematics, University of Bristol, United Kingdom

1 Introduction and mechanical modelling

One of the important goals of the optimisation of cutting processes is to maximise
the volume of the chip cut within a certain time. There are several boundaries
identified in the operational space of the cutting parameters, namely, the chip
width, the chip thickness and the cutting speed. These boundaries are related
to the maximum power, maximum cutting force, feed rate, depth of cut, etc.
The most difficult boundary to handle is signposted by the harmful relative vi-
brations between the tool and the work-piece. The so-called regenerative effect
is considered as one of the main reasons of these vibrations, which cause poor
surface quality or, in extreme cases, damage the machine tool structure. The
central idea of this regenerative effect is that the motion of the tool depends on
its past motion, that is, a large time delay occurs in the slightly damped oscillator
model of the machine tool. This delay is inversely proportional to the cutting
speed. The first thorough and detailed experiments on the nonlinear regenera-
tive vibrations [1] often showed small domains of attraction around the stable
stationary cutting. A rigorous analytical investigation on the nature of the loss
of stability of stationary cutting was performed only much later only by means
of Centre Manifold reduction and Normal Form calculation [2]. The local unsta-
ble vibration separates two independent attractors, the stationary cutting and
a large amplitude nonlinear oscillation that is also stable in dynamical systems
sense. Still, this latter vibration is often mentioned as ‘instability’” by engineering
terminology referring to its harmful nature. The region where this co-existence
can occur will be called the region of bi-stability, while the terminology unsafe
zone is also used for the same idea in production technology. Despite of the
fact that these large-amplitude vibrations are of little interest from a technolo-
gical view-point, the location and the size of the bi-stable domain are important,
since they define the parameter region where the cutting process is more or less
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sensitive to perturbations caused by, e.g., non-homogeneous work-piece material.
Figure 1(b) shows a 1 DOF damped oscillator subjected to the nonlinear cutting
force. The corresponding governing equation has the form

G(t) 4 26wnd(t) + wiq(t) = %Fq(t) (1)

where w, and x are the natural angular frequency and the damping ratio of
the essential vibration mode described by the general coordinate ¢ that refers to
the tool position. Fy(t) is the corresponding component of the resultant cutting
force F'(t). Stationary cutting force measurements indicate that the nonlinear
cutting force characteristics often involve an inflection point on the otherwise
monotonous increasing function against the chip thickness as shown in Fig. 1(c).
The conventional power-law approximation of the empirical cutting force is not
able to describe this inflection point. The effect of this possible inflection point
is analysed from a nonlinear dynamics view-point when a cubic polynomial ap-
proximation of the cutting force characteristics is used.

(a) work-piece (b) ) A4

tool holder
| chip m tool gs ax
- i: E[ F
C\@ﬁ/
\_/—\_ﬂ\

I > i 3
s /Q—\, work-piece

Figure 1: Panels (a) and (b) show the arrangement of the machine tool-work-piece
system in case of orthogonal cutting. Panel (b) illustrates a planar mechanical
model. Panel (¢) shows the differences between the power and the cubic expres-
sions of the empirical nonlinear cutting force characteristics.

2 Nonlinear regenerative effect and bi-stable zone

Figure 1(b) presents the variation of the instantaneous chip thickness h(t) as a
function of the present position ¢(¢) and the delayed position ¢(t —7) of the tool:

h(t) = q(t = 7) — q(t) + ho, (2)

where hg is the prescribed chip thickness, 7 = 27/ is the period of the rotating
work-piece, ) is its angular velocity. If a cubic polynomial expression of the
cutting force depends on the actual chip thickness (see Fig. 1(c)) and this actual
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chip thickness is expressed as above, the equation of motion has the form of a
delay-differential equation:

G(t) + 2kwn(t) + wiq(t) = — [p1h(t) + pah®(t) + psh®(t)] . (3)

w

m
The cutting force characteristics must be always increasing, which means for

the 3 parameters py 23 of the cubic polynomial cutting fore component Fj, that

OF, OF,

1p3
49 > 249, — _ - F2

) >0 & 3pips—p5 >0 (4)
3p3

Figure 2(b) shows the size of the bi-stable region in % as a function of the
chip thickness hg where the nonlinear cutting force parameters pj 23 are fixed
at the values taken from [1]. The experimental results taken form the same
report [1], are denoted by dots and they follow the analytical prediction well.
This is remarkable since the conventional power-law characteristics provide a
constant ~ 4% width for the bi-stable region. The most critical theoretical chip
thickness he, , where the size of the bi-stable region is maximal, can be calculated
analytically: he = —p1/p2. In the meantime, the quantitatively more accurate
path-following method determined the switching points more precisely, and the
real size of the maximal bi-stable zone is shown to be about half the size of the
analytical estimation (see Figure 2(b)) — but this value is still at about 50%, which
is about 12 times larger than the one predicted by the power-law formulation.

3 Conclusion

The classical model of regenerative vibration was investigated with new kinds of
nonlinearities; based on some experimental results, the proposed model includes
an essential inflection point in the force characteristics. In case of orthogonal
cutting, the existence condition of unstable self-excited vibrations is given along
the stability limits, which is related to the force characteristic at its inflection
point. An analytical estimation is derived for the chip width where the co-
existence of stable stationary cutting and a strange stable self-excited vibration
‘outside’ the unstable periodic motion is expected. It was shown how this domain
of bi-stability depends on the theoretical chip thickness. The comparison of
these results to the experimental observations and also to the bifurcation results
obtained for standard nonlinear cutting force characteristics provides relevant
information on the nature of the nonlinearity of the cutting force.
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Figure 2: In panel (a) several intersections are shown with respect to the desired
chip thickness h0 of the 4*" lobe and its unsafe zone (grey area). In panel (b)
the relative widening of the bi-stable region are presented in case of cubic and
power-law cutting force characteristics. (dashed: analytical solution, continuous:
computed by DDE-BIFTOOL |[3], points: results of Tobias’ measurements (k =
0.01) [1].
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STATE-DEPENDENT DELAY MODELS FOR METAL CUTTING PROCESSES

Gébor Stépan, Tamas Insperger

Department of Applied Mechanics, Budapest University of Technology and Eco-
nomics, Hungary

1 Introduction

An important phenomenon that limits the productivity of machining is the onset
of self-excited vibrations, also known as machine tool chatter. One reason for
such vibrations is the so-called regeneration effect: the tool cuts a surface that
was modulated during the previous revolution of the workpiece (in case of turn-
ing) or by the previous tooth of the tool (in case of milling). This phenomenon
can be modeled by delay-differential equations (DDEs). In models with constant
regenerative delay, the arising vibrations are associated with subcritical Hopf bi-
furcations [1, 2]. The locations of these Hopf bifurcations of machining processes
are usually shown in the form of stability lobe diagrams. These diagrams plot
the stable axial cutting depth as function of the spindle speed.

If the regenerative process is to be modeled accurately, then the vibrations
of the tool should also be included in the time delay. In turning processes, the
time delay is basically determined by the rotation of the workpiece but it is also
affected by the current and the delayed position of the tool as it was shown in
[3, 4]. This results in a DDE with state-dependent delay (SD-DDE) where the
delay depends on the present state and also on a delayed one, thus giving an
implicitly defined delay. The effect of state-dependent delay is also important
in rotary cutting processes like in drilling or in milling. One application is deep
drilling with drag bits [5], where state-dependent regenerative delay typically
arises due to the torsional vibrations of the tool. State-dependent delay also
appears in milling models even when only the bending oscillations of the tool is
considered and its torsional compliance is neglected [6].

The theory of SD-DDEs is an actively developing research area in mathema-
tics, and results, like linearization techniques and stability analysis, are not used
in engineering problems yet. A good overview about the properties of SD-DDEs
was recently provided in [7]. SD-DDEs are always nonlinear, since the state
itself arises in its own argument through the delay. Linearization of SD-DDEs
is complicated by the fact that the solution of the system is not differentiable
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workpiece

Figure 1: Model of regeneration in turning process.

with respect to the state-dependent delay. Consequently, “true” linearization is
not possible, rather we are looking for a linear DDE, which is associated to the
original system in the sense that they have the same local stability properties.
The linearization technique for general autonomous SD-DDEs was given in [§]
and for time-periodic SD-DDEs in [9].

In this paper, the results about the state-dependent delay model of turning
and milling processes presented in [3], [4] and in [6] are summarized.

2 State-dependent delay model for turning

The mechanical model of the turning process can be seen in Fig. 1. The tool is
assumed to be compliant and experiences vibrations in directions z and y, while
the workpiece is assumed to be rigid. The gystem can be modeled as a 2 DOF
oscillator excited by the cutting force. As in standard models of regenerative
machine tool chatter, the chip thickness and, consequently, the cutting force
depend on the current and a delayed position of the tool. In the current model,
the regenerative delay 7 is not constant due to the compliance of the tool in the
direction z, but it can be given in the implicit form

RQT =2Rm + z(t) — z(t — 1), (1)

where R is the radius of the workpiece and €2 is the spindle speed in |[rad/s|. This
equation shows that the time delay 7 depends on the current position z(¢) and on
the delayed position x(t—7) of the tool, that is, the time delay is state-dependent:
7 = 7(x¢), where z,(s) = z(t + s), s € [-r,0], r € RT.
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Figure 2: Model of regeneration in milling process.

The equations of motion of the system can be given as

mi(t) + cpi(t) + kez(t) = Kpw (vr () +y(t — 7(2e)) — y(1))7, (2)
mii(t) + coy(t) + kay(t) = Kywv (1(z¢) + y(t — 7(24)) — y(t)?, (3)

where the state-dependent delay 7(x¢) is defined implicitly by Eq. (1). The left
hand side of Eqs. (2) and (3) describe the tool as a 2 DOF oscillator with modal
mass m, damping c,, ¢, and stiffness k;, k. The right hand side corresponds to
the cutting force, where K, and K, are the cutting coefficients, w is the depth
of cut, v is the speed of the feed and ¢ is an exponent (¢ = 0.75 is a typical
empirical value for this parameter). For more details on the modeling, see [3].

3 State-dependent delay model for milling

The state-dependent delay model of milling processes is more complicated than
that of the turning process. The corresponding mechanical model can be seen
in Fig. 2. The tool is assumed to be compliant in directions = and y, and the
workpiece is assumed to be rigid, thus, the system can be modeled as a 2 DOF
oscillator excited by the cutting force. The time delay 7; between the (j — 1)
and j'® teeth can be derived in a purely geometric way. The exact condition for
the delay is that point P;_;(t —7;) is located in the section determined by points
Pj(t) and O(t). This consideration leads to the equation

(vrj + a(t — 15) — x(t)) cos (= + (j — 1)9)
—(y(t —75) —y(t))sin (=Qt + (j — 1)) = Rsin (Q7r; — V), (4)
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which is an implicit equation for the time delay. This equation shows that the
time delay 7; of the 4™ tooth depends on time ¢, on the current position z(t)
and y(t) and on the delayed position x(t — 7;) and y(t — 7;) of the tool, that is,
the time delay is time and state dependent: 7; = 7;(¢,2¢,y:). The equations of
motion of the system can be given as

mi(t) + ci(t) + ka(t Z Qg ;(t < (1 — cos(Qrj(t, z¢, y¢) — V)
+(U7_j(t7 Tt, yt) + .’L’(t - Tj(tv T, yt))

() sin gy (t) + (ylt — (8, 21, 51)) — y(t)) cos mt)) )

i) + ci(t) + ky(t) Z%J ( (1 = cos(S¥r; (b, 22, 31) — )
+(UTJ (ta Tt, yt) + l'(t - T] (t7 Tt, yt))

(1)) sin () + (u(t — 75t 200 31)) — (t)) cos mt)) G
where

az,j(t) = wg(p;(t)) (Ki cos(w;(t)) + Knsin(p;(1))) , (7)
ay,j(t) = wg(p;(t)) (Kn cos(p;(t)) — Kisin(p;(t))) , (8)

and the time delay is given by the implicit equation (4). The left hand side of
Eqgs. (5) and (6) describe the symmetric tool as a 2 DOF oscillator with modal
mass m, damping ¢ and stiffness k. The right hand side corresponds to the
cutting force, where R is the radius of the tool, ¢ = 27/N is the pitch angle of
the tool with IV being the number of teeth, € is the spindle speed in [rad/s|, w is
the depth of cut, K¢ and K}, are the tangential and the normal cutting coefficients
and ¢ = 0.75. The function g is a screen function, it is equal to 1, if the j*" tooth
is active, and it is 0 if not. For more details on the modeling, see [6].

4 Stability properties and conclusions

Linearization and stability analysis for the SD-DDE model of turning processes
can be performed in a nice analytical way, and numerical techniques can be used
to compute the corresponding bifurcations. For milling processes, however, this
analysis is more complicated, since the model is a time-periodic SD-DDE. Here,
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Figure 3: Change of criticality along the lobes. Thick lines - supercritical, thin
lines - subcritical.

the results presented in [3, 4] about SD-DDE model of turning are summarized
briefly.

Fig. 3 shows stability lobe diagrams in the plane of the dimensionless spindle
speed Q/w, (with w, being the natural angular frequency) and dimensionless
depth of cut K1 = K,w(2rR)?"!/(mw?). Numerical analysis of the periodic
orbits arising during the linear loss of stability showed that both sub- and su-
percritical Hopf bifurcations may appear for different values of the dimensionless
feed p = v1p/(27R). Here, 19 = 2w /Q is the mean time delay and R is the radius
of the workpiece.

It was found that if p < 0.0209 then the Hopf bifurcation is always subcritical
similarly to the constant delay models. However, if p is increased, then the Hopf
bifurcation at the right hand side of the lobes becomes supercritical, while the left
hand side remains mostly subcritical. The state-dependent delay in the turning
model has a kind of stabilizing effect. It increases the linear stability limits and
it turns the subcritical bifurcations to supercritical ones.
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1 Introduction

We counsider a delay differential equation describing high-speed machining. By
using singular perturbation techniques, we analyze the emergence of periodic
solutions in the limit of small delays. In dimensionless form, this equation is
given by

2+’ +r=Fx—x(t—71),2) (1)

where ¢ is time scaled by the natural frequency of a specific vibrational mode.
x(t) is the amplitude of the vibration normalized by the nominal chip thickness ¢1,
v is the dimensionless damping rate, and the forcing function F' is the projection
of the cutting force onto the vibration direction which occurs at an angle 8 with
respect to the vertical from the tool path. See Figure 1. F' is proportional to
the chip thickness (i.e., z — x(t — 7), the difference between the position at time
t and at the time one revolution 7 ago). From the Merchant-Oxley [1, 2] model
of steady orthogonal cutting and in the case of a vertical vibration (6 = 0), the
forcing function F' takes the simple form

F=B0— (e —a(t— )] (1 +ax’ +ba). 2)

F' depends on the instantaneous chip thickness given by the expression in the
square brackets. The polynomial in 2’ is a truncation of an asymptotic expansion
for a nonlinear stick-slip type friction force. The parameter S combines several
physical parameters such as the chip width and the strength of the material. §
is our bifurcation parameter and Eqs. (1)-(2) have been studied numerically and
analytically [4, 5].
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workpiece

Figure 1: Diagram of cutting tool and workpiece in an orthogonal cutting ope-
ration. t; is the chip thickness, v is the cutting speed, « is the rake angle of the
tool, 0 is the vibration angle, and n is the vibration amplitude. For a vertical
vibration, 6 = 0.

2 High speed limit

Our objective is to investigate the high speed limit (7 — 0) of Egs. (1)-(2).
Introducing the deviation y = = — (3, Egs. (1)-(2) can be rewritten as

V' +v +y = Blay +by?)
=By —y(t — 7)) (1 + ay’ + by™). (3)

We next expand the bifurcation parameter as
B=0+7h+.. (4)

where By = v/a is the Hopf bifurcation point of the basic solution y = 0 if
7 = 0 and (; is our new control parameter. Inserting (4) into Eq. (3) and
expanding y(t — 7) for small 7, we obtain

Y +y— Boby? =7 [Bilay +by?) — v Bo(1+ ay’ +by*)] + O(r%).  (5)

Figure 2 shows the long-time limit-cycle solutions of Eq. (5) for two different
but close values of 31. The Z-shaped broken line is the nullcline

y = Boby” + 7 [Br(ay’ + by"?) — y'Bo(1 + ay’ + by™)] . (6)

The transition from a small amplitude limit-cycle to a large amplitude relax-
ation cycle close to 81 = (1. ~ 34 is called a canard explosion and it happens
within an exponentially small range of the control parameter (i.e., 51 — (1. =
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Figure 2: Canard explosion in the phase plane (y,y’). The values of the fixed
parameters are v = 2, a = 0.25, b = 0.125, and 7 = 0.1. fp = 7v/a = 8 and the
values of 3 for the two limit-cycles is indicated in the figure. The broken line is
the nullcline (6).

O(exp(—1/7)). Because this phenomenon is hard to detect, it was nicknamed a
canard, after the French newspaper slang word for hoax [6, 7]. The canard explo-
sion can be investigated mathematically by studying the singular limit 7 — 0. In
this limit, the leading order solution satisfies the left hand side of Eq. (5) which
is an equation for a conservative oscillator. It admits a one parameter family of
periodic solution. In order to determine how each periodic solution depends on
the bifurcation parameter (31, the right hand side of Eq. (5) needs to satisfy a
solvability condition. This condition leads to the bifurcation equation for the
amplitude of y as a function of B; and describes the progressive change of the
periodic solution from its Hopf bifurcation to the canard explosion [5].

3 Discussion

It is important to realize that if 7 = 0, the solution of Eq. (3) is unbounded in
time as soon as B > (Bp. A small delay 7 is therefore enough to stabilize time-
periodic solutions. The expression of the nullcline (6) indicates that the relaxation
oscillations grow in amplitude like y ~ 772 and ¢/ ~ 77! as 7 — 0. Our singular
perturbation analysis is based on the limit of small delays and small damping
rates. It could be used for all mechanical models described by nearly conservative
equations and subject to a delayed feedback or a delayed feedback control [8].
Such problems appear for the delayed control of container cranes [9] and for lasers
subject to a delayed opto-electronic feedback [10].
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1 Introduction

Vibration enhanced drilling modules have been modelled as drifting oscillators.
The successful application and design of this module requires the understanding
of the interaction between the drill-bit inserts and the rock during impact. There-
fore, an accurate description of the contact force between these two impacting
bodies is important. This work describes the effects of contact force models on
the global and local dynamics of a drifting oscillator.

Three contact force models are considered, namely: the Kelvin-Voigt (KV),
the Hertz stiffness (HS) and the nonlinear contact stiffness and damping (NSD)
models. The Kelvin-Voigt model was studied extensively in our previous work
(e.g. [1-3]) and is a reference for the current two models. In the HS model,
the contact force is a sum of spring force obeying the Hertz’s law and a linear
damping force [4]. The NSD model presents the contact forces as a combined
effect of Hertz's spring and a nonlinear hysteresis damping element [4, 5].

This abstract compares the influence of the contact force models proposed by
[4] and [5], with the KV model used in our earlier studies [1-3] on the dynamics
of the drifting impact oscillator. The similarities and differences in the results
obtained from the analysis of local and global dynamics for each model for various
parameter values are stated.

2 Modelling

The physical model of a drifting oscillator can be described as follows. A mass,
m = 1 is subjected to an external force, f which consists of a harmonic component
of amplitude a, frequency w and phase shift ¢, and a static component b . The
mass impacts intermittently with a slider which has massless top and bottom
plates connected to each other by a spring and a damper. The spring has a
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stiffness, £ = 1, which is a function of the relative displacement of both plates,
while the damping coeffcient, ¢ = 2¢, is a function of the relative velocity of the
plates. This is similar to the stick-slip phenomenon reported in [6,7] in which
progressive motion of the mass occurs when the threshold of the dry friction force,
d =1, is exceeded by the contact force. The displacement of the mass is defined
as x, while the displacements of top and bottom plates of the slider are z and v
respectively.

There are three phases of motion for this system, namely: no contact, con-
tact without progression, and contact with progression. There is no interaction
between the mass and the slider during the no contact phase, while during the
contact without progression phase, the mass and the top plate of the slider are in
contact but the bottom plate experiences no motion. In the contact with progres-
sion phase, the mass contacts the top plate and there is a simultaneous motion
of the mass, the top and the bottom plates of the slider. The Kelvin-Voigt model
was studied extensively in our previous work (e.g. [1-3]) and forms a reference in
this study for the other two models. In the HS model, the contact force is a sum
of a spring force obeying the Hertz’s law and a linear damping force. The NSD
model presents the contact forces as a combined effect of Hertz’s spring and a
nonlinear hysteresis damping element. The contact force F, for the three models
are related to the displacements and velocities according to

(z —v) + 2 (2" =) KV
F. =< (z—v)\/|z —v| + 2& (2" — ') HS (1)
(z—=v)/|z—v|+ (1 +2((z' =) NSD
where &; (i = 1,2,3) are defined as the damping coeffcient for the three models.
We note that although the displacement z, of the slider top plate during the
contact with progression is in phase with the displacement of the mass x, the
magnitude of x is greater than that of z by the gap go, between the initial
position of the slider top plate and the mass, i.e. x = z + gp.
The equations of motion given above for the different phases of motion can
be written concisely as
r =y
y = acos (Wr+¢)+b—P1Py(1 —Ps3) Ly (2,117 Z’) — P1Ps,
7= Py —(1="P1)L2(z0) /2,
o' = PiP3Pa(Ls(2,0) /26 +y). (2)
where Py, Po, P3 and Py are Heaviside functions defined as:
Pr=H(x—2z—-—g), Py=H(Ls(z,v))
Ps=H (L2 (z,v) — 1), Py=H (V). (3)
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Functions £1(z,v,2"), L2(z,v), and L3(z,v) are defined in Table 1 for each
contact force model.

| | KV ] HS \ NSD |
Ly (z,0,2) | 262/ + 2z —v | 262/ 4+ (z —0)*/? | (262 +1) (z — v)/?
Lo (z,v) z—v (z —v)>/? 1
L3 (z,v) z—v—1 (z—v)*? -1 1—(z—v)?

Table 2: Definition of functions £, £2 and L3.

3 Global and Local Dynamics

A comparison of the influences of the contact models on the local and global
dynamics of drifting impact oscillators was carried out by performing the nume-
rical integration of the differential equations using the same parameters for these
models. The efficiency of the system is mainly dependent on the frequency of the
dynamic force and the damping factor, since both parameters play major roles
in the energy consumption of the system. For this reason, the dynamics of the
system is compared at moderate and high values of both parameters. In this
section, we first consider the dynamics at low values of frequency (w < 0.1) and
damping coeffcient (£ < 0.1) and then consider same at higher values of the same
parameter (w > 0.1 and £ > 0.1).

The time histories of this system are shown in Fig. 1 for a = 0, 3; £ = 0.05;
w = 0.1 and g = 0.02 for three different static loads b; = 0.1, by = 0.125 and
b3 = 0.15. The results reveal that the short term (local) local dynamic response
of the three models are almost identical. It can also be observed that the average
progression rate for each of the static loads is approximately the same.

In Fig. 2-a, the bifurcation diagrams showing the variation of the velocity v,
with the static load b for parameters a = 0.3, w = 0.1, g = 0.02, and & = 0.05
reveal that although the dynamic response of the system may be similar for each
force model, their points of bifurcation differ slightly. Beyond the static load,
b ~ 0 : 165, it can be observed from Fig.2-a that the response of the system
is characterised by intermittent regions of chaotic and periodic motion. These
results suggest that in practical terms, the KV model suffciently predicts the
long term behaviour of a drifting oscillator with low forcing frequency and low
damping coefficient.

For high values of the frequency and damping coefficient, the bifurcation
diagrams (Fig.2-b) showing the variation of the velocity y with the static load b
for parameters a = 0.3, w = 1.0, g = 0.02 and £ = 0.1 reveal that the force models
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Figure 1: Time histories computed for the three models: HS, NSD and KV; using
the parameters a = 0.3, { = 0.05, w = 0.1, g = 0.02, ¢ = 5 and HS (dash-dash),
NSD (dash-dot), and KV (solid). (a) at b = 0.1, b = 0.125 and b = 0.15, (b)

Time histories between 7 = 800 and 7 = 1000 at b = 0.15.

generally give different results for long-term dynamical behaviour. The three
models exhibit chaotic motion for static force ranging from b = 0 to b = 0.01.
However, between the region b = 0.01 and b = 0.02, the HS model exhibits
periodic motion while the KV and NSD models continue to be chaotic. Another
region of major difference is between regions b = 0.19 to b ~ 0.21 where although
all three models exhibit periodic motion the period number is not the same. The
KV model exhibits period two motion, while the HS and NSD models exhibit
period four motion

4 Conclusions

The influence of different force contact models on the global and local dynamics of
drifting oscillators has been investigated for three different models of the contact
force: Kelvin Voigt, Hertz stiffness and nonlinear stiffness and damping. The
nonlinear dynamic analysis of the system was carried out for the three contact
force models. The results of this analysis show that the local dynamics of the
system for the three dynamic models are almost identical. Hence, the simpler
KV model adequately describes the dynamic behaviour. However, the global
dynamics is dependent on the model applied. It is also noted that the HS model
gives global results that are topologically similar to the KV model while the
behaviour of the NSD model differs in structure.
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A NOVEL APPROACH TO EVALUATE ROTARY-PERCUSSIVE DRILLING
WiTH ROLLER-CONE BITS
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1 Introduction

Resonance Hammer Drilling (RHD) is a new rotary-percussive technology, which
is being studied at CSIRO as an alternative method to improve drilling perfor-
mance in deep wells. This drilling method consists of a small downhole hammer
mounted onto a conventional rotary drilling assembly with a roller-cone bit. Dif-
ferent from percussive drilling [5], RHD is a hybrid form of drilling, since the
normal operating parameters, namely the weight-on-bit W and the angular ve-
locity €2 are still acting as in conventional rotary drilling.

This paper proposes a new methodology to evaluate the efficiency of the
RHD technique. First, a complete model of the drilling response of roller-cone
bits under impulsive loading is established, i.e. a set of relations between the
weight-on-bit W, the torque-on-bit 7', the energy per blow I, number of blows
per revolution f, the rate of penetration V, and the angular velocity 2. The
derivation of the bit-rock interface laws presented here follows the phenomeno-
logical approach used for PDC bits [1, 2|, while taking into consideration the
energy transfer in percussive drilling proposed by Hustrulid & Fairhust [3].

2 Bit-Rock Interaction Model for Resonance Hammer
Drilling

In the case of the RHD method, we postulate that the penetration per revolution
d is composed by two distinct parts: a penetration caused by rotary drilling d,
and a penetration generated by percussive drilling d,,

d=d,+d, (1)

Additionally, we assume that the interface laws are rate-independent and that
there is a linear relationship between W, T', and d,. (after taking into account the
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existence of a threshold) and between If and d,. Combining both rotary and
percussive processes, a complete model of the drilling response is explicity given
by

T+ e =ed+ po*al

(2)
w + Ak = Ced + o*al

where 7 = 2T /a?® represents a scaled torque-on-bit, = W/a a scaled weight-on-
bit, k = 21 fc/a? a scaled impulsive load, A = /1) is the intrinsic specific energy
ratio, ¢ is a number, u is a coefficient of friction, o* is the threshold or normal
stress, c is the energy transfer coefficient, a is the bit radius and [ represents the
total contact length. Therefore, another representation of Eq (2) can be obtained,
scaling 7, w and « by d

E+ M1 - uQ)P = Eo + 1S (3)

where Ey = (1 —u()e, E = 7/d is the specific energy, P = k/d is the hammering
strength and S = w/d is the drilling strength. Figure la illustrates graphically
the bit-rock interaction laws (Eq. 2) in the E-P-S diagram. Notice that the
proposed model accounts for the two components of the intrinsic specific energy,
namely, € the component associated with rotary drilling and v the component
associated with percussive drilling. The ability to independently evaluate € and
1 allows us to objectively measure the relative efficiency of both the rotary-
percussive and the conventional rotary drilling methods.

3 Experimental Results

The proposed model has been benchmarked against experimental data conducted
with an in-house designed laboratory drilling rig, see Figure 1b. This rig consists
of four main components: upper assembly, hammer system, bit assembly and
core drive mechanism. The upper assembly is designed to perform tests under
kinematic control. The impulsive loading is introduced into the drilling process
through the hammer system, which consists of a free-mass elastically suspended
and excited by a motor. A roller-cone bit mounted on a sophisticated anvil
represents the bit assembly. The core drive mechanism drives the rock sample at
a controlled angular velocity.

A series of tests at atmospheric pressure under kinematic control have been
carried out in Castlegate sandstone. Experiments have first been conducted with
conventional rotary drilling, and the corresponding bit-rock interaction parame-
ters identified. The observed response is in agreement with the proposed model
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Figura 1: (a) Schematic E-P-S diagram; (b)Drilling rig used to investigate the
RHD technique.

and the intrinsic specific energy associated with rotary drilling € appears to be
well correlated to the uniaxial compressive strength of the rock ¢. This result
suggests therefore that there is a correlation between ¢ and ¢ in tests conducted
at atmospheric pressure. Pessier & Fear [4]| reported similar correlation between
the minimum specific energy Fs,, and ¢ in tests performed with roller-cone bits
and Richard et al. [6] between ¢ and ¢ in scratch tests.

Next, experiments conducted in Castlegate sandstone at atmospheric pressure
using the RHD are investigated. Results have shown that a smaller weight-on-bit
W (resulting in a smaller T") is required when the hammer is activated in tests
performed with a constant penetration per revolution d. However, the identified
ratio of intrinsic specific energy rates A is a small number, suggesting that most of
the energy provided to the bit by hammering is dissipated in the form of plastic
deformation in these experiments. Figure 2 shows a typical result performed
in Castlegate sandstone in the E-P-S diagram for four different penetration per
revolution: d = 0.5, 1.0, 1.5 and 2.0 mm/rev. Here we can notice that all the
responses are indeed contained in the drilling plane (Eq. 2), the drilling efficiency
increases with d and the response is practically on the drilling line (100% of
efficiency) for d = 2.0 mm/rev.
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Figure 2: Experimental results performed with Castelgate sandstone for d = 0.5,
1.0, 1.5 and 2.0: F-P-S diagram.

4 Conclusions

This work investigates a new rotary-percussive drilling technique, called Reso-
nance Hammer Drilling (RHD). Firstly, a complete model of the drilling response
of roller-cone bits with and without precussive action is established. Next, a se-
ries of tests conducted in Castlegate sandstone at atmospheric pressure under
kinematic control are analysed within the framework of the proposed model. All
results are in agreement with the proposed phenomenological model, suggesting
that this model can be used to investigate drilling response of roller-cone bits with
and without impact loading. Also, the intrinsic specific energy associated with
rotary drilling € appears to be correlated to the uniaxial compressive strength of
the rock q. Considering the RHD technique, the intrinsic specific energy ratio
A is identified as a small number, A << 1. This observation points out that
more energy is necessary with the RHD method as compared to conventional
rotary drilling. However, we believe that A and, consequently, the usefulness of
impulsive loads, will increase in brittle materials, since in this case the energy
dissipation is generally in the form of micro- and macro-cracks. Although more
energy is required to drill ductile rocks, much less W and T are required when
impulsive loads are added to the system. Hence, the RHD technique has po-
tential application as an alternative method for drilling highly deviated wells or
horizontal wells and to explore deep reserves, where the limitations of W can be
compensated by percussive action.
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DYNAMICS OF A BOUNCING TRIMER

Stéphane Dorbolo, Frangois Ludewig, Nicolas Vandewalle

GRASP, Physics Department, University of Liége, Belgium

1 Introduction

The bouncing ball is a well known problem and is often given as the typical
non-linear system that exhibits the period doubling route to chaos [1, 2].
Recently, the interest in this subject has been renewed through granular
shaken systems [3]. When a large assembly of grains is shaken, compaction,
convection, or even gas-like behaviours may be observed according to the
number of grains and to the acceleration of the plate that vibrates the
packing. The packing may be considered as inelastic bouncing ball [3].
The shape of an object is rarely as simple as an ideal sphere. The
increase of complexity is obtained by increasing the number of contacts
between the object and the plate. The first step, coined dimer, is a object
formed by two beads linked by a rigid rod. The bouncing of that object
on a vertically shaken plate has been studied in 2004 [4]. Here, we analyze
the motion of a trimer on a vibrating plate [5]. The trimer is composed
by three metallic beads equally distant. The motivation is twice: (i) to
evidence a new self-propelled particle and (ii) to show periodical modes.

2 Experimental set-up

The plate is vertically and sinusoidally shaken by an electromagnetic shaker
(G&W V55) via a linear bearing in order to ensure the unidirectionnal
vibration. The forcing parameters are the frequency f and the reduced
acceleration I' given by the ratio between the maximal acceleration of the
plate 472 Af? where A is the amplitude and the gravity g. The frequency
is fixed between 25 Hz and 100 Hz while the amplitude allows to reach
accelerations up to I' = 10. By studying the accelerometer signal, it is
possible to measure the time delay between successive contacts of the trimer
and the plate. From the sets of time delays, the statistic distributions are
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deduced for each considered acceleration. The beads composing the trimer
have a diameter of 10 mm. Two trimers have been considered a small one
(the side of the trimer ¢ equals 35 mm) and a large one (¢ =56 mm).

3 Phase diagram

When the small trimer is placed on a vibrated plate, several modes can be
observed: (i) the trimer moves horizontally (self-propelled mode, SEP), (ii)
the trimer rotates (R), (iii) the three beads bounce once every two periods
at the same phase (PER-2) and (iv) the three beads bounce once every
three periods at the same period (PER-3). In order to understand when
the modes occurs a phase diagram has been built in the parameter space:
f—T. The trimer is first place on the plate at rest. The frequency is fixed,
then the amplitude is increased until the trimer can tumble. The phase
diagram is reported in Fig.1 (top). The modes R, PER-2 and PER-3 are
found in narrow regions around particular accelerations I'g =3, 'ppr_o =5
and I'pgr_3 =~ 8 respectively. These accelerations do not depend on the fre-
quency. In the rest of the phase diagram, the trimer can move horizontally
and rotate randomly.

The large trimer has been studied for a fixed frequency. The large
trimer does not experience too large horizontal excursion compared to the
small one. That allows to studied the bouncing modes according to the
accelerometer signal. The density of probability of the time delay between
successive contacts of any beads with the plate is presented in Fig. 1
(down). The darker area is, the more probable is the time delay. The
structure is rather complex but can be reproduced thanks to numerical
simulation considering non-smooth contact dynamics. The modes PER-
2 and PER-3 are clearly visible at I'pgr_o ~5 and I'pgr_3 =~ 8. These
accelerations are particular. For these acceleration, it can be shown that
the trimer lands on the plate with a relative speed very close to zero. It
results that the trimer sticks on the plate. The information of previous
bounce is consequently erased. As the trimer sticks, it takes off when the
acceleration of the plate is equal to —g. The take-off speed is therefore
known. The trimer experiences a parabolic flight and must land with a
relative speed equals to zero (that is necessary to ensure the periodicity.
That behaviour occurs when I' = /(2n + 1)272/4 + 1, n is a whole number.
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Figure 1: (up) Phase diagram f — I" presenting the different modes encoun-
tered for the small trimer. The trimer locks some periodical orbits along
the horizontal areas (in grey), namely a rotation mode (black squares), a
PER-2 mode (black triangles), a second rotation mode (diamonds) and a
PER-3 mode (open triangles). The trimer tumbles when excited above
the oblical line passing by open squares. (down) Density of probability of
time delay between two successive shocks of any beads with the plate as a
function of the reduced acceleration for f = 25 Hz
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4 Conclusion

The bouncing trimer has shown to be a good candidate as a random self-
propelled particle. Moreover, very stable modes have been encountered as
period-2 and period-3 modes. The particular accelerations for which these
modes appear are linked to the sticking of the objet on the plate when it
hits the plate with a very low relative speed.
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SELF-EXCITED OSCILLATIONS OF DRAG BITS

Christophe Germay

Epslog SA, Liége, Belgium

The research presented here builds on a model of self-excited axial and tor-
sional vibrations of drag bits first introduced by Richard in 2001. The originality
of this model, which we referred to as the RGD model, lays in the coupling
between the axial and the torsional modes of vibrations via rate-independent
bit/rock interface laws that account for both cutting and frictional processes. On
the one hand, the cutting process combined with the quasi-helical motion of the
bit leads to a regenerative effect that introduces a coupling of axial and torsional
modes of vibrations and a state-dependent delay in the governing equations (see
Figure 1). On the other hand, the frictional contact process is associated with
discontinuities in the boundary conditions when the bit sticks in its axial and
angular motion. In the RGD model, the drillstring is reduced to a two degrees-
of-freedom representation consisting of a torsional compliance and a point mass
and inertia (see Figure 1). The model was originally motivated by an analysis of
downhole field data recorded during drilling operations.

The self-excited vibrations lead sometimes to torsional stick-slip limit cycles,
which are accompanied by the formation of a repetitive bottom-hole pattern. Lat-
eral vibrations, which destroy this pattern, inhibit these oscillations and prohibit
the occurrence of the stick-slip, as observed in the field when so-called lateral
bits are used. A parametric analysis revealed the existence of (i) several stable
periodic solutions, such as axial and torsional stick-slip oscillations (see Figure
2), anti-resonance regime of the torsional dynamics, and (ii) a quasi limit cycle
or bit bouncing, in the torsional or axial direction, respectively. The complex
and diversified numerical simulations motivated a theoretical analysis of the dy-
namic response of the RGD model, with the aim of identifying the oscillation
mechanisms and their parametric dependency. The dimensionless formulation
highlights the existence of a large parameter ¢ in the model, which enables a two
time scales analysis of the fast axial and slow torsional dynamics. An asymptotic
analysis decouples the fast axial dynamics (with a frozen constant delay) from the
slow torsional dynamics, which is itself only influenced by the averaged behavior
of the fast dynamics. When the delay is larger than a critical value 7 //2n,
a stable limit cycle in the axial direction is observed over a certain parametric
range (see Figure 3). An approximate model of the axial dynamics is proposed to
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Figure 2: Stick-slip torsional and axial vibrations

provide an analytical characterization of the limit cycle. The resulting analytical
predictions match well the numerical observations. They are also useful to char-
acterize the phenomenon of bit bouncing, which originates from the instability
of the axial solutions.

The approximate model also provides an analytical expression of the averaged
reacting torque-on-bit that influences the torsional dynamics. Its variation in
terms of the bit angular velocity recovers the empirical velocity weakening law
observed in experiments. The analysis of the slow torsional dynamics predicts the
emergence of the different regimes of torsional vibrations (stick-slip vibrations or a
quasi-limit cycle) in parametric ranges that agree with the numerical simulations
(see Figure 4). The analytical predictions provide useful recommendations for
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Figure 3: Projection of the axial limit cycle in the perturbed depth of cut axial
velocity state space.

the design of drilling structure, the selection of the operating parameters or the
control synthesis.

We also discuss some limitations of the two time scales approach to cap-
ture phenomena such as the anti-resonance or delayed bifurcations. The anti-
resonance regime is characterized by small vibrations of the bit angular velocity
around its nominal value although the bit experiences intermittent losses of fric-
tional contact. This regime occurs at low rotational speed, or equivalently at
large delay. It is only observable when the axial stick time is large enough to
generate a phase locking with the bit angular velocity. An experimental strat-
egy has been proposed to validate the RGD model, using the experimental setup
DIVA. Although we conducted some experiments confirming that the so-called
velocity weakening of the torque-on-bit is rather a consequence than a cause of
the axial vibrations, the results are not entirely conclusive due mostly to the
particular behavior of the artificial rock that was used. Moreover, the cutter
design was found to be inappropriate for these experiments. The use of stronger
natural rocks gave rise to other issues such as strong bit whirling and inadequacy
of the hook load control. Finally, the RGD model was extended by baging the
formulation of the model on a continuum representation of the drillstring rather
than on a characterization of the drilling structure by a two degree-of-freedom
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Figure 4: Variation of the averaged response of the friction contact with the
rotational speed responsible for the apparent decrease of the mean torque with
the RPM. The white dots represent the response of the analytical approximate
of the model while the black dots are the results of numerical simulations.

system. The dynamic response of the drillstring is computed using the finite
element method. Multiple natural axial and torsional modes of vibrations of the
drilling structure can thus be captured by the model, in contrast to the single res-
onance frequency of a torsional pendulum in the original low dimensional model.
It allows the description of a model capable of simulating the vibrations of real-
istic drilling structures. The general tendencies of the system response that are
predicted by the low dimensional model when varying the control parameters, are
similarly observed in the FEM model. Namely, occurrence of stick-slip vibrations
as well as risk of bit bouncing are enhanced with an increase of the weight-on-bit
or a decrease of the rotational speed. Decrease of the torque-on-bit with the bit
angular velocity is also observed. All these trends predicted by either model are
supported by field measurements. Finally, we should note that further simula-
tions with this computational model indicate that a value larger than 1 of the
parameter $ (related to the bit geometry and the friction coefficient) generally
prohibits the occurrence of stick-slip vibrations, as in the RGD model. However,
new features in the self-excited response of the drillstring are predicted by this
computational model. In particular, stick-slip vibrations can be observed at nat-
ural frequencies of the drillstring different than the fundamental one, depending
on the operating parameters. Interestingly, stick-slip vibrations occurring at a
frequency higher than the first natural torsional frequency of the drillstring have
been measured with down hole tools in field operations.
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Figure 5: Torsional stick slip vibrations at third natural frequency in torsion
(Left) and comparison between the response of the low dimensional and the high
dimensional system when vibrating at the first natural frequency of the drillstring
(Right).
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MODELING AND EXPERIMENTAL VALIDATION OF AXIAL DRILLSTRING
DYNAMICS

Bart Besselink, Nathan van de Wouw
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of Technology,The Netherlands

1 Introduction

In the analysis of torsional stick-slip vibrations in drilling systems using drag
bits, the drill string model is generally limited to the torsional dynamics. Herein,
the bit-rock interaction is often modeled as a velocity-weakening friction law,
which leads to torsional (stick-slip) vibrations. However, bit-rock interaction ex-
periments using single cutters have not revealed any intrinsic velocity-weakening
effect, suggesting that this effect is likely to be the result of complex drill string
dynamics. This insight led to a different modeling approach, introduced in [3].
Here, the axial and torsional dynamics of the drill string are coupled via a rate-
independent bit-rock contact model [1]. Analysis of this model shows that fast
self-excited axial vibrations lead to an apparent velocity-weakening effect in the
torsional direction |2], causing torsional vibrations and stick-slip.

In this presentation, the focus will be on the experimental validation of the
axial dynamics of the model as proposed in [3] and analyzed in [2].

2 Experimental validation of the axial dynamics

In [2], it was shown that the fast axial dynamics can be analyzed separately
because of the separation of time scales between (fast) axial and (slow) torsional
dynamics. Further, self-excited axial vibrations are shown to be the driving
force behind an apparent velocity-weakening effect in the torsional dynamics,
ultimately leading to torsional stick-slip vibrations. To experimentally validate
these results, a test rig involving a mechanical equivalent of the axial dynamics
was built at CSIRO, Australia. The experimental setup, named TAZ, is depicted
in Figure 1 and consists of a rotating sandstone disk on which a cutter can be
lowered. During cutting, both the vertical position and the cutting forces are
measured, as well as the rock profile. Experiments under constant weight-on-bit
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Figure 1: Experimental setup "TAZ", representing axial drill string dynamics
(left) and rock sample and cutter detail (right).

reveal discrepancies between the experimental results and the dynamics predicted
by the model, suggesting that the bit-rock interaction model is incomplete.

Additional experiments, where the axial position U of the bit is under kine-
matic control, therefore aim to model the bit-rock contact, focussing on the con-
tact between the rock and the underside of the cutter. This contact area is caused
by wear of the cutter and is referred to as the wearflat. In the bit-rock interaction
model used in the model of the axial dynamics in [2], a discontinuous behavior of
the contact forces with respect to the axial velocity dU/dt is assumed, as depicted
in Figure 2. However, a smooth transition between contact and loss of contact is
found experimentally. Figure 2 illustrates this experimental fact for the normal
forces, whereas the parallel forces show a similar trend. This transition is depen-
dent on the geometry of the contact, as characterized by the approach angle of
the cutter. The approach angle is defined as the angle of the velocity vector with
respect to the forward motion, as defined in Figure 3. Further, the contact forces
are dependent on the depth-of-cut. Based on these results, the bit-rock interac-
tion model is updated, using a piecewise linear approximation for the wearflat
forces, as depicted in Figure 2. Simulations using this updated bit-rock inter-
action model show a significant improvement when comparing the experimental
results with the theoretical predictions.

Finally, the updated bit-rock interaction model is implemented in a full drill
string model, including the torsional dynamics. Preliminary analyses of this
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Figure 2: Measured normal wearflat force Ff (in gray) for a blunt cutter as a
function of the approach angle a. The dashed line denotes the averaged result,
whereas the bold solid black line denotes the piecewise linear fit. The thin black
line denotes the original discontinuous bit-rock interaction model.

model show two distinct regimes. First, for small nominal approach angle, cor-
responding to a low rate-of-penetration, the axial dynamics is locally asymp-
totically stable and no torsional vibrations occur. In this regime, the normal
bit-rock contact forces are proportional with the approach angle, causing an ap-
parent damping in the axial dynamics that stabilizes the axial equilibrium point,
which corresponds to a constant downward velocity of the drill bit. Second, for a
higher nominal approach angle, the axial dynamics is unstable, leading to axial
limit cycling, which in turn causes an apparent velocity weakening effect in the
torsional dynamics. In this regime, the velocity weakening effect causes torsional
vibrations and torsional stick-slip, which is similar to the results predicted by the

QR

Figure 3: Definition of the approach angle a.
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original model as in [2].

3 Conclusions

The drill string dynamics model analyzed by [2] is validated experimentally. Ini-
tial experimental results using a mechanical equivalent of the axial dynamics
indicate that the bit-rock interaction model is incomplete. Additional experi-
ments are performed to identify the bit-rock interaction in detail, focussing on
the contact forces under the wearflat. Based on these results, the bit-rock interac-
tion model is updated and implemented in a full drill string model. Preliminary
analyses of this model show two distinct regions, of which one leads to torsional
stick-slip oscillations.

Since the bit-rock interaction is the driving force behind drill string dynamics,
future work will focus on additional experiments for the identification of the bit-
rock interaction law in more detail.
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APPARENT COEXISTENCE OF MULTIPLE REGIMES OF SELF-EXCITED
VIBRATIONS IN DRILLING SYSTEMS
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1 Introduction

The issue of stick-slip oscillations in the rotary drilling systems used to drill
deep boreholes for hydrocarbon exploration and production has been explored
by Richard et al. [1].

Figure 1: Discrete model.

Their analysis of the dynamics of the drill bit is based on a discrete model
of the drillstring (Fig. 1), and rate-independent bit-rock interaction laws. The
latter accounting for the regenerative cutting effect taking place at the bit level
(Fig. 2) the equations of motion yield a system of discontinuous state-dependent
delayed differential equations. Numerical simulations with this model produce
self-excited stick-slip oscillations and show the existence of an anti-resonance
drilling regime, during which large amplitude axial vibrations of the bit stabilize
its angular motion. Further work carried out by Germay et al. [2] has formal-
ized the model using the concept of Filippov differential inclusion and brought
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Figure 2: Regenerative cutting.

to light the existence of quasi-periodic solutions for particular parametric config-
urations of the model. Here, we investigate the slow dynamical behavior that is
inherent to particular parametric configurations of this model, and provide, using
linear stability analysis, an explanation to the quasi-periodic solutions observed
in numerical simulations [1, 2.

2 Governing equations

Using the time scale t, = 1/I/C and the length scale L, = 2C/ca?, with ¢ being
the intrinsic specific energy of the rock, a the bit radius, C' and I the torsional
stiffness and polar mass moment of inertia of the drillstring, Richard et al. [1]
derived the dimensionless equations of motion for an idealized bit, consisting of n
identical radial blades regularly spaced by 27 /n radians, drilling a homogeneous
rock

u" = w(WO - W(é“?é@))? 90” + o= 76 - T(B”a 6(10)? (1)

where v and ¢ are the bit axial displacement and angular position perturbations
to the steady-state solution, the prime denotes differentiation with respect to
the dimensionless time ¢ = t/ts, W and 7 are the dimensionless weight- and
torque-on-bit, 7 is the system number and the subscript ¢ refers to a steady-
state quantity. Both W and 7 are functions of the history of u and ¢, denoted
by bu and {o, respectively.

In drilling conditions, the scaled efforts W and 7 are given by the bit-rock
interaction laws and have experimentally been shown to depend on two distinct
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processes, respectively, a cutting and a frictional contact ones, i.e. W = WS4+ W/
and 7 = T°4+77. While the cutting forces are proportional to the bit penetration
per revolution, 4, the contact forces are characterized by a threshold following a
transition that is function of both ¢ and the direction of the relative velocity of
the cutters with respect to the rock [3]

W=n (60 + W), T=n(6+6W]),

1 1 ,
WI = apsat (SO G (00
0 200, 0 Ox

where 8, (hu, ) is the dimensionless depth of cut per blade, which introduces a
delay in the equations of motion as the height of rock ahead of a blade depends on
the motion history of the bit, see Figure 2. Also, § is the bit geometry number,
An reflects the wear state of the bit, and « and © characterize the direction of
the relative velocity of the bit with respect to the rock and the inclination of
the blade wear flat. As a changes along the radius of the bit, the above law
is strictly valid for core barrels only. The sat function denotes the saturation
operator, while the parameters «a, and J, are rock-dependent parameters that
delimit the upper saturation level of the contact force. Whenever the bit sticks
and stands still, i.e., v' +v9 = ¢ +wy = 0, vg and wp being the stationary
axial and angular velocities of the bit, the boundary condition is given by the
equilibrium of the bit, until the torque built up by twisting of the drillstring is
large enough to overcome the resistant torque and trigger motion. By further
developing the equations, the model reads,

o = ng (—[u—mvo(fn—fn,o)}+w7{,0—w7{),
S +e = n(--i+uwln Tl +BWL-WD), @

where 4 = u(t—t,) is the delayed axial perturbation and ¢, is the state-dependent
delay, defined by the threshold condition

| @) s =21, ®

_t_n
3 Slow dynamics

Previous works [1, 2] have shown that for the stick-slip or anti-resonance regimes
to occur, the steady-state motion of the bit should be unstable. To assess the
local stability of the stationary solution of the model, the poles of the linearized
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system around that solution are to be located in the complex plane. If any of
them has a strictly positive real part, the steady-state is unstable. In case all
the poles are located in the left half of the complex plane, the trivial solution is
stable. The poles are the roots of the characteristic equation, computed from the
linearized system,

P(s) := s [s" + ntno (kY — Bv) s°+

{1 + (1 — e 5n0) <¢(1 +x) — Z—z(l + ﬂx)) } s+ np(1+ x)(1 — e~ *m0)

+ntp, 0t {li +n(l — e o) (1 - ) <U - volﬁl) } S:| =0, (4)
wo
with the parameters «, v and x depending on the steady-state drilling conditions
and the bluntness of the bit.

Numerical investigations of the solutions of (4) have shown that for particular
parametric configurations, the linearized system has two unstable poles close to
+i, the poles of the torsional pendulum. Although they have a positive real
part and thus the stationary solution is unstable, the divergence of the system
following any perturbation is very slow due to the smallness of their real part.
Accordingly, depending on the external perturbations the system is subject to,
the response of the system appears to converge to different periodic solutions
and there is apparent coexistence of drilling regimes. Figure 3 exemplifies this
feature. The unperturbed system stays at the stationary solution while a small
perturbation generates a slow transient regime of quasi-periodic oscillations that
will eventually converge to the attractive stick-slip limit cycle. However, this
limit cycle is immediately reached after a large perturbation.
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Figure 3: Response of the system to an angular perturbation.

62



4 Conclusion

A physically consistent model, that recovers stick-slip oscillations of deep drilling
systems and captures the coexistence of multiple drilling regimes observed in
the fields and in lab experiments, has been developed. By performing a linear
stability analysis of the delayed differential model, we provide a justification to
the coexistence of drilling regimes as we brought to light the slow dynamical
nature of such self-excited vibrations.
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UsiNG PASSIVE NONLINEAR TARGETED ENERGY TRANSFER TO
STABILIZE DRILLSTRING SYSTEMS

Régis Viguié, Gaetan Kerschen

Structural Dynamics Research Group, University of Liége, Belgium

1 Introduction

Vibration mitigation of the drill-string instabilities could be performed using ac-
tive of passive methods. In the present study the latter case in investigated.
When considering passive techniques, the famous tuned mass damper (TMD) in-
troduced by Frahm [3] and Den Hartog [2] is the most popular device still broadly
used nowadays. However besides its amplitude robustness this damper presents
a bad frequency robustness as it is designed to perform at a given vibration fre-
quency. To overcome this limitation an essentially nonlinear attachment (i.e.,
characterized by the absence of a linear term in the force-displacement relation),
termed a nonlinear energy sink (NES), has been introduced. As shown in [5, 4, 9]
an NES is characterized by two remarkable properties : (i) targeted energy trans-
fer (TET) from a primary structure to an attached NES is achieved and (ii) it
has no preferential resonant frequency which makes it capable of resonating with
any mode of the primary structure. In the present study, the primary system is
nonlinear and therefore characterized by multiple coexisting solution but also by
a varying frequency of the LCO with a varying level of the driving voltage u.
This latter feature makes the TMD inadequate to mitigate LCOs whereas the
use of an NES seems very well suited.

In this paper, the first section deals with the use of a parametrically designed
NES to mitigate limit cycle oscillation of the drill-string system (figure 1). Based
on the resulting promising results the following section aims to alleviate the
computational cost related to the parametric study by taking advantage of the
relevant information associated with the singularities of the bifurcation diagram.
Finally the last section presents the conclusions and future works.
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Figure 1: Schematic representation of the drill-string system with an NES.

2 Suppression of Friction-Induced Limit Cycling Os-
cillation by means of a Nonlinear Energy Sink : A
Parametric Study

In [11] the assessment of a numerical value for the new parameters introduced
has been parametrically performed and the following set of parameter : J,qq =
0.025895 [kg m? / rad] - cq = 0.021 [N m s /rad] - ky; = 0.002515 [N m / rad?]
appears to significantly improve the dynamical behavior of the drill-string system
as depicted in figure 2(a). As a proof of the NES performance the new dynam-
ics can be compared with the one related to the drill-string system submitted
to active control techniques. A complete analysis of the latter configuration is
performed in [1] and figure 2(b) depicts the associated experimentally computed
bifurcation diagram. It is well known that active techniques will always exhibit
better performances than passive ones. However in the present case, the compar-
ison of both dynamics highlights the very good performance of the NES as active
control produces about the same results.

In this context one could wonder whether there is any possibility to find better
suited NES parameter values so that its performance could be further increased
and overtake the active control ones. This question is the key feature treated in
the next section. Finally, for any further details and analyses on the coupling of
the drill-string system with an NES, the interested reader may refer to [11].
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Figure 2: (a) Bifurcation diagram : black lines stand for the uncontrolled drill-
string system ; blue and red colors correspond to periodic and equilibrium so-
lutions, respectively; solid and dotted line correspond to stable and unstable
solutions, respectively. Finally, H and LP stand for Hopf and Limit Point bi-
furcation point, respectively / (b) Bifurcation diagram of the drill-string system
controlled using active techniques [1].

3 Design of an NES Using Bifurcation Analysis

Due to the strongly nonlinear dynamics created by the coupling of an NES to
a primary structure, its design is a challenging problem and parametric as well
as optimization procedures have been extensively considered so far [6, 11, 12, 7].
Even though these methods generally give good results, they are time demanding
which limits their use in some cases. The objective of this section lies in presenting
an alternative and complementary procedure based on bifurcation analysis.
Because of their nonlinear character, the system depicted in figure 1 has been
characterized through the computation of a bifurcation diagram. This plot has
highlighted the presence of bifurcation points that correspond to a singularity in
the dynamics expressing a qualitative change of the solution. In the present study
the focus is set on the region where LCO exhibit the higher amplitude levels and
where Hopf and Limit Point bifurcations occur. The first mentioned corresponds
to a loss of stability of an equilibrium point that is transformed into a LCO
whereas the second one consists in the creation of an equilibrium through the
loss of stability of a LCO. In this context, the localization of these singularities
is of high interest as they can divide the bifurcation diagram into several parts
related to particular features such as : (i) existence of globally stable equilibrium
solution, (ii) coexistence of locally stable equilibrium and LCOs solutions or
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Figure 3: (a) Bifurcation diagram(a) 3D representation of the bifurcation points
continuation / (b) Projection in the plane (cqqq,u) / (¢) Close-up on the low
voltage range. The blue solid line, the red dashed line and the black line corre-
spond to the LP continuation, the Hopf continuation and the bifurcation diagram
computed depicted in figure 2, respectively.

(iii) existence of stable LCOs. Therefore the bifurcation analysis suggests those
bifurcation points to be continued along a third dimension to define boundaries
and consequently regions with solutions presenting the same qualitative features.
This type of continuation is said to be of codimension 2 as two continuation
parameters are considered. Similarly to section 1 and 2 one of them is the driving
voltage at the DC motor u. whereas the second one could be any parameter of
the NES.

In this study, the continuation software used is the command line version of
MATCONT. Moreover the focus is set on two different objectives :

1. an increase of the input voltage range leading to the global equilibrium
solutions.

2. a decrease of the input voltage range leading to unstable equilibrium solu-
tion.

These features are related to the localization of the limit point and the Hopf
bifurcation, respectively.

The results associated to the analysis on the damping (cuqq) are depicted in
figure 3(a-c). Referring to the objectives mentioned above, the first case tends to
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Figure 4: Frequency - Energy dependence of the LCOs for the drill-string system.

be fulfilled when the LP curves get closer from each other whereas for the second
case the same property has to be verified for the Hopf curves. The location of the
black trace (bifurcation diagram figure 2) is very close from the configurations
leading to both the largest range of global equilibrium (cyqq = 0.018 Ns/m) and
the smallest range of unstable equilibrium (csqq = 0.03 Ns/m). Moreover, at
high damping level, the system progressively tends toward a 2DOF system as the
coupling becomes increasingly stiffer and the effects of the essential nonlinearity
vanish. At very small energy level, the nonlinear effect is preponderant and
a nasty dynamics appears. This latter feature is similar to an increase of the
nonlinear stiffness k,; at constant damping which is considered hereafter.

Before going further on this analysis one could wonder whether the nonlin-
earity law (cubic with positive nonlinear coefficient k,;) considered in section 2
(|8]) is well suited to the primary system. In [10] it has been shown the necessity
for the nonlinear absorber to get the same frequency-energy dependence as the
primary structure. Without going into too many details that are beyond the
scope of this paper, it is worth being checked whether, similarly to the NES,
the primary system possesses a hardening behavior. Focusing on the LCO, the
total energy stored in the system is composed of the potential and kinetic energy.
Because the excitation is not appropriated, the evolution of this total energy is
cyclic and a mean value is considered as a first approximation. Extracting the
frequency of the LCOs and their related energy, a frequency-energy dependence
behavior is assessed and depicted in figure 4. Because the frequency of the LCOs
increases with the energy injected in the system it can be concluded that the gen-
eral dynamical behavior is of hardening type. Ideally and according to [10], the
nonlinear law of the NES should be such that its frequency-energy dependence
would be identical to the one of the primary structure. This will be investigated
in subsequent studies.

The bifurcation point continuation is performed with respect to the input
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voltage u. and the nonlinear stiffness coefficient k,;. Figure 5 (a-b) shows some
interesting features :

1. the Hopf bifurcation point does not seem to be influenced by the nonlinear
stiffness coefficient k,;. Consequently the range of equilibrium solution
cannot be increased further more.

2. the limit point continuation exhibit strong changes and beyond k,; = 0.075
[N/m?] additional analyses should be performed to check whether the dy-
namical behavior is preferable.

Figures 5 (c-d) illustrate the bifurcation diagram for k,; = 0.08 [N/m3]. The
new dynamics is clearly strongly affected by the nonlinear attachment but is not
at all preferable as higher amplitude level of the LCO occur and globally stable
equilibrium are changed into locally stable solutions. However the continuation
of other limit point bifurcation is of interest to verify the span of this effect at
lower nonlinear stiffness coefficient. This continuation affects the dynamics for a
nonlinear stiffness coefficient > 0.0039 [N/m?]. Therefore the best value of k,;
is just below this limit. This confirms the very good quality of the initial set of
parameter parametrically determined in section 2.

4 Conclusion and Future Work

In this paper, a new design procedure of the NES, based on the analysis of
bifurcation points, has been investigated. This latter is devoted to any kind of
structure composed of a primary system (SDOF and MDOF linear or nonlinear)
coupled to a NES. In the current study the focus has been set on a particular
primary structure, namely the drill-string system.

This method relies on the use of reliable continuation softwares such as MAT-
CONT which is used herein.

Considering given objective functions, this method highlights great benefits
from a computational cost viewpoint. It directly takes advantage of the rele-
vant information available in the bifurcation diagrams, namely, the bifurcation
points. Moreover, unlike asymptotical methods, it is characterized by the inde-
pendence with respect to any simplifications or restrictive assumptions on the
system structure or boundary conditions.

Complementary developments have to be undertaken in subsequent studies
such as : (i) the assessment of a nonlinear functional form of the absorber that
better fits the frequency-energy dependence of the drill-string structure, (ii) the
development and use of the codimension 2 bifurcations (LPNS, R1, ...) into the
design procedure.
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INFLUENCE OF FRICTION CHARACTERISTICS ON STICK-SLIP
VIBRATION OF DRILLSTRINGS

Marcos Silveira, Marian Wiercigroch

Centre for Applied Dynamics Research, School of Engineering, University of
Aberdeen, Aberdeen, AB24 3UE, UK.

1 Introduction

Traditionally, drilling a borehole for oil and gas extraction is done by means of
rotary motion of a drill-bit against the rock. The rotary motion is transmitted to
the bit from a motor, usually at the surface of the well, by a drill-string. This drill-
string is made of tube sections with threaded connections. It can reach lengths of
various kilometers, making it a very slender structure. Torsional vibration is one
of the most important vibration modes in drill-string, and the main phenomenon
related to it is stick-slip vibrations. The friction laws representing the friction at
the drill-bit can be defined in various ways. A comparison of three such friction
laws will be presented in this study in order to establish the influence of these
models in the response of the system.

2 Modelling stick-slip vibrations

Friction models for bit-rock interaction

The torque-on-bit (73) is a friction law, a function that defines the resistive
torque on the bit and models the interactions between the drill-bit and the rock,
often a function of the relative drill-bit velocity, ¢1. It can be defined in various

ways, following the form:
Ty if ¢1 =0,
Ty, = ’ e (1)

Tq it ¢1 #0.
The simplest model for Ty; is a piece-wise Coulomb-like friction law (Friction
Model 1), with a value for static friction and another, lower, value for sliding

(or dynamic) friction, which in this case is independant of the velocity. More
realistic friction laws account for dependancy on the velocity and weight-on-bit
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Figure 1: (a) Friction models showing dependency of friction torque on rotary
velocity (Tb1 -blue, Th2 - -green, Th3 -.red); (b) Physical model of IDOF system.

(WOB), and are usually discontinuous at null velocity. A comprehensive survey
of various friction models is given by Wojewoda et al. [1].

A more complex friction model (Friction Model 2) accounts for dependency
of the static and dynamic coefficients, 119 and py, on the contact velocity, and is
given by [2]:

sz = Sgn <¢1> Wb M + M1 + )\2¢% ) (2)
14+ XM ’¢1’

where A1 and Ay are dry friction constants and W} is the weight-on-bit. A third
friction model (Friction Model 3) incorporates an exponential dependency on the
contact velocity, allowing better accuracy near null velocity, and is given by |3]:

] 851 .
Tb3 =1g+ (Tst - Tsl) €7|¢1/w5l‘ + bl ’¢1 ) (3)

where Ty and Ty are the static and dynamic friction torques and wg;, d4 and b;
are dry friction constants.

1-DOF torsional pendulum model - Model 1

As a first approximation, the drill-string can be modelled as a 1-DOF torsional
pendulum [4-6]. The interest is in the relative displacement between the top and
the bottom, as the torque stored in the drill-string depends on this quantity.
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With this in mind, the relative angular displacement between the rotary table
and the bit is defined as:

¢ =2 — 91 (4)

then the equation of motion can be written as:
J16+ 1 + ki — Ty = 0, (5)

where J; is the equivalent mass moment of inertia of the drill-string, ¢; is the
equivalent damping coefficient along the drill-string, k1 is the equivalent torsional
stiffness of the drill-pipes,¢; is the angular position of the bit at the bottom of
the drill-string,¢o is the angular position of the rotary table at the top of the
drill-string and T} is the torque-on-bit.

1-DOF torsional pendulum with parametric excitation of the angular velocity
- Model 2

As observed in field data [4-6], the velocity of the rotary table oscillates
around the nominal velocity when the bit is experiencing stick-slip oscillations.
The oscillations of the rotary table have smaller amplitude and higher frequency
than the stick-slip oscillations. This oscillation is introduced in the model by
applying a parametric excitation in the velocity of the rotary table, in the form
of:

¢2 = Qat + Acos (wt) , (6)

where A is the amplitude of oscillations and w is the frequency of oscillations. It
is possible then to tune the values of A and w to emulate the behaviour of the
velocity of the rotary table. It is clear that nulling these two parameters makes
this model similar to Model 1.

Simulating discontinuous systems

The models considered are highly non-linear, exhibiting relaxation vibrations,
and also because of the friction models used. Therefore, the investigations were
performed with numerical simulations of the differential equations, using a 4"
order Runge-Kutta solver in conjunction with the bisection method to improve
accuracy. Extensive studies have been undertaken in simulation of discontinuous
systems undergoing stick-slip vibrations [2, 7-10]. These simulations have to
tackle the problem by separating the discontinuous phase space into a series of
adjacent continous regions. In the present case, two regions are necessary, one for
the stick mode and one for the slip mode, with the stick region being a straight
line. A switch function is used to perform the transitions from stick to slip modes.

Sliding surface

The limits of the sliding surface, which determine the conditions for stick
mode, are given in this system by the torque in the drill-string, which is the
result of the twist. Expressing the torque in terms of ¢ results in the upper and
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lower limits of this state variable that represent the sliding surface [11, 12|. It is
possible to demonstrate that the sliding surface does not depend on the state of
the system while this is at stick mode. The upper and lower limits are calculated
by:

—101 + T —C101 = T

¢upper = k—l ) ¢lowe7‘ = k—l (7)

While at stick mode, ¢1 = 0. Moreover, T}, . and ki do not depend on the state
of the system, and ¢ depends only on A and w. It follows that ¢;pwer and Gupper
will not change for varying (s, while the dependency on A and w clearly comes
through the excitation present in ¢ in Model 2.

3 Comparison between the friction models

The comparison between friction models is carried out by selecting five repre-
sentative points along the stick-slip limit-cycle, these being the first five points
chosen on the stick-slip limit-cycle. Model 2 was used for this comparison, varying
the parameters A, w and (s.

Results of the comparison between the three friction models show small differ-
ence between a more simple friction model and a more complex one, confirming
that the main aspect of the system in order to exhibit stick-slip vibrations is
the difference between the static and dynamic friction characteristics. Figure 2
shows that the phase-planes of stick-slip vibrations for all three models are very
similar. The small oscillations on the velocity of the top (Model 2) introduces
quasi-periodicity to the system. The point on the limit-cycle most affected by
this is the transition between the slip mode into stick mode. The charateristic
shape of the Friciton Model 3 near zero velocities causes the trajectories in the
phase-plane to vary slightly at each cicle. Bifurcation diagrams confirm that
there is a region in parameter space that allows the system to operate without
stick-slip vibrations.

4 Experimental set-up

A small scale experimental set-up has been designed to gain additonal insight
and validate some of the models and the data from the numerical simulations.
Axial and lateral forces are present, as there is an axial force applied on the bit
and frictional forces along the drill-string due to the torsional buckling of the
shaft, resulting in contact with the borehole wall. There are no fluid forces along
the drill string. The borehole is a long glass tube. Rotating inside the borehole
is the drill-string, which is a long and flexible shaft with low torsional stiffness.
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Figure 2: Phase-plane of stick-slip vibrations (a) Friction Model 1, (b) Friction
Model 2, (c) Friction Model 3.

The load applied to the bit (WOB) is taken by means of a load cell and a linear
amplifier. A sample of rock is fixed in one end of the load cell. This load cell is
pushed against the bit by means of a screw and a spring, generating frictional
torque.

The inputs introduced to the experimental set-up are the nominal voltage
supplied to the motor and the WOB given by adjusting the spring on the load
cell. The outputs of interest are the velocity of the motor, the velocity of the bit
and the axial force on the load cell. The aim is to measure how the two veloci-
ties oscillates as the drill-string experiences stick-slip oscillations during drilling.
Fluctuations of the axial load will also be measured and will be related to the be-
haviour of the drill-bit. The transparent borehole enables the clear visualisation
of the torsional buckling experienced by the drill-string when operating under
high torsional loads.

5 Conclusions

The comparison between the three friction models used shows small difference
between more simple and more complex models, which confirms that the main
aspect responsible for a system to exhibit stickslip vibrations is the difference
between the static and dynamic friction characteristics. The point on the limit-
cycle most affected by oscillations of the velocity of the rotary table is the tran-
sition between the slip mode into stick mode. The bifurcation analysis allowed
to determine the velocity 2 above which the system operates without stick-slip
vibrations. More importantly, this velocity does not change substantially with
different friction models. Also, the sliding surface does not change for different
friction models, as the maximum value for friction does not depend on the con-
tact velocity. A combination of angular velocities and damping on the system can
also avoid stick-slip vibrations. For further analysis, a small scale experimental
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setup is being constructed, which will enable the investigations of correlating the
numerical simulations to experimental data.
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1 Introduction

Downhole vibrations while drilling are a complex phenomenon, sensitive to a wide
range of factors, many of which change as the drilling process takes place or are
hard to quantify within a typical drilling environment. Examples of these factors
are rock properties (strength, elasticity, and attenuation), wellbore friction factor,
hole washout, tool imbalance, component wear or damage, mud damping, etc.
Field experience has shown that it is not sufficient to simply identify resonant
conditions using modal analysis [1] (although, this approach can provide value,
[2] especially if used in a relative sense). The reasons above have driven the
implementation of real-time downhole drilling mechanics measurements [3| over
the past 20 years. As drilling costs and the cost associated with equipment failures
increase, there is increasing pressure to provide more reliable solutions, and a
high-tier drilling mechanics analysis service has evolved involving the application
of advanced dynamics models ([4], [5], [6]).

Given that there are a number of important unknown factors that impact
drillstring vibrations, it should not be expected that an advanced dynamics model
will ever be able to fully capture reality. However, an advanced model may
capture enough of the physics to provide valuable insight into specific questions
such as:

e What is the impact of an increased friction factor around the BHA contact
points?

e How sensitive is a specific BHA to imbalance at different wellbore inclina-
tions?

e How does a reamer react to washout around the body area?
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e What is the risk of running a flexible collar section below a mud motor to
improve steering performance?

2 Approach

A transient BHA vibrations modeling tool is under development that typically
simulates 10 to 60 seconds of drilling with the following aims:

e Enhancing our understanding of the dynamic behavior of the drillstring/BHA
while drilling.

e Helping us make better comparisons between different BHA designs and
evaluate drilling parameters from a best drilling practice perspective.

e Aiding the design of BHAs and tools more resistant to shock and vibration.

We have chosen a finite rigid body (FRB) approach as a careful compromise
among modeling simplicity, computational cost, and physical relevance of the
computed results. The drillstring is split into segments typically 1 to 5 diameters
long. The segments are assumingly connected through axial, shear, bending, and
torsional springs with spring constants appropriately determined based on mate-
rial and geometric properties of the tool. The segments need not be azimuthally
symmetric (mass imbalance and bending anisotropy can be accounted for). Ad-
ditionally, appropriately encapsulated physical models are used to simulate the
interaction of the BHA with its environment, as described below.

The borehole wall is modeled as a viscoelastic boundary with friction. Differ-
ent models have been tried to account for the elastic part of the restoring force.
We have opted for a modified form of the Hertzian contact formulation, which
takes into account the compliance due to the hollow geometry of the tool cross
section. The effects of the drilling fluid are accounted for, including buoyancy,
effective added inertia, and lateral, torsional, and lateral drag (although, the
drag computation uses simplified linear assumptions based on a centered tool
configuration).

The drillbit interaction with the rock is modeled using an extension of the
formulation proposed by Detournay,7 in which reaction forces and torques are
mainly dependent on the depth of cut (thickness of rock layer cut per revolution).
The extension is aimed at characterizing all six degrees of freedom of the bit
movement. For instance, natural bit imbalance, sideways cutting action, and
rock reactions to changes in bit axis direction are included in the formulation.

A model of an electric motor is used at the other end of the model to represent
the topdrive, with the user asked to prescribe a target surface ROP and rpm.
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Torques and hook loads are applied at the top of the model, and the drillstring
response is monitored. Different feedback control strategies can be tried to con-
tinuously adjust the input torque and hook load in order to achieve (or stay close
enough) to the desired ROP and rpm.

The modeling tool also includes simplified but physically meaningful models
of special drilling modules such as stabilizers, mud motors, adjustable bends,
reamers, and rotary steerable tools. In the case of mud motors, in addition
to modeling the transmission of torque between collar and rotor, we also take
account of axial and lateral effects such as the whirling of the rotor inside the
collar as it turns.

3 Example of simulated results

A software prototype incorporating the modeling technology described above is
under development. Figure 1 illustrates a typical simulation run. In this case, a
short 900-ft drillstring is being simulated. The lower right panel shows a color-
coded picture of the tool in its actual 3D configuration. The tool diameter has
been appropriately scaled for ease of visualization. The color in this case is chosen
to represent instantaneous torsional strain (blue indicates low strain while yellow
indicates high strain). There is a mud motor near the bit. The upper panel is
a clearance gap display showing the centerline of the tool as it lies inside the
wellbore (the apparent protrusions in the wellbore correspond to drillpipe joint
locations where the annular gap between the tool and the wellbore is narrower).
The middle left panel shows the time history of the torque as measured at the bit
(green) and at the surface (red). Notice that there is appreciably more “noise”
near the bit, which in this case corresponds to torsional waves traveling between
the bit and the mud motor. The lower left panels show cross sections at different
specified locations, illustrating the lateral movement of the tool.

A validation exercise is also taking place. On one side, we have been able to
check against problems with known analytical or semi-analytical solutions such
as predicting the onset of sinusoidal buckling of a smooth pipe in a horizontal well
and the not-so-gradual transition to helical buckling as compression increases. On
the other side, we have obtained qualitative agreement with particular field cases
on the vibration reduction effects due to modifications made to drilling tools
such as removing asymmetric tool features typically introduced by adjustable
bend subs. However, we realize that there are important limitations introduced
by the simplifying assumptions used in the modeling, and we are in the process
of exploring reasonable uses of this technology.
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Figure 1: Sample simulation run.

4 Conclusions

We have described a modeling effort aimed at studying the transient dynamics
of drilling tools. A prototype simulation tool has been developed using an FRB
approach in the time domain. A validation effort is under way to explore the
limits in the usability of the technology.
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1 Introduction

This paper is concerned with the calculation of the deformed configuration of
a drillstring during drilling, which critically hinges on accurately identifying the
contacts between the drillstring and the borehole walls. For this study, we assume
that the position of the bit relative to rig is fixed and that a known axial force
is imposed at the rig. A mathematically related problem is the insertion (or the
pulling) of the drillstring into (or out of) the borehole, as the nature of the axial
boundary conditions at both ends of the drillstring is exchanged.

This subject matter is part of a larger class of problems involving a priori
unknown contacts between an elastica and a rigid boundary. These problems are
computationally challenging, especially in the context of the drilling applications.
Indeed, the large deflections of the drillstring from a stress-free configuration re-
quire consideration of a geometrically non-linear model. Furthermore, application
of standard numerical tools to this problem results in an ill-conditioned system
of equations, owing mainly to the narrowness of the borehole compared to its
length, but also to the large flexibility of the drillstring and the assumed rigid
nature of the borehole walls.

We propose here a novel mathematical formulation of this problem, which
takes advantage of the extreme slenderness of the borehole and which is based
on expressing the deformed configuration of the drillstring as a perturbation of
the borehole axis.

2 Problem Definition

We consider a borehole of length L and radius A, assumed to be contained in
a vertical plane. Tts known geometry is completely defined by the inclination
©(S) of the borehole on the vertical axis e;, where S (0 < S < L) is the
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Figure 1: Problem definition.

borehole curvilinear coordinate with origin on the ground surface, see Fig. 1.
A drillstring of external radius a, bending stiffness EI, and weight per unit
length w is contained within the wellbore, with the bit at the hole bottom.
Assuming that the position of the bit is fixed, we seek to determine the length
¢ and the deformed configuration of the drillstring, defined by its inclination
0.(s) on ej, where s (0 < s < ¢) is the drillstring curvilinear coordinate. For
simplicity, we refer to .S as the Eulerian coordinate and to s as the Lagrangian
coordinate. The constraint on the drillstring to deform inside the borehole leads
to the appearance of contacts between the borehole and the drillstring, either
discrete or continuous. The contacts, which can be assumed to be frictionless
as the drillstring is rotating, impose conditions on the distance A between the
borehole and the drillstring axes, on the inclination 6, and also on the curvature
for continuous contacts, namely A = A —a, 6, = O, and 0, = ©'.

The deformation of the drillstring (assumed to be inextensible) is governed by
the classical geometrically nonlinear beam equations, which outside the contacts
read

F0, + F), —wsinf, = 0,
o0, — F|, —wcosf, = 0,
M, 4+ F. = 0,

EI0, = M,, (1)

where Fi, (s), Fas (s) and M, (s) denote the axial force, transverse force and
bending moment, respectively. This system of equations can be reduced to a 4th
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order nonlinear differential equation
EI (6.0 —0l0) + 0;30;/) =w (6 sinf, — 20'? cos 0.) - (2)

The formulation of this problem is closed, with the imposition of the bound-
ary conditions at the rig (s = S = 0) and at the bit (s = ¢, S = L), besides the
conditions at the a priori unknown contacts. At the rig, the boundary conditions
take the form F1, = H, A =0, and 0, = © , while at the bit, A =0, 6, = © (for
example) in addition to an integral constraint on sin #, and on cos 6, that express
that bit is positioned at the hole bottom. The problem of determining 6,.(s), ¢,
and the contacts is thus well posed, in principle [1]. However, semi-analytical
or numerical methods that are directly based on solving the non-linear differen-
tial equation (2) result in ill-conditionned sets of equations that fail to converge
when the dimensionless parameter ET/wl®, where [ is the distance between two
contacts, becomes too small ( ~ 0.2).

3 Perturbed Eulerian Formulation

The approach proposed in this paper overcomes the above issues by expressing the
drillstring configuration as a perturbation from the geometry of the borehole using
the variable A, rather than in terms of 6, and by reformulating the problem in
terms of the Eulerian coordinate S. Furthermore, as already proposed in [1], both
the drillstring and the borehole are divided into segments limited by contacts and
the global problem is expressed as a connected set of elementary problems. The
number of elementary problems is a priori unknown, however. The critical aspect
of these computations involve the determination of the positions of the contact
points, which are used to segment the original problem into elementary ones.
Each elementary problem is solved by assuming the positions of the contacts to
be given; these positions are then recalculated at the reconnection stage in order
to satisfy some continuity conditions at the contacts. The solution of the global
problem requires therefore iterations to solve for the positions of the contacts,
and each iteration requires the solution of a succession of elementary problems.
Evidently, all the elementary problems can be treated similary, by means of
what we refer to as the auxiliary problem, namely the problem of finding the
deformed configuration of the drillstring in a segment of the borehole between
two contact points. First, we introduce the following dimensionless quantities:
€ =(S—S;_1)/L; where L; = S; — S;_1 is the length of the borehole segment
situated between contacts i — 1 and i, « = (A — a)/L;, €2 = EI/wL3, and the
scaled distance §(§) = A[S ()] /(A — a). With the introduction of §(&) as the
fundamental unknown, we have expressed the drillstring deformed configuration
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as a perturbation of the borehole geometry. We also introduce the borehole
inclination ¥(§) = © [S (§)], which is readily deduced from O(S).

Formulated in terms of §(§), the differential equation (2) becomes after drop-
ping terms of order O(a?) and above

aD[6(§);9(8); el + F0(€);¢] =0 (3)

where D is a 5th order linear differential operator on ¢ () and F' is a functional
of ¥(§) given by

F=¢ (00" —9"9" +929") — 9" sind + 20 cos . (4)

It can readily be seen by setting § (£) = 0 in (3), that F is actually a measure
of the out-of-balance forces that need to be applied on the drillstring so that it
is espouses exactly the borehole geometry. Because (3) results from the consid-
eration that € is a small perturbation of 9, the function aD(J) is necessarily of
the same order as F(¢), as otherwise the deviation of 6 from ¥ would be too
large and there would be an intermediate contact between the two ends £ = 0
and £ = 1. This is an application of the so-called method of dominant balance
[2]. The boundary conditions for the differential equation (3) are that 6 =6’ =0
at both ends. Furthermore the axial force at one end is known, which provides a
supplementary condition on a linear combination of §” and 6”” .

With the perturbed Eulerian formulation, the integro-restrained nonlinear
boundary value problem in 6, (2) has been transformed into a classical linear
boundary value problem in ¢ (3). The advantages of the new formulation are
therefore obvious but are further clarified next by solving (2) and (3) with a
similar shooting method.

4 Examples

The shooting method consists in transforming the 2-point boundary value prob-
lem into an initial value one by collecting the boundary conditions at the second
end and, eventually, the restraining conditions in the form of objective func-
tions G(Y'), where T represents the assumed initial conditions. Enforcement of
the conditions that have been discarded in the formulation of the initial value
problem is done by imposing that G(Y) = 0. This method is used to solve the
auxiliary problem expressed in Lagrangean coordinates (2) and in Eulerian coor-
dinates with the perturbed formulation (3).

As an example, let us consider the auxiliary problem with © (S) = S/R,
So =0, S1 = L = Rn/2, which corresponds to a quadrant of a circular borehole.
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Since there are only two contact points, we dispense of the subscript 1, when
referring to the borehole or beam segment; i.e., £ =¥¢; and L = L.

In the Lagrangean formulation (2), the problem is solved with the following
boundary conditions

l
/sin 0. (s)ds=R ; cosb, (s)ds =R (5)
0

o

expressing the compliance of inclination between the drillstring and the borehole
at both ends as well as the constraints related to the offset between both beam
ends. Conditions (5) are expressed as functions of the unknown beam length
¢. A supplementary condition, related to the axial force Fi, = mwlL (with
a given number m1) at s = 0, or equivalently to €7/ (0), is therefore added to
obtain a closed set of equations. With this approach, the augmented initial
conditions vector Y, collects @, (0) and 607 (0), as well as the unknown beam
length ¢, while the objective function G,(Y ) gathers the second end condition
and both constraints in (5).

In the perturbed Eulerian formulation, these boundary conditions are simply

5(0) = §(L) = §'(0) = §'(L) = 0. (6)

They need also to be complemented, in order to close the system of equations,
by a fifth condition on the axial force at S = 0, which is equivalently written
as a function of 8" (0) . In this case, the augmented initial condition vector Y
contains §”(0) and §”(0), whereas the objective function expresses both second
end conditions in (6).

Figure 2 shows contour levels of functions G.(Y,) and G(Y) for m = 1,
e =1 and o = 0.001. The solution of the problems with the shooting method
is geometrically illustrated as the computation of the intersections of zero level
curves of G«(Y ) and G(Y). This is typically performed with a non-linear solver.
The complexity of the level curves is a reflection of the convergence rate. Figure
2 illustrates therefore the advantages of the Fulerian approach of the problem,
combined with a perturbation formulation.

5 Outlook

The Eulerian view of the drillstring flow into the borehole is especially advan-
tageous within the context of a propagating borehole, when this model is used
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Lagrangean approach

Perturbed Eulerian approach
G(2)

\;‘;o B s L = Sop.
\;0\%

3°7(0)

57(0) 57(0)

Figure 2: Level curves of G« (Y,) for T, (1) = ¢ = 1.5697 (the solution) and
level curves of G (Y) for m = 1, e = 1 and a = 0.001. Thick lines represent
zero level curves. They intersect at the white dots, the solution of the shooting

method.
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to calculate successive equilibrium configurations of the drillstring. Indeed, the
position of any contact becomes stationary in reference to the borehole with in-
creasing distance between this contact and the bit, whilst it continues to slide
along the moving drillstring.

The motivation to analyze this particular problem is multifold. First, there
is the question of determining the transmission of forces between the rig and
the bit (known as the torque-and-drag problem in the Petroleum Industry [3]),
which is essentially controlled by the contacts between the drillstring and the
borehole. Second, modeling the evolution of the borehole during drilling requires
determination of the forces acting on the bit, which themselves depend on the
deformed configuration of the drillstring. Finally, any analysis of the surface
vibrations of the drillstring would benefit from a prior: knowledge of the positions
of the contacts along the string.
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To a first order, it is possible to mathematically model the way a drilling tool
propagates the centre line of a borehole by using delay differential equations.
The delay terms come about because the forces present on the bit (and thus its
direction of drilling) are a consequence of the shape of the bore hole just drilled.
In this analysis we allow ourselves the simplifying step that the drilling tool’s
touch-point’s are discrete contact points and finite in number. With some care
we can model the borehole propagation of most drilling systems by considering
just 4 touch-points in a plane. The expression for borehole propagation can be
derived in a linear form and thus easily converted to Laplace Transfer functions
allowing their incorporation into larger scale system using standard loop design
techniques e.g. Nyquist. The independent variable used is distance-drilled rather
than the more conventional time.

This has been reasonably successful in providing a closed form expression to
capture the drilling response and stability of drilling tools and compares well to
the prediction obtained by the full finite element models of the drilling process.

However, drilling dynamics is the cause of many drilling issues that are cum-
bersome to include in a quasi-static force approach. Consequently one of the next
steps in the progression of this analytical technique is to include some aspect of
the drilling tool’s dynamics into the expression for borehole propagation.

After covering the above preamble, the paper to be presented will show a
very simple case where both a drilling tool’s dynamics of motion and borehole
propagation (kinematics) are combined into one linear expression.
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1 Introduction

Starting in the 1950’s with the seminal contribution of Lubinski and Woods [1],
substantial efforts have been invested in the formulation of a borehole propagation
model that could in principle predict the trajectory of a borehole, given the
loads and kinematic constraints acting on the drillstring and the characteristics
of the rock formation and of the drilling system, see for example [2, 3, 4, 5,
6, 7, 8, 9]. These efforts are mainly motivated by engineering issues, such as
designing a bottom-hole assembly (BHA) including the location of the stabilizers,
interpreting downhole data, and controlling rotary steerable systems (RSS) [9].
The development of such a mathematical model is challenging, however, in part
because of the nature of the boundary conditions at the bit, but also because of
the delayed effect of the borehole geometry on the forces transmitted to the bit
through the constraints on the deformed configuration of the BHA imposed by
the stabilizers sliding along the borehole.

This paper discusses some aspects of a borehole propagation model, by fo-
cusing on the near-bit region of an advancing drilling system. We restrict con-
siderations to a borehole contained in a vertical plane. Let e; and e denote
the axes of a fixed system of coordinates, L the current length of the borehole,
and S the borehole curvilinear coordinate (0 < .S < L) with S = 0 correspond-
ing to the borehole entry (see Fig. 1). At lengthscale L, the borehole is a 1D
object and thus its geometry can be completely defined by the inclination angle
O(S), see Fig. 1. This 1D characterization of the borehole geometry needs to
be complemented, however, by a description at the bit length scale. Indeed, the
main borehole feature affecting the interaction between the bit and the rock, be-
sides the geometrical properties that are embodied in the function O(5), is the
clearance between the bit and the borehole, as it constraints the bit tilt. This
additional description of the borehole geometry is done with the overgauge factor
E(S) defined as = = A/a — 1, with A(S) denoting the mean borehole radius and
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Figure 1: Borehole geometry: coordinate S, length L, inclination angle O, cur-
vature K.

a the bit radius. Although Z(S) > 0 by definition, the overgauge factor cannot
be smaller than Z, < 1, for a variety of technological and practical reasons.
Formulation of a borehole propagation implies therefore writing the equations
governing the evolution of both © and =.

2 Elements of a Model of Borehole Propagation

Formulating a relationship between the geometrical evolution of the borehole and
the mechanical forces acting on the drillstring requires a sequence of steps: first,
the link between the incremental propagation of the borehole and the penetration
of the bit in the rock; then, the connection between penetration and forces at the
bit-rock interface; finally, the relationship between the forces on the bit and the
forces acting on the drillstring. Each component of the model is addressed next.

The state variables that characterize the bit penetration are naturally ex-
pressed in the director basis (21, 22) associated with the bit, see Fig. 2(a). For
planar trajectories, three quantities are needed to describe the penetration of the
bit per revolution: the axial penetration di, the lateral penetration ds, and the
angular penetration . The inclination 8 of the penetration vector d on the axis
of revolution of the bit is given by § = arctan(ds/dy). Figure 2 illustrates the
three modes of penetration of the bit into rock.

>

The inclination ©, the curvature K, and over-gauge factor = of the borehole
at S = L are in fact related to the penetration variables d;, do, and ¢, as well as
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Figure 2: Bit penetration into rock after one revolution: (a) initial configuration
with director axes i; and 42, (b) axial penetration di, (c¢) lateral penetration da,
(d) angular penetration .

to the inclination # and tilt P=0- O of the bit, according to

6=0+p8 K=

=E=5 *V\ﬁl (1)

where ¢ denotes the variation of a quantity over a revolution of the bit, and a
“hat” the value of a field quantity at the bit. In particular, 56 represents the
variation of the absolute bit inclination and 6L the increment of the borehole
length after one bit revolution; hence, 66 = @ and 6L = d. The first equation
in (1) expresses that ¢ + 8 = 0, since the penetration vector d is tangent to
the borehole axis. The expression for the borehole curvature at the bit is then
deduced from K = 60 /d. The equation for = is obtained from simple geometrical
considerations involving a cylindrical bit with slenderness v.

The penetration variables represent the fundamental state variables for the
bit-rock interface laws. The dynamical quantities that are conjugated to the
penetration variables are the force on bit F and the moment on bit M , with M
contained in the plane orthogonal to #;. For plane trajectories, only the weight
on bit Fl, the transverse force Fy and the moment M = Mj (where the subscript
3 has been dropped for simplicity) are relevant, since the “directional” dissipation
per revolution of the bit, D = —Fldl - ngg — Mcp.

The bit-rock interface law is simply the relationship F = H(D) between the
“force” F = {Fl, FQ, Fg, MQ, Mg}T and the “penetration” D= {dl, dg, dg, Y2, gOg}T.
It can be argued on the basis of single cutter experiments that the two basic pro-
cesses that are taking place when the bit is interacting with the rock, contact
and penetration, lead to a bi-linear relationship between F and D [10].

The last component of the problem is the drillstring. For a plane curve, its ge-
ometry is completely defined by the inclination 6(s). As the drillstring is moving
along the borehole, its geometrical configuration is changing. Since the problem
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is rate-independent, it is convenient to use L as the evolution variable. Hence,
the evolving geometry of the drillstring is described by the function 6(s, L) during
drilling. Through the classical Euler-Bernoulli beam equations, the moment M
and the axial force F} and the transverse force Fy can readily be derived from
(s, L) and from the external forces acting on the drillstring.

3 Equilibrium Curvature for a BHA with Finite Rigi-
dity

The system of equations, consisting of (i) the kinematical relationship between
the penetration variables and the borehole geometry, (ii) the bit-rock interface
laws, and (iii) the drillstring mechanics, is closed. To show that the problem is
indeed well-posed, we calculate the equilibrium curvature of a borehole for the
simple case of a flexible BHA with one stabilizer and one RSS pad that applies
a known transverse force F' on the BHA at distance § from the bit. The axial
force I} on the stabilizer is assumed known, see Fig. 3.

The system of equations that governs the equilibrium curvature of the bore-
hole can be simplified on account that the deformed configuration of the BHA
remains invariant in this case.

e Bit-rock interaction:
Py =G1+ Hydi, Fy=-Gy—nHidy, M=-Gy—x\NHyp (2
where Go, G1, G2, and H; are coefficients of the bit-rock interaction laws.

o Relationship between bit penetration and borehole geometry:

2
o = %A, ===, + 2vg (3)
e Drillstring mechanics:
F — L AT (k= 28) = LF Yk 4 Fusinn + F (M) (4)
wh 9 bl (K 57 R w S U r
ﬁ—lj\/l T ( —25)—1MT + My, sin 0, + M, (A)P (5)
wh2 9 bl (K o Vs R w SHL U r

where the coefficients F’s and M’s are given in Table 3 for the two limiting
cases of a blocked stabilizer (§ = ©) and a freely rotating stabilizer (M = 0).
It is worth mentioning that the consideration of additional stabilizers will
only be reflected in the particular expressions of the coefficients F’s and

Ms.
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Figure 3: Segment of BHA between the bit and the first stabilizer.

In the above, 0,,,, v, B, 1, x, K, Z A, T, ® are dimensionless quantities: 6, is
the inclination of the BHA on the gravity, while  and x denote the lateral and
angular steering resistance, respectively. The borehole curvature x, the distance
A between the RSS pad and the first stabiliser, the BHA rigidity T, and the force
on the RSS pad ® are respectively defined as

k=K, A:)\_S El i}\

T=—— =
A wA3’
The expected orders of magnitude of these numbers are: v = O(1), n =
0(10), x = O(107' ~ 1), B = 0(1072), k = O(1072 ~ 1071), = = 0(1072),
A=0(10"1 ~ 1), T =0(1 ~ 10%), @ = O(1 ~ 10); also |0,,| < 7/2.

Table 3: Coefficients F’s and M’s.

]?C ats=A|F, Fs Fu Fr My My My M,
=0 6 6 3 —(3-2M)A% [4 2 -5 (1-A)A°
[M] =0 3 0 2 —IA(B-=A) |3 0 -5 IA(1-A?

The system of equations (2)-(5) can be reduced to a linear system in 3 and k.
For example, the following asymptotic expressions for 3 and k hold for M = 0,
if the BHA is rigid enough (Y = 50)
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ﬂ:ﬁm—"gﬂ)(l), H:mw+’7g+o<1> (7)

T T2 T T2
where
Q(A‘I) — FO — FQ) — sin Om
0o = y Koo = 20650 8
P = T 20— ) 8 ®)
G —8Tgn + 16T2x + [8x (A% — 3) +4n (A2 — 1)] A® + (n + 10x) sin by, ©

12(n + 2x)?

The simple result that Koo = 20 (for an infinitely rigid BHA) can readily be
interpreted geometrically.

Consider the following numerical values: a = 0.1 m, v = 2, 0,, = 1, w = 103
N/m, A=10m, EI = 10" N-m?, §=1m, Gg = G5 =0, G; = 10* N, Hy = 10°
N-m, H; = 107 N/m, Hy = 10® N/m, F} = 10° N, F = —10* N. Then, the
values of the control numbers are: n = 10, x = 1, T = 10, A = 0.9, I’y = 0,
I't =1, I's = 0, and the loading parameters are II = 10, & = —1. Hence,
ke~ —116-10"2and f ~ —9.28 - 1073 if § = © and kK ~ —9.24 - 1073 and
B~ —1.37-10"2 if [M] = 0. These values translate into a radius of curvature R
and borehole radius A given by R ~ 863 m and A = 0.1029 m for the case § = ©

and by R ~ 1082 m and A = 0.1038 m for the case [M] = 0, assuming =, = 0.01.

4 Conclusions

In this paper, we have discussed aspects of a borehole propagation model, namely
the kinematical relationships governing the geometrical evolution of the borehole,
(ii) the laws that link the bit/rock penetration variables to the forces on the bit,
and (iii) the relationships between the forces on the bit and the loads on the
drillstring. We have demonstrated that this system of equations is closed by
computing the equilibrium points of the dynamical system, which correspond
to borehole segments with constant curvature. The consideration of an angular
bit penetration and its link to the borehole curvature are among the novelties
introduced in this formulation. The complete evolution problem remain to be
formulated, however, so as to enable the prediction of borehole trajectories char-
acterized by change in curvature, either sudden or progressive.
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THEORETICAL DETERMINATION OF THE BIT-ROCK INTERACTION
COEFFICIENTS L

Luc Perneder', Emmanuel Detournay!?

!University of Minnesota, USA
2 CSIRO Petroleum, Australia

1 Introduction

The bit-rock interaction laws characterize the relationship between the pene-
tration variables and the generalized forces on the bit. Based on single cutter
experiments, we first postulate that the bit-rock interaction can be captured by
bilinear laws between the penetration variables and the generalized forces. We
then focus on the determination of the “bitmetrics” coeflicients, the parameters
of the bit-rock interaction laws, for a cylindrical PDC bit; in particular we show
that some of these coeflicients depend on the bit tilt.

2 Bilinear Single Cutter Law

Consider a blunt rectangular cutter of width w, removing rock over a constant
depth d (Fig 1). The scratching process consists generally of two independent
processes: pure cutting and frictional contact. Assuming that cutting takes place
in the ductile mode [1], single cutter experiments indicate that the relationship
between the cutting force and the depth of cut d is bilinear. This bilinearity
reflects the existence of two regimes: Regime I where the forces on the cutter are
proportional to the depth of cut d, and Regime II where the forces on the wearflat
are constant but the forces on the cutting face remain proportional to the depth
of cut. The transition from Regime I to II is characterized by a threshold depth
of cut d, and force Fy. In Regime I (d < d.), the forces in the directions n and
s (perpendicular and parallel to the cutter velocity, respectively) are given by

Fl =(ewd, F!I'={"cwd
while in the Regime IT (d = d,), they are given by

FIT = gwl 4 ¢ewd, FM = powl + ewd
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Regime [ Regime 11

Fe 7,

Figure 1: Single cutter test. Bilinear law for the normal force F,.

where ¢ is the intrinsic specific energy of the rock, w is the width of the cutter, o
is the maximum contact pressure on the interface wearflat /rock, p is a coefficient
of friction and ¢, ¢/, ¢” are dimensionless coefficients.

3 Penetration Variables and Generalized Forces

Let the axis i; of a director basis coincide with the bit axis of symmetry while
pointing ahead of the bit and let the axes i and i3 be perpendicular to i1 (Fig.
2). The origin of the director basis is fixed at the center of the bit face.

The penetration of the bit is characterized by a penetration vector d per rev-
olution and an angular penetration vector ¢ per revolution, which is orthogonal
to the bit axis of revolution. The trajectory of the bit is assumed to be in the
plane (il, 12) and the penetration of the bit is characterized by three penetration
variables in the basis (il, iz, ig): the axial penetration dy, the lateral penetration
ds and the angular penetration 3. Moreover, the trajectory radius R and the
penetration variables are assumed to be constant with time.

The penetration vector d is tangent to the borehole so that it is aligned with
the borehole axis. The axis of revolution of the drill bit iy is not necessarily
aligned with the borehole axis. The inclination of the bit with the borehole
trajectory is called the bit tilt ¢ and is related to the penetration variables by

1 = — arctan (jj) . (1)

The dynamical quantities that are conjugated to the penetration variables
are the force on bit F and the moment on bit M. The moment M acting on the
bit is perpendicular to the axis of revolution of the bit and does not include the
torque. In the director basis (il, ig, ig), the force F and moment M acting on
the bit have components Fy, Fy, F3, My, Ms.
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4 Mathematical Formulation

We consider a cylindrical bit of radius a and height 2b. In the following, we
assume that a/R < 1, a/b = O(1), da/d; < 1. The cutters of the bit face
and gauge can be conceptualized as two equivalent blades, one for the bit face
and another one for the gauge. The characteristics of these equivalent blades are
fixed in such way that the forces on the blades are the same as those on all the
cutters when averaged over one revolution and they can be deduced from the
emplacement and geometry of the cutters.

The expected magnitude of the penetration variables are such that the bit-
rock interaction is assumed to occur in Regime II on the bit face and in Regime
I on the bit gauge.

The first step is to determine the bit-rock interaction surface and calculate
the penetration of a point P on this surface. The relation between the local
penetration d at a point P and the penetration variables dy, da, o3 is a function
of the position of P and on the relative orientation of the normal n to the bit
profile at P with respect to the axis i1

If the bit face fully interacts with the rock, the penetration of a point P of
the bit face is given by

d = d; — p3rcoswi. (2)

For the gauge, the interaction surface depends on the geometrical configura-
tion of the bit in the borehole, which is expressed in terms of the bit tilt ¢ and
the parameter 1), defined as

2b
== (3)

The penetration of a point of the bit gauge is the projection of the lateral
displacement onto the normal of the gauge surface

(N

d = (dy — 25bp3) coswy (4)

where the variable ¢ € [0,1] is the dimensionless coordinate running from the
bottom to the top of the gauge. The penetration given by (4) can be negative,
which shows that not all the gauge interacts with the rock. Thus, the gauge-
rock interaction surface is defined by positive penetrations d and can take four
different configurations depending on the ratio /1.

e If ¢ > 0, the contact is located on the outer side of the gauge. Outer and
inner sides of the gauge denote the sides of the gauge facing respectively
the inside or outside of the circular trajectory of the bit.
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Figure 2: Definition of the director basis centered on the bit face and the tilt
angle 1.

o If ¢ € [—%,0}, both sides of the gauge are in partial contact with the
rock.
o Ify e [—w*, —%}, the inner side is partially in contact with the rock.

o If ¢ < —1),, the inner side is in full contact with the rock.

The forces acting at a point P of the bit are deduced from the penetration p
at P. The last step is to integrate these forces on the length of the equivalent
blade and then to average the result on a rotation of the bit. This leads to the
expressions of the general forces acting on the bit.

5 Results

The dimensionless general form of the interface laws is

F/ea? 2l ¢ 0 0

Fy/ea? 0 0 %C’y\lll —%C/V2\I/2 di/a
Fyfea® | =—=1] 0 | —=|0 35¢v¥ 1(—1"%0, dafa | (5)
My /ca® 0 0 3¢A, =2 ©3
M3/5a3 0 0 —%C/V2‘1/2 %C + %C’I/?’\Ifg

where [, is the equivalent wearflat length of the cutting face of the bit, v = b/a
defines the slenderness of the bit and ¥y, Wy, W3 are functions of the ratio ¢/,
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and depend on the gauge/rock interaction surface configuration. For the first and
fourth configurations (when one side of the gauge is in full contact with the rock),
VU, = Uy = U3 = 1 and the bit-rock interaction laws are bilinear relashionships.
But, for the second and third configurations, V1, Wy, W3 depend on the bit tilt
1 and the bit/rock interaction laws are no longer bilinear relashionships of the
penetration variables.

This analysis indicates that the axial penetration d; generates only an axial
force. In contrast, the lateral and angular penetration da, w3 both generate lateral
forces and moments on the bit due mainly to the interaction of the gauge of the
bit with the rock.

References

[1] Richard T. Determination of Rock Strength from Cutting Tests. M.S. thesis,
University of Minnesota, Minneapolis, U.S.A., (1999).
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EXPERIMENTAL DETERMINATION OF THE BIT-ROCK INTERACTION
COEFFICIENTS

Thomas Richard

Drilling Mechanics Group, CSRIO Petroleum, Perth, Australia

1 Introduction

This talk presents results of drilling tests performed to estimate the bitmetrics
coefficients that relates the penetrations variables (axial, dy; lateral, ds and an-
gular @3 penetrations per revolution of the bit) to the conjugated force F' and
moment M acting on a drag bit. A series of straight and curved in plane bore-
holes were drilled under precise kinematic control while the force and moment
were continuously recorded just above the drill bit.

The analytical formulation of the bitmetric coefficients stems from interac-
tions laws derived for a single blunt cutter, see Figure 1. The components (tan-
gential and normal) of the force acting on a cutter with a width w and contact
length ¢ read:

Fy=('ewd, F,={_cwd d < d. (1)

Fs = powl + ewd, F, = ocwl + (ewd d > d, (2)

where the intrinsic specific energy € and contact stress o are related to the rock
strength. It is well documented [1, 2| that the coefficents u, ¢ that characterize
the friction mobilized on the wear flat and cutting face, respectively, are both of
order O(0.1 ~ 1). Based on a few experimental evidences |2, 3|, the coefficients
¢, ¢7 are expected to be of order O(10 ~ 100).

The concepts applied to a single cutter can be extended to full drill bit of
radius ¢ and gauge height 28, see Figure 2. The components of the force and
moment acting on the bit can be derived explicitly for simple bit geometry as-
similated to a pseudo-cylinder with straight blades orthogonal to the bit axis of
revolution and longitudinal blunt blades located on the gauge of the bit. For the
particular case of interest here characterized by no bit tilt (¢» = 0) and with ¢
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Figure 2: Penetration variables applied on bit and resulting force and moments
acting on the bit.

passing through the bit geometric centre, they read [4, 5]:

It ola Ca O 0

F 0 0 3¢b 0 d

Fy p=—¢ 0 p—c| 0 (0 —1a? ds (3)
My 0 0 0 %aQb — 373 ©3

Ms 0 0 0 G+ §b?

2 Experimental Setup
A device dubbed Ibis was designed in order to drill under kinematic control

straight and curved boreholes. The axial, vy, lateral, vo, rotational 2, and angular
¢ velocities of the bit (with respect to the rock sample) are imposed via servo
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motors, while the three components of the force and moment acting on the bit
are measured. The machine (Figure 3) consists of a metallic welded frame with
two vertical ball rails along which travels (v1) a plate hosting a brace, which itself
hosts a rotating module that carries the motor (€2), drilling shaft and the drill
bit. The angular rotation ¢ of the module is controlled by an actuator. The rock
sample sits at the base of the machine on a plate whose lateral motion (vg) is
also controlled by an actuator. It is critical to ensure that the cutting process
mobilized at the bit rock interface is similar to the process mobilized on a real
bit. Practically, it means penetration variables of the order of O (0.1 mm) for
d1, O (107*— 1073 mm) for dg, and O (1075 —10~* rad) for ¢. Also, geometrical
aspect ratios of the bit (2 of order O(1)) but also of the bit radius with the
borehole radius of curvature R (% of order 0(10? — 10%)) were kept similar to
field conditions.

Detailed attention was given in the design, machining and setup of the equip-
ment to ensure precise angular adjustement between axes; in particular precise
alignment between the bit axis of revolution and its axis of rotation (within 10~%
rad) and ability to finely adjust the vertical axis of travelling with the bit axis
(again within 10~% rad). This precision is critical as the bit tilt (angle between
the bit axis and the borehole tangent) is expected to be of the order O(1073-
1072) in field conditions. The drill bit is made of 4 blades evenly spaced with a
radius ¢ = 27 mm, and gage height 20 = 48 mm and thickness ¢ = 5 mm. And,
the selected rock material is Tuffeau, a fine grain homogeneous limestone with
the following mechanical properties estimated from single cutter scratch tests:
e =10 MPa 0 =9 MPa, ( = 0.54 and p = 0.68.

3 Preliminary results

First a series of lateral drilling tests were conducted. From a straight vertical
prehole, the bit was moved laterally with respect to the rock (d; = 0; ¢ = 0;
do > 0). The evolution of the mean side force component Fs with respect to the
imposed lateral displacement dy is shown in Figure 4. The results suggest that
the force increases non-linearly with the depth of cut. If we simply calculate ¢’
as ' = 1)251:;22 , we obtain a ¢’ varying between about 800 and 200. Results of the
experiments suggest also that ¢ ~ 0.7¢’. These results are in accordance with
results obtained on full bit [6].

Second a curved borehole with a radius of curvature R equal to 5 m was
drilled. The following drilling parameters were imposed d; = 0.1 mm, do = 0,pp =
2.107%rad, and Q = 27 rad/s. Some results are displayed in Figure 5. The side
force component Fo and moment Mss measured at the sensor and the moment
Ms estimated at the bit according to Ms = Mss — Foh where h is the axial
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Figure 3: 3D sketch of Ibis and zoom on the rotating module.

distance between the sensor reference point and the point of application of the
side force. It was assumed that the force is applied close to the bit centre. It
is possible that the measure side force is not found equal to zero because the
center of rotation is not passing exactly at the gauge mid-height. However, inter-
estingly, the moment estimated at the bit is found close to the model prediction
M3 = (éCa?’ + %C’b3)g03 ~ %C’b?’(pg = 0.37 N.m where ¢’ was taken equal to 800
based on the results shown in Figure 4, as the “local depth of cut” along the
gauge for a angular rotation o3 = 21075 ranges from 0 to 510~% mm.

4 Conclusions

We have presented results of preliminary drilling tests performed with a novel
machine, Ibis. Results of lateral drilling tests are in accordance with results
published in the literature on full scale bit. To our knowledge, the first curved
borehole in rock was drilled under control conditions in a laboratory. The results
are encouraging, and the order of magnitude of the force and moment recorded
during the test are in accordance with the model prediction. Few modifications
are being applied on the machine in order to increase its stiffness and limit the
deformation (in particular out of plane). Then, additional tests will be conducted
to explore the relation between the moment and the angular penetration, and
investigate the effect of the gauge height and width. Also tests are programmed
to estimate the effect of the axial penetration d; on the lateral force and moment,
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Figure 4: Evolution of the side force with the lateral penetration.
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Figure 5: Evolution of the side force with the lateral penetration.
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as well as the effect of the lateral penetration on the moment and axial force.
This study will require drilling curved borehole with a non zero tilt angle.
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