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Abstract. We address the topic of real-time analysis and recognition of silhouettes.
The method that we propose first produces object features obtained by a new type of
morphological operators, which can be seen as an extension of existinggranulometric
filters, and then insert them into a tailored classification scheme.
Intuitively, given a binary segmented image, our operator produces the set of all the
largest rectangles that can be wedged inside any connected component of the im-
age. The later are obtained by a standard background subtraction technique and mor-
phological filtering. To classify connected components into one of the known object
categories, the rectangles of a connected component are submitted to a machine learn-
ing algorithm called EXtremely RAndomized trees (Extra-trees). The machine learn-
ing algorithm is fed with a static database of silhouettes that contains both positive
and negative instances. The whole process, including image processing and rectangle
classification, is carried out in real-time.
Finally we evaluate our approach on one of today’s hot topic: the detectionof human
silhouettes. We discuss experimental results and show that our method is stable and
computationally effective. Therefore, we assess that algorithms like ours introduce
new ways for the detection of human in video sequences.

1 Introduction

During the recent years, the rising of cheap sensors has madeof video surveillance a topic
of very active research and wide economical interest. In this field, one of the expected
major breakthrough would be to design automatic image processing systems able to detect,
to track, and to analyze human activities. Unfortunately the amount of data generated by
cameras is prohibitively huge, although the informative part of such signals is very tight
with respect to their raw content.

Several algorithms in computer vision have been developed to summarize such informative
patterns as a set ofvisual features. These algorithms generally rely on the detection of dis-
continuities in the signal selected byinterest point detectors[1]. Then, a local description
of the neighbourhood of the interest points is computed [2] and this description serves to
track a feature in successive frames of a video sequence. Methods like this, referred to as
local-appearance methods, have been used with some success in computer vision applica-
tions such as image matching, image retrieval, and object recognition (see [3,4]).

From current literature, it is still unclear whether such local-appearance descriptors are
appropriate for tracking human silhouettes, or more specifically for gait analysis. Indeed,
they are rather computationally expensive, and as they are inherently local, it is impossible
for them to represent the overall geometry of a silhouette. There are two potential solutions
to this problem: (1) introduce higher-level descriptors able to represent the relative spatial
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arrangements between visual features [5], or (2) take global appearance (such as contours)
into consideration instead of local appearance.

Gait analysis techniques based on the global geometry of theobjects have been discussed
by BOULGOURISet al. [6]. According to them, techniques that employ binary images are
believed to be particularly suited for most practical applications since color or texture in-
formations might not be available or appropriate. The contour of a silhouette is probably
the most sensible visual feature in this class. A direct use of it is possible, or it can be trans-
formed into a series of Fourier descriptors as common in shape description. Alternatively
the width of silhouette, horizontal and vertical projections, and angular representation are
other candidates that have been proposed.

In this paper, we propose a novel approach that is at the crossroad between local- and
global-appearance techniques. Our approach innovates in that we propose a new family of
visual features that rely on a surfacic description of a silhouette. Intuitively, we cover the
silhouette by the set of all the largest rectangles that can be wedged inside of it. More pre-
cisely, each (local) position in the silhouette is linked tothe subset of the largest rectangles
that cover it and that are entirely included in the (global) silhouette.

Surfacic descriptors, like the morphological skeleton [7], have already been studied in the
scope of shape compression whose goal is to reduce the amountof redundant information.
In general, they require large computation times, which makes them less suitable for real-
time applications. This contrasts with our features, as it is possible to compute them in
real-time, if enough care is taken in the implementation.

This paper describes an attempt to take advantage of such novel features. To illustrate our
approach, we focus on the detection of human bodies in a videostream, like in [8,9]. Ba-
sically, we applymachine learningalgorithms on the rectangles of a silhouette to decide,
in real-time, whether this silhouette corresponds to that of a learned instance of a human
silhouette. This decision is a compulsory step for any gait recognition task, and improve-
ments in this area will impact on the overall performances ofalgorithms that deal with the
automatic analysis of human behavior. Our results show how promising an approach like
ours can be.

The paper is organized as follows. We start by describing thearchitecture of our silhouettes
detection and analysis technique in Section 2, which mainlyconsists in three steps (silhou-
ettes extraction, description, and classification) respectively detailed in Sections 3, 4, and
5. Experimental results, which consist in the application of our method for the detection of
human people in video sequences, are discussed in Section 6.

2 Overall architecture

The overall architecture of our silhouettes detection, analysis and classification system is
depicted in Figure 1. It comprises three main modules.

1. The first module consists in extracting the candidate silhouettes from the video stream.
It is described in Section 3.

2. One of the major difficulties in classification lies in finding appropriate feature mea-
sures. In the second module, we use our new granulometric operator to produce a set
of features (largest wedged rectangles) describing the extracted silhouettes.

3. The task of the third module is to classify rectangle features to decide whether or not
the silhouettes belong to the class of interest. The classification is achieved by the
means of an extra-tree learning algorithm as explained in Section 5.
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Fig. 1.Overall architecture.

3 Extraction of silhouettes

The first step of our system consists in the segmentation of the input video stream in order
to produce binary silhouettes, which will be fed into the silhouettes description module.
We achieve this by a motion segmentation based on an adaptivebackground subtraction
method.

Background segmentation methods are numerous and one can find a survey of the existing
methods in [10]. The method we have chosen is based on an adaptive modeling of each
pixel as a mixture of Gaussians, each of which corresponds tothe probability of observing
a particular intensity or color for this pixel. In each Gaussian cluster, the mean accounts
for the average color or intensity of the pixel, whereas the variance is used to model illu-
mination variations, surface texture, and camera noise. The whole algorithm relies on the
assumptions that the background is visible more frequentlythan the foreground and that its
variance is relatively low, which are common assumptions for any background subtraction
technique. Extensive description of the algorithm can be found in [11,12] and a tutorial is
available at [13]. The technical description is given hereafter.

If Xt is the color or intensity value observed at timet for a particular pixel in the image, the
history{X1, . . . ,Xt} is modeled as a mixture ofK Gaussian distributions. The probability
of observing a particular color or intensity value at timet is expressed as

P (Xt) =

K
∑

i=1

ωi,tη(Xt, µi,t, Σi,t), (1)

where
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– K is the number of Gaussian clusters used to model the history of the pixel,
– ωi,t is the weight associated with theith cluster at timet –it models the amount of data

represented by theith Gaussian–,
– µi,t andΣi,t are the mean and covariance matrix of theith Gaussian, and
– η is a Gaussian probability density function.

For computational efficiency reasons, the covariance matrixΣi,t is assumed to be isotropic
and diagonal

Σi,t = σ2
kI. (2)

The Gaussian distributions are sorted in decreasing order of the ratioωi,t

σi,t
. Thej first Gaus-

sians are considered to account for the background, while the rest of them accounts for the
foreground. Thej factor is dynamically estimated by accumulating theωi,t values, accord-
ing to the computed order of the Gaussians, until a given threshold valueT is reached. For
this to work we assume that the background is visible more often than the foreground and
that its variance is relatively low.

Every new pixel value is checked against theK distributions until a match is found, in
which case the pixel receives its class label (background orforeground) according to that of
the matched distribution. A match is defined as a pixel value within 2.5 times the standard
deviation of a distribution. If no match is found, the pixel is considered as belonging to
the foreground. In this case, a new distribution, centered on the pixel color or intensity,
is initialized to replace the weakest distribution presentin the mixture model. This new
distribution is of high initial variance and low prior weight.

Once the new pixel value is classified, the model has to be updated. A standard method
would be to use theexpectation maximisationalgorithm. Unfortunately, that would be pro-
hibitively computationally expensive. In [11,12], STAUFFERand GRIMSON give an on-line
K-means approximation efficient enough to be performed in real-time on a standard VGA
image (640 × 480 pixels). They propose the following rule to update the weights

ωk,t = (1 − α)ωk,t−1 + α(Mk,t), (3)

whereα is the learning rate, andMk,t equals1 for the matched cluster and0 for the re-
maining ones. Theµ andσ parameters of the unmatched Gaussian distributions are kept
unchanged while those of the matched distribution are adjusted as follows

µt = (1 − ρ)µt−1 + ρXt, (4)

σ2
t = (1 − ρ)σ2

t−1 + ρ(Xt − µt)
T (Xt − µt), (5)

where
ρt = αη(Xt|µt, σt−1) (6)

can be replaced by a constantρ to reduce the computational load.

After the foreground has been computed by subtraction, foreground pixels are aggregated
by a connected component algorithm. This guarantees that a unique label is assigned to each
connected region. Then each connected region is consideredas a distinctive input for both
the silhouettes description and silhouettes classification modules. Examples of extracted
candidate silhouettes by the mixture of Gaussians algorithm are shown on Figure 2.

In the silhouettes description module, each candidate silhouette will be handled as if it was
the unique region in the image. There are thus as many silhouettes as connected regions for
which an algorithm has to decide whether or not it belongs to aknown shape pattern.
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Fig. 2. Examples of extracted silhouettes with the Gaussian mixture model background subtraction
technique.

4 Features based on a granulometric description by rectangles

Most surfacic descriptors can be described in terms of the theory of mathematical morphol-
ogy. Therefore we will use this framework to describe our newfeature set.

After a brief introduction to some notations, we will present the framework of granulome-
tries that proved to be the starting point of our development. Then we provide a formal
description of our new operator.

4.1 Morphological operators on sets

Hereafter we briefly recall some definitions and notations used in mathematical morphol-
ogy that serves as the framework to define our new feature space. Consider a spaceE , which
is the continuous Euclidean spaceR

n or the discrete spaceZn, wheren ≥ 1 is an integer.
Given a setX ⊆ E and a vectorb ∈ E , the translateXb is defined byXb = {x+b|x ∈ X}.

Let us take two subsetsX andB of E . M INKOWSKI defined the addition and subtraction
of these sets, respectively as

X ⊕B =
⋃

b∈B

Xb =
⋃

x∈X

Bx = {x+ b|x ∈ X, b ∈ B} (7)

X ⊖B =
⋂

b∈B

X−b = {p ∈ E|Bp ⊆ X}. (8)

ForX ⊕ B, X andB are interchangeable, butX andB play a different role in the case
of X ⊖ B. ThereforeB is referred to as thestructuring element, and we callX ⊕ B and
X ⊖B respectively thedilation anderosionof X byB.

Dilation and erosion are not inverse operators. IfX is eroded byB and then dilated byB,
one may end up with a smaller set than the original setX. This set, denoted byX ◦ B,
is called theopeningof X by B and defined byX ◦ B = (X ⊖ B) ⊕ B. The geometric
interpretation of an opening is that it is the union of all translated versionsB included in
X, or in mathematical terms,X ◦ B = {Bp| p ∈ E , Bp ∈ X}. Note that this geometrical
interpretation is valid for a given set of fixed size. We have to enlarge it to encompass the
notion of size or family of structuring elements, which leads us to granulometries.

4.2 Granulometries

The concept of granulometry was introduced by MATHERON [14]. It is based on the fol-
lowing definition.
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Let Ψ = (ψλ)λ≥0 be a family of image transformations depending on a parameter λ. This
family constitutes a granulometry if and only if the following properties are satisfied:

∀λ ≥ 0, ψλ is increasing (9)

∀λ ≥ 0, ψλ is anti-extensive (10)

∀λ ≥ 0, µ ≥ 0, ψµψλ = ψλψµ = ψmax(λ,µ). (11)

The third property implies that, for everyλ ≥ 0, ψλ is an idempotent transformation, that
is: ψλψλ = ψλ. As these properties reflect those of an opening, openings fitnicely in this
framework as long as we can order the openings with a scalar. For example, assume that
X ◦ rB is the opening by a ball of radiusr. ThenΨ = (ψr)r≥0 = (X ◦ rB)r≥0 is a
granulometry. Of particular interest are granulometries generated by openings by scaled
versions of a convex structuring element.

Granulometries, and some measures taken of them, have been applied to problems of tex-
ture classification [15], image segmentation, and more recently to the analysis of document
images [16].

4.3 Granulometric curves and features

MARAGOS [15] has described several useful measurements for granulometries defined by
a single scale factor: thesize distributionand thepattern spectrum. The size distribution
is a curve that gives the probability of a point belonging to an object to remain into that
object after openings with respect to a size factor. The pattern spectrum is defined likewise
as the derivative of the size distribution. Note that other measures than the area have been
suggested as well. They have led to the concepts of openings by attributes [17].

All these measures are taken on operator residues driven by aone-dimensional criterion.
They are not applicable to a family of arbitrary structuringelements nor are they capable to
produce uncorrelated multi-dimensional features. Therefore we define a new operator that
produces acover.

Definition 1. [Cover] LetS be a family ofI arbitrary structuring elementsS =
{

Si∈I
}

.
A cover of a setX by S is defined as a non-redundant union of translated elements ofS
that are included inX. More precisely, ifC(X) is a cover ofX then

C(X) =
{

Sj
z | z ∈ E andSj ∈ S

}

(12)

where, ifSj′

z′ andSj′′

z′′ both belongs toC(X), none of them is totally included in the other
one.

As a consequence of this definition, any element ofC(X) comprises at least one pixel that
uniquely belongs to it. But the upper bound of uniquely covered pixels can be as large as
the area of elementSj .

In our application we consider the simplest two-dimensional opening which is of prac-
tical interest and practically tractable: an opening by a rectangular structuring element
B = mH ⊕ nV wheremH, nV respectively arem-wide horizontal andn-wide verti-
cal segments1. Based on the familyB of all possible rectangle sizes,C(X) will be the
union of all the largest non-redundant rectangles includedin X. Such rectangles are shown
in Figure 3. A fast algorithm for computing this cover is given in [18].

1 Note that ordered openings with respect tom or to n constitute granulometries. However mixing
m andn size factors do not generate granulometries.
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Fig. 3.Examples of largest wedged rectangles contained in a human silhouette.

The main advantage of using a cover is that we have a family of structuring elements, de-
scribing the surface of an objectX, whose members might overlap but all of them uniquely
fit somewhere inside ofX.

The next step is to extract features from the cover. SinceB are rectangles, features like
width, height, perimeter, and area spring to mind. For classification purposes however care
should be taken to avoid redundant features because it wouldnot increase the performances
and could even be counterproductive. For example, HADWIGER [19] has shown that any
continuous, additive, and translation and rotation invariant measure on a setX must be a
linear combination of the perimeter, area, and EULER-POINCARRÉ number ofX.

Since translations and scales have some significance in the analysis of silhouettes we rein-
troduce them by taking the position of elements ofC(X) relative to the center ofX. Finally
we select 5 features on any elements ofC(X): width, height2, 2 relative coordinates of its
center, and the percentage of uniquely covered pixels to itsarea. This last feature is a con-
sequence of taking the coverC(X) to describeX.

5 Silhouettes classification

Once the set of all the features describing a silhouette has been extracted (see Figure 4 for
an illustration of the density of covered pixels), it becomes possible to exploit a machine
learning algorithm to map this set into a class. Indeed, suchmappings are especially hard to
derive by hand and should belearnedby the system. In our framework, as we are interested
in the detection of human silhouettes, only two classes of interest are considered: the class
of the human silhouettes, and the class of any other silhouette.

The machine learning approach requires to take two difficulties into account: (1) there is a
need of a classifier with excellent generalization abilities not subject to overfitting, and (2)
we must define a way to apply this classifier on a set of rectangles, the number of which
may widely vary between silhouettes.

To this aim, we propose to useEXTremely RAndomizedtrees (Extra-trees), a fast, yet ac-
curate and versatile machine learning algorithm [20]. Reasons for using extra-trees in our
context are threefold: (1) extra-trees have proven successful for solving some color image

2 Note that the perimeter and area derives from the width and height of a rectangle so that it is
unnecessary to add them the list of features.
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Fig. 4. Examples of rectangles size distributions for human shaped silhouettes. The pixel intensities
account for the number of overlapping rectangles that cover each location in the image.

classification tasks [21], (2) they form a non-parametric function approximation architec-
ture, which do not require previous knowledge, and (3) they have low bias and variance, as
well as good performances in generalization.

5.1 Classification based on extremely randomized trees

We first describe how extra-trees can be used to map a single rectangle to a class. Then we
will explain how to map asetof rectangles to a class. We will restrict our study of extra-
trees to the case where all the input attributes are numerals, which is obviously the case of
our rectangular features. Indeed, as mentioned earlier, the input attributes for the rectangles
are their width, height, relative positions, and an information about the cover.

Intuitively, extra-trees can be thought of as a crossover betweenbagging[22] andrandom
forests[23]. They consist in a forest ofM independent binary decision trees. Each of their
internal nodes is labeled by a threshold on one of the input attributes, that is to be tested
in that node. As for the leaves, they are labeled by the classification output. To classify a
rectangle through an extra-tree model, this rectangle is independently classified by each
tree. This is achieved by starting at the root node, then progressing down the tree according
to the result of the tests on the threshold found during the descent, until a leaf is reached.
Doing so, each sub-tree votes for a class. Finally, the classthat obtains the majority of votes
is assigned to the rectangle.

The sub-trees are built in a top-down fashion, by successively splitting the leaf nodes where
the output variable does vary. For each input variable, the algorithm computes its variation
bounds and uniformly chooses one random threshold between those bounds –this is similar
to the case of random forests. Once a threshold has been chosen for every input variable,
the split that gives the best information-theoretic score on the classification output is kept
–this is similar to bagging. This will guarantee that the variance in the model is reduced
(thanks to the presence of a forest of independent sub-trees), as well as bias (thanks to the
random selection of the thresholds), while taking advantage of an information measure that
guides the search for good splits.

Pseudo-code describing how an extra-tree model can be builtfrom a set of rectangles is
given in Algorithm 1. In this pseudo-code,A ∈ R

m×n is a the table containing the matrix
of input attributes in the learning set,b ∈ B

m is the observed classification output for this
learning set3, andM is the number of sub-trees in the forest. We assume the existence of a

3 We use the symbolB to represent the set of Booleans: thetrue symbol corresponds to the class of
human silhouettes, and thefalsesymbol to that of other silhouettes.
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Algorithm 1 — General structure for the learning of extra-trees
1: extra-trees(A, b, M) :–
2: T := φ

3: for i := 1 to M do
4: T := T ∪ {subtree(A, b)}
5: end for
6: return T

Algorithm 2 — Recursive induction of one single sub-tree
1: subtree(A, b) :–
2: V := φ

3: for v := 1 to n do
4: r := mini{Ai,v}
5: s := maxi{Ai,v}
6: if r 6= s then
7: V := V ∪ {v}
8: t[v] := random value in[r, s]
9: s[v] := score(A, b, v, t[v])

10: end if
11: end for
12: if |V| >

√
n then

13: V := randomly draw
√

n variables without replacement out ofV 4

14: end if
15: v∗ := argmaxv∈V{s[v]}
16: if s[v∗] = 0 then
17: o := argmaxc∈B

|{i | bi = c}|
18: return a leaf labeled with output classo
19: else
20: i⊕ := {i | Ai,v∗ < t[v∗]}
21: i⊖ := {i | Ai,v∗ ≥ t[v∗]}
22: T⊕ := subtree({Ai | i ∈ i⊕}, {bi | i ∈ i⊕})
23: T⊖ := subtree({Ai | i ∈ i⊖}, {bi | i ∈ i⊖})
24: return a binary decision node〈t[v∗], T⊕, T⊖〉
25: end if

functionscore(A, b, v, t) that gives the information-theoretic score of the threshold t on
the variablev in the database(A, b). In our case, SHANNON’s information gain was used
as thescore function.

5.2 Classification of silhouettes

We have just described the process of classifyingone rectangle. But a silhouetteX is
described by asetC(X) of rectangles. Furthermore, two distinct silhouettes can have a
different number of rectangles inside them. We must therefore introduce a meta-rule over
the extra-trees for mapping a setC(X) to a class. In this work, we exploit an idea that is
similar to that of MARÉE et al., which was used in the context of image classification [21].

LetM be a fixed positive integer. Given the setC(X) of rectangles that shapes the silhou-
etteX, we select the firstM rectangles inside this set, which induces a subsetCM (X) ⊆
C(X). Then, we apply the extra-trees model onto each rectangle insideCM (X). This pro-
cess generates one vote per rectangle. Finally, the silhouetteX is mapped into the class that
has obtained the majority of the votes.

4 This line determines the strength of the attribute selection process. The choice of
√

n is discussed
in [20].
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Fig. 5.A few examples of negative instances contained in the training dataset.

Fig. 6.Subset of positive instances contained in the training dataset.

6 Experimental results

6.1 Dataset collection

As mentioned in the introduction, we have focused our experiments on the detection of
human silhouettes in a video stream. The extra-trees have been trained on a dataset of
silhouettes that contains both silhouettes of human bodiesand silhouettes of other kind of
objects. We have fed the learning set with a large number of instances for each of those two
classes.

Some instances of non-human silhouettes, called negative instances, are displayed in Fig-
ure 5. The negative samples are the union of non-human silhouettes that were extracted
from a live video stream by the background subtraction technique presented in Section 3,
and of images that were taken from the COIL-100 database [24]. There are about 12,000
images in this dataset. As for the positive instances, we have about 3,000 human silhou-
ettes. Some of them are represented in Figure 6. Those two datasets have been converted to
a database that has been fed into the extra-trees learning algorithm (cf. Section 5).

6.2 Tests on real-world images

We have tested our algorithms on a color video stream of640 × 480 pixels that was cap-
tured with a FireWire CCD camera. The whole process (including silhouettes extraction,
description, and classification) was carried out at approximately five frames per second on
a Pentium IV computer at 3.4 GHz.

The detection of human silhouettes is very robust since the number of correct classifica-
tions largely outnumbers misclassifications, although we ignored any correlation between
successive frames. Example images of correct (resp. wrong)classifications are shown in
Figure 7 (resp. in Figure 8). Our method might be subject to improvements, one of them
being the use of a prediction scheme between successive frames, but these first results
demonstrate that on single images our system is capable to recognize specific silhouettes
in a semi-controlled environment.

7 Conclusions

In this paper we propose a new system for the real-time detection and classification of
binary silhouettes. The silhouettes are extracted from an input video stream using a stan-
dard background subtraction algorithm. Then, each silhouette is treated by a new kind of
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Fig. 7.Examples of silhouettes classified correctly. A white frame around an object indicates that the
system classifies it as a human silhouette.

Fig. 8.Examples of misclassified silhouettes.

granulometric filter that produces a morphological cover ofthe silhouette and character-
izes it as the set of all the largest rectangles that can be wedged inside of it. One of the
major achievements is that we managed to implement the feature extraction step in real-
time, which is uncommon for surface-based descriptors. Therectangle features are then fed
into an extra-trees classifier that assigns a class label to each detected silhouette. Thanks
to the simple tree-based structure of extra-trees, the classification step is also very fast.
As a consequence, the whole process that consists of silhouettes detection, analysis and
classification can be carried out in real-time on a common computer.

Empirical results that consisted in the application of our method to images captured with a
CCD camera put in an environment unknown to the learning process show that our method
manages to detect human silhouettes with a high level of confidence. Future work will fea-
ture a systematic evaluation of the performances of our approach. We will also investigate
its exploitation in more complex tasks such as gait recognition, human tracking, or even
general object tracking.
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