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Abstract. We address the topic of real-time analysis and recognition of silhouettes.
The method that we propose first produces object features obtajreedéw type of
morphological operators, which can be seen as an extension of exjstimglometric
filters, and then insert them into a tailored classification scheme.

Intuitively, given a binary segmented image, our operator produeesethof all the
largest rectangles that can be wedged inside any connected corhpbrikea im-
age. The later are obtained by a standard background subtractioigtezland mor-
phological filtering. To classify connected components into one of thevkrabject
categories, the rectangles of a connected component are submitted¢biaeiearn-

ing algorithm called EXtremely RAndomized trees (Extra-trees). The madbarn-

ing algorithm is fed with a static database of silhouettes that contains both positiv
and negative instances. The whole process, including image progessimectangle
classification, is carried out in real-time.

Finally we evaluate our approach on one of today’s hot topic: the deteaftimman
silhouettes. We discuss experimental results and show that our methatles and
computationally effective. Therefore, we assess that algorithms like introduce
new ways for the detection of human in video sequences.

1 Introduction

During the recent years, the rising of cheap sensors has afiaideo surveillance a topic
of very active research and wide economical interest. Is fieid, one of the expected
major breakthrough would be to design automatic image |gging systems able to detect,
to track, and to analyze human activities. Unfortunately dmount of data generated by
cameras is prohibitively huge, although the informativet p& such signals is very tight
with respect to their raw content.

Several algorithms in computer vision have been developsdmmarize such informative
patterns as a set ofsual featurs. These algorithms generally rely on the detection of dis-
continuities in the signal selected byterest point detectorgl]. Then, a local description

of the neighbourhood of the interest points is computed [2] his description serves to
track a feature in successive frames of a video sequencéobietike this, referred to as
local-appearance methodksave been used with some success in computer vision applica
tions such as image matching, image retrieval, and objeogrgtion (see [3,4]).

From current literature, it is still unclear whether suchdbappearance descriptors are
appropriate for tracking human silhouettes, or more spadi§i for gait analysis. Indeed,
they are rather computationally expensive, and as theynaeréntly local, it is impossible
for them to represent the overall geometry of a silhouetter@ are two potential solutions
to this problem: (1) introduce higher-level descriptorteab represent the relative spatial
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arrangements between visual features [5], or (2) take ghglyzearance (such as contours)
into consideration instead of local appearance.

Gait analysis techniques based on the global geometry aflifeets have been discussed
by BouLGOURISet al. [6]. According to them, techniques that employ binary insgee
believed to be particularly suited for most practical apgions since color or texture in-
formations might not be available or appropriate. The contd a silhouette is probably
the most sensible visual feature in this class. A direct fi@sopossible, or it can be trans-
formed into a series of Fourier descriptors as common inesldggcription. Alternatively
the width of silhouette, horizontal and vertical projeospand angular representation are
other candidates that have been proposed.

In this paper, we propose a novel approach that is at the roa$etween local- and
global-appearance techniques. Our approach innovatbatinve propose a new family of
visual features that rely on a surfacic description of acsiitte. Intuitively, we cover the
silhouette by the set of all the largest rectangles that eandriged inside of it. More pre-
cisely, each (local) position in the silhouette is linkedte subset of the largest rectangles
that cover it and that are entirely included in the (globdhauette.

Surfacic descriptors, like the morphological skeleton [ifve already been studied in the
scope of shape compression whose goal is to reduce the anfaedundant information.
In general, they require large computation times, whichesgkem less suitable for real-
time applications. This contrasts with our features, as passible to compute them in
real-time, if enough care is taken in the implementation.

This paper describes an attempt to take advantage of sueh fieatures. To illustrate our
approach, we focus on the detection of human bodies in a \6tteam, like in [8,9]. Ba-
sically, we applymachine learninglgorithms on the rectangles of a silhouette to decide,
in real-time, whether this silhouette corresponds to tfia learned instance of a human
silhouette. This decision is a compulsory step for any gaibgnition task, and improve-
ments in this area will impact on the overall performancealgbrithms that deal with the
automatic analysis of human behavior. Our results show hemising an approach like
ours can be.

The paper is organized as follows. We start by describingutbieitecture of our silhouettes
detection and analysis technique in Section 2, which maiahsists in three steps (silhou-
ettes extraction, description, and classification) rethgedg detailed in Sections 3, 4, and
5. Experimental results, which consist in the applicatibow method for the detection of
human people in video sequences, are discussed in Section 6.

2 Overall architecture

The overall architecture of our silhouettes detection)yaigand classification system is
depicted in Figure 1. It comprises three main modules.

1. The first module consists in extracting the candidat@sites from the video stream.
Itis described in Section 3.

2. One of the major difficulties in classification lies in findiappropriate feature mea-
sures. In the second module, we use our new granulometriatopeéo produce a set
of features (largest wedged rectangles) describing thra@ed silhouettes.

3. The task of the third module is to classify rectangle fesduo decide whether or not
the silhouettes belong to the class of interest. The claatifin is achieved by the
means of an extra-tree learning algorithm as explained éti@e5.
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Fig. 1. Overall architecture.

3 Extraction of silhouettes

The first step of our system consists in the segmentationeahiput video stream in order
to produce binary silhouettes, which will be fed into thénsilettes description module.
We achieve this by a motion segmentation based on an addgatolegyround subtraction
method.

Background segmentation methods are numerous and one dandurvey of the existing
methods in [10]. The method we have chosen is based on anhadapideling of each
pixel as a mixture of Gaussians, each of which correspontietprobability of observing
a particular intensity or color for this pixel. In each Gaasscluster, the mean accounts
for the average color or intensity of the pixel, whereas theance is used to model illu-
mination variations, surface texture, and camera noise.Wtmle algorithm relies on the
assumptions that the background is visible more frequéindly the foreground and that its
variance is relatively low, which are common assumptiomsfty background subtraction
technique. Extensive description of the algorithm can hmébin [11,12] and a tutorial is
available at [13]. The technical description is given héeza

If X, is the color or intensity value observed at titrfer a particular pixel in the image, the
history{ X1, ..., X, } is modeled as a mixture &f Gaussian distributions. The probability
of observing a particular color or intensity value at tirmes expressed as

K
P(Xp) = win(Xe, prig, Sie), (1

i=1

where
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— K is the number of Gaussian clusters used to model the histahe @ixel,

— w; ¢ IS the weight associated with tligh cluster at time —it models the amount of data
represented by tha&h Gaussian—,

— pi and; . are the mean and covariance matrix of ttteGaussian, and

— 7 is a Gaussian probability density function.

For computational efficiency reasons, the covariance maiyi is assumed to be isotropic
and diagonal

Yit= 0131 (2)

The Gaussian distributions are sorted in decreasing ofdbematio%. Thej first Gaus-
sians are considered to account for the background, whelestt of them accounts for the
foreground. The factor is dynamically estimated by accumulating dhe values, accord-
ing to the computed order of the Gaussians, until a giverstiolel valuel is reached. For
this to work we assume that the background is visible momnaftan the foreground and
that its variance is relatively low.

Every new pixel value is checked against tRedistributions until a match is found, in
which case the pixel receives its class label (backgroumareground) according to that of
the matched distribution. A match is defined as a pixel valitkim2.5 times the standard
deviation of a distribution. If no match is found, the pixsldonsidered as belonging to
the foreground. In this case, a new distribution, centeredhe pixel color or intensity,

is initialized to replace the weakest distribution presenthe mixture model. This new
distribution is of high initial variance and low prior weiggh

Once the new pixel value is classified, the model has to betagda standard method
would be to use thexpectation maximisaticsigorithm. Unfortunately, that would be pro-
hibitively computationally expensive. In [11,12]T8JFFERand GRIMSON give an on-line
K-means approximation efficient enough to be performed ikt on a standard VGA
image (40 x 480 pixels). They propose the following rule to update the wesgh

Wit = (1 — a)wy,i—1 + a(Mpy), (3

whereq is the learning rate, andl/;, ; equalsl for the matched cluster ariilfor the re-
maining ones. The ando parameters of the unmatched Gaussian distributions ate kep
unchanged while those of the matched distribution are #eljuss follows

pe = (1= p)pe—1 + pX, 4)
of = (1= p)oi—q + p(Xe — )" (X — ), (5)

where
Pt = 0477(Xt|/it70't71) (6)

can be replaced by a constartio reduce the computational load.

After the foreground has been computed by subtractiongfotend pixels are aggregated
by a connected component algorithm. This guarantees thagaeailabel is assigned to each
connected region. Then each connected region is considsradiistinctive input for both
the silhouettes description and silhouettes classifioatiodules. Examples of extracted
candidate silhouettes by the mixture of Gaussians algoréte shown on Figure 2.

In the silhouettes description module, each candidatewdtie will be handled as if it was
the unique region in the image. There are thus as many siftesuees connected regions for
which an algorithm has to decide whether or not it belongskoavn shape pattern.
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Fig. 2. Examples of extracted silhouettes with the Gaussian mixture model bacidysubtraction
technique.

4 Features based on a granulometric description by rectangk

Most surfacic descriptors can be described in terms of therthof mathematical morphol-
ogy. Therefore we will use this framework to describe our fiesture set.

After a brief introduction to some notations, we will prestre framework of granulome-
tries that proved to be the starting point of our developm&hen we provide a formal
description of our new operator.

4.1 Morphological operators on sets

Hereafter we briefly recall some definitions and notatiorediua mathematical morphol-
ogy that serves as the framework to define our new featur@s@ansider a spac which
is the continuous Euclidean spaké or the discrete spac&”, wheren > 1 is an integer.
GivenasefX C £ and a vectob € &, the translateX;, is defined byX, = {z+b|x € X}.

Let us take two subset® and B of £. MINKOWSKI defined the addition and subtraction
of these sets, respectively as

XeB=|)X,=|JB.={z+blzc X be B} @)
beB zeX
XeB=(]X,={peélB, C X} (8)
beB

For X @ B, X and B are interchangeable, b and B play a different role in the case
of X © B. ThereforeB is referred to as thstructuring elementand we callX ¢ B and
X © B respectively thalilation anderosionof X by B.

Dilation and erosion are not inverse operatorsX Ifs eroded byB and then dilated by3,
one may end up with a smaller set than the original’$efThis set, denoted by o B,

is called theopeningof X by B and defined byX o B = (X © B) @ B. The geometric
interpretation of an opening is that it is the union of alhgkated version$ included in
X, orin mathematical termsy o B = {B,|p € £, B, € X}. Note that this geometrical
interpretation is valid for a given set of fixed size. We havenlarge it to encompass the
notion of size or family of structuring elements, which Ieacs to granulometries.

4.2 Granulometries

The concept of granulometry was introduced byp™ERON [14]. It is based on the fol-
lowing definition.
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Let¥ = (¥a)a>0 be a family of image transformations depending on a paramefehis
family constitutes a granulometry if and only if the follovg properties are satisfied:

VA >0, v, is increasing 9)
YA >0, 1, is anti-extensive (20)
YA > 0, M > 07 1/)/L1,/}A - 1/}>\1/}/L - wmax()\,u)- (11)

The third property implies that, for every > 0, ¢, is an idempotent transformation, that
is: Yy = Y. As these properties reflect those of an opening, openinggéily in this
framework as long as we can order the openings with a scalaeXample, assume that
X o rB is the opening by a ball of radius Then¥ = (¢,),>0 = (X orB),>0 iS a
granulometry. Of particular interest are granulometrieseggated by openings by scaled
versions of a convex structuring element.

Granulometries, and some measures taken of them, have ppkgdao problems of tex-
ture classification [15], image segmentation, and morenticto the analysis of document
images [16].

4.3 Granulometric curves and features

MARAGOS[15] has described several useful measurements for gnawetifies defined by

a single scale factor: th&ize distributionand thepattern spectrumThe size distribution

is a curve that gives the probability of a point belonging moobject to remain into that
object after openings with respect to a size factor. Thepatipectrum is defined likewise
as the derivative of the size distribution. Note that otheasures than the area have been
suggested as well. They have led to the concepts of openyngsributes [17].

All these measures are taken on operator residues driverobg-@limensional criterion.
They are not applicable to a family of arbitrary structureigments nor are they capable to
produce uncorrelated multi-dimensional features. Tioeesfve define a new operator that
produces &over.

Definition 1. [Cover] LetS be a family of arbitrary structuring elements = {S'</}.
A cover of a setX by S is defined as a non-redundant union of translated elemenss of
that are included inX. More precisely, itC(X) is a cover ofX then

C(X)={S)|z€€Eands’ €S} (12)

where, ifSZ: and Sﬁ:: both belongs t@’'(X'), none of them is totally included in the other
one.

As a consequence of this definition, any elemen®'@X ) comprises at least one pixel that
uniquely belongs to it. But the upper bound of uniquely cedepixels can be as large as
the area of elemerft/.

In our application we consider the simplest two-dimensiapgening which is of prac-
tical interest and practically tractable: an opening by etamegular structuring element
B = mH @& nV wheremH, nV respectively aren-wide horizontal and:-wide verti-
cal segments. Based on the familys of all possible rectangle size§;(X) will be the
union of all the largest non-redundant rectangles included. Such rectangles are shown
in Figure 3. A fast algorithm for computing this cover is givia [18].

! Note that ordered openings with respectiir ton constitute granulometries. However mixing
m andn size factors do not generate granulometries.
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Fig. 3. Examples of largest wedged rectangles contained in a human silhouette.

The main advantage of using a cover is that we have a familyreétsiring elements, de-
scribing the surface of an obje&t, whose members might overlap but all of them uniquely
fit somewhere inside ok .

The next step is to extract features from the cover. SiBcare rectangles, features like
width, height, perimeter, and area spring to mind. For diaasion purposes however care
should be taken to avoid redundant features because it wotiidcrease the performances
and could even be counterproductive. For examplepWIGER [19] has shown that any
continuous, additive, and translation and rotation iraratrimeasure on a séf must be a
linear combination of the perimeter, area, and ER-POINCARRE number ofX.

Since translations and scales have some significance iméigsés of silhouettes we rein-
troduce them by taking the position of element€¢{X ) relative to the center oX . Finally
we select 5 features on any element€¢fX ): width, height, 2 relative coordinates of its
center, and the percentage of uniquely covered pixels arés. This last feature is a con-
sequence of taking the covél( X) to describeX.

5 Silhouettes classification

Once the set of all the features describing a silhouette éas bxtracted (see Figure 4 for
an illustration of the density of covered pixels), it becenp@ssible to exploit a machine
learning algorithm to map this set into a class. Indeed, sumppings are especially hard to
derive by hand and should bearnedby the system. In our framework, as we are interested
in the detection of human silhouettes, only two classestef@st are considered: the class
of the human silhouettes, and the class of any other siltmuet

The machine learning approach requires to take two diffesiihto account: (1) there is a
need of a classifier with excellent generalization abgiti®t subject to overfitting, and (2)
we must define a way to apply this classifier on a set of rectsngihe number of which
may widely vary between silhouettes.

To this aim, we propose to ugeXTremely RAndomizddees (Extra-trees), a fast, yet ac-
curate and versatile machine learning algorithm [20]. Beagor using extra-trees in our
context are threefold: (1) extra-trees have proven suiddss solving some color image

2 Note that the perimeter and area derives from the width and height aftangde so that it is
unnecessary to add them the list of features.
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Fig. 4. Examples of rectangles size distributions for human shaped silhouetiegiXel intensities
account for the number of overlapping rectangles that cover eaatidadn the image.

classification tasks [21], (2) they form a non-parametritction approximation architec-
ture, which do not require previous knowledge, and (3) theyeHow bias and variance, as
well as good performances in generalization.

5.1 Classification based on extremely randomized trees

We first describe how extra-trees can be used to map a sirgéngde to a class. Then we
will explain how to map aetof rectangles to a class. We will restrict our study of extra-
trees to the case where all the input attributes are numevhish is obviously the case of
our rectangular features. Indeed, as mentioned earleemput attributes for the rectangles
are their width, height, relative positions, and an infotioraabout the cover.

Intuitively, extra-trees can be thought of as a crossovewdenbagging[22] andrandom
forests[23]. They consist in a forest dff independent binary decision trees. Each of their
internal nodes is labeled by a threshold on one of the ingribates, that is to be tested
in that node. As for the leaves, they are labeled by the ¢leaton output. To classify a
rectangle through an extra-tree model, this rectangledspendently classified by each
tree. This is achieved by starting at the root node, thenrpesing down the tree according
to the result of the tests on the threshold found during treeel®, until a leaf is reached.
Doing so, each sub-tree votes for a class. Finally, the thes®btains the majority of votes
is assigned to the rectangle.

The sub-trees are built in a top-down fashion, by succegssyditting the leaf nodes where
the output variable does vary. For each input variable, lipgridhm computes its variation
bounds and uniformly chooses one random threshold betwese bounds —this is similar
to the case of random forests. Once a threshold has beemclowssvery input variable,
the split that gives the best information-theoretic scaréhe classification output is kept
—this is similar to bagging. This will guarantee that theiaace in the model is reduced
(thanks to the presence of a forest of independent sub}tiEewvell as bias (thanks to the
random selection of the thresholds), while taking advamte#@n information measure that
guides the search for good splits.

Pseudo-code describing how an extra-tree model can beftmriita set of rectangles is

given in Algorithm 1. In this pseudo-codd, € R™*™ is a the table containing the matrix
of input attributes in the learning sét,c B™ is the observed classification output for this
learning se€, andM is the number of sub-trees in the forest. We assume the egestef a

3 We use the symbds to represent the set of Booleans: thee symbol corresponds to the class of
human silhouettes, and tfesesymbol to that of other silhouettes.
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Algorithm 1 — General structure for the learning of extra-trees
1: extra-trees(A,b, M) :—
2. T:=¢
for i := 1to M do
T :=T U{subtree(A,d)}
end for
return 7

ouhw

Algorithm 2 — Recursive induction of one single sub-tree
1: subtree(A,b) -
2. Vi=¢
3: forv:=1tondo
4 r:=min;{A; .}
5: s :=max;{Aiv}
6
7
8

if » # s then

V:=VU{v}

t[v] := random value irjr, s]
9: s[v] :==score(A4,b,v,t[v])
10: end if
11: end for
12 if [V]| > y/nthen
13: V := randomly drawi/n variables without replacement out Bf*
14. endif

15:  v" := argmax,c,{s[v]}
16: if s[v*] = 0then

17: 0 :=argmax g [{t | bs = c}|
18: return a leaf labeled with output class
19: else

20: te = {1 | Aiwx < tlv"]}

2L g = {i | Ajw > t"])

22: Ty :=subtree({A; | i €ig},{bi |i €in})
23: Ts :=subtree({A; |i€ig},{bi|i€ic})
24: return a binary decision nod&[v*], T, To)
25:  endif

functionscor e(A, b, v, t) that gives the information-theoretic score of the threghain
the variablev in the databaséA, b). In our case, BANNON’s information gain was used
as thescore function.

5.2 Classification of silhouettes

We have just described the process of classifyong rectangle. But a silhouett& is
described by @et C'(X) of rectangles. Furthermore, two distinct silhouettes caveta
different number of rectangles inside them. We must theeeftroduce a meta-rule over
the extra-trees for mapping a st X) to a class. In this work, we exploit an idea that is
similar to that of MAREE et al., which was used in the context of image classification [21].

Let M be a fixed positive integer. Given the €&tX) of rectangles that shapes the silhou-
ette X, we select the firsb/ rectangles inside this set, which induces a subsgfX) C
C(X). Then, we apply the extra-trees model onto each rectangéei@’,, (X). This pro-
cess generates one vote per rectangle. Finally, the siiteoXids mapped into the class that
has obtained the majority of the votes.

“ This line determines the strength of the attribute selection process. The digi@ is discussed
in [20].
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Fig. 5. A few examples of negative instances contained in the training dataset.

P

Fig. 6. Subset of positive instances contained in the training dataset.

6 Experimental results

6.1 Dataset collection

As mentioned in the introduction, we have focused our erpents on the detection of
human silhouettes in a video stream. The extra-trees hame trained on a dataset of
silhouettes that contains both silhouettes of human batidssilhouettes of other kind of
objects. We have fed the learning set with a large numberstédintes for each of those two
classes.

Some instances of non-human silhouettes, called negatterices, are displayed in Fig-
ure 5. The negative samples are the union of non-human sittesuthat were extracted

from a live video stream by the background subtraction teglenpresented in Section 3,

and of images that were taken from the COIL-100 database T2@re are about 12,000

images in this dataset. As for the positive instances, we léout 3,000 human silhou-

ettes. Some of them are represented in Figure 6. Those tasatathave been converted to
a database that has been fed into the extra-trees leargiogthin (cf. Section 5).

6.2 Tests on real-world images

We have tested our algorithms on a color video stread0fx 480 pixels that was cap-

tured with a FireWire CCD camera. The whole process (indgdiilhouettes extraction,

description, and classification) was carried out at appnaxely five frames per second on
a Pentium IV computer at 3.4 GHz.

The detection of human silhouettes is very robust since timeber of correct classifica-
tions largely outnumbers misclassifications, althoughgweied any correlation between
successive frames. Example images of correct (resp. widagsifications are shown in
Figure 7 (resp. in Figure 8). Our method might be subject toromements, one of them
being the use of a prediction scheme between successivedyamt these first results
demonstrate that on single images our system is capabledgmize specific silhouettes
in a semi-controlled environment.

7 Conclusions

In this paper we propose a new system for the real-time deteend classification of
binary silhouettes. The silhouettes are extracted fromnmpativideo stream using a stan-
dard background subtraction algorithm. Then, each siltteus treated by a new kind of

10
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Fig. 7. Examples of silhouettes classified correctly. A white frame around acctdbicates that the
system classifies it as a human silhouette.

RiLEIRS

Fig. 8. Examples of misclassified silhouettes.

granulometric filter that produces a morphological covethef silhouette and character-
izes it as the set of all the largest rectangles that can bgedeohside of it. One of the
major achievements is that we managed to implement theréeaiiraction step in real-
time, which is uncommon for surface-based descriptors. rétiangle features are then fed
into an extra-trees classifier that assigns a class labeldo éetected silhouette. Thanks
to the simple tree-based structure of extra-trees, thesifiztion step is also very fast.
As a consequence, the whole process that consists of sithsudetection, analysis and
classification can be carried out in real-time on a commonpzdar.

Empirical results that consisted in the application of oetimod to images captured with a
CCD camera put in an environment unknown to the learninggg®show that our method
manages to detect human silhouettes with a high level ofdeméie. Future work will fea-
ture a systematic evaluation of the performances of ourcagmbr. We will also investigate
its exploitation in more complex tasks such as gait recagmithuman tracking, or even
general object tracking.
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