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Abstract—The cross sections for nuclide production in thin 93Nb and natNi targets irradiated by 0.04-
to 2.6-GeV protons have been measured by direct γ spectrometry using two γ spectrometers with the
resolutions of 1.8 and 1.7 keV in the 60Co 1332-keV γ line. As a result, 1112 yields of radioactive
residual nuclei have been obtained. The 27Al(p, x)22Na reaction has been used as a monitor reaction. The
experimental data have been compared with the MCNPX (BERTINI, ISABEL), CEM03.02, INCL4.2,
INCL4.5, PHITS, and CASCADE07 calculations.
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INTRODUCTION

The aims of this work are to experimentally deter-
mine and simulate the independent and cumulative
yields of radioactive residual nuclei that are produced
in structural materials (93Nb, natNi), used in elec-
tronuclear facilities and spallation neutron sources
based on a high-current proton accelerator. Interest
in these materials is stimulated by the possibility of
their use both in accelerator (superconducting mag-
nets) and in reactor (capability to increase the high-
temperature strength and heat resistance of steels)
technologies.
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Alloys based on Zr with addition of Nb (N-1.1 and
N-2.5 alloys containing 1 and 2.5% Nb) are widely
used in the nuclear industry as structural elements of
nuclear reactor cores [1].

Traditional type-II superconductors (Nb–Ti and
Nb3Sn alloys) are used in superconducting magnetic
systems as composites in the matrix of normal metals
to increase their heat and electrical conductivities.
Stainless steels and alloys based on Ni and Cr are
used as shells of absorbing elements, spring elements
of fuel assemblies, and sometimes for spacing lattices
of fuel assemblies.

It is expected that the application of these mate-
rials in future electronuclear facilities and spallation
neutron sources will be quite wide.

At present, EXFOR contains 23 original works
with the data on Nb and 84 works with the data on Ni,
in which cumulative and independent cross sections
for nuclide production in proton-induced reactions
samples are presented [2].

IRRADIATION AND MEASUREMENTS

Thin 93Nb and natNi samples in assembly with Al
monitors were irradiated by an extracted proton beam
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Table 1. Characteristics of the natNi and 93Nb samples and conditions of their irradiation

natNi 93Nb

Proton
energy,
MeV

Sample
mass, mg

Monitor
mass, mg

Irradiation
time, min

Average proton
flux, p/(cm2 s)

× 10−10

Proton
energy,
MeV

Sample
mass, mg

Monitor
mass, mg

Irradiation
time, min

Average proton
flux, p/(cm2 s)

× 10−10

2605 ± 8 205.9 58.9 27 6.45 ± 0.56 2605 ± 8 189.2 59.2 27.42 6.96 ± 0.61

1598 ± 4 205.4 59.3 29.25 5.30 ± 0.44 1599 ± 4 189.5 59.0 31.37 6.00 ± 0.50

1199 ± 3 205.4 59.0 55 3.39 ± 0.27 1199 ± 3 190.1 59.0 55 3.66 ± 0.29

799 ± 2 205.4 58.9 30 3.06 ± 0.26 799 ± 2 189.3 59.0 30 3.09 ± 0.27

599 ± 2 206.7 58.8 24 7.19 ± 0.68 600 ± 2 189.5 58.4 24 8.17 ± 0.75

399 ± 2 206.8 58.2 22 4.01 ± 0.38 400 ± 2 189.9 58.3 22 4.26 ± 0.40

249 ± 1 206.5 49.1 22 7.10 ± 0.55 249 ± 1 189 49.0 22 7.58 ± 0.57

148 ± 1 206.6 24.7 24 5.31 ± 0.45 149 ± 1 190.9 48.0 24 5.67 ± 0.45

97 ± 1 203.5 48.5 33.5 4.36 ± 0.32 99 ± 1 189.7 49.7 33.5 4.67 ± 0.35

66 ± 1 205.6 49.8 67.5 1.85 ± 0.14 68 ± 1 186.9 48.3 67.5 1.97 ± 0.15

43 ± 1 205.7 48.0 25 4.43 ± 0.32 46 ± 1 189.4 48.3 25 4.86 ± 0.34

of the ITEP U-10 synchrotron [3, 4]. The samples
were manufactured by cutting from a metallic foil.
The total levels of chemical impurities in Ni, Nb, and
Al samples were no more than 0.013, 0.026, and
0.05%, respectively.

The proton fluence is determined using the
27Al(p, x)22Na monitor reaction whose excitation
function is well known [3]. The characteristics of

the natNi and 93Nb samples and the conditions of
irradiation are presented in Table 1.

After each irradiation, the samples and monitors
were delivered to a laboratory, were repacked in a
glove box, and were transferred to a room where the
γ spectra of the samples and monitors were measured
by preliminarily calibrated HPGe detectors [3].
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Table 2. Experimental cross sections for radioactive-nuclide production in the natNi(p, x) reactions induced by 0.04- to
2.6-GeV protons

Nuclide Type T1/2

Production cross section, mb
Ep = 43 66 97 148 249 399 599 799 1199 1599 2605

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV
61Cu i 3.333 h 1.92 0.91 0.486 0.338 0.251 – – – – – –

(0.24) (0.15) (0.082) (0.060) (0.047)
60Cu i 23.7 min 5.25 2.24 1.45 0.814 0.474 0.340 0.309 0.252 0.296 0.211 0.197

(0.42) (0.19) (0.13) (0.079) (0.042) (0.036) (0.041) (0.031) (0.032) (0.025) (0.033)
57Ni c 35.60 h 91.4 72.0 57.8 47.3 32.3 32.1 29.9 25.0 26.5 21.2 19.0

(9.4) (8.5) (5.8) (5.3) (3.2) (3.9) (3.4) (2.7) (2.6) (2.4) (2.3)
56Ni c 6.075 day 11.70 7.21 5.98 4.62 3.16 2.85 2.57 2.14 2.10 1.64 1.44

(1.00) (0.60) (0.51) (0.42) (0.27) (0.29) (0.26) (0.19) (0.18) (0.15) (0.14)
62mCo i(m) 13.91 min – – – – – – – 0.092 0.106 0.079 0.079

(0.015) (0.023) (0.019) (0.027)
60Co i(m + g) 5.2714 yr 1.90 1.64 1.67 1.68 2.03 1.93 2.03 1.73 1.92 1.79 1.46

(0.20) (0.21) (0.20) (0.18) (0.23) (0.34) (0.26) (0.19) (0.22) (0.17) (0.14)
58Co i(m + g) 70.86 day 69.6 32.9 25.9 21.1 15.9 17.1 18.1 16.9 18.4 13.6 11.1

(6.4) (2.8) (2.5) (2.0) (1.5) (1.7) (1.9) (1.5) (1.7) (1.3) (1.2)
57Co i 271.74 day 89.7 58.0 65.1 43.5 38.6 37.9 46.0 43.2 50.7 34.8 35

(9.1) (6.3) (6.4) (4.2) (3.8) (4.3) (4.8) (4.4) (4.9) (8.9) (11)
57Co c 271.74 day 213 172 132 100.9 72.8 75.5 78.5 71.3 74.9 56.8 50.3

(17) (14) (11) (9.0) (6.1) (7.6) (7.8) (6.4) (6.4) (5.1) (4.6)
56Co i 77.233 day 208 93.9 76.9 57.8 40.8 38.8 37.5 32.3 32.0 25.7 21.9

(17) (7.9) (6.9) (5.3) (3.5) (3.9) (3.8) (2.9) (3.5) (2.4) (2.2)
56Co c 77.233 day 223 105.0 82.9 62.8 43.5 41.5 39.3 33.1 33.3 27.5 24.2

(18) (8.0) (7.0) (5.7) (3.6) (4.2) (3.9) (3.0) (2.8) (2.5) (2.2)
55Co c 17.53 h 11.80 34.3 26.9 20.5 15.3 13.9 13.4 10.4 10.41 8.59 7.47

(1.00) (2.9) (2.4) (1.9) (1.3) (1.4) (1.5) (1.0) (0.90) (0.79) (0.71)
59Fe c 44.472 day 0.082 0.155 0.183 0.210 0.267 0.309 0.374 0.342 0.372 0.298 0.252

(0.048) (0.037) (0.020) (0.033) (0.038) (0.047) (0.050) (0.038) (0.034) (0.030) (0.026)
53Fe c∗ 8.51 min 17.1 8.24 12.8 10.8 9.2 10.1 9.6 8.06 7.75 5.35 3.44

(1.8) (0.96) (1.4) (1.4) (1.0) (1.3) (1.3) (0.98) (0.98) (0.66) (0.42)
52Fe c 8.275 h 0.020 2.75 2.13 2.16 1.90 1.96 2.01 1.50 1.46 1.17 0.86

(0.004) (0.24) (0.19) (0.21) (0.17) (0.20) (0.27) (0.14) (0.13) (0.21) (0.11)
56Mn c 2.5789 h 0.025 0.249 0.570 0.615 0.606 0.776 0.924 0.856 0.901 0.748 0.601

(0.006) (0.023) (0.051) (0.059) (0.053) (0.080) (0.095) (0.080) (0.080) (0.070) (0.058)
54Mn i 312.11 day – 22.3 23.6 21.2 17.1 18.7 18.8 16.1 15.8 12.4 10.39

(1.8) (2.0) (1.9) (1.4) (1.9) (1.9) (1.4) (1.3) (1.1) (0.90)
52mMn i(m) 21.1 min 0.321 11.16 10.0 10.4 9.47 10.4 10.0 8.80 7.94 6.68 5.19

(0.028) (0.93) (1.4) (1.3) (0.86) (1.1) (1.0) (0.91) (0.83) (0.62) (0.54)
52mMn c 21.1 min 0.347 14.0 12.5 12.8 11.3 12.3 12.3 10.27 9.60 8.08 6.31

(0.030) (1.3) (1.4) (1.5) (1.0) (1.3) (1.3 (1.00) (0.95) (0.74) (0.64)
52Mn c 5.591 day 0.631 20.9 18.2 19.5 16.8 18.4 18.2 15.3 14.6 11.3 9.11

(0.051) (1.7) (1.6) (1.8) (1.4) (1.9) (1.8) (1.4) (1.3) (1.0) (0.86)
51Cr c 27.7025 day 0.985 – 31.5 38.0 36.7 44.2 45.8 38.7 36.4 26.8 21.7

(0.097) (2.7) (3.5) (3.1) (4.4) (4.5) (3.5) (3.1) (2.4) (2.0)
49Cr c 42.3 min 0.018 2.99 3.68 7.15 8.08 10.8 11.9 10.50 9.72 7.09 5.38

(0.013) (0.29) (0.34) (0.74) (0.75) (1.2) (1.3) (1.00) (0.92) (0.91) (0.73)
48Cr c 21.56 h – 0.036 0.483 0.898 1.19 1.75 2.08 1.81 1.80 1.32 1.070

(0.004) (0.042) (0.083) (0.10) (0.18) (0.21) (0.17) (0.16) (0.12) (0.100)
48V c 15.9735 day – 0.592 4.69 10.7 14.7 22.3 26.4 23.5 22.5 18.0 14.3

(0.048) (0.40) (1.0) (1.2) (2.2) (2.6) (2.1) (1.9) (1.6) (1.3)
48Sc i 43.67 h – – – – 0.055 0.114 0.221 0.183 0.281 0.241 0.238

(0.007) (0.015) (0.024) (0.045) (0.043) (0.025) (0.037)
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Table 2. (Contd.)

Nuclide Type T1/2

Production cross section, mb

Ep = 43 66 97 148 249 399 599 799 1199 1599 2605

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV
47Sc c 3.3492 day – – – – 0.524 1.01 1.53 1.56 1.76 1.23 1.020

(0.045) (0.10) (0.15) (0.14) (0.15) (0.11) (0.090)
46Sc i(m + g) 83.79 day – – 0.091 0.771 1.82 3.99 5.74 5.82 6.10 4.95 4.00

(0.011) (0.092) (0.15) (0.40) (0.58) (0.54) (0.53) (0.46) (0.38)
44mSc i(m) 58.61 h – – 0.219 0.868 2.25 5.28 8.33 8.56 9.43 7.08 5.65

(0.019) (0.079) (0.19) (0.53) (0.83) (0.77) (0.81) (0.63) (0.52)
44Sc i 3.97 h – – 0.295 1.040 2.49 5.54 8.65 8.73 9.23 8.01 6.5

(0.042) (0.100) (0.21) (0.56) (0.90) (0.80) (0.83) (0.81) (1.0)
44Sc i(m + g) 3.97 h – – 0.539 1.90 4.69 10.7 16.9 17.1 18.4 15.3 12.5

(0.058) (0.19) (0.39) (1.1) (1.7) (1.5) (1.6) (1.4) (1.1)
43Sc c 3.891 h – – – 0.581 1.64 4.00 6.70 7.09 7.61 5.87 4.66

(0.058) (0.15) (0.42) (0.70) (0.68) (0.69) (0.56) (0.45)
47Ca c 4.536 day – – – – 0.015 – – – – 0.023 0.021

(0.004) (0.005) (0.005)
43K c 22.3 h – – – – 0.059 0.230 0.491 0.563 0.755 0.651 0.541

(0.005) (0.024) (0.049) (0.051) (0.064) (0.058) (0.050)
42K i 12.360 h – – – – 0.299 1.05 2.14 2.47 3.10 2.78 2.40

(0.031) (0.11) (0.21) (0.22) (0.27) (0.25) (0.23)
38K i 7.636 min – – – – 0.071 0.359 0.771 1.05 1.39 1.24 0.85

(0.020) (0.056) (0.095) (0.12) (0.16) (0.14) (0.10)
41Ar c 109.34 min – – – – – 0.094 0.219 0.311 0.433 0.411 0.324

(0.011) (0.023) (0.029) (0.039) (0.037) (0.030)
39Cl c 55.6 min – – – – – – 0.129 0.192 0.277 0.281 0.234

(0.020) (0.027) (0.026) (0.028) (0.024)
38Cl i(m + g) 37.24 min – – – – – – – – – 1.25 0.972

(0.12) (0.099)
38Cl c 37.24 min – – – – 0.026 0.214 0.572 0.812 1.18 1.29 1.050

(0.014) (0.025) (0.059) (0.074) (0.10) (0.12) (0.100)
34mCl i(m) 32.00 min – – – – 0.032 0.214 0.545 0.804 1.27 1.15 1.06

(0.009) (0.035) (0.056) (0.074) (0.11) (0.14) (0.13)
38S c 170.3 min – – – – – – – – – 0.021 0.034

(0.009) (0.007)
29Al c 6.56 min – – – – – – – 0.654 1.35 1.57 1.37

(0.075) (0.16) (0.17) (0.14)
28Mg c 20.915 h – – – – – – 0.043 0.065 0.163 0.190 0.232

(0.016) (0.007) (0.015) (0.017) (0.022)
27Mg c 9.458 min – – – – – – 0.164 0.337 0.696 0.899 0.884

(0.025) (0.036) (0.067) (0.086) (0.085)
24Na c 14.9590 h – – – – – – – 1.020 2.14 2.61 3.08

(0.090) (0.18) (0.23) (0.28)
22Na c 2.6019 yr – – – – – – 0.462 0.86 1.74 2.31 2.86

(0.086) (0.10) (0.15) (0.21) (0.26)
7Be i 53.29 day – – – – 0.71 1.54 2.89 3.96 6.94 7.60 9.25

(0.11) (0.20) (0.32) (0.38) (0.59) (0.68) (0.86)
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Table 3. Experimental cross sections for radioactive-nuclide production in the 93Nb(p, x) reactions induced by 0.04- to
2.6-GeV protons

Nuclide Type T1/2

Production cross section, mb
Ep = 46 68 99 149 249 400 600 799 1199 1599 2605

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV
93mMo i(m) 6.85 h 1.37 0.845 0.651 0.392 0.270 0.222 0.236 0.228 0.209 0.216 0.196

(0.13) (0.095) (0.069) (0.043) (0.049) (0.066) (0.059) (0.073) (0.033) (0.028) (0.030)
91Mo i(m + g) 15.49 min 94 – – – – – – – – – –

(22)
90Mo i 5.56 h 61.3 25.7 12.1 6.07 3.30 2.10 1.36 0.94 0.808 0.663 0.555

(5.3) (2.4) (1.3) (0.60) (0.32) (0.24) (0.36) (0.10) (0.099) (0.095) (0.076)
92mNb i(m) 10.15 day 54.8 44.0 33.9 25.0 18.9 19.9 20.3 18.6 19.8 19.1 17.8

(4.4) (4.1) (2.9) (2.1) (1.5) (2.0) (2.0) (1.7) (1.7) (1.7) (1.7)
91mNb c 60.86 day 34.9 22.0 17.6 11.6 7.63 8.0 7.5 5.3 5.1 5.5 5.44

(3.2) (2.0) (1.7) (1.2) (0.83) (1.3) (1.1) (1.1) (1.2) (1.3) (0.66)
90Nb i(m + g) 14.60 h 302 179 108 71.4 44.1 36.7 30.9 24.4 21.8 20.2 18.3

(25) (17) (11) (6.4) (4.5) (3.7) (3.7) (2.4) (2.1) (1.9) (1.8)
90Nb c 14.60 h 364 200 123 79.2 48.9 39.8 33.2 26.7 24.5 22.5 20.0

(29) (17) (11) (6.9) (4.3) (4.0) (3.4) (2.5) (2.2) (2.1) (1.9)
89mNb i(m) 66 min 0.39 18.0 9.27 6.41 4.41 3.78 3.09 1.88 2.38 1.94 1.47

(0.18) (1.7) (0.92) (0.66) (0.49) (0.49) (0.39) (0.37) (0.29) (0.22) (0.16)
89Nb c 2.03 h – 176 87 54.9 27.9 24.9 20.6 14.6 12.9 11.9 9.5

(21) (11) (6.7) (3.4) (3.4) (2.8) (2.0) (1.7) (1.6) (1.3)
88Nb c∗ 14.5 min – 4.13 21.0 12.4 7.52 5.52 4.28 3.29 2.76 2.27 2.07

(0.38) (2.0) (1.2) (0.71) (0.65) (0.45) (0.33) (0.29) (0.27) (0.20)
89Zr c 78.41 h 12.40 268 164 117.0 81.9 72.7 61.5 50.8 47.1 42.7 37.3

(1.00) (23) (14) (10.0) (6.8) (7.2) (6.0) (4.7) (4.1) (3.9) (3.5)
88Zr c 83.4 day 61.2 44.7 125 90.4 64.2 57.6 47.4 37.3 33.3 29.6 25.1

(4.8) (3.8) (11) (7.7) (5.2) (5.6) (4.6) (3.4) (2.9) (2.7) (2.3)
87Zr c 1.68 h 7.76 26.9 73.6 56.6 43.0 40.3 31.5 26.6 20.7 17.6 14.8

(0.77) (2.2) (6.3) (4.8) (3.5) (4.0) (3.0) (2.4) (1.8) (1.6) (1.4)
86Zr c 16.5 h 4.0 13.8 7.6 22.4 17.8 16.0 10.9 10.2 6.93 7.31 5.80

(1.0) (1.3) (1.4) (2.0) (1.5) (1.6) (1.4) (1.0) (0.71) (0.70) (0.55)
85Zr c 7.86 min – – 2.94 – 5.76 7.58 7.86 7.09 5.31 – –

(0.36) (0.56) (0.81) (0.82) (0.73) (0.73)
90mY i(m) 3.19 h – 0.553 0.635 0.865 0.90 1.43 1.81 1.73 1.86 1.66 1.45

(0.093) (0.071) (0.092) (0.11) (0.16) (0.20) (0.23) (0.17) (0.16) (0.15)
88Y i 106.65 day 13.4 7.77 18.1 17.5 16.0 18.2 17.8 15.7 15.4 14.1 12.1

(1.2) (0.70) (1.6) (1.5) (1.3) (1.9) (1.8) (1.5) (1.4) (1.3) (1.2)
88Y c 106.65 day 74.6 53.3 145 110.0 81.3 76.6 66.8 53.6 49.0 44.0 37.6

(6.2) (4.6) (13) (10.0) (6.9) (7.6) (6.7) (5.1) (4.5) (4.1) (3.6)
87mY i(m) 13.37 h 6.56 20.3 22.3 27.2 24.3 24.6 23.2 18.0 18.1 16.6 13.8

(0.70) (2.5) (3.4) (2.5) (2.5) (2.9) (2.4) (1.8) (1.7) (1.5) (1.4)
87mY c 13.37 h 14.3 46.7 94.7 83.6 66.9 64.7 54.6 44.5 38.6 34.1 28.5

(1.1) (4.0) (8.4) (7.2) (5.6) (6.4) (5.3) (4.1) (3.4) (3.1) (2.7)
87Y c 79.8 h 19.1 59.7 97.1 107.0 84.8 82.4 70.8 57.4 50.9 44.9 37.8

(1.5) (5.1) (8.4) (9.0) (6.9) (8.1) (6.9) (5.3) (4.4) (4.1) (3.5)
86mY i(m) 48 min – 17.3 17.0 23.6 19.0 21.9 19.6 – 13.8 11.8 10.02

(1.6) (1.6) (2.1) (1.9) (2.2) (2.0) (1.2) (1.1) (0.99)
86Y i(m + g) 14.74 h 22 32.7 30.4 41.0 36.0 39.5 34.4 27.7 25.0 18.2 17.6

(51) (3.0) (2.9) (3.7) (3.1) (4.0) (3.4) (2.6) (2.2) (2.0) (1.7)
86Y c 14.74 h 25 46.0 44.9 63.2 54.0 56.3 47.4 38.0 33.2 27.9 23.3

(27) (4.2) (4.0) (5.7) (4.6) (5.7) (4.7) (3.6) (2.9) (2.6) (2.2)
85mY c 4.86 h – 1.94 17.7 20.6 18.9 21.3 17.4 14.7 11.9 9.29 7.81

(0.39) (1.9) (2.0) (2.1) (2.3) (2.3) (1.9) (1.4) (0.96) (0.85)
85Y c 2.68 h – – 7.53 9.1 8.64 8.9 7.42 6.15 5.43 4.35 3.73

(0.68) (1.0) (0.83) (1.1) (0.95) (0.66) (0.55) (0.43) (0.39)

PHYSICS OF ATOMIC NUCLEI Vol. 74 No. 4 2011



542 TITARENKO et al.

Table 3. (Contd.)

Nuclide Type T1/2

Production cross section, mb
Ep = 46 68 99 149 249 400 600 799 1199 1599 2605

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV
84Y c 39.5 min – – 9.64 12.9 14.6 16.3 14.4 11.3 9.13 7.68 6.21

(0.85) (1.2) (1.3) (1.7) (1.5) (1.1) (0.83) (0.73) (0.62)
85mSr i(m) 67.63 min – – 1.19 1.51 1.46 1.84 2.08 1.82 1.61 1.46 1.22

(0.13) (0.28) (0.13) (0.20) (0.30) (0.20) (0.16) (0.15) (0.14)
85mSr c 67.63 min – 0.144 8.54 10.0 9.90 10.9 9.6 7.92 6.93 5.76 4.89

(0.087) (0.79) (1.0) (0.86) (1.2) (1.1) (0.80) (0.70) (0.61) (0.58)
85Sr c 64.84 day – – – – – – – 47.6 40.8 33.8 29.5

(4.9) (3.9) (3.4) (3.0)
83Sr c 32.41 h – 2.4 3.74 22.2 28.6 37.6 31.9 26.1 25.3 21.8 17.1

(2.4) (0.89) (3.6) (4.6) (6.8) (5.9) (4.9) (4.6) (4.0) (3.3)
82Sr c 25.55 day – – 2.30 10.10 15.7 21.9 21.7 17.8 14.9 12.5 9.77

(0.20) (0.90) (1.3) (2.2) (2.1) (1.6) (1.3) (1.1) (0.91)
81Sr c 22.3 min – – 0.44 2.27 4.18 7.23 7.47 6.75 4.94 3.83 3.29

(0.14) (0.30) (0.59) (0.87) (0.90) (0.83) (0.83) (0.55) (0.50)
80Sr c 106.3 min – – – – – – – 2.06 1.37 1.33 1.10

(0.78) (0.34) (0.30) (0.20)
86Rb i(m + g) 18.631 day – – – – 0.24 0.36 0.30 0.58 0.535 0.561 0.524

(0.12) (0.29) (0.37) (0.55) (0.087) (0.095) (0.071)
84mRb i(m) 20.26 min – – 0.71 1.63 2.05 3.07 3.34 3.15 2.95 2.42 1.98

(0.33) (0.16) (0.20) (0.33) (0.37) (0.31) (0.30) (0.24) (0.21)
84Rb i(m + g) 32.77 day – 0.554 1.060 2.38 3.38 4.98 5.56 5.00 4.75 4.22 3.51

(0.049) (0.100) (0.21) (0.30) (0.50) (0.58) (0.51) (0.45) (0.39) (0.34)
83Rb c 86.2 day – 2.45 7.16 31.5 41.8 54.9 54.0 44.7 39.1 33.4 26.1

(0.23) (0.71) (3.0) (3.8) (5.8) (5.6) (4.5) (3.7) (3.3) (2.7)
82mRb i(m) 6.472 h – – 3.39 7.51 11.4 17.6 18.8 16.2 14.1 12.3 9.82

(0.35) (0.66) (1.0) (1.8) (1.9) (1.5) (1.2) (1.1) (0.94)
81Rb c 4.576 h – 0.69 3.4 11.5 22.3 36.9 39.1 32.5 27.6 24.0 18.4

(0.18) (1.3) (1.3) (2.0) (3.7) (3.9) (3.3) (2.5) (2.3) (1.9)
79Rb c 22.9 min – – – 1.46 3.89 8.15 10.1 8.9 8.20 6.33 5.02

(0.18) (0.36) (0.86) (1.1) (1.0) (0.76) (0.74) (0.59)
79Kr c 35.04 h – – – 4.56 11.9 25.3 31.8 27.0 25.2 22.0 16.9

(0.96) (1.1) (2.6) (3.3) (2.7) (2.3) (2.1) (1.7)
77Kr c 74.4 min – – – 0.313 3.07 8.96 12.2 12.1 11.2 8.81 6.65

(0.047) (0.31) (0.91) (1.3) (1.1) (1.0) (0.79) (0.62)
76Kr c 14.8 h – – – 0.06 0.71 2.07 1.59 3.45 3.55 2.89 2.22

(0.61) (0.12) (0.31) (0.36) (0.48 (0.46) (0.31) (0.23)
82Br i(m + g) 35.30 h – – 0.70 0.43 0.42 0.60 0.8 0.48 0.35 0.35 0.14

(0.18) (0.22) (0.41) (0.19) (1.2) (0.55) (0.33) (0.11) (0.35)
77Br i(m + g) 57.036 h – – – – – – – 6.2 12.8 9.7 10.4

(8.6) (7.2) (4.6) (3.2)
77Br c 57.036 h – – – 0.610 6.52 18.1 26.8 25.9 23.8 20.5 15.7

(0.094) (0.55) (1.8) (2.7) (2.4) (2.2) (1.9) (1.5)
76Br i(m + g) 16.2 h – – – 0.5 3.17 10.9 17.0 17.1 16.3 13.8 10.50

(1.1) (0.38) (1.4) (2.0) (2.0) (1.6) (1.3) (1.00)
76Br c 16.2 h – – – 0.59 3.95 13.4 21.3 20.1 19.9 16.8 12.5

(0.43) (0.57) (1.8) (2.3) (2.1) (2.0) (1.7) (1.3)
75Br c 96.7 min – – – 0.59 1.9 8.1 11.4 13.8 12.8 10.7 8.0

(0.40) (1.1) (3.4) (2.9) (3.2) (2.8) (2.4) (1.8)
74mBr i(m) 46 min – – – – 1.48 2.11 3.62 3.74 3.72 3.51 2.18

(0.62) (0.92) (0.69) (0.67) (0.53) (0.53) (0.74)
74Br c 25.4 min – – – – – 2.40 1.4 4.7 4.9 3.1 2.0

(0.99) (1.1) (2.2) (2.6) (1.7) (1.9)
75Se c 119.779 day – – – 0.416 4.03 15.5 27.3 29.2 28.5 24.9 19.1

(0.045) (0.42) (1.7) (3.1) (3.3) (2.9) (2.6) (2.1)
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Table 3. (Contd.)

Nuclide Type T1/2

Production cross section, mb
Ep = 46 68 99 149 249 400 600 799 1199 1599 2605

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV
73mSe c 39.8 min – – – – – 3.7 7.4 6.8 5.4 6.06 4.53

(1.2) (1.5) (1.4) (1.7) (0.90) (0.81)
73Se i(m + g) 7.15 h – – – – – 2.39 5.37 7.35 9.3 7.12 5.52

(0.68) (0.89) (0.96) (1.2) (0.76) (0.65)
73Se c 7.15 h – – – – 0.989 5.10 10.7 12.3 13.2 11.5 8.85

(0.092) (0.51) (1.1) (1.2) (1.2) (1.1) (0.84)
72Se c 8.40 day – – – – 0.242 1.91 4.35 5.36 6.05 5.30 4.02

(0.023) (0.19) (0.42) (0.53) (0.54) (0.49) (0.38)
74As i 17.77 day – – – 0.048 0.427 2.11 4.1 4.60 5.10 4.71 3.66

(0.012) (0.041) (0.61) (1.0) (0.87) (0.92) (0.87) (0.64)
72As i 26.0 h – – – – 1.94 5.91 13.1 13.9 16.2 15.8 11.7

(0.18) (0.74) (1.5) (1.4) (1.6) (1.6) (1.3)
72As c 26.0 h – – – – 2.27 8.0 17.9 19.9 22.5 21.4 15.7

(0.45) (1.0) (2.0) (1.9) (2.2) (2.1) (1.7)
71As c 65.28 h – – – – 0.548 4.10 9.9 12.9 15.2 13.9 10.6

(0.089) (0.46) (1.1) (1.2) (1.4) (1.4) (1.1)
70As c∗ 52.6 min – – – – – 1.22 3.84 4.69 6.26 5.99 4.27

(0.22) (0.43) (0.51) (0.65) (0.63) (0.47)
69Ge c 39.05 h – – – – 0.141 2.22 6.70 9.0 11.9 11.1 9.3

(0.022) (0.36) (0.99) (1.3) (1.3) (1.4) (1.0)
67Ge c 18.9 min – – – – – – 0.85 1.47 1.93 2.07 1.66

(0.11) (0.17) (0.25) (0.25) (0.20)
67Ga c 3.2612 day – – – – 0.11 1.71 6.65 10.5 15.6 15.5 12.5

(0.11) (0.18) (0.67) (1.1) (1.4) (1.4) (1.2)
66Ga c∗ 9.49 h – – – – – 0.93 3.53 5.50 8.76 9.08 7.12

(0.24) (0.76) (0.64) (0.91) (0.85) (0.84)
65Ga c 15.2 min – – – – – – 0.74 1.62 2.49 2.58 2.28

(0.26) (0.43) (0.65) (0.52) (0.54)
65Zn c 244.26 day – – – – 0.100 1.23 5.36 9.45 15.6 16.3 13.7

(0.018) (0.13) (0.52) (0.88) (1.4) (1.5) (1.3)
62Zn c 9.186 h – – – – – – – – 0.30 0.83 0.71

(0.13) (0.22) (0.14)
67Cu c 61.83 h – – – – – – – – – – 0.30

(0.17)
61Cu c 3.333 h – – – – – 0.49 – 2.26 2.31 3.37 3.43

(0.42) (0.54) (0.57) (0.86) (0.56)
60Cu c 23.7 min – – – – – – – 0.43 0.77 0.86 0.69

(0.17) (0.14) (0.11) (0.14)
57Ni c 35.60 h – – – – – – – – 0.118 0.182 0.177

(0.015) (0.019) (0.020)
62mCo i(m) 13.91 min – – – – – – – – 0.31 0.198 0.262

(0.21) (0.086) (0.053)
60Co i(m + g) 5.2714 yr – – – – – – – 0.69 2.56 3.10 2.97

(0.20) (0.33) (0.40) (0.36)
58Co i(m + g) 70.86 day – – – – – 0.128 1.12 2.75 6.89 8.85 8.79

(0.014) (0.11) (0.25) (0.59) (0.80) (0.85)
57Co c 271.74 day – – – – – – 0.704 1.94 5.34 7.20 7.38

(0.086) (0.18) (0.54) (0.70) (0.71)
56Co c 77.233 day – – – – – – 0.21 0.55 1.47 2.07 2.20

(0.11) (0.12) (0.17) (0.21) (0.24)
55Co c 17.53 h – – – – – – – – – 0.284 0.55

(0.076) (0.37)
59Fe c 44.472 day – – – – – – 0.114 0.233 0.551 0.723 0.717

(0.020) (0.028) (0.054) (0.069) (0.082)
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Table 3. (Contd.)

Nuclide Type T1/2

Production cross section, mb
Ep = 46 68 99 149 249 400 600 799 1199 1599 2605

MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV MeV
53Fe c∗ 8.51 min – – – – – – – – – 0.21 0.47

(0.12) (0.21)
56Mn c 2.5789 h – – – – – – – 0.327 1.00 1.31 1.41

(0.059) (0.14) (0.19) (0.14)
54Mn i 312.11 day – – – – – – 0.41 1.23 3.96 5.96 6.91

(0.13) (0.17) (0.35) (0.54) (0.65)
52mMn c 21.1 min – – – – – – – 0.229 0.191 0.446 0.494

(0.096) (0.067) (0.076) (0.082)
52Mn c 5.591 day – – – – – – 0.114 0.356 1.29 2.07 2.61

(0.012) (0.100) (0.11) (0.19) (0.25)
51Cr c 27.7025 day – – – – – – – 0.88 3.48 5.91 7.42

(0.10) (0.31) (0.55) (0.70)
49Cr c 42.3 min – – – – – – – – – 0.472 0.761

(0.082) (0.084)
48Cr c 21.56 h – – – – – – – – – 0.066 0.085

(0.066) (0.013)
48V c 15.9735 day – – – – – – 0.090 0.309 1.28 2.28 3.36

(0.009) (0.050) (0.11) (0.21) (0.31)
48Sc i 43.67 h – – – – – – – 0.048 0.174 0.282 0.474

(0.025) (0.029) (0.034) (0.063)
47Sc i 3.3492 day – – – – – – – – 0.553 0.98 1.50

(0.049) (0.10) (0.14)
47Sc c 3.3492 day – – – – – – 0.058 0.167 0.567 1.010 1.57

(0.008) (0.018) (0.050) (0.100) (0.15)
46Sc i(m + g) 83.79 day – – – – – – 0.093 0.33 1.09 1.99 3.10

(0.011) (0.10) (0.12) (0.19) (0.31)
44mSc i(m) 58.61 h – – – – – – 0.147 0.27 0.72 1.26 2.10

(0.025) (0.12) (0.36) (0.13) (0.20)
44Sc i 3.97 h – – – – – – – – – 0.709 1.30

(0.072) (0.12)
44Sc i(m + g) 3.97 h – – – – – – – 0.118 0.362 1.89 3.31

(0.044) (0.039) (0.17) (0.31)
43Sc c 3.891 h – – – – – – – – 0.60 0.76 1.01

(0.13) (0.15) (0.13)
47Ca c 4.536 day – – – – – – – – 0.022 0.044 0.063

(0.008) (0.020) (0.008)
43K c 22.3 h – – – – – – – – 0.278 0.526 0.774

(0.032) (0.059) (0.078)
42K i 12.360 h – – – – – – – – – 0.97 1.66

(0.13) (0.17)
41Ar c 109.34 min – – – – – – – – – 0.294 0.488

(0.037) (0.059)
39Cl c 55.6 min – – – – – – – – – 0.215 0.286

(0.071) (0.047)
38Cl c 37.24 min – – – – – – – – 0.302 0.521 0.866

(0.073) (0.077) (0.098)
29Al c 6.56 min – – – – – – – – – 0.393 1.49

(0.079) (0.21)
28Mg c 20.915 h – – – – – – – – – 0.180 0.365

(0.065) (0.050)
27Mg c 9.458 min – – – – – – – – – 0.286 0.61

(0.100) (0.10)
24Na c 14.9590 h – – – – – – 0.144 0.179 0.560 0.992 2.07

(0.033) (0.027) (0.051) (0.092) (0.20)
22Na c 2.6019 yr – – – – – – – – 0.324 0.364 0.963

(0.050) (0.076) (0.097)
7Be i 53.29 day – – – – 0.430 0.84 1.41 2.13 4.06 5.73 8.31

(0.043) (0.16) (0.15) (0.22) (0.36) (0.53) (0.78)
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Table 4. Standard deviations 〈F 〉 for natNb and 93Ni

Model Sample
Proton energy, MeV

40 70 100 150 250 400 600 800 1200 1600 2600

BERTINI Ni 3.36 2.65 3.48 2.53 1.95 1.71 2.86 2.29 2.90 2.25 2.24

Nb 2.28 2.42 1.68 3.47 2.58 2.17 3.06 1.66 1.78 2.24 2.05

ISABEL Ni 5.45 3.64 4.14 2.70 2.21 2.19 3.62 4.15 2.90 2.25 2.24

Nb 3.00 2.78 1.80 3.62 2.76 2.64 4.65 3.77 1.78 2.24 2.05

CEM03.02 Ni 2.26 2.56 2.37 1.63 1.75 1.67 1.69 1.70 1.89 1.86 2.40

Nb 3.36 2.59 2.08 2.84 2.26 1.94 2.09 1.94 2.67 2.30 1.92

INCL4.2 Ni 2.01 2.08 1.97 2.52 3.44 4.11 2.28 3.41 3.01 3.48 2.92

Nb 2.94 2.02 2.12 3.99 3.27 3.26 3.31 4.90 4.63 4.40 3.19

INCL4.5 Ni 2.66 1.62 1.59 1.46 1.90 1.57 1.56 1.59 1.54 1.64 1.85

Nb 13.78 2.05 3.45 1.98 1.55 1.65 1.63 1.56 1.59 1.55 1.58

PHITS Ni 3.68 2.95 4.11 3.16 2.45 2.05 2.12 1.96 1.67 1.74 1.76

Nb 3.38 3.12 2.76 4.35 3.21 2.29 2.37 1.74 2.61 2.01 1.66

CASCADE07 Ni 5.19 3.45 3.47 3.20 2.75 2.77 2.65 2.60 4.37 4.13 3.83

Nb 9.97 4.73 4.33 3.37 2.65 2.61 2.87 2.37 2.73 3.69 3.01
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Fig. 1. Example of the γ spectrum of 93Nb no. 05 for Ep = 2.6 GeV 1.61 h after irradiation; the measurement duration was
900 s.
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Fig. 2. Example of the γ spectrum of natNi no. 05 for Ep = 2.6 GeV 1.47 h after irradiation; the measurement duration was
900 s.

 

150

100

0

N
u
m

b
er

 o
f 

ev
en

ts

25 50 75 100 0 25 50 75 100
Uncertainty, %

 

Mean value 11.23% Mean value 15.16%

 

50
50

100

150

200

Fig. 3. Distribution of the uncertainties in reaction rates and cross sections for 93Nb.

Examples of the measured γ spectra are shown in
Figs. 1 and 2. The procedure of their processing and
calculation of the cross sections is identical to that
described in [4].

RESULTS AND THEORETICAL
PREDICTIONS

The cross sections for radioactive-nuclide pro-
duction in the 93Nb(p, x)- and natNi(p, x) reactions
induced by 0.04–2.6-GeV protons are presented in

Tables 2 and 3. The numbers of the measured cross
sections σind(i) and σcum(c) for radioactive-nuclide

production in natNi and 93Nb irradiated by protons are
388 (i = 85, i(m + g) = 42, i(m) = 31, and c + c∗ =
230) and 724 (i = 58, i(m + g) = 85, i(m) = 106,
and c + c∗ = 475), respectively. Using these data, we

obtained 108 and 47 excitation functions for 93Nb and
natNi, respectively; among them, 24 and 9 excitation
functions, respectively, were measured for the first
time.

PHYSICS OF ATOMIC NUCLEI Vol. 74 No. 4 2011



MEASUREMENT AND SIMULATION OF THE CROSS SECTIONS ... IN 93Nb AND natNi 547
 

100

0

N
u
m

b
er

 o
f 

ev
en

ts

25 50 75 100 0 25 50 75 100
Uncertainty, %

 

Mean value 6.79% Mean value 11.36%

 

50

150

50

100

Fig. 4. As in Fig. 3, but for natNi.

 

10

 

2

 

10

 

3

 

Proton energy, MeV

15

10

5

0

0

40

20

C
ro

ss
 s

ec
ti

o
n
, 
m

b

 

86

 

Zr

 

cum

65

 

Zn

 

cum

 

2

4

5

6

7
3

3

6
2

1

7

5

 

10

 

2

 

10

 

3

 

10.0

7.5

5.0

2.5

0

0

5

 

85

 

Zr

 

cum

7

 

Be

 

ind

 

2
1

4
5

6
7

3

3

2

1
5

 

10

15

20

 

4

 

10

30

 

5 5

6

Fig. 5. Calculated and experimental cross sections for the natNi(p, x) reactions. The experimental data were taken from (•) our
present study, ( ) [14], and ( ) [15]. Lines 1, 2, 3, 4, 5, 6, and 7 represent the BERTINI, INCL4.5, CEM03.02, ISABEL,
INCL4.2, PHITS, and CASCADE07 calculations, respectively.

PHYSICS OF ATOMIC NUCLEI Vol. 74 No. 4 2011



548 TITARENKO et al.
 

10

 

2

 

10

 

3

 

Proton energy, MeV

4

3

2

1

0

0

40

20

C
ro

ss
 s

ec
ti

o
n
, 
m

b

 

57

 

Ni

 

cum

24

 

Na

 

cum

 

2

3

4

5

6

7

3

2

1

7

5

 

10

 

2

 

10

 

3

 

10

5

0

0

10

5

 

44

 

Sc

 

ind(

 

m

 

 + 

 

g

 

)

7

 

Be

 

ind

 

2

1

4

5

6

7

3

3

2

1

6

 

20

 

4

 

60

80

 

1

 
100

15

 

3

Fig. 6. As in Fig. 5, but for 93Ni(p, x). The experimental data were taken from (•) our present study, ( ) [14, 16–18].
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The average accuracy of the determination of the
cross sections for radioactive-nuclide production in
93Nb and natNi is 15.2 and 11.4%, respectively. The
distributions of the uncertainties of the reaction rates
and cross sections are presented in Figs. 3 and 4.

The resulting excitation functions were com-
pared with the respective functions calculated us-
ing the BERTINI, ISABEL, CEM03.02, INCL4.2,
INCL4.5, CASCADE07, and PHITS codes [5–11].
The formulas for a convolution of the calculated
independent yields into cumulative ones were given in
[12, 13]. Examples of the calculated and experimental
excitation functions are shown in Figs. 5 and 6.

The predictive powers of the codes can be esti-
mated in terms of the deviation coefficients 〈F 〉 de-
fined as [3, 4, 12, 19]

F = 10

√〈(
log

σexp
σcalc

)2
〉
, (1)

where σexp are the experimental independent or cu-
mulative cross sections and σcalc are the calculated
cross sections obtained on the basis of various mod-
els.

The predictive powers of the codes are summarized
in Table 4 and in Figs. 7 and 8.

CONCLUSIONS

The 〈F 〉 deviation coefficients being considered
range from 1.2 to 13.8 for various models. These
values correspond to the deviation of the calculations
from the experimental data from 20 to 1280%. Such
deviations exceed significantly a required accuracy of

30% even for the most accurate code. The discrepan-
cies are particularly large at low energies.

Thus, all intranuclear cascade codes should be
further developed. The experimental data obtained
in this work can be used both to improve theoreti-
cal models and to refine the corresponding designs
of electronuclear facilities and spallation neutron
sources.
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