New surgical options in the management of menometrorrhagia: an overview

M Nisolle
Department of Gynecology and Obstetrics
CHR de la Citadelle
University of Liège, Belgium
Indications for endometrial ablation

- Dysfunctional uterine bleeding
- Failed traditional therapies (e.g. medical, dilatation and curettage)
- Contraindications to traditional therapies
- Poor surgical skills for anesthesia, hysteroscopic endometrial ablation, hysterectomy
- To preserve the uterus
Contraindications for endometrial ablation

- Genital tract malignancy (cervical, uterine, tubal, ovarian)
- Unresolved endometrial hyperplasia
- Women with anatomical or pathological uterine anomalies
- Women with history of previous classical caesarean section or transmural myomectomy
- Intra-uterine pregnancy
- Acute genital and/or urinary tract infection
- Women wishing to preserve their fertility
- Women expecting amenorrhoea as an outcome
- Women with an intra-uterine contraceptive device in place
- Failed previous endometrial ablation
Menometrorrhagia - Endometrial Ablation: 1st or 2nd generation?

First generation
• Video

Second generation
• Video
Menometrorrhagia - Endometrial Ablation: 1st or 2nd generation?

<table>
<thead>
<tr>
<th>First generation</th>
<th>Second generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hysteroscopic vision</td>
<td>• Blind technique</td>
</tr>
<tr>
<td>• Energy:</td>
<td>• Several energies</td>
</tr>
<tr>
<td>– Monopolar energy</td>
<td>• Without general anesthesia</td>
</tr>
<tr>
<td>– Bipolar energy</td>
<td></td>
</tr>
<tr>
<td>• General or locoregional</td>
<td></td>
</tr>
<tr>
<td>anesthesia</td>
<td></td>
</tr>
</tbody>
</table>
2nd generation endometrial ablation techniques

- Techniques
- Comparative studies
- Results
- Complications
- Cost effectiveness
Techniques

Daniels, BMJ 2012

Pierre Fabre Symposium – October 9, 2012
Advances in the medical and surgical management of menometrorrhagia
2nd generation Endometrial Ablation

• Thermal Balloon (TBA)

Insertion of a silicone balloon into the uterine cavity. Hot liquid circulates inside the balloon. Control of pressure and temperature by the computer. Duration: 2 to 10 minutes.
2nd generation Endometrial Ablation

- Thermal Balloon (TBA)
- Microwave (MEA)

- Insertion of a microwave probe into the uterine cavity to heat the endometrium
- Temperature is maintained at 75-80°C
- The probe is moved from side to side to destroy the endometrium
2nd generation Endometrial Ablation

- Thermal Balloon (TBA)
- Microwave (MEA)
- Radiofrequency electrosurgery (RFA)

- Impedance-controlled bipolar radiofrequency ablation
- A triangular mesh electrode is expanded to fill the uterine cavity
- The electrode delivers electrical current and destroys the endometrial lining
- Temperature 45°C
- Duration of the procedure: max 15 minutes
2nd generation Endometrial Ablation

- Thermal Balloon (TBA)
- Microwave (MEA)
- Radiofrequency electrosurgery (RFA)
- Hydrothermal ablation (HTA)
 - Temperature: 90°C/194°F
 - Duration: 10 minutes
2nd generation Endometrial Ablation

- Thermal Balloon (TBA)
- Microwave (MEA)
- Radiofrequency electrosurgery (RFA)
- Hydrothermal ablation (HTA)
- Cryoablation

A slender single-use probe is inserted into the uterus.

From the tip of the probe subzero temperatures are applied symmetrically to the uterine lining.

Duration: 20 to 30 minutes
Network of studies evaluating 2nd generation endometrial destruction devices for treatment of heavy menstrual bleeding

Daniels, BMJ 2012

Pierre Fabre Symposium – October 9, 2012
Advances in the medical and surgical management of menometrorrhagia
Amenorrhea rate at 12 months

Daniels, BMJ 2012
Outcomes in patients who underwent office endometrial ablation using the HTA system according to myoma status

<table>
<thead>
<tr>
<th>Variable</th>
<th>Patients With Myomas</th>
<th>Patients Without Myomas</th>
<th>p Value(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amenorrhea</td>
<td>37 (38.9)</td>
<td>84 (61.8)</td>
<td><.001</td>
</tr>
<tr>
<td>Oligomenorrhea</td>
<td>27 (28.4)</td>
<td>35 (25.7)</td>
<td></td>
</tr>
<tr>
<td>Eumenorrhea</td>
<td>9 (9.5)</td>
<td>12 (8.8)</td>
<td></td>
</tr>
<tr>
<td>Menorrhagia</td>
<td>11 (11.6)</td>
<td>4 (2.9)</td>
<td></td>
</tr>
<tr>
<td>Hysteroscopy because of bleeding</td>
<td>11 (11.6)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>95 (100)</td>
<td>136 (100)</td>
<td></td>
</tr>
<tr>
<td>Menorrhagia or hysterectomy because of bleeding</td>
<td>22 (23.2)</td>
<td>5 (3.7)</td>
<td>6.3 (2.5–16.0)</td>
</tr>
<tr>
<td>Hysterectomy because of bleeding</td>
<td>11 (11.6)</td>
<td>1 (0.7)</td>
<td>15.7 (2.1–119.9)</td>
</tr>
</tbody>
</table>

CI = confidence interval; HTA = HydroThermAblator (Boston Scientific Corp, Natick, Massachusetts) RR = relative risk.
\(^a\) \(\chi^2\) test.

Glasser et al, 2009
TBA and RFA

- Results: 23% amenorrhea
- Predictor of amenorrhea:
 - Age ≥45 years
 - Uterine length <9 cm
 - Endometrial thickness <4 mm
- RFA > TBA
- 5-year cumulative failure rate: 16%

El Nashar et al Obstet Gynecol 2009
Cumulative failure rate

Predictors of treatment failure
- Age <45 years
- Parity ≥5
- Prior tubal ligation
- History of dysmenorrhea

El Nashar et al Obstet Gynecol 2009
- Retrospective cohort study after TBA for menorrhagia
- Follow up: 8 years
- Amenorrhea rate: 38% and substantial decrease in bleeding in 37%

Kopeika et al, Am J Obstet Gynecol 2011
Complications

- Perforation of the uterus
- Minor secondary haemorrhage
- Burning of the vagina, cervix and small bowel
- Serious complications occurring with an incidence of less than 1%
Recommendations

• In cases of suspected uterine displacement, clinicians should verify the correct placement using ultrasound before the device is activated.

• As well as the use of ultrasound for all devices, the use of hysteroscopy prior to the insertion of the ablation device is recommended if the device is not a balloon. This enables a check to be made that sounding and dilation of the cervix has not caused a perforation or false passage.
Cost-effectiveness: MEA vs TBA

- MEA is likely to be more cost-effective than TBA at 1 year.
- The mean cost of TBALL (10 years equipment life, 100 uses annually) of reusable equipment was £181 (95% confidence interval [CI] £70-434) greater than MEA.
- No statistically significant differences between the total nonhealth costs and health benefits of the two arms.
- On average, MEA provided more Quality-adjusted life-years (QALYs).
- MEA was, on average, dominant (less costly and at least as effective) and there was over a 90% chance that MEA would be considered cost-effective at a £20,000 threshold of cost per QALY.
• Technically easier
• Success rate and complication profiles compare favourably with TRE
• Less complication with 2nd generation procedure for TEA
 – Fluid overload
 – Uterine perforation
 – Cervical laceration
 – Hematometra
• More side effects: nausea, vomiting, uterine cramping
• Less effective than hysterectomy in stopping bleeding but is not invasive
• Hysterectomy is associated with a higher risk for pelvic floor repair and surgery for SUI

Lethaby, Cochrane Data Base 2005
Cooper et al, BJOG 2011
Therapeutic options for Heavy Menstrual Bleeding

- Menorrhagia
 - Mirena
 - Second generation techniques
 - Repeat ablation (first generation)
 - Hysterectomy
 - Well
 - First generation endometrial ablation techniques
 - Hysterecmy
 - Well
 - Repeat ablation (first generation)
 - Hysterecmy
 - Well
 - Second generation endometrial ablation techniques
 - Hysterecmy
 - Well
 - Repeat ablation (first generation)
 - Hysterecmy
 - Well
 - Hysterecmy
 - Well

Pierre Fabre Symposium – October 9, 2012
Advances in the medical and surgical management of menometrorrhagia