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ABSTRACT 
 

The geometry of the scroll compressor determines the efficiency of the scroll compressor and controls all elements 

of its operation.  It is therefore critical to be able to accurately model the volumes of the compressor over the course 

of a revolution.  This paper proposes a novel quasi-analytic formulation of the suction, compression and discharge 

chambers based on a change of variables from involute angle to polar integration angle.  This solution has been 

compared against a reference polygon solution, and for the suction chamber this solution agrees to within 0.02%.  

The solutions for the compression and discharge chamber volumes are analytic and incur a negligible penalty to 

overhead of a detailed compressor model.  In addition, the general nature of the solution presented allows for 

multiple compression chambers and more complex discharge geometry. 

 

1. INTRODUCTION 

 
Since the scroll compressor was proposed by Creux in 1905, the geometry of the scroll compressor has been the 

study of a number of researchers.  The modern analysis of the geometry of the scroll compressor begins with 

Yanagisawa (1990) who developed relationships for the geometry of the compressor chambers using an integration 

of the involute angle for a fixed set of initial angles, and a correction term for the suction chamber.  The discharge 

chamber was treated with a simplified arc clearance volume.  This same fundamental analysis method was applied 

by Halm (1997) and Chen (2002).   

 

The next major breakthrough in the scroll compressor geometry analysis came with Gravesen (2001), who proposed 

a novel reference frame for the analysis of the scroll compressor geometry, opening the door for the analysis of 

variable-wall-thickness scrolls.  Gravesen’s analysis is the cornerstone of the work of Blunier (2006) and Blunier 

(2009). 

 

Wang (2005) noted the limitation of fixed initial involute angles of the analysis of Halm and Chen, and developed a 

model which allowed for discretionary initial angles of involute, but still used the approximate correction term to the 

suction chamber volume from Yanagisawa.   

 

 
Figure 1 Involute Angle Definitions 
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2. COMPRESSOR GEOMETRY OVERVIEW 

 
The geometry of the scroll compressor is based on the involute of a circle.  Error! Reference source not found. 

shows the geometry of a set of involutes which form the fixed scroll.  A small overview of the involute geometry is 

given here; for more information refer to Yanagisawa (1990), Halm (1997), Chen (2002), Wang (2005), Blunier 

(2006), Blunier (2009), and Gravesen (2001). 

 

Each of the involutes forming the fixed scroll can be defined by  

 ( ) ( )( ) ( )( )( )0 0
, cos sin , sin cos

f f b b
x y r rφ φ φ φ φ φ φ φ= + − − −  (1) 

where φ ranges from φis to φie and φos to φoe for the inner and outer involutes respectively, and the initial angle φ0 is 

the initial angle of the respective involute (either inner or outer) .  The thickness of the scroll wrap can be defined by 

t=rb(φi0-φo0).  The fixed scroll is mated with an orbiting scroll with the same construction but reflected through the 

origin and offset by a constant-length vector of length ro=rb(π−φi0+φo0), which yields coordinates for the orbiting 

scroll of  

 ( ) ( ), cos , sino o f o m f o mx y x r y rθ θ= − + − +  (2) 

where the offset angle θm=φie –θ+π/2 is defined such that the suction chamber has zero volume at a crank angle θ of 

0.  The crank angle θ is defined to range between 0 and 2π which forms one revolution. 

 

3. SUCTION CHAMBERS 

 
The suction chamber defines how much mass will flow through the compressor, and as such is a critical component 

of the overall scroll compressor geometric analysis.  In addition, the rate of change of the suction chamber volume 

will impact the thermodynamics of the suction process and can have an impact on the volumetric efficiency.  

 

3.1 Suction Chamber Break Angle φφφφs-sa 
As flow enters into the suction pocket from the suction port it first passes through a so called suction area, 

sometimes described as a suction plenum.  The location of the angle which divides the suction chamber and the 

suction area is critical to a definition of the suction chamber volume.  In addition this is the point around which the 

volume integration for the suction chamber will be carried out, so its precise location is critical to an accurate 

estimation of the suction chamber volume.  This involute angle can be found by drawing a line from the base circle 

of the fixed scroll at a circle angle of φie to the inner ending involute point on the fixed scroll, as shown in Figure 2, 

and finding the intersection involute angle φs-sa.  Equating the slope of the tangent of the base circle to the slope of 

the line from the point on the base circle to the involute angle φs-sa yields 

 

 
0 0 0

0 0 0

Base Base Circle to 
Circle
Tangent

cos sin sin ( )cos ( )cos( )

sin cos cos ( )sin ( )sin( )

s sa

ie s sa ie s sa i i o ie

ie s sa ie s sa i i o ie

dy

dx

φ

φ φ φ φ φ φ π φ φ φ θ
φ φ φ φ φ φ π φ φ φ θ

−

− −

− −

− − − + − − − + −
= =

− − − − + − + −
����� �����������������������������

 (3) 

After simplification, the result is  

 0 0 0cos( ) ( ) sin( ) ( ) sin 1s sa e s sa o s sa e i oφ φ φ φ φ φ π φ φ θ− − −− + − − + − + = −  (4) 

which does not offer a straightforward method of solution.  From a consideration of the numerical solution, the 

following approximation for the suction chamber break angle was found: 

 
0

/
sino b

s sa e
e o

r r
φ θ φ π

φ φ π− = + −
− −

 (5) 

Figure 3 shows the error in the approximate compared with the numerical solution of Eqn. 4.  For the geometry 

investigated, the error in φs-sa is less than 0.01%, which motivates the further use of this high-accuracy 

approximation.  
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Figure 2 Scroll to obtain φs-sa 

 
Figure 3 Error in approximate solution for φs-sa 

 

3.2 Suction chamber Geometry 

The geometry of the suction pocket of the scroll compressor is complex.  In Yanagisawa’s formulation, the volume 

of the suction pocket is determined as the area integration based on the involute geometry, and a correction term is 

obtained which corrects for the intersection angle φs-sa described above.  While Wang’s solution is elegant and 

results in a compact form, shown in Eqn. 6 for reference, it is not analytically correct.  Yanagisawa did not provide 

any details on how the correction term was derived, nor on what approximations were required to obtain this form.  

Attempts to re-derive this term based on various assumptions like the small angle assumption for perturbations 

around the mean angle were fruitless. Figures 4 to 7 show the correction term in action.  The area in yellow is the 

area integration from the base circle which generates the fixed scroll involute to the fixed scroll, and the area in blue 

is the involute integration from the base circle which generates the orbiting scroll involute to the orbiting scroll.  The 

area of the correction term is equal to the area that is either solid blue or solid yellow and not contained in the 

suction chamber. 

 ( ) ( ) ( ) ( )2
0 02 2 1 cos 2 sin sin 2

2 4

s
s Wang b o e i o ie

h
V r r

π
θφ θ θ φ φ π θ φ π θ θ−

 
= − − + + + − − − − 

 
 (6) 

 

 

 

A novel method is used here to arrive at a semi-analytic form for the suction chamber volume.  The basis of this 

method is two polar integrations around the point on the inner scroll surface at the involute angle of φs-sa.  The 

primary challenge therefore is to arrive at a coordinate transformation from involute angle φ to polar integration 

angle α.  As a convenient consequence of the mathematics involved in the polar integration, a relatively simple 

integrand is obtained.  

 
Figure 4 θ = 0 (0°) 

 
Figure 5 θ = π/2 (90°) 

 
Figure 6 θ = π  (180°) 

 
Figure 7 θ = 3π/2 (270°) 
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The Cartesian coordinates of the point on the orbiting scroll with involute angle φs-sa for a given crank angle θ are 

given by 

 
( )( ) ( )
( )( ) ( )

0

0

cos sin cos / 2

sin cos sin / 2

s sa b s sa s sa o s sa o ie

b s sa s sa o s sas sa o ie

x r r

y r r

φ φ φ φ φ π θ

φ φ φ φ φ π θ

− − − −

− − −−

= − + − + − −

= − − − + − −
 (7) 

and the coordinates of a point on the fixed and orbiting scrolls at an involute angle φ are given by  

 

( )( ) ( )
( )( ) ( )

( )( )
( )( )

0

0

0

0

cos sin cos / 2

sin cos sin / 2

cos sin

sin cos

orb b o o ie

b o o ie

fix b o

b

o

o

rb

fix

x r r

y r r

x r

y r

φ φ φ φ φ π θ

φ φ φ φ φ π θ

φ φ φ φ

φ φ φ φ

= − + − + − −

= − − − + − −

= + −

= − −

 (8) 

For the fixed scroll’s inner surface, which forms the outer part of the scroll chamber, the integration is taken around 

the point (xs-sa, ys-sa), where the integration angle α is defined by 

 0

0

sin ( )cos
tan

cos ( )sin

s sa

s

b b

b sb a

r r yy

x r r x

φ φ φ φ
α

φ φ φ φ
−

−

− − −∆
= =
∆ + − −

 (9) 

This point is selected because the polar area integral around this point results in an integration without any double 

intersection of the integration ray and the involutes.  Taking the arctangent of both sides of Equation 9 and then the 

derivative with respect to φ yields 

 
2

2

( ) tan

R

xα α
φ φ
∂ ∆ ∂

=
∂ ∂

 (10) 

and the differential area is given by: 

 
2 22

2 0 0 0

2 2

( ) ( ) sin ( ) cos1 ( )

2 ( )

b b s sa b s sa

d

r r x r yx
dA R d

R x

α

φ φ φ φ φ φ φ φ
φ− −− − − + −∆

=
∆

���������������������������

 (11) 

and the limits of integration for the inner fixed scroll involute are φie to φie-θ.  A similar methodology is applied to 

the orbiting scroll for which limits of integration of φs-sa to φie-θ-π are used.  It should be noted that while the work 

of Blunier et al. (2006, 2009) derived analytic forms for the suction chamber volume, they have a different 

interpretation of the suction chamber volume, and they use the involute integration angles of φie-π to φie-θ-π for the 

orbiting scroll outer involute, which yields a different suction chamber volume evolution.  For that reason, the 

results of Blunier are not compared here.  The cross-sectional area of the suction chamber is then the area to the 

fixed scroll minus the area from the orbiting scroll.  Finally the volume of the chamber can be found by multiplying 

by the scroll height.  The result of a significant amount of algebra and trigonometric identity manipulations is the 

analytic form of the volume of the scroll chamber, given by 

 

2
0 0 0

2 3
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0

0
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( )
3
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2
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o e i o b e o
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b e o
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e i b b e o os

b b e o o

o e o

o o

r r B

r
r B B

h r
r B r B B rV

r B r B B r

r B B

r B r

θ π φ φ φ θ φ π φ

φ π φ

φ φ φ π φ θ
φ π φ θ
θ φ π φ

θ

 − − + + + − − −
 
 − − − − 
 

− + − + − −= ⋅  
 + − − + − −


− + − + −
 − + + 






 (12) 

where the term B is defined for compactness as  

 
0

/o b

e o

r r
B

φ φ π
=

− −
 (13) 

 

Finally the derivative of the suction chamber volume is given by  
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2

0 0

0

1
( 2 2 ) cos

3

cos
( ) [ cos ] sin

2

/sin
cos cos( )

(sin( ) cos( ))

o e i o o

s s b o
e i o

o b
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r r C B
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A B C r
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r rA B
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C C

r B A B

π φ φ φ θ θ

θ
φ φ θ

θ

θ θ

θ θ

 
  
 − − + + + − + +    
 

  = ⋅ − − +  
  

  
+ − +  

  
 + + − + 

 (14) 

 
( )0e oC

A C B

φ π φ= − −

= +
 (15) 

 

 

4. COMPRESSION CHAMBERS 

 

Error! Reference source not found.Table 1 presents a comparison of the results from the analysis of Wang et al. 

(2005) and the current model with solutions based on area calculations of high accuracy polygons.  This shows that 

the errors from the simplified Wang model are particularly significant at crank angles of π/2 and 3π/2, due to the 

error in the suction chamber correction term.  The scroll compressor geometry of Bell et al. (2008) was used to 

generate the volumes. 

 

Table 1 Suction chamber volumes evaluated from solutions of Wang and Bell 

θ Vs (Polygon) Vs (Wang) Error  Vs (Wang) Vs (Bell) Error  Vs (Bell) 

 cm
3
 cm

3
 % cm

3
 % 

π/2 6.627928 7.4307 12.11196 6.628928 0.015092 

π 31.36861 31.36866 0.000157 31.36966 0.003345 

3π/2 52.80177 51.99218 -1.53327 52.80297 0.00227 

2π 52.44686 52.4472 0.000659 52.4482 0.002566 

 

When the suction chamber volume expressions of Wang are implemented in a mechanistic scroll compressor model 

validated with high-accuracy polygon-based suction chamber volumes, the error in mass flow rate is up to 1 percent.  

Depending on the accuracy required, the simple expressions from Wang et al. (2005) may be sufficient.  However, 

 
Figure 8 Volume of suction chamber 

 
Figure 9 Differential of suction chamber volume 
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when implemented into a full mechanistic model, the additional overhead from the solution presented here 

compared with the solution of Wang et al. (2005) is negligible. 

 

The compression chambers have relatively simple geometry for which straight-forward analytic solutions are found.  

As an extension of Wang et al. (2005), the volume of the k-th compression chamber can be expressed as 

 

 

( ), 0 0

,

2 4 2

2

c k s b o ie i o

c k
s b o

V h r r k

dV
h r r

d

θ π φ π φ φ

θ

= − + − − + +

= −
 (16) 

 

where the k=1 compression chamber is the outer-most chamber connected to the suction chamber.  Thus this 

analysis allows for multiple compression chambers, which overcomes a limitation of the analysis of Wang et al. 

(2005) and others based on the same method. 

 

5. DISCHARGE CHAMBERS 
 

As shown previously in section 2Error! Reference source not found., the involute portion of the scroll wraps 

terminates at the starting angle for both the inner and outer involutes.  A set of curves are necessary to close the 

involute curves and obtain a scroll wrap which can be manufactured and has sufficient mechanical strength.  Three 

potential solutions to the discharge geometry are the single arc, double arc and perfect meshing profile shown in 

Figure 10, Figure 11, and Figure 12 respectively, though other solutions are possible.  The perfect meshing profile 

solution is commonly used in current scroll compressors.  The single arc is not mechanically robust but simple to 

treat analytically.  The two discharge arc solution can also be used, but is not very commonly applied.  For that 

reason the analysis below focuses on the perfect-meshing-profile discharge geometry.  The case of one discharge arc 

is a subset of the perfect-meshing-profile case.  Analytic solutions for the perfect meshing profile (PMP) are found 

in Lee and Wu (1995).  Alternatively, the PMP curves can be obtained from a graphical scan of the scroll, as was 

done here in order to obtain the parameters which define the arcs and line in the discharge region.  The PMP is 

formed by three curves composed of two arcs and a single line. 

 

 
Figure 10 One Discharge Arc 

 
Figure 11 Two Discharge Arcs 

 
Figure 12 Perfect Meshing Profile 

 

In order to calculate the volume of the discharge chamber, the discharge chamber is partitioned into a number of 

geometric regions, each of which has an analytic solution, and the total area is a combination of each of the regions.  

Figure 13 shows half of the discharge chamber with a perfect meshing profile.  The total discharge chamber volume 

is twice that of the area shown.  The critical point around which the integrals are carried out is the point labeled D, 

which has the coordinates: 

 

 ( ) ( )( ) ( )( )( )0 0, cos sin , sin cosD D b os os os b os os osx y r rφ φ φ φ φ φ φ φ= + − − −  (17) 

 

The areas ABD and DED are composed of an arc and lines.  The polar integral can be taken around point D, 

sweeping out the entire region with one integral by the same method as for the suction chambers presented in section 

2. 
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Figure 13 Discharge chamber geometry with perfect meshing profile 

5.1 Area terms 

In the analysis which follows for the discharge region, three different types of areas calculations are needed − the 

area of a triangle as well as the integral of an arc segment around a fixed point.  In addition, the derivatives of the 

areas with respect to the crank angle are required.  Table 2 shows the required equations.  For the triangles, the line 

which forms the triangle is parameterized, and the same change of coordinates is applied in order to calculate the 

area. 

 

Table 2 Equations for Discharge Geometry 

Orbiting arc (ABD) 

 

[ ]

[ ]

2

1

2

1

sin ( cos ) cos ( sin )
2

sin sin cos cos
2

ta

ABD a os a o m os a o m t

to aABD

m m t

r
A r t t x x r t y y r

r rdA
t t

d

θ θ

θ θ
θ

= + + − − + −

−
= +

 
(18) 

 

Fixed arc (DED) 

[ ] 2

1

sin ( ) cos (

0

)
2

ta

DED a a os a os t

DED

r
A r t t x x t y y

dA

dθ

= + − − −

=
 (19) 

Triangle (CDE) 

 

2 1

1
(

0

)( )
2

CDE os os

CDE

A mx b y t t

dA

dθ

= − − + −

=
 (20) 

Triangle (BCD) 

 

( ) ( )
( ) ( )

( ) ( )

( )( ) ( )( )

( ) ( )

, ,

, ,

, cos , sin

1

2

1
sin cos

2

D D os os

C C

B B o m o m

BCD B D C D C D B D

BCD

o m C D o m C D

x y x y

x y t mt b

x y t r mt b r

A x x y y x x y y

dA
r y y r x x

d

θ θ

θ θ
θ

=

= +

= − + − − +

 = − − − − − − 

 = − − + − 

 
(21) 

 

 

The volume of the discharge chamber and its derivative with respect to the crank angle can be obtained through the 

appropriate combination of the segment areas, multiplied by the scroll height.  The terms are doubled since the areas 

calculated above compose only one half of the discharge chamber cross-section. 
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( )2

2

dd s ABD BCD DED CDE

dd BCD CDEABD DED

s

V h A A A A

dV dA dAdA dA
h

d d d d dθ θ θ θ θ

= + − −

 
= + − − 

 

 (22) 

 

CONCLUSIONS 

 
Novel approaches were presented for the calculation of the chamber volumes of the scroll compressor that can be 

applied to the suction, compression, and discharge chambers.  The solution yields excellent agreement with high-

accuracy polygon solutions and overcomes several limitations of earlier approaches, including improved solutions 

for the suction chamber geometry, the novel ability to handle multiple compression chambers, and calculations of 

analytic solutions to the perfect-meshing-profile discharge geometry. 

 

NOMENCLATURE 

 
 Variable  Definition (Units) 

 A Area (m
2
) 

 α Polar Integration Angle (rad) 

 b Intercept of line (m) 

 φ Involute Angle (rad) 

 hs Height of Scroll (m) 

 k Compress. Chamber Index (-) 

 m Slope of line (-) 

 r Radius (m) 

 t Parametric Parameter (-) 

 θm Offset Angle (rad) 

 θ Shaft Crank Angle (rad) 

 x x Cartesian Coordinate (m) 

 y y Cartesian Coordinate (m) 

 V Volume (m
3
) 

   Subscript  Description 

 a Arc 

 b Base circle 

 c Compression 

 dd Discharge Region 

 f Fixed Scroll 

 i0 Inner Initial 

 is Inner Starting 

 ie Inner Ending 

 o0 Outer Initial 

 os Outer Starting 

 oe Outer Ending 

 o Orbiting 

 s Suction 

 0 Initial 
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