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Chapter 1

Introduction

Measurements of rotation curves of galaxies, the virial paradox in heavy clusters and the
effects of gravitational lensing are today indirect pieces of evidence for the existence of a
non-luminous matter that dominates luminous matter in terms of cosmological density. The
share of this dark matter is estimated at 25% of the total cosmological density and the
arguments of modern cosmology plead for a non-baryonic matter. The difference between
baryonic density and total density is indeed apparent in the analysis of the abundances of
light elements in primordial nucleosynthesis and in the measurements of the fluctuations in
the cosmic microwave background (CMB). The need for a non-baryonic matter is also felt
when trying to explain the major structures of the universe from fluctuations of the baryonic
density observed in the CMB.

Historically, this missing matter was postulated by Fritz Zwicky in 1933 who observed
a large velocity dispersion of the members of the Coma galaxy cluster. The total mass
deduced from the dynamics of the cluster was indeed several hundred times larger than the
mass deduced from its luminosity. According to Zwicky, the observed cohesion of the cluster
could only be due to the presence of a large amount of matter that emitted no light (hence
the appellation “dark matter”). At the time, Zwicky’s suggestion did not generate much
interest in the scientific community and one had to wait for the discovery of the flatness of
the rotation curves of galaxies in the 1970’s to recognize dark matter as a real puzzle. Since
the 1980’s, most physicists and astrophysicists are convinced that dark matter exists around
galaxies and clusters, and try to explain its nature.

To understand the rotation curves of galaxies, early theories postulated the presence in
the halo of our galaxy of heavy normal (baryonic) objects such as black holes, neutron stars
or white dwarfs that may have escaped observation until now. These faint objects were called
MACHO’s (MAssive Compact Halo Objects) and gave rise to several research projects in
the early 1990’s. Among them, the MACHO and EROS projects undertook to observe the
Magellanic clouds. The strategy was based on the phenomenon of microlensing : if one of
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: EROS upper limit on the mass fraction of a spherical Galactic halo realized by
compact baryonic objects as a function of their mass, based on zero observed LMC (Large
Magellanic Cloud) and SMC (Small Magellanic Cloud) events. f is the halo mass fraction
(in %) and M is the mass of the deflector (in solar masses M�). Figure extracted from [2].

these objects passed in front of a background star, one would have been able to detect an
amplification varying with time and hence betraying its presence. The observation of a great
number of events would have given an indication on the density of MACHO’s (which would
be proportional to this number) and on their characteristic mass, which can be shown to be
proportional to the square of the characteristic time of the event [1].

The results of the MACHO collaboration were not conclusive : firstly, the observed events
allowed to deduce that only 20% of dark matter could be explained by the MACHO’s (0%
or 100% would have been more natural). Secondly the most probable mass was estimated to
be 0.5M�. This eliminated the possibility of normal stars that would have been visible and
that of stellar remnants that would have implied a metallicity higher than observed. This
leaves us with the possibility of primordial black holes of stellar masses, which is still not
completely ruled out. Thirdly, in three particular cases, it was shown that the lenses were
probably stars of the Magellanic clouds. This casted doubt on the other observations whose
nature could not be determined with certainty.

The EROS collaboration tried to observe events with smaller characteristic times, and
hence lenses of smaller masses. No such events were observed, leading only to uppers limits
on the MACHO content of the halo, as seen in Figure 1.1.

The role of baryonic dark matter constituted by mini black holes seems therefore to be
very restricted nowadays. Furthermore, X-ray studies of galaxy clusters reveal vast amounts
of gas present between the galaxies in such clusters, accounting for a non-negligible part of
the baryonic dark matter. In summary, baryonic dark matter certainly constitutes a small
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part, estimated to be less than 15%, of the total density of dark matter [3].
In response to the observations above, astronomers have begun to turn to non-baryonic

forms of dark matter, composed of elementary particles. Thus, in the middle of the 1990’s,
one considered neutrinos as contributors to non-baryonic dark matter, with the advantage
that they were at least known to exist. With a relic neutrino number density evaluated at
Nν = 113 cm

−3 per neutrino flavor, the sum of the masses of the three flavors had to have the
value

∑
mνc

2
= 47 eV to explain the observed dark matter density [3]. It is believed that the

mass of the electron-neutrino lies below 2.5 eV/c², the masses of the other two (muon and
tau neutrinos) being rather uncertain, but evidence from neutrino oscillations indicated very
small mass differences, suggesting very low masses for these too. A sum of neutrino masses
of 47 eV/c² seems therefore too high, although this possibility has not yet been completely
rejected. But another more serious problem appeared to be the fact that neutrinos were
a kind of “hot” dark matter, i.e. relativistic at the time of decoupling and also when the
structures in the universe were forming. Indeed, it was realized that dark matter should have
been non-relativistic at the time of decoupling from plasma and radiation, so that one talks
today about Cold Dark Matter (CDM), to condense and accelerate the collapse mechanism
of baryonic matter after its decoupling from radiation. A kind of hot dark matter would in
fact stream away rapidly and tend to iron out any primordial density fluctuations.

In the present context of cold dark matter, a very popular hypothesis is that it is made
of Weakly Interacting Massive Particles (WIMPs), moving with non-relativistic velocities
at the time of decoupling, well before the beginning of the matter-dominated era. These
new massive particles must be stable and, because they have not yet been directly observed,
should not interact electromagnetically. Models must then be proposed to explain their
origin and properties. Among others, we encounter massive sterile neutrinos or particles
from supersymmetric theories (SUSY), such as the neutralino.

There are two possibilities to detect WIMPs : direct or indirect detection. The first one
corresponds to an interaction of the particle in a certain type of detector and the second one
relies on the observation of the annihilation products of WIMPs. Such annihilations could
happen in the halo of the galaxy as well as in the core of the sun. In the case of the sun, this
emission of secondary products would mimic an extra flux of high energy neutrinos from the
direction of our star, which is in fact not observed, excluding this possibility in the particular
case of the sun.

One way to detect directly particles that interact very little is to measure the nuclear
recoil that they produce by hitting the nuclei constituting the detector. One can show that
the maximum laboratory kinetic energy Er of the recoiling nucleus is given by [3] :

Er(max) =
2µ

2
v

2

MN
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where µ = MNM
MN+M

is the reduced mass, M is the mass of the WIMP, MN is the mass of
the recoiling nucleus of mass number A, and v is the WIMP velocity. This corresponds to
the situation in which the momentum vector of the nucleus in the center of mass system is
reversed in the collision, so that it is scattered in the forward direction. Ervaries from v

2
MN

2

when M =MN to 2v
2
MN when M �MN , so with v ∼ 10

−3
c (galactic escape velocity) and

MN ∼ A GeV/c², we expect Er to be of the order of Er ∼MNv
2 ∼ A×1/c2×10

−6
c
2
= A keV.

Hence, sensitive detectors are needed to detect such small recoil energies.
Several methods have been used to record that kind of signal. Among them, one encoun-

ters the detection of the scintillation light from scintillating materials such as NaI or liquid
Xe. Several experiments are underway, such as the underground XENON100 experiment
installed in Italy. XENON100 is a liquid xenon detector [4, 5 ] that, because of the rock that
protects it from the muons coming from cosmic rays, its ultra-pure active material and its
excellent position reconstruction of the events, is an almost background-free instrument to
detect the faint signal that dark matter constituted by WIMPs could deposit in the medium
in the form of a nuclear recoil. The last configuration of XENON100 uses 161 kg of material,
99 kg being used to oppose radioactivity and cosmic rays and 62 kg as active target. It is
in fact a two-phase liquid xenon detector equipped with photomultiplier tubes amplifying
the two signals S1 and S2 produced by an event : a particle generates primary scintillation
light (S1) and ionizations electrons in the liquid phase. The electrons drift upward because
of an electric field and are detected via secondary scintillation light (S2) in the gas phase.
The origin of the S2 signal gives the position of the event in the xy-plane and the drift time
corresponding to the time interval between S1 and S2 gives the last coordinate z, locating
the event in three dimensions with a very good resolution. Additionally, the ratio S2/S1

allows event discrimination between nuclear recoils due to WIMPs (low S2/S1 ratio) from
backgrounds due to gamma or beta decays (electron recoils with much higher S2/S1 ratio).
The experiment has a low-energy threshold of about 5 keVr (nuclear recoil energy).

Using the discrimination parameter log10(S2/S1), three events have survived all the
subtraction tests performed on the data acquired on 100.9 live days between January and
June 2010 [6] and fall into the WIMP search region, where (1.8± 0.6) events from background
were expected. Given the background expectation, the observation of three events does not
constitute evidence for dark matter because the probability to observe three or more events
was 28%. Therefore, only upper limits on the elastic WIMP-nucleon cross section σ versus
the mass of the hypothetical particles could be determined and are shown in Figure 1.2.

The thick blue line (XENON100 2011) corresponds to the 90% confidence level (CL)
limit and has a minimum σ = 7.0 · 10−45 cm² at a WIMP mass of mχ = 50 GeV/c². We see
that it excludes part of the parameter space of supersymmetric theories (in grey) and that it
contradicts in particular the interpretation of the DAMA (red) and CoGent (green) results
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Figure 1.2: Spin-independent elastic cross section σ as function of WIMP mass mχ. The
thick blue line shows the latest XENON100 upper limit at 90% confidence level. The upper
limit from previous XENON100 (2010) is shown by the thin black line. The two 90% CL
areas favored by DAMA [7] (corresponding to scattering on each of the components of the
detector : Na and I) are in red, while the 90% CL area from CoGent is in green (see [8]). The
limits from CDMS II (2010) (Cryogenic Dark Matter Search) and EDELWEISS II (2010)
correspond to the dotted and dashed orange lines respectively. These latter two are not
discussed in this thesis but show the same trend as XENON100, with parameters a little less
constrained. For more details about the CDMS and EDELWEISS experiments, see [9, 10].
Figure extracted from [6].

as being due to light mass WIMPs.
The DAMA underground experiments, which will be discussed further in Chapter 2, have

indeed detected a signal in the range (2− 4) keV presenting an annual modulation that could
be due to the motion of the Earth around the sun in a dark matter halo. One way to resolve
the contradiction with XENON100 as well as with other experiments that could only set
upper limits on the cross section would be for example to find another explanation in terms
of dark matter, i.e. find another candidate than WIMPs, and try to explain the positive
results of experiments as DAMA observing a signal without contradicting the others. This
is obviously only one possibility to try to remove the contradictions that seem to divide
the current research in the field of dark matter and all the options should continue to be
considered.

It should be noted that the CoGent experiment, including a 440-gram crystal of germa-
nium, as it is seen in Figure 1.2, had already detected (in early 2010) a signal with ionization
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energies in the range of approximately 0.4 to 1.0 keV [8] through the ionization caused by
nuclear recoils within the crystal and had deduced the green region in the hypothesis of
light WIMPs with masses around 10 GeV. But no evidence for annual modulation had been
reported. However, very recently, it has been observed that the signal changes with the
seasons in the same way as the DAMA results does. If this is confirmed, this will be the first
evidence for annual modulation somewhere else than in the DAMA detectors.

Under the previous approach consisting in finding another candidate than WIMPs, one
of the alternatives to these popular particles as the constituents of dark matter consists in
new heavy stable charged particles bound in neutral “dark atoms”. Cosmological arguments
indicate that these charged particles should be of charge −2 only and there exist several
theories in which such particles, generically called O

−− , are indeed predicted. In all these
models, O−− behaves either as a lepton or as a specific heavy quark cluster with strongly
suppressed hadronic interactions. Therefore the strong interactions of these dark atoms with
matter are determined by the nuclear interactions of He only. This will be an important
point hereafter. Cosmological scenarios predict that, just after its formation in primordial
nucleosynthesis, He++ screens the O−− charged particles in composite (O−−

He
++) “atoms”,

which are called O-helium (abbreviated as OHe) [11, 12, 13].
The hypothesis of OHe can be tested by the confrontation with experimental data from

DAMA/NaI or DAMA/LIBRA [14, 15]. The annual modulation detected by these exper-
iments can be understood in the framework of a dark matter dominated by OHe. The
emission of a signal may result from the interactions of OHe with matter in the detector. A
bound state OHe-nucleus in the range (2− 4) keV could exist and lead thermal OHe to emit
a photon at the same energy when approaching the nucleus (radiative capture), providing
the observed signal. In the case of CoGent, the emitted photon would ionize the medium,
producing the observed signal at about 1 keV. The annual modulation is easy to explain by
assuming the existence of a halo of OHe surrounding the galaxy. Indeed, the equilibrium
concentration of OHe in underground detectors can be estimated by equaling the incoming
flux at the terrestrial surface and the infalling flux towards the center of the earth. Any
change in the initial flux at the surface leads to a change in concentration in the detector
and therefore to a modulation in intensity. The incoming flux directly depends on the sum
of the velocities of the earth around the sun and the sun around the center of the galaxy:
when they are aligned, the flux reaches its maximum but when they are opposed, it is at its
minimum, hence the observed one-year period.

The challenge is thus to find a 3 keV bound state of OHe with one of the components
of DAMA. This task has been envisaged by Maxim. Yu. Khlopov et. al. [11, 12, 13].
Having established an analytic form for the potential, they simplified it by a square well
potential to solve it exactly and search for a bound state at 3 keV in one of the regions.
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Hints about the existence of this bound state began to favour to sodium of the detector, and
they succeeded, by adjusting the parameters, to reproduce this level. The potential they used
at large distances includes electrostatic and nuclear interactions, corresponding respectively
to the coulomb potential of O−− screened by He

++ and to σ meson exchange between He

and the nucleus, giving rise to a Yukawa-like potential, both decreasing as exp(−r)/r. No
bound states have been found for the other constituent of the DAMA detector, iodine, and
for xenon from XENON experiments, this last result allowing to remove the contraction
between the two experiments.

The observations of DAMA raise a lot of questions and the track of the OHe should
be followed with great interest given the encouraging theoretical results. However, a closer
analysis of the potential of interaction OHe-nucleus has to be carried out, using its true
shape in the Schrödinger radial equation. Here we propose to use an approximate analytical
solution as provided by the WKB (Wentzel-Kramers-Brillouin) method. The main objectives
of this Master thesis are thus at first to understand the WKB method before applying it
to the interaction potential, in the framework of a three-dimensional problem, to provide
an improved resolution and verify or disprove the existence of a bound state at 3 keV for
sodium.

This Master thesis will be organized as follows : in Chapter 2, we will present the DAMA
experiment and its positive results. Then we will summarise the properties of OHe as the
candidate for these observations. The potential of interaction O−− - nucleus will be drawn
from physical arguments first and then derived mathematically. This will fix the problem
and it will be time to consider and describe the WKB method as a source of approximate
analytical solution. This last point will be the subject of Chapter 3. Chapter 4 will be
dedicated to the resolution of the WKB equations, extended to all the known nuclei. We
will first use the non-modified WKB method, which is a pure copy at three dimensions of
the one-dimensional case in which the method is usually presented. Then a modified WKB
method will be tried, probably better suited to the case in three dimensions. The third
section of chapter 4 will treat the resolution of the simplified square well potential with the
exact solution in order to compare it to the approximate WKB solution. This will be a way
to estimate the accuracy of the WKB method in our problem. In all cases, the numerical
results will be presented. In chapter 5, we will calculate the transmission coefficients that are
obtained in the non-modified and modified cases and that correspond to tunneling leading
to the formation of heavy isotopes of known elements and to possible products of nuclear
and electromagnetic reactions between OHe and the surrounding material. Of course, we
will have to consider these results together with the rate of tunneling in order to determine
a mean lifetime of a bound state OHe - nucleus before it enters the nuclear interaction
region. This thesis ends with a conclusion summarizing the results and discussing the possible
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improvements to the model.



Chapter 2

DAMA and the OHe hypothesis

2.1 The DAMA experiment

This Master thesis centers on the DAMA (DArk Matter) experiment, and will try to explain
its positive results in terms of OHe. So we present here a brief description of the experiment
and typical results that were obtained, following references [14, 15].

In fact, there exist two DAMA experiments, both located at the Gran Sasso National
Laboratory in Italy and searching for direct evidences of DM (Dark Matter) particles. The
former, DAMA/NaI has collected results during the period 1996-2002. Its successor is the
DAMA/LIBRA (Large sodium Iodine Bulk for RAre processes) experiment, which uses very
similar technology but has a larger target mass of 250 kg, and is still running today. The
highly pure ' 250 kg NaI (doped with thallium) DAMA/LIBRA set-up is running using
the annual modulation signature of dark matter in the hypothesis of a dark matter halo
that surrounds the galaxy. The exploitation of the annually modulated DM signature with
highly radiopure NaI(Tl) as target material can permit to know if there are actually Dark
Matter (DM) particles in the galactic halo, by direct detection and regardless of the nature
of the candidate and of the astrophysical aspects. The set-up consists of NaI(Tl) scintillators
used as target detectors. Nuclei recoiling after a collision cause emissions of photons that
are detected using photomultiplier tubes. In our case, the emission will be instead due to
radiative capture of OHe by a nucleus, detectable in the same way as a recoil. DAMA is
sensitive up to the MeV scale, even though the optimization is made for the lowest energy
region, that is for several keV, in which a signal is actually detected.

Let us recall that the DM modulation signature uses the effect of the Earth revolution
around the Sun on the number of events induced by DM particles in a suitable low back-
ground set-up placed deep underground. As a consequence of its annual revolution, the
Earth is crossed by larger and smaller fluxes of DM particles at different times of the year,
as its rotational velocity adds up to the one of the Sun with respect to the Galaxy (around

9
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June 2nd), or on the contrary is subtracted to it (around December 2nd, i.e. six months
later). Therefore, the counting rate of events in the k–th energy interval can be written as :

Sk = S0,k + Sm,k cos(ω(t− t0)) (2.1)

where So,k is the constant part of the signal, Sm,k is the modulation amplitude, ω = 2π
T

with
period T and t0 is the phase (' June 2

nd).
An annually modulated signal is very distinctive since a seasonal effect induced by DM

particles must satisfy many restrictive constraints. Among others, the rate must contain a
component modulated according to a cosine function, with a one-year period, with a phase
roughly around June 2

nd , in a well-defined low-energy range, where DM particles can induce
signals. DAMA/LIBRA and the former DAMA/NaI are the only experiments effectively
exploiting all the aspects the DM annual modulation signature and all the restrictive con-
straints associated with it. This may be the reason of the lack of observations in some other
experiments.

Table 2.1 and Figure 2.1 present some results obtained over several years by DAMA/NaI
and DAMA/LIBRA. The curves in Figure 2.1 are quite convincing and leave little doubt on
an annual modulation in the signal in the range (2− 4) keV. With the cumulative exposure,
the modulation amplitude of the events in the (2− 6) keV energy interval measured in the
NaI(Tl) detector is (0.0116± 0.0013) cpd/kg/keV (counts per day per kg per keV). The
measured phase is (146± 7) days and the measured period is (0.999± 0.002) yr, well in
agreement with the values expected for an annual modulation signature. These results
motivate the study of OHe and the search for a bound state with one of the components of
the detector in the energy range (2− 4) keV.

Figure 2.2 shows the cumulative low-energy distribution of the single-hit scintillation
events measured by the DAMA/LIBRA detectors in an exposure of 0.53 ton×yr. The ob-
served signal is visible between 2 and 4 keV, while the higher signal below 2 keV corresponds
to experimental noise and shows that the energy threshold is equal to 2 keV.

To support the observations, a theoretical model is needed, which proposes a serious
candidate that could explain the observational results. This is just what we are trying to do
with the OHe in this Master thesis. Before entering into the details of developments specific
to this work, let us give an overview of what is already known about OHe.

2.2 Presentation of OHe

In this section, we mainly follow some of the aspects considered in [11, 12, 13]. OHe is an
example of a new type of objects that are called “dark atoms”. Whereas most dark matter
models propose candidates that are neutral particles, we consider here new stable charged
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Figure 2.1: Experimental residual rate of the single-hit scintillation events, measured by
DAMA/LIBRA runs in the (2− 4), (2− 5) and (2− 6) keV energy intervals as a function
of time. The zero of the time scale is January 1st of the first year of data taking of the
former DAMA/NaI experiment. The experimental points present the errors as vertical bars
and the associated time bin width as horizontal bars. The superimposed curves are the
cosine functions A cos(ω(t− t0)) with a period T = 2π

ω
= 1 yr, with a phase t0 = 152.5 day

(June 2nd) and with amplitudes A equal to the central values obtained by best fit over
the whole data including also the exposure previously collected by the former DAMA/NaI
experiment: cumulative exposure is 1.17 ton × yr. The dashed vertical lines correspond to
the times of the maxima expected for the DM signal (June 2nd), while the dotted vertical
lines correspond to the minima. Figure extracted from [15].



12 CHAPTER 2. DAMA AND THE OHE HYPOTHESIS

Period mass
(kg)

exposure
(kg × day)

(α− β
2
)

DAMA/LIBRA-1,2,3,4 Sept. 9, 2003 - July
17, 2007

232.8 192824 0.537

DAMA/LIBRA-5 July 17, 2007 - Aug.
29, 2008

232.8 66105 0.468

DAMA/LIBRA-6 Nov. 12, 2008 -
Sept. 1, 2009

242.5 58768 0.519

DAMA/LIBRA-1 to -6 Sept. 9, 2003 - Sept.
1, 2009

317697
' 0.87 ton

× yr

0.519

DAMA/NaI +
DAMA/LIBRA-1 to -6

1.17 ton ×
yr

Table 2.1: Exposures of the DAMA/LIBRA annual cycles and the cumulative exposure of
runs 1,2,3,4,5,6, when including the former DAMA/NaI. Here α = 〈cos(ω(t− t0))〉

2

is the
mean value of the squared cosine and β = 〈cos(ω(t− t0))〉 is the mean value of the cosine
(the averages are taken over the live time of the data taking and t0 = 152.5 day, i.e. June
2
nd); thus (α− β

2) indicates the variance of the cosine. Data extracted from [15].

Figure 2.2: Cumulative low-energy distribution of the single-hit scintillation events as mea-
sured by the DAMA/LIBRA detectors in an exposure of 0.53 ton×yr. This shows that the
energy threshold of the experiment is 2 keV. Figure extracted from [14].
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particles bound to primordial helium in neutral dark atoms and we can already talk about
unconventional dark matter in the sense that it is a kind of composite dark matter.

As we already mentioned in the Introduction, these particles should be of charge −2.
Indeed, the main problem with charged particles as the solution for dark matter is to suppress
the abundance of positively charged particles bound to ordinary electrons, the result being
anomalous isotopes of hydrogen or helium. This problem is insurmountable if the particles
are of charge −1. In 2005, Glashow proposed a model in which stable tera-U -quarks of charge
+2/3 formed clusters UUU bound with tera-electrons E of charge −1 in neutral (UUU)EE
tera-helium that behaved like WIMPs. The problem is that as soon as primordial helium is
formed in Big Bang nucleosynthesis, it captures all the free E in positively charged (HeE)

+

ions, preventing any further suppression of positively charged antiparticles. The acceptable
solution is then obtained by considering particles of charge −2 only. It is also necessary
that such stable particles are predicted by some models. This last point is verified since
several exotic theories of elementary particles predict the existence of heavy stable particles
of charge −2. We also may think about stable antibaryons Ū Ū Ū where U is a quark of
fourth generation and charge +2/3.

In all the models, these −2 charge particles, generically called O−− , behave either as lep-
tons or as specific heavy quark clusters, leading to strongly suppressed hadronic interactions.
Indeed, O−− is expected to be very massive, of the order of 1 TeV. Not being constituted of
quarks u or d (the constituents of baryonic matter in normal conditions), it does not interact
through pion exchange (strong nuclear interaction). The only possible strong interaction
is then reduced to pure gluon exchange between O

−− and quarks u and d of conventional
matter. The amplitude of the simplest interaction, corresponding to the exchange of only
one gluon, is proportional to the strong coupling constant αS. But this constant depends on
the mass scale at which we are working, here the mass of O−− , and the standard model tells
us that αS is small in that case. This makes the hadronic interactions of O−− with matter
strongly suppressed .

After it is formed in Big Bang nucleosynthesis, 4
He

++ screens the O
−− in composite

(4He++
O

−−), called O-helium (OHe) atoms 1. Given the suppressed interaction of O−−,
these dark atoms will interact mostly via the nuclear interactions of OHe.

The Big Bang theory states that all the primordial helium was formed after the first
few minutes of the universe. When it has cooled enough, all free O−− are trapped by 4

He,
electromagnetically bound in O-helium atoms with an ionization potential given by the
binding energy of an hydrogen-like atom :

I0 =
1

2
Z

2

OZ
2

Heα
2

mHe ' 1.6 MeV

1For more details about the cosmological aspects of OHe, see [11, 13].
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where α is the fine structure constant, ZHe = 2 and ZO = 2 are the absolute value of the
electric charges of He++ and O−− .

From here, if not specified otherwise, it should be noted that we work with natural units
supplemented by the Heaviside-Lorentz units :~ = c = k = 1

ε0 = µ0 = 1

where ~ = h
2π

is the reduced Planck constant, c the speed of light, k the Boltzmann constant,
ε0 the dielectric permittivity of vacuum and µ0 the magnetic permeability of vacuum.

The Bohr radius of OHe is obtained by simply replacing me by mHe and e2 by ZOZHee
2

in its expression : r0 = 4π
2

πmee
2 → 4π

2

πmHeZOZHee
2 = 4π

e
2

1
ZOZHemHe

= 1
ZOZHeαmHe

with α = e
2

4π
. In

a first approximation, we assimilate the Bohr radius to the size of an O-helium atom :

r0 ' 2.10
−13

cm = 2 fm

Hence we consider OHe as a semi-classical atom, with He
++ orbiting around O

−− on its
Bohr orbit. This vision will be heavily used to establish the potential of interaction of OHe
with matter in the next section.

2.2.1 OHe interaction with matter

Being decoupled from baryonic matter, the OHe gas does not follow the formation of bary-
onic astrophysical objects such as stars, planets or galaxies but forms dark matter halos
surrounding the galaxies. The galaxy as a whole is transparent for OHe in spite of its in-
teractions, making only individual compact objects (stars, planets) opaque for it. So, a
consequence is the presence of OHe in terrestrial matter, which stores all its in-falling flux
from the halo. After they hit the surface, the OHe particles fall down and are slowed down
due to elastic nuclear collisions. So much that they are thermalized and give rise to so low
energy transfer by recoil effects that this kind of direct detection is not appropriate for this
form of dark matter. However, other observable effects due to OHe in underground detectors
can take place.

To evaluate them, we first have to know the concentration of OHe in terrestrial matter, to
which the rate of events is proportional. This can be estimated by the equilibrium between
the in-falling and down-drifting fluxes. It can be shown that the down-drifting velocity of
the particles towards the center of the earth is given by

V ' 80S3A
1/2

med cm/s

where Amed ' 30 is the average atomic weight in terrestrial surface matter and S3 =

MOHe/(1TeV ) with MOHe the mass of OHe. The in-falling OHe flux from the halo is
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given by

F =
n0

4
|
−→
V h +

−→
V E|

where Vh = 220 km/s is the velocity of the solar system, VE = 29.5 km/s is the velocity
of the Earth around the Sun and n0 = 3.10

−4
S

−1

3 cm
−3 is the local density of OHe in the

dark matter halo. The 1
4
= 1

2
× 1

2
factor takes into account the “day-night cycle” due to the

rotation of the Earth and the average of the flux on all latitudes and longitudes. Velocity
dispersion and distribution of particles in the in-falling flux have not been taken into account
for simplicity.

The equilibrium concentration n0E deep beneath the surface is therefore obtained by
equaling the two fluxes

n0EV = F

The norm |−→V h +
−→
V E| can be evaluated as follows(−→

V h +
−→
V E

)2
=

−→
V 2

h +
−→
V 2

E + 2VhVE cos(ω(t− t0))

⇒ |~Vh +
−→
V E| ' Vh

(
1 +

VE
Vh

cos(ω(t− t0))

)
so that

n0E = n
(1)
0E + n

(2)
0E cos(ω(t− t0)) (2.2)

=
n0

320S3A
1/2
med

Vh +
n0

320S3A
1/2
med

VE cos(ω(t− t0))

with obvious definitions of n(1)
0 and n(2)

0
2, which correspond respectively to the constant part

and to the amplitude of modulation of the equilibrium concentration, and where ω has the
same definition as for the counting rate (2.1) with a one-year period and with the same phase
t0.

In fact, the phase t0 is not exactly the same as the time when the flux F reaches its
maximum (when ~Vh and ~VE are parallel) because of the drift time of the particles from the
surface to the underground detector : the change of the incoming flux caused by the motion
of the earth along its orbit leads at a depth L ∼ 105 cm to the corresponding change in
the equilibrium concentration of OHe on the timescale tdr ' L

V
' 2.5102S−1

3 = 2500 s for
MOHe = 1 TeV.

The effects of OHe in the detector lead to the release of a signal with an intensity
proportional to the concentration n0E, depending on the details of the interactions of OHe
with nuclei. Hereafter we derive the interaction potential, which will be repeatedly used in
the following pages of this work.

2Note that this formula differs from that of [11] by a factor 2 in the amplitude of the oscillation.
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As already announced, the explanation of the results of DAMA experiments is based on
the assumption that OHe can form a few-keV bound state with at least one of the constituents
of the detector (sodium, iodine and thallium). We are thus interested by the reaction :

A+ (
4

He
++

O
−−

) → [A(
4

He
++

O
−−

)] + γ

with nuclei of mass number A.
The main task is now to derive, from physical arguments, the potential of interaction

OHe - nucleus, which will be later used in the Schrödinger equation. If this potential has
spherical symmetry, we know that the spatial wave function can be separated in radial and
angular parts : ψnlm(r, θ, ϕ) =

unl(r)
r
Y m
l (θ, ϕ) where Y m

l are the spherical harmonics, with the
condition unl(0) = 0 so that the wave function is regular at the origin. The radial part u(r)
is a solution of the radial Schrödinger equation taken in the center of mass of the system
and representing the relative motion of the reduced mass µ:

d2u

dr2
+ 2µ[E − V (r)]− l(l + 1)

r2
= 0 (2.3)

where E is the energy in the center of mass system, l is the relative angular momentum and
the reduced mass is :

µ =
MOHeMA

MOHe +MA

(2.4)

where MA is the mass of the nucleus. Since the mass of O−−, MO, is expected to be very
high, MOHe ' MO � MA, the center of mass of the system approximately coincides with
the position of O−− and µ 'MA.

An important remark is that strictly speaking, the problem at hand is a three-body
problem (O−− − He

+ − nucleus, each with an extension). Given the difficulty of dealing
with this kind of problem, this is simplified to a two-body problem, OHe and nucleus, where
the nucleus is seen as a point-like entity. To build the potential, we will need to consider OHe
as an extended entity, that may be polarized for example. We will go from a representation
of OHe as a simplified version of the atom (Bohr atom), where He is on a Bohr orbit of
radius r0 around O

−− , to another one based on the ground state of a hydrogen-like atom.
It is clear that a complete comprehension of the interactions of OHe with matter will only
follow from a three-body analysis.

The approach [ ] assumes the following picture : at a distance larger than its size, OHe
is neutral, being only the source of a Coulomb field of O−− screened by He++

UIII =
ZOZα.FO(r)

r

where ZO = −2 is the charge of O−− , Z is the charge of the nucleus and FO(r) = (1 +
r
r0
) exp(−2r/r0) is the screening factor of the Coulomb field of O−− , r0 being the size (Bohr

radius) of OHe. This results in an attraction between OHe and the nucleus at large distances.
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Let us derive this expression for UIII . The main problem is to determine the electrostatic
potential U(r) generated at a point P at a distance r from the origin by a spherical distri-
bution of charges [16], i.e. He of charge 2e in an s-state around O

−− . The wave function in
the ground state is given by ψ(r′) = 2√

4π
(r0)

−3/2

exp(−r′/r0) [17], so that the charge density
ρ(r′) = 2e|ψ|2 is equal to

ρ(r′) =
2e

π

1

r
3

0

exp(−2r′/r0)

where −→r ′ locates the sources. To perform this calculation, it is appropriate to divide the
charge distribution into concentric spherical shells of radius r′ and thickness dr′ and separate
the cases where P is inside or outside the shells. Recall that the electrostatic potential is
the same as though the shell were concentrated at the origin if P is outside and is constant
whatever the position of P inside the shell. The infinitesimal elements to integrate from
r′ = 0 to r′ = ∞ are therefore

dU(r) =


4πr′

2 2e

πr
3

0

exp(−2r′/r0)dr′

4πr
, r ≥ r′

4πr′
2 2e

πr
3
0

exp(−2r′/r0)dr′

4πr′
, r ≤ r′

and the electrostatic potential

U(r) =
2e

πr
3

0

(
1

r

ˆ r

0

r′
2

exp(−2r′/r0)dr
′ +

ˆ ∞

r

r′ exp(−2r′/r0)

)
After integration by parts of these two integrals, we get easily

U(r) =
−2e

4πr0

(
1 +

r0
r

)
exp(−2r/r0) +

2e

4πr

So far we have not taken into account the presence of O−− at the center of the charge
distribution, generating a Coulomb potential −2e

4πr
that gives a total electrostatic potential at

point P

Ũ(r) =
−2e

4πr0

(
1 +

r0
r

)
exp(−2r/r0)

Considering now the interaction potential OHe-nucleus and introducing the fine structure
constant, we finally get

UIII(r) =
−2Zα

r0

(
1 +

r0
r

)
exp(−2r/r0) (2.5)

which is the desired screened Coulomb potential.
The difference with the studies that have already been made in [11, 12, 13] about this

potential appears here : whereas in other works a Yukawa-like nuclear potential resulting
from particles exchange between He and nucleus is added, we consider here only the purely
electrostatic case at large distance.
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When OHe approaches the nucleus, strong nuclear attraction between He and the nucleus
causes the polarization of OHe and the mutual screened Coulomb attraction is changed by
dipolar repulsion. Let us consider the negatively charged O−− at the origin and the positively
charged He++ on its Bohr orbit, at a distance r0 along the z axis. The nucleus is at distance
r from O

−− , r′ from He
++ and at an angle θ from the z axis. The electrostatic interaction

potential at position −→r of the nucleus is given by :

U(r) =
−2Zα

r
+

2Zα

r
′

We have :

−→
r′

2

= (−→r −−→r0 )
2

= −→r 2

+−→r 2

0 − 2−→r −→r0 cos θ

= r
2

(
1 +

r
2

0

r2
− 2

r0
r
cos θ

)

so that

1

r
′ =

1

r

√
1 +

r
2
0

r
2 − 2 r0

r
cos θ

' 1

r

(
1 +

r0
r
cos θ

)
at the first order in r0

r
. Therefore, we find the well known dipolar approximation : U(r) =

2Zαr0
r
2 cos θ. We note that in our case, the nucleus, causing the polarization, is necessarily on

the z axis, so that cos θ = 1. We finally have in the second region3 :

UII(r) =
2Zαr0
r2

(2.6)

where the factor 2 in the right hand side stands for the absolute value of the charge of the
dipole (= |Z0|). This simple remark allows us to keep a spherical symmetry for the problem,
otherwise the solutions in the form of a radial part and spherical harmonics would no longer
be valid, nor the time-independent radial equation recalled above.

When helium is completely merged with the nucleus, the interaction is dominated by
the nuclear interaction of He with the nucleus, which can in a very good approximation be
treated as a very deep rectangular well. The minimum value of this well will not be fixed

3Note that the assumption
(
r0
r

)2
� 1 seems here not well verified because the polarization takes place

when the nucleus and OHe are close from each other. It would be more appropriate to consider the exact
expression for 1

r′ , always asking cos θ = 1 : 1
r′ =

1

r

√
1+

r
2
0

r
2 −2

r0
r

= 1

r

√
(1− r0

r )
2
= 1

r−r0
, giving UII(r) =

2Zαr0
r(r−r0)

.

The direct effect of this correction is to raise the potential barrier that is this dipolar interaction region. The
singularity in r = r0 is only apparent because, as we shall see, the dipolar interaction is no longer valid at
so small distances and has to be replaced by nuclear interaction.
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Figure 2.3: Shape of the potential of interaction OHe-nucleus

now but will be discussed later. Nevertheless, we can already say that it will be a value of
the order of several tens of MeVs or perhaps a hundred MeVs, i.e. a typical magnitude for a
nuclear potential well. We have therefore, in the region of the shortest distances

UI = −V0 (2.7)

We are now ready to draw the shape of the potential. Figure 2.3 shows the type of
curve with which we will have to deal. Typically, UII takes values of the order of several
MeVs and UIII is of the order of several keVs. Therefore, Figure 2.3 does not respect the
proportions for clarity. The potential well in region III, in which we will search for a 3 keV
bound state, is indeed very shallow compared to the other two regions. To delimitate the
size of the different regions, we use the following simple arguments : region I corresponds to
nuclear interaction between He and the nucleus, when helium is completely merged with the
nucleus. Therefore, we consider that it extends from r = 0 to r = R where R is the radius
of the nucleus. Polarization takes place when helium and the nucleus are almost in contact,
due to nuclear interaction. Thus, region II begins at r = R and ends at r = a ' r0+ rHe+R

where rHe is the radius of a helium nucleus. This is of course a very rough approximation,
that will need to be refined later, but that is sufficient to understand the shape of the curve.

To be able to predict a rate of events, we must know the rate of radiative capture of OHe
by the nucleus to the energy level E in a medium at temperature T . It can be shown that
it is equal to [ ]

σv =
fπα

m2
p

3√
2

(
Z

A

)2
T√
AmpE

GeV −2 (2.8)

when expressed in natural units. σ is the cross section of radiative capture and v is the rela-
tive velocity between OHe and the nucleus. The factor f = mn−mp

mp
' 1.4 · 10−3 corresponds

to the relative mass difference between neutron and proton, mn and mp being the masses of
neutron and proton respectively.
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The rate of events in a detector, measured in counts per day per kg (cpd/kg), separates
into a constant part ξ and a modulated part of amplitude ς because of the annual modulation

dN

dt
= σv(cm3s−1)× n0E(cm

−3)× n1 kg of detector
atoms × t(= 1 day in seconds)

= σv n
(1)
0E n

1 kg of detector
atoms t+ σv n

(12)
0E n1 kg of detector

atoms t cos(ω(t− t0))

= ξ + ζ cos(ω(t− t0)) (2.9)

where n1 kg of detector
atoms = 1 kg of detector×NA

(AI+ANa)
= QNA

(AI+ANa)
is the number of atoms in 1 kg of matter

of detector (made of NaI for the DAMA detector), with NA Avogadro’s number, and t the
number of seconds in one day. With the previous expressions for σv and n

(1)
0E, the constant

part ξ of the signal in the case of the detector of DAMA is given by

ξ =
3παn0NAVhtQ

320
√
2A

1/2
med (AI + ANa)

f

S3m2
p

(
Z

A

)2
T√
AmpE

= 64.13 · 1010 f
S2
3

(
Z

A

)2
T√
AmpE

(2.10)

while the amplitude ς of the annual modulation of the signal can be expressed in the same
way as

ς =
3παn0NAVEtQ

320
√
2A

1/2
med (AI + ANa)

f

S3m2
p

(
Z

A

)2
T√
AmpE

= 8.6 · 1010 f
S2
3

(
Z

A

)2
T√
AmpE

(2.11)

To get the right cpd/kg units and multiplicative factors, we used n0 = 3 · 10−4S−1
3 cm−3,

NA = 6.022·1023mol−1, VE = 29.5·105 cm/s, t = 86400 s, Q = 1000 g, AI+ANa = 150 g/mol,
640A

1/2
medS3 ' 3505S3 cm/s, mp = 0.938GeV , ~c = 0.197·10−13 cm·GeV and c = 3·1010 cm/s.

The remaining temperature T has to be expressed inGeV via the conversion 1 eV ↔ 11600K

as well as mp and E. Expression (2.11) will be useful to directly compare our results to the
observations.

Using (2.11), we realize that the results of DAMA/NaI and DAMA/LIBRA experiments
can approximately be reproduced in particular for a binding energy ENa = 3 keV (taken in
absolute value) for the OHe-Na system.

We have now to analyse the potential of interaction on Figure 2.3, to which can be added
a centrifugal potential when the angular momentum is non-vanishing. Although it looks
simple, no analytic solution exists for the potential of region III. To search for a low energy
bound state in region III and to be able to begin the calculations, we thus need a method
that can give us an approximate analytic solution. It is the role of the WKB method that
we present in the following Chapter.



Chapter 3

The WKB approximation

The WKB (Wentzel-Kramers-Brillouin) approximation is a method of approximate resolu-
tion of the Schrödinger equation, applicable when the Schrödinger equation can be replaced
by its classical limit, except in certain regions of space around singular points, called “turning
points” (points where E = V (−→r )). This method is closely related to the classical limit of
the Schrödinger equation and finds an interpretation in this context. So, before introducing
the method itself, we consider the classical limit of quantum mechanics. In the first three
sections of this Chapter, we follow some of the calculations that are made in [18]. The
last one is from [16]. Note that in this particular chapter, we reinsert the reduced Planck
constant (~ 6= 1) for reasons that will become clear shortly.

3.1 The classical limit of the Schrödinger equation

In the limit where ~ → 0, the laws of quantum mechanics must reduce to those of classical
mechanics. This requirement has played a fundamental role in the elaboration of the theory.
Classical mechanics must thus provide a good description of phenomena under circumstances
where the quantum of action ~ may be considered as infinitely small, in the same way that
we recover the geometrical optics when the wavelength λ goes to zero in wave optics. This
idea is used in the WKB approximation where the wave function is developed in powers of
~, before we only keep the terms of first order in ~.

To better understand the WKB approach, let us therefore examine the classical approx-
imation. Let us consider a particle in a potential V (−→r ) and separate the modulus and the
phase of its wave function :

ψ(−→r , t) = A(−→r , t) exp( i
~
S(−→r , t)) (3.1)

where A and S are real functions of t and −→r . We can substitute expression (3.1) in the

21
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Schrödinger equation dependent on time :

i~∂tψ(−→r , t) =
[
− ~2

2m
4+ V (−→r )

]
ψ(−→r , t) (3.2)

and separate the real and the imaginary parts multiplying the phase factors to get respec-
tively :

∂tS +

(−→
∇S
)2

2m
+ V =

~2

2m

4A
A

(3.3)

m∂tA+
(−→
∇A.

−→
∇S
)
+
A

2
4S = 0 (3.4)

after developing 4ψ as

4A exp(
i

~
S) +

2i

~

(−→
∇A.

−→
∇S
)
exp(

i

~
S) +

i

~
A4S exp(

i

~
S)− 1

~2A
(−→
∇S
)2

exp(
i

~
S)

The equations (3.3) and (3.4) are equivalent to equation (3.2). Equation (3.4) corresponds
to the continuity equation. Indeed, the density of probability and the current density, re-
spectively given by P = |ψ|2 and

−→
J = ~

2mi

(
ψ∗−→∇ψ − ψ

−→
∇ψ∗

)
, are in terms of A and S given

by
P = A

2

(3.5)

−→
J = A

2

−→
∇S
m

(3.6)

By multiplying (3.4) by 2A, we get 2mA∂tA+2A
(−→
∇A.

−→
∇S
)
+A

24S = m∂tA
2
+
−→
∇ .
(
A

2−→∇S
)
=

0, i.e.

∂tA
2

+
−→
∇ .

(
A

2

−→
∇S
m

)
= 0 (3.7)

which is nothing else than the continuity equation given expressions (3.5) and (3.6).
The classical approximation consists here in neglecting the term of order ~2 in equation

(3.3) (limit ~ → 0), which gives

∂tS +

(−→
∇S
)2

2m
+ V = 0 (3.8)

If it really corresponds to the classical limit, the velocity −→v of the classical particles
should be given by

−→v =

−→
J

P
=

−→
∇S
m

(3.9)

where P and
−→
J are seen as the density and the current density of a classical fluid. Therefore,

the continuity equation being already verified, it remains to show that the velocity field (3.9)
verifies the evolution law of a classical fluid. Equation (3.8) can be rewritten as ∂tS+ mv

2

2
+

V = 0 and taking the gradient one gets ∂t
−→
∇S +m−→v .

−→
∇v +

−→
∇V =

(
∂t +

(−→v .−→∇))m−→v +
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−→
∇V = 0. In other words, the particles obey the equation of motion of a classical fluid
subjected to a potential V :

m
d−→v
dt

= −
−→
∇V

This last equation proves the desired result.

The optical analogy that we mentioned at the beginning of this section takes now all
its meaning : since the velocities of the classical particles are proportional to

−→
∇S, these,

and hence the trajectories, are orthogonal to the surfaces S = Cst. But remember that
S corresponds to the phase of the wave function, so that the surfaces S = Cst are the
wave front. In the classical limit, the trajectories are orthogonal to the surfaces of matter
waves which are solutions of the Schrödinger equation, as in geometrical optics the rays are
orthogonal to the surfaces of light waves which are solutions of the Maxwell equations.

3.2 WKB solutions in one dimension

As just mentioned, the method consists in replacing the Schrödinger equation by its classical
limit through the introduction of a development in powers of ~ and in neglecting the terms
of order greater than or equal to ~2, after having done the same substitution as for the
previous classical limit. But we want to make this replacement even in the regions where the
classical interpretation has no sense (regions in which E < V ). We have to change slightly
the definitions of A and S to include these regions

ψ(−→r ) = exp(
i

~
W (−→r )) (3.10)

W (−→r ) = S(−→r ) + ~
i
T (−→r ) (3.11)

A(−→r ) = exp(T (−→r )) (3.12)

where A and S can now be complex.

Here we derive the WKB solutions that are approximations of the stationary solutions
of the Schrödinger equation independent of time. As the radial equation, recalled in section
(2.2.1) relative to interactions of OHe with matter, is of the form of the equation in one
dimension, we will be able to use the solutions established in one dimension in the three-
dimensional case, when the potential has a spherical symmetry.

In one dimension, we have

y′′ +
2m

~2
[E − V (x)] y = 0 (3.13)
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where the prime denotes the derivative with respect to x. The substitutions (3.10), (3.11),
(3.12) give here

y = exp(
i

~
w), w = S +

~
i
lnA,

i.e. y = A exp( i~S). We can easily see that equation (3.13) becomes

S ′2 − 2m (E − V ) = ~2
A′′

A
(3.14)

AS ′′ + 2A′S ′ = 0 (3.15)

for the real and imaginary parts respectively. These equations are to be compared with
equations (3.3) and (3.4). Equation (3.15) can easily be integrated : A′

A
= −1

2
S′′

S′ ⇒
´

dA
A

=

−1
2

´
S′′

S′ dx = −1
2

´
df
f

where f = S ′ ⇒ lnA = ln(S ′)
−1/2

+ C, i.e.

A = C
(
S

′)−1/2

(3.16)

which can be substituted in equation (3.14) to give :

S ′2 − 2m (E − V ) = ~2

(S ′)
1/2

[
C

(
1

2

)(
3

2

)
(S ′)

−5/2

(S ′′)
2

− Cs

(
1

2

)
(S ′)

−3/2

S ′′′
]

so that

S ′2 = 2m (E − V ) + ~2

[
3

4

(
S ′′

S

)2

− 1

2

S ′′′

S ′

]
(3.17)

The WKB approximation consists in introducing the development in powers of ~2 :

S = S0 + ~2

S1 + ..., (3.18)

to substitute in equation (3.17) for S and in keeping only the terms of order zero :

S ′2 ' S ′2
0 = 2m (E − V (x)) (3.19)

Two cases are to be considered, corresponding to the classical and non classical regions

1. E > V (x) (classical region)

We define the wavelength
λ̄ =

~√
2m (E − V (x))

(3.20)

which has length units. We can rewrite λ̄ = ~
p

where p is the local momentum of the classical

particle. Indeed, E = K + V with K = mv
2

2
the kinetic energy, so that p2

= m
2
v

2
=

2m (E − V ) and p(x) =
√

2m(E − V (x)). We have

S ′2
0 =

~2

λ̄2 ⇒ S ′
0 = ±~

λ̄
' S ′
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S(x) =

ˆ x

S ′dx '
ˆ x ~

λ̄
dx

⇒ w(x) ' ±
ˆ x ~

λ̄
dx+

~
i
lnC − 1

2

~
i
lnS ′

by definition of w. Therefore, we find that y ' e
±i
´x dx

λ̄ × e
lnCst × e

− 1
2 lnS′

= Cst√
k(x)

e
±i
´x

k(x)dx ,
so the most general solution has the form

y(x) ' 1√
k(x)

(
A exp(+i

ˆ x

k(x)dx) +B exp(−i
ˆ x

k(x)dx)

)
(3.21)

where k(x) = 1
λ̄(x)

and A and B are arbitrary constants. Solution (3.21) corresponds to the
WKB approximation in the region E > V (x).

2. E < V (x) (forbidden region for classical particles)

This time we define

l(x) =
~√

2m (V (x)− E)
(3.22)

In the same way, we find

y(x) ' 1√
κ(x)

(
C exp(−

ˆ x

κ(x)dx) +D exp(+

ˆ x

κ(x)dx)

)
(3.23)

where κ(x) = 1
l(x)

and C and D are arbitrary constants. Solution (3.23) is the WKB
approximation in the region E < V (x).

We immediately notice that solutions (3.21) and (3.23) diverge near the turning points
E = V (x) due to the factor 1

|E−V | contained in the amplitudes. So, the WKB solutions
cannot be good approximations in these regions. As any approximation method, the WKB
approximation has validity conditions that we derive hereafter.

3.3 Validity conditions

The most natural way to find a validity criterion is to calculate the second term ~2
S1 of the

development (3.18) and see if the correction e
i~S1 to the wave function can be neglected or

not. It will be the case if ~S1 is negligible (~S1 � 1).
We have to substitute the development (3.18) into the equation (3.17) for S and keep

the terms of order 0 and 1 in ~2 . We obtain an equation for S1 by equaling the terms in ~2 .
The details of the calculations can be found in Appendix A. The differential equation for S1

is found to be
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2S ′
0S

′
1 =

3

4

(
S ′′
0

S ′
0

)2

− 1

2

S ′′′
0

S ′
0

(3.24)

If E > V , we saw that S ′
0 = ± ~

λ̄
. By inserting this last expression in (3.24), we obtain

~S ′
1 = ±

(
1

4
λ̄′′ − 1

8

λ̄′
2

λ̄

)
(3.25)

and therefore, after integration

~S1 = ±

(
1

4
λ̄′ − 1

8

ˆ x

λ̄′
2

λ̄
dx

)
(3.26)

The results are found to be the same, with λ̄(x) replaced by l(x), when E < V . In view of
equation (3.26), the condition ~S1 � 1 is satisfied if

λ̄′(x) � 1 when E > V (x)

l′(x) � 1 when E < V (x)

These two conditions can be simplified into one by using the definitions (3.20) and (3.22)

|m~V ′|
|2m (E − V ) |3/2

� 1 (3.27)

which we will consider as the criterion of validity of the WKB approximation. If it is not sat-
isfied, the second term of the development (3.18) cannot be neglected and the approximation
is not good. We see that near the turning points, and as already announced, the criterion
is certainly not satisfied. This comes from the fact that, mathematically, the WKB approx-
imation corresponds to the replacement of the Schrödinger equation by another equation
which has a singular point at x such that E = V (x). To obtain the complete solution, we
must therefore solve the Schrödinger equation in a suitable region around the turning point
and connect it with the WKB solutions on both sides, where they are good approximations.
But in practice, it is not necessary to know the solution around a turning point. The most
important issue is to be able to connect the WKB solutions on both sides, i.e. to connect
the solution (3.21) in a region E > V (x) far from the turning point to the solution (3.23)
in a remote region E < V (x) on the other side of it. Because they will be of paramount
importance for the calculations that we will perform, we propose to complete this Chapter
on the WKB method by presenting these connection formulas.

3.4 Connection formulas

Here we don’t demonstrate the connection formulas but just explain the method to obtain
them. The usual way to make the connection between the oscillatory solution (3.21) and
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the exponential solution (3.23) is to separate out a small region around the turning point,
in which we solve the Schrödinger equation exactly. We approximate the potential in this
region by a linear function, and connect the exact solution to the asymptotic forms (3.21)
and (3.23) to make a function that, together with its first derivative, is continuous. This
procedure is general and has not to be done for each new problem. The result is a set of
formulas that relate the constants A, B, C and D of (3.21) and (3.23), independently of
what happens in the intermediate region. Two cases are to be considered :

Barrier to the right (E < V to the right of the turning point) :C = 1
2
(θ∗A+ θB)

D = θA+ θ∗B
(3.28)

Barrier to the left (E > V to the right of the turning point) :C = θ∗A+ θB

D = 1
2
(θA+ θ∗B)

(3.29)

where θ = e
iπ/4 . These formulas will allow us to connect without any difficulty the two types

of WKB solutions on both sides of a continuous transition from a classical (non classical) to
a non classical (classical) region. Of course, in the case of a discontinuity of the potential,
we will require as usual the continuity of the wave function and its first derivative.





Chapter 4

Resolution of the Schrödinger equation

In this chapter we analyse the potential presented in the Chapter 1 using the WKB approx-
imation in order to find an energy level around 3 keV corresponding to a bound state in
the third region. This is done in two ways : using the non-modified WKB approximation
and a modified version thereof. The first method is a mere copy of the one-dimensional
case given the similarity between the radial equation (2.3) and the Schrödinger equation
in one dimension (3.13) if we consider the effective potential Veff (r) = V (r) + l(l+1)

2µr2
, and

the second one will be detailed in the corresponding section. Then we consider a simplified
version of our problem, which is a square well-potential. The goal being to determine a
minimum energy state in a given region, we will search for the minimum energy solution in
that region corresponding to an angular momentum equal to zero, so that we can set l = 0 in
the effective potential. Higher levels for l = 0 are also considered. In each case, we present
the numerical results.

4.1 Non-modified WKB approximation

4.1.1 Construction of the solutions

In the case l = 0, the spherical harmonic Y m

l (θ, ϕ) becomes Y 0

0 = 1√
4π

. Therefore, the wave
function ψn,l,m(r, θ, ϕ) =

un,l(r)

r
Y

m

l (θ, ϕ) takes the form ψn,0,0(r) = 1√
4π

un,0(r)

r
, with un,0 a

solution of the radial equation

d2un,0
dr2

+ 2µ[En,0 − V (r)] = 0 (4.1)

Here we impose the condition 0 > En,0 > min(UIII(r)) and to simplify the notations we
write En,0 ≡ E as well as un,0(r) ≡ u(r). Equation (4.1) for u(r) has the same form as the
equation in one dimension, therefore we will apply the WKB solutions derived in subsection

29
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3.2 to u(r). Taking into account the classical and non-classical regions, one gets :

uI(r) = u(0 < r < R)

= A sin(Kr + δ) (4.2)

in region I, where K =
√

2µ(E + V0). This is of course the exact solution.

uII(r) = u(R < r < a)

=
C√
κII(r)

exp(−
ˆ r

R

κII(r)dr) +
D√
κII(r)

exp(+

ˆ r

R

κII(r)dr) (4.3)

in region II, where κII(r) =
√
2µ(UII(r)− E), UII(r) =

2Zαr0
r
2 . Region III has to be separated

in two regions (III → III and IV) on both sides of the turning point d such that U(d) = E :

uIII(r) = u(a < r < d)

=
A′√
kIII(r)

exp(+i

ˆ r

a

kIII(r)dr) +
B′√
kIII(r)

exp(−i
ˆ r

a

kIII(r)dr) (4.4)

in region III, where kIII(r) =
√

2µ(E − UIII(r)), UIII(r) =
−2Zα
r0

(
1 + r0

r

)
exp(−2r/r0) and

uIV (r) = u(r > d)

=
C ′√
κIV (r)

exp(−
ˆ r

d

κIV (r)dr) +
D′√
κIV (r)

exp(+

ˆ r

d

κIV (r)dr) (4.5)

in region IV, where κIV (r) =
√
2µ(UIV (r)− E), UIV (r) = UIII(r).

4.1.2 Connections - quantization of the energy

The constants A, δ, C, D, A′, B′, C ′ and D′ are constrained by the requirement that the
solution must be zero at the origin , by the conditions of continuity of the wave function
and its first derivative at the points of discontinuity of the potential, and by the connection
formulas (3.28) on both sides of the turning point :

uI(0) = 0 (4.6)

uI(R) = uII(R) (4.7)

u′I(R) = u′II(R) (4.8)

uII(a) = uIII(a) (4.9)

u′II(a) = u′III(a) (4.10)

C ′ =
1

2

(
θ∗A′e

iρ

+ θB′e
−iρ
)

(4.11)

D′ = θA′e
iρ

+ θ∗B′e
−iρ

(4.12)
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where the u′ denotes the derivative of u with respect to r. Conditions (4.7) to (4.12) ensure
in fact that the probability current, in which the wave function and its gradient appear, is
continuous, as well as the density of probability. Expressions (4.11) and (4.12) are obtained
by slightly changing the expression of uIII(r) such that it refers to the turning point r = d, as
uIV (r), since it is in that situation that the connection formulas (3.28) and (3.29) have been
derived. So we simply make the decomposition

´ r

a
kIII(r)dr =

´ d

a
kIII(r)dr +

´ r

d
kIII(r)dr

and rewrite

uIII(r) =
A′√
kIII(r)

e
iρ

exp(+i

ˆ r

d

kIII(r)dr) +
B′√
kIII(r)

e
−iρ

exp(−i
ˆ r

d

kIII(r)dr)

where ρ is defined as

ρ =

ˆ d

a

kIII(r)dr (4.13)

With the new constants A′e
iρ and B′e

−iρ we can use the WKB connection formulas. To the
seven previous conditions, we add the constraint :

D′ = 0 (4.14)

which guarantees that the exponential solution in region IV will not diverge when r → ∞.
Equations (4.6) to (4.12) together with (4.14) will enable us to determine a condition on the
energy, which will be checked for only specific values of E. This expression will be our quan-
tization condition, and its first solution will correspond to the desired value of the binding
energy. In what follows, details of pure algebra are not all included. Some calculations are
shown in Appendix B.

Condition (4.6) directly implies δ = 0. Condition (4.7) is written as

A sin(KR) =
C +D√
κII(R)

and (4.8) gives

AK cos(KR) = −C
(√

κII(R) +
1

2
(κII(R))

−3/2

κ′II(R)

)
+ D

(√
κII(R)−

1

2
(κII(R))

−3/2

κ′II(R)

)
remembering that d

dr

´ r

R
κII(r)dr = κII(r). The inversion of these two equations allows us to

write C and D in terms of A

C = −A
2

(
K√
κII(R)

cos(KR)−
√
κII(R) sin(KR) +

1

2
sin(KR) (κII(R))

−3/2

κ′II(R)

)

D =
A

2

(
K√
κII(R)

cos(KR) +
√
κII(R) sin(KR) +

1

2
sin(KR) (κII(R))

−3/2

κ′II(R)

)
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which we rewrite, for simplicity

C = −A
2
X (4.15)

D =
A

2
Y (4.16)

with the real numbers X and Y given by

X =
K√
κII(R)

cos(KR)−
√
κII(R) sin(KR) +

1

2
sin(KR) (κII(R))

−3/2

κ′II(R)(4.17)

Y =
K√
κII(R)

cos(KR) +
√
κII(R) sin(KR) +

1

2
sin(KR) (κII(R))

−3/2

κ′II(R)(4.18)

To treat equations (4.9) and (4.10), we first decompose the integral involved in uII(r) in
the same way as previously :

´ r

R
κII(r)dr =

´ a

R
κII(r)dr +

´ r

a
κII(r)dr giving

uII(r) =
C√
κII(r)

e
−σII exp(−

ˆ r

a

κII(r)dr) +
D√
κII(r)

e
σII exp(+

ˆ r

a

κII(r)dr)

where we defined

σII =

ˆ a

R

κII(r)dr (4.19)

Equation (4.9) is written

C√
κII(a)

e
−σII +

D√
κII(a)

e
σII =

A′√
kIII(a)

+
B′√
kIII(a)

and (4.10) gives

−C
(√

κII(a) +
1

2
(κII(a))

−3/2

κ′II(a)

)
e
−σII +D

(√
κII(a)−

1

2
(κII(a))

−3/2

κ′II(a)

)
e
σII

= A′
(
−1

2
(kIII(a))

−3/2

k′III(a) + i
√
kIII(a)

)
−B′

(
1

2
(kIII(a))

−3/2

k′III(a) + i
√
kIII(a)

)

We immediately notice the presence of exponentials with a positive argument and of expo-
nentials with the same argument of opposite sign in the two previous expressions. Dropping
the exponentials e−σII would greatly simplify the calculations but we are not sure for now
whether it is justified. Indeed, the terms in parentheses could invalidate this simplification
and lead to bad results. We must wait for an evaluation of these terms as well as of the
argument of the exponentials and keep all the terms in the following calculations. The reso-
lution of these two equations is straightforward but gives rather complicated expressions for
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A′ and B′:

A′ =
1

2
iC

(√
κII(a)

kIII(a)
+

1

2
(κII(a))

−3/2 κ′II(a)√
kIII(a)

− 1

2
(kIII(a))

−3/2

(κII(a))
−1/2

k′III(a)

− i
√
kIII(a) (κII(a))

−1/2
)
e
−σII − 1

2
iD

(√
κII(a)

kIII(a)
− 1

2
(κII(a))

−3/2 κ′II(a)√
kIII(a)

+
1

2
(kIII(a))

−3/2

(κII(a))
−1/2

k′III(a) + i
√
kIII(a) (κII(a))

−1/2

)
e
σII (4.20)

B′ =

√
kIII(a)

κII(a)
C e

−σII +

√
kIII(a)

κII(a)
D e

σII − A′ (4.21)

We are now ready to use equation (4.12) to express D′ directly in terms of A, using
(4.15), (4.16), (4.20) and (4.21). Condition (4.14) allows us to simplify the only remaining
A, leading us, after the calculations of Appendix B, to

sin(ρ+
π

4
)

(√
κII(a)

kIII(a)
+

1

2
(κII(a))

−3/2 κ′II(a)√
kIII(a)

− 1

2
(kIII(a))

−3/2

× (κII(a))
−1/2

k′III(a)
)
e
−σII X

2
− cos(ρ+

π

4
)e

−σII

√
kIII(a)

κII(a)

X

2

+ sin(ρ+
π

4
)

(√
κII(a)

kIII(a)
− 1

2
(κII(a))

−3/2 κ′II(a)√
kIII(a)

+
1

2
(kIII(a))

−3/2

(4.22)

× (κII(a))
−1/2

k′III(a)
)
e
σII Y

2
+ cos(ρ+

π

4
)e

σII

√
kIII(a)

κII(a)

Y

2
= 0

− sin(ρ+
π

4
)

√
kIII(a)

κII(a)
e
−σII X

2
+ sin(ρ+

π

4
)e

−σII

√
kIII(a)

κII(a)

X

2

+ sin(ρ+
π

4
)

√
kIII(a)

κII(a)
e
σII Y

2
− sin(ρ+

π

4
)e

σII

√
kIII(a)

κII(a)

Y

2
= 0

⇔ 0 = 0

for the real and imaginary parts respectively, so that we are left with only one condition.

Equation (4.22) is a transcendental equation for the energy E, because it is involved in
the definitions of K, κII , kIII and in the integrals ρ and σII . There exist only specific values
of E that satisfy this equation. To find the binding energy of the system OHe-nucleus, the
strategy will be to write a program that tests values of E from min(UIII(r)) to 0 and returns
the first value which satisfies equation (4.22).
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4.1.3 Numerical analysis

4.1.3.1 Description of the program

The program is written in Fortran 90, double precision. Its function is to test values of
E from min(UIII(r)) to 0 and evaluate the expression (4.22). The stopping condition of
the loop is the first change of sign of (4.22), which we recognize by keeping the last two
evaluations and multiplying them. If the result is negative, we return the estimation of the
binding energy by taking the intersection of the straight line passing through the last two
values of (4.22) with the axis of abscissa E. The integrals ρ and σII are evaluated by an
algorithm that divides the area under the curve into small trapezoids.

The constants of the problem are put into a module and their values are indicated in
Table 4.1. The mass of OHe has been taken equal to 1 TeV [11] but all the following results
weakly depend on the values of MO > 1 TeV. The nuclear parameters are calculated through
the Bethe-Weizsacker formula for the binding energy of a nucleus [19]

B = −a1A+ a2A
2/3 + a3

Z2

A1/3
+ a4

(A− 2Z)2

A
± a5A

−3/4 (4.23)

In the last term, the positive sign is chosen for odd-odd nuclei (odd number of neutrons and
odd number of protons), implying that such nuclei are relatively unstable. On the other
hand, for even-even nuclei, the sign is taken as negative, implying greater stability. And for
odd-even or even-odd, this last term is chosen to be zero, corresponding to an intermediate
situation. Formula (4.23) is used by the program to calculate the mass of the nucleus

MN = ZMp + (A− Z) Mn +B (4.24)

and then the reduced mass (2.4). The radius of helium, as well as all the radii that we will
need later, are calculated by the empirical formula [19]

R ' 1.2A1/3 fm (4.25)

Finally, the nuclear range corresponds to the range of the strong nuclear interaction between
nucleons and its choice will be explained when analyzing the results.

To treat a great number of nuclei, a second loop is nested and runs over nuclei according
to a defined rule. For example, A = 2Z or the valley of stability derived by requiring that
the binding energy (4.23) is at its maximum for a given A, i.e. ∂B

∂Z
= 0, giving the rule

Z =
1

2

A

1 + A2/3 a3
a4

(4.26)

Of course in that second case we must ensure that Z rounded to the nearest integer. Once
the nucleus (A,Z) is determined, the program identifies the parity of the number of nucleons



4.1. NON-MODIFIED WKB APPROXIMATION 35

Description symbol value (Units)
Fine structure constant α 0.00729735253

Mass of neutron Mn 939.565 (MeV)
Mass of proton Mp 938.272 (MeV)

Mass of OHe (' mass of O−−) [11] MO 106 (MeV)
Nuclear parameters [19] a1 15.6 (MeV)

a2 16.8 (MeV)
a3 0.72 (MeV)
a4 23.3 (MeV)
a5 34 (MeV)

“Size” of OHe [11] r0 2 (fm)
~c 197 (fm MeV)

Radius of helium rHe 1.90488128859 (fm)
Nuclear range s 1.2 (fm)

Table 4.1: Values of the constants

(even-even, even-odd or odd-odd) to calculate the nuclear binding energy and then its mass
and the reduced mass of the system.

The parameter R in the first region of the potential (2.3) is taken as the radius of the
nucleus given by formula (4.25) and V0 is fixed to several tens of MeVs. The only remaining
parameter is the distance at which the polarization of OHe by the nucleus takes place. We
said in the end of subsection (2.2.1) that it could be roughly estimated to a ' r0 + rHe +R.
We will now refine this a bit. Let us first pay attention at the order of magnitude of the
distances involved in the problem : R ' 1.2A1/3 ' 3.7 fm and a ' 7.6 fm for a nucleus of
mass number A = 30. Both nuclei (nucleus and helium) are considered as spheres filled with
nucleons interacting by strong nuclear interaction of range s ' 1 fm. Therefore, this range
cannot be neglected here and has to be taken into account. Polarization will take place when
two nucleons will be within ' 1 fm from each other, so we can write

a ' r0 + rHe +R + s (4.27)

as a better approximation. We will see that this improves the results with a reasonable value
of the range of the strong nuclear interaction.

Equation (4.27) is the last task of the program before beginning the second loop that
tests the values of E satisfying (4.22). If it finds a solution, it writes it in a results file,
otherwise (if the energy reaches zero without satisfying the stopping condition) it writes 0

in the same file. Then the following nucleus is treated and so on.

4.1.3.2 Results

By first running the program with a value of V0 = 60 MeV to fix ideas and for mass numbers
going from 1 to 250 and Z adjusted according to (4.26), we find by plotting the binding
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Figure 4.1: Binding energy (keV) for values of A from 1 to 250

energy E as a function of the mass number A the graph in Figure 4.1.
We see immediately that there are oscillations that look like numerical errors more than a

physical effect. This may be due to the fact that we manipulate large numbers in expression
(4.22) because of the terms proportional to eσII . Indeed, by looking more closely at the
values taken by σII , X and Y for the different nuclei, we note that X and Y are always of
the same order and that σII ' 2 − 4 for A between 4 and 10, σII ' 10 for A = 35 and
continues to increase for heavier nuclei to reach about 35 for A = 250. Therefore, in all cases
we can simplify the complete expression (4.22) by neglecting each term proportional to eσII

with respect to its associated term in eσII to get

sin(ρ+
π

4
)

(√
κII(a)−

1

2
(κII(a))

−3/2

κ′II(a) +
1

2
(kIII(a))

−1 (4.28)

× (κII(a))
−1/2

k′III(a)
)
+ cos(ρ+

π

4
)e

σII kIII(a)√
κII(a)

= 0

as a simplified quantization condition.
By implementing this new expression in the program we obtain the graph shown in Figure

4.2, which no longer has the previous behaviour of Figure 4.1. The remaining oscillations are
simply due to the selection rule of stable nuclei explained in subsection 4.1.3.1 that makes
Z remain at the same value for several A and then jump abruptly to the next integer value.
For example the rule A = 2Z gives a smooth curve.

We note that there seems not to exist bound states for nuclei with A = 1, 2, 3, to which
correspond the values Z = 0, 1, 1, or, in other words, for the neutron, 2H and 3H. We do not



4.1. NON-MODIFIED WKB APPROXIMATION 37

Figure 4.2: Binding energy (keV) for values of A from 1 to 250 obtained with the simplified
quantization condition (4.28).

either find any level for hydrogen 1H. The case of the neutron is not surprising because there
is no Coulomb screened potential region (because of its neutrality) and hence no potential
well in region III but the three other cases are real predictions.

All the other nuclei selected by formula (4.26) present a bound state. In particular, the
only stable isotope of sodium, 23Na, has a bound state at −2.96 keV, which is just the
lowest value on the curve (4.2). We see therefore that adding of a nuclear range of 1.2 fm
to the parameter a of the model with a simple argument is sufficient to explain the DAMA
results with one of its components. Moreover, this value of the range of the strong nuclear
interaction is within the interval of generally accepted values.

The successful prediction for sodium is to be associated with the prediction for the other
component of the detector, iodine, whose only stable isotope is 127I. For this, we find a
bound sate at −1.22 keV. This gives rise to a scintillation signal at 1.22 keV that is not in
contradiction with the DAMA results because, as we have seen in the section 2.1 dedicated
to the experiment, this is under the energy threshold of 2 keV. This signal could therefore
contribute to the events lying under 2 keV in Figure 2.2.

For information, Table 4.2 shows the binding energies of some interesting stable nuclei
included or not in Figure 4.2.

In a general manner, we realize that there are bound states for all nuclei (except for
the lightest ones), intermediate as well as heavy ones. But we know from experiments that
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Nucleus Binding energy (keV) Nucleus Binding energy (keV)
3He -0.35 71Ga -2.02
4He -0.52 70Ge -2.14
12C -2.57 72Ge -2.04
16O -2.91 73Ge -1.99
19F -2.85 74Ge -1.95
27Al -3.00 76Ge -1.86
28Si -3.13 127I -1.22
35Cl -2.96 132Xe -1.15
37Cl -2.76 203T l -0.68
40Ar -2.65 205T l -0.66
69Ga -2.11 238U -0.52

Table 4.2: Binding energies for several interesting stable nuclei

there should not exist any signals for heavy nuclei, in particular for xenon in the XENON100
experiment mentioned in Chapter 1. However, Table 4.2 shows that the binding energy for
the most abundant isotope of xenon, 132Xe, is equal to −1.15 keV. We could therefore look
at the constant part of the signal that we would observe in a medium made of xenon, at the
operating temperature of the experiment, i.e. T = −100 °C=173.15 K [4]. With (2.10), we
find ξ132Xe = 0.215 cpd/kg at about 1.15 keV for the most abundant isotope. Note that the
binding energies with the other stable isotopes of xenon differ little from the value for the
isotope 132 and remain in all cases under the threshold. Once again, this signal lies under the
energy threshold of the XENON experiments, which is higher than for the DAMA detectors,
as mentioned in the Introduction. This avoids any contradiction with the negative results
of this experiment without necessarily a radical suppression of the bound states with the
different isotopes of xenon. The values of the binding energies for the isotopes of germanium
in Table 4.2, giving rise to the same photon energies in absolute values by the process of
radiative capture, appear to be too high to correctly reproduce the results of the CoGent
experiment, which correspond to energies below 1 keV.

In the case of sodium, we are left with a model without any free parameter (except for
V0, but we will see that its value do not influence the results) that gives us the desired
binding energy. However, we can force the change of the elements R, a and V0 and see their
influence on the results. We can be sure, before having done any test, that V0 and R will
not greatly influence the results because the simplified expression (4.28) does not depend
at all on these parameters. If we want to verify this, we thus have to reinsert the complete
expression (4.22) into the program. For sodium, we see effectively that the binding energy
is very stable against a variation of V0 form 10 to 200 MeV and of R from 0.5R to 2R. The
fact that the results depend very slightly on the parameters of region I is fortunate because
we do not actually know very well the details of the interaction at distances shorter than the
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Figure 4.3: Influence of parameter a on the binding energy in the case of sodium

dipolar region (region II). Region I indeed corresponds to the nuclear interaction of an alpha
particle within a nucleus, depending on the considered nucleus1 and requires a detailed study
of the scattering of alpha particles by nuclei. The ranges of variation of the parameters V0
and R above allow us to concentrate on the third region with some confidence. The last
parameter, a, influences however very much the results because it is involved in the shape
of the well in which the energy level is found. Figure 4.3 shows the modification of E in
response to the variation of a from both sides of the first approximate value a ' r0+rHe+R.
We added to a the parameter f that takes positive values, corresponding to different values
of the nuclear range, and negative ones, in the interval [−2, 2] fm with a 0.01-fm spacing.
This strong dependence makes the discovery of a −3-keV bound state for sodium with the
right nuclear range even more astounding. For example, the non-consideration of the nuclear
range (f = 0) would have given a solution at about −10 keV.

We can also wonder whether there are higher levels for l = 0. By letting the program
continue after the first detected level, we realize that no other level is detected for all nuclei
considered. There seems therefore to exist only one bound state in the case l = 0.

In fact, it is possible that the direct use of the WKB approximation that we made above
is not entirely appropriate. It may be that the validity criterion (3.27) is not satisfied at any

1see [20, 21] for more information about the elastic scattering, as well as absorption or reactions, of alpha
particles with a nucleus.
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point in region III on the left of the turning point (a < r < d), making the approximation
too poor in that domain of values of r while the connections formulas (3.28) and (3.29)
have been established by requiring that the approximation is correct on both sides far from
the turning point. But we can in fact not speak about an asymptotic region on the left of
the turning point because the variable r takes only values in the interval [0,+∞[ and thus
cannot tend to −∞. The problem, if indeed there is a problem, seems therefore to lie in the
fact that we passed from a variable x ∈ ]−∞,+∞[ in one dimension to a variable r that is
positive definite. To get rid of these uncertainties and assess unambiguously the quality of
the approximation we use hereafter a modified version of the WKB method.

4.2 Modified WKB approximation

4.2.1 Change of variable

To get as close as possible to the one-dimensional problem, one possibility is to perform a
change of variable such that the new variable takes any real value while conserving the shape
of the Schrödinger equation. This requires also to change the wave function. The changes
of variable and function proposed by Langer [22] are

r = e
x

, (4.29)

u = e
x/2

φ (4.30)

which ensures that when r varies from 0 to ∞, x varies from −∞ to +∞. We must verify
that the shape of the equation remains unchanged by substituting (4.29) and (4.30) into the
radial equation (2.3). We have
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so that the radial equation becomes in terms of x and φ

d
2
φ

dx2 + 2µ
[
Ee

2x − V (r = e
x

)e
2x
]
φ−

(
l +

1

2

)2

φ = 0 (4.31)

where we have restored the angular momentum for a while. We see that this equation is
the same as in one dimension, but now we are left with a problem of a particle of mass µ
described by φ in a potential

Ṽ (x) = −Ee2x + V (r = e
x

)e
2x

+

(
l + 1

2

)2
2µ

with an energy

Ẽ = 0

We can apply the WKB solutions (3.21) and (3.23) to ψ and search the value of E
(determining the shape of the new potential) that allows the particle of energy Ẽ = 0 to
be bound in Ṽ (x). We will see that it is not necessary to apply the WKB solutions to
ψ because it amounts to applying the WKB method of the three-dimensional problem by
replacing l(l + 1) by (l + 1

2
)2 in the centrifugal term of the effective potential Veff (r).

Let us first note that the turning points of Ṽ (x) correspond to the turning points of the
three-dimensional effective potential in which we have replaced l(l + 1) by (l + 1

2
)2

Ṽ (x) = 0

⇔ −Er2 + V (r)r2 +

(
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2

)2
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= 0
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(
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= 0

⇔ E = Veff

(
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(
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1

2

)2
)

by using the change of variable (4.29).
To illustrate this, let us consider the case of the screened Coulomb potential. The previous

calculation makes the correspondence between the three regions of the potential Ṽ (x) in
Figure 4.4a and the three regions of UIII,eff

(
r, l (l + 1) →

(
l + 1

2

)2) in figure 4.4b where
x1, x2 and r1, r2 are the respective turning points.

The WKB solution in region II of Ṽ (x) gives ψII(x) =
A√
kII(x)

e
i
´ x
x1

kII(x)dx, where kII(x) =√
2µ
(
−Ṽ (x)

)
, x ∈ [x1, x2]. We have dropped the second term of the most general solution
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(a) Shape of the fictive potential Ṽ (x) evaluated with UIII given
in (2.5). x1and x2 are the turning points of the fictive problem.

(b) Shape of the effective potential UIII,eff in which we have

replaced l (l + 1) by
(
l + 1

2

)2
in the case l = 0. r1 and r2 are the

turning points.

Figure 4.4

because it is treated in the same way. According to (4.30), we have for uII(r), r ∈ [r1, r2]
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Figure 4.5: Shape of the modified potential of interaction in the case l = 0.

The previous calculation is valid for all regions and shows that it is sufficient to replace
l (l + 1) by

(
l + 1

2

)2 in the effective potential of the three-dimensional problem and then
work with the WKB solutions as they were established in one dimension.

If we perform this replacement in all the regions where a WKB solution is needed, i.e. in
regions II and III (the last one being separated in two regions on both sides of the turning
point) of the potential on Figure 2.3, with the consequence that even in the case l = 0, a term
1

8µr2
will remain in the potential. The direct effect of this term is to raise the potential of

interaction, and we can already suspect that the energy levels will therefore also be increased.
The complete modified potential is shown in Figure 4.5 (proportions not respected). Let us
recall that region I admits an exact solution, for which we do not have to make any change.

4.2.2 Results

To take into account the changes made in the potential, we have to modify the program
slightly and add the centrifugal term in the definitions of the functions κII , kIII , κIV and their
derivative. This poses no problem because the calculations related to the WKB solutions
do not involve the exact expression of the potential. Region I on the other hand remains
unchanged, as we used the exact solution there, and it is the only thing that distinguishes
this case from the non-vanishing angular momentum situation that we will consider later.

The first thing we note by running the program for nuclei given by (4.26) and A going
from 1 to 250, with our standard values V0 = 60 MeV, R = 1.2A1/3 and s = 1.2 fm for
the nuclear range, is that there are more light nuclei without any bound state. So much so
that even sodium seems not to have a bound state with OHe anymore. The lightest nucleus
that has a bound state with formula (4.26) is the isotope 26Mg of magnesium. This is not
a general rule and it is possible that some slightly lighter nuclei possess a bound state but
they are just not taken into account by the formula, which runs approximately over stable
nuclei but do not consider all the stable isotopes of a given element. This should be made
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by hand, by entering specific values of A and Z into the program. This time again, there
is no more than one bound state per nucleus. The fact that light nuclei are suppressed is
easily understood by looking at the graph in Figure (4.5). Indeed, for the lightest nuclei, the
centrifugal term 1

8µr2
is larger than for heavier ones, so that the potential well in region III

ends up disappearing, and, thereby, the bound states that we are seeking.
Then we might wonder whether it is sodium that has a bound state with OHe and not

iodine or thallium. We find binding energies at −0.85, −0.47 and −0.45 keV respectively
for 127I, 203T l and 205T l. These results are not in very good agreement with the DAMA
observations of section 2.1 because they do not lie in the right energy range. This situation
is obviously not acceptable and we must modify the only parameter influencing the results,
namely the parameter a, and therefore the nuclear range. The three curves on Figure 4.6
show the variation of the binding energy of sodium, iodine and thallium with respect to the
nuclear range. We allowed it to go from 0 to 1.5 fm with a 0.01-fm spacing and the red parts
of the curves correspond to binding energies approximately in the desired range (2− 4) keV.
We see that thallium admits in extremis a binding energy for a nuclear range equal to 0 and
that the interval (2− 4) keV is realized fully or partially for a nuclear range between 0.3 and
0.62 fm for sodium and between 0 and 0.53 fm for iodine.

These results alone do not allow us to conclude about the origin of the observed signal :
sodium, iodine, or both may have a binding energy in the interval (2− 4) keV with a reduced
nuclear range comparable to the generally accepted values.

However, we saw, in the end of subsection 2.2.1 about the interaction of OHe with
matter, that the results of DAMA, i.e. ς = (0.0116± 0.0013) cpd/kg/keV in the energy
interval (2− 6) keV for the amplitude of the annual modulation of the signal, could be
approximately explained by ENa = −3 keV. For iodine, we find with formula (2.11) that this
amplitude is reproduced if EI ' −1.1 keV, which is under the threshold of the experiment
and out of the interval of detection of the interesting signal, making this second constraint
not verified. It seems therefore that iodine cannot explain the results alone and that is the
reason why we can, in this case again, turn to sodium and adopt the value that gives a
−3 keV bound state for this nucleus, that is to say, s ' 0.44 fm. With this last value,
thallium is under the threshold and iodine is at EI = −2.2 keV, i.e. in the interval of
detection. But it is clear that this value lies very close to the energy threshold of the DAMA
experiment at 2 keV, and, given the uncertainties relative to the model, it is possible that
the value for iodine lies in reality under the threshold while sodium remains in the right
interval. If it is not the case, formula (2.11) used at room temperature T = 300 K shows for
iodine ςI = 0.0334 cpd/kg, which appears as an unobserved supplement with respect to the
contribution of sodium.

By running the program for all nuclei (built from formula (4.26) again) with the value



4.3. SQUARE WELL POTENTIAL APPROXIMATION 45

Figure 4.6: Binding energy (keV) of sodium (continuous line), iodine (“+” symbols) and
thallium (“o” symbols) as a function of the strong nuclear interaction range (fm). The red
parts of the curves correspond to binding energies in the range (2− 4) keV.

of the nuclear range now adopted, we obtain a graph for the binding energies (Figure 4.7)
similar to that of the non-modified WKB approximation (Figure 4.2), with the difference
that more light nuclei are now suppressed, the lightest admitting a bound state with OHe
being 16N .

Note that, in the particular case of 132Xe, the binding energy is found to be E132Xe =

−2.1 keV, with similar values for the other isotopes, which is under the threshold of the
corresponding XENON100 experiment, avoiding any contradiction with its negative results.
For germanium, we find for example E74Ge = −3.42 keV, with values going from −3.77 to
−3.26 keV for the different stable isotopes. These values seem even more difficult to relate
to the results of CoGent than in the case of the non-modified WKB method and attention
should be paid to the future publications of observational results.

Finally, no higher level is found at zero angular momentum for all the considered nuclei.

4.3 Square well potential approximation

4.3.1 Simplification of the potential

It could be interesting to consider a simplified version of the potential of interaction, that
would admit exact solutions, in order to compare the corresponding results with the previous
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Figure 4.7: Binding energy (keV) for values of A from 1 to 250 obtained by the modified
WKB approximation with a nuclear range equal to 0.44 fm.

ones. This task has already been done by M. Yu. Khlopov et al. [11, 12, 13] and the
proposed method to simplify the potential is as follows : region I of the potential on Figure
(2.3) already admits an exact solution, so that it does not have to be changed, and we have
in region I

U(0 < r < R) = −U1 = −V0

Region II is replaced by its average value over the interval [R, a], which gives

U(R < r < a) = U2 =

´ a

R
2Zαr0
r2

dr

(a−R)
=

2Zαr0
aR

Region III is replaced by a rectangular well equal to the minimum value of UIII (expression
(2.5))

U(a < r < b) = −U3 =
−2Zα

r0

(
1 +

r0
a

)
exp(−2r0/a)

and b is determined by requiring that the area of the rectangle is equal to the integral of UIII

from r = a to infinity : (b− a) × (−U3) =
´ ∞

a
UIII(r)dr, so that it is, a priori, not a new

parameter, but it is fixed by the choice of a. The simplified potential, superimposed on the
“exact” one, is shown on Figure 4.8. The term “exact” must here not be taken to the proper
sense because we know well that it comes from a model which involves itself approximations
and uncertainties.
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Figure 4.8: Square well potential superimposed on the “exact” potential of interaction.

4.3.2 Construction of the solutions

Two cases will be considered here, −U3 < E < 0 as before and −U1 < E < −U3. The second
case is intended to explore deeper levels corresponding to region I and that could be involved
in releases of high energy photons if region I is reached by a tunneling effect through the
dipolar barrier of region II. For −U3 < E < 0, the solutions in the four regions are given by

u(0 < r < R) = uI(r)

= AI exp(ikIr) +BI exp(−ikIr) (4.32)

in region I, where kI =
√
2µ (E + U1).

u(R < r < a) = uII(r)

= AII exp(kIIr) +BII exp(−kIIr) (4.33)

in region II, where kII =
√

2µ (U2 − E).

u(a < r < b) = uIII(r)

= AIII exp(ikIIIr) +BIII exp(−ikIIIr) (4.34)

in region III, where kIII =
√

2µ (E + U3).

u(r > b) = uIV (r)

= AIV exp(kIV r) +BIV exp(−kIV r) (4.35)

in region IV, where kIV =
√
−2µE.

For −U1 < E < −U3, the only difference occurs in region III where we have

uIII(r) = AIII exp(kIIIr) +BIII exp(−kIIIr) (4.36)

where kIII =
√
−2µ (E + U3) instead of the oscillatory solution.
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4.3.3 Connections-quantization of the energy

As in the case of the WKB calculation, we have to connect the solutions of the different
regions by requiring that the wave function and its first derivative are continuous at each
point of discontinuity of the potential, so that the probability current as well as the density
of probability are continuous. The quantization condition of the energy then comes from the
requirement that the wave function cannot diverge when r → ∞, which gives

AIV = 0

The calculations are made in Appendix C and we show here only the final results. For
−U3 < E < 0 we obtain

S

[
kII
kIV

cos((b− a)kIII) +
kII
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]
e
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− kII
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]
e
−kIIa = 0

where S = [kI cos(kIR) + kII sin(kIR)] e
−kIIR and T = [kII sin(kIR)− kI cos(kIR)] e

kIIR are
real. For energies −U1 < E < −U3, we find
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e
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]
e
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with the same definitions for S and T . These last two expressions are, similarly to the WKB
equation (4.22), transcendental equations, satisfied only for specific values of E.

4.3.4 Results

Because it seems by the previous WKB analysis that sodium is the best candidate to explain
the DAMA results, all that follows is particularized to the case of sodium.

The most direct way to compare the results to those obtained via the WKB approximation
is to take for the parameters U1, R and a the values used until now, i.e. 60 MeV, the radius
of helium nucleus given by (4.25) and a = r0 + rHe + R + s respectively, with s = 1.2 or
0.44 fm according to the case of the non-modified or modified WKB methods. By running
the program a first time to test values of E from −U3 to 0 with a 10-eV spacing, it appears
that we do not find any level, independently of the fact that s = 0, 0.44 or 1.2 fm.

Therefore, we can try to vary simultaneously all the parameters of the potential, that is to
say U1, U2, U3, R, a and b, within a certain interval around their standard value (established
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Set A
E −3.016 keV
U1 60 MeV
U2 2.532 MeV
U3 1.070 MeV
R 3.413 fm
a 7.317 fm
b 8.294 fm

Set B
E −2.997 keV
U1 60.215 MeV
U2 2.554 MeV
U3 1.065 MeV
R 3.437 fm
a 7.313 fm
b 8.295 fm

Table 4.3: Sets of parameters of the simplified potential. Set A is obtained by varying U3

in order to get ENa = −3 keV and fixing the five other parameters to their standard value.
Set B results from the simultaneous modification of all parameters of Set A within 1%.

in section 4.3.1 for U2, U3 and b). Running the program for a great number of random values
within 1% and 10% around these central values, we do not find any level for any set of
parameters.

Since even a perturbation of the parameters within 10% of their orignal value seems
not to be sufficient, we could try to modify further the parameter U3, by lowering the well
in region III. We thus fix the five other parameters to their original values (note that we
dropped here the nuclear range, so that we are left with a = r0 + rHe +R ) and try different
values of U3 from the original one (−UIII(r = a) = 13.3 keV) to ∼ 2 MeV with a 1-keV
spacing. It is found that the first value of U3 that gives a bound state is U3 = 0.997 MeV
and the value that gives a binding energy ENa = −3 keV is U3 = 1.07 MeV.

Note that, at vanishing angular momentum l, there are no higher levels.
Set A of Table 4.3 summarizes the parameters deduced from previous discussions that

we will use for the considerations below. Note that, by varying all the parameters of Set A
simultaneously within 1% for example, we generate a lot of other sets that give other values
of ENa around −3 keV. Indeed, the relatively large number of free parameters causes a kind
of degeneracy in the space of parameters and we can, on a great number of tests, look for
the one that gives the closest value to −3 keV, giving rise to Set B.

The most important point to note here is thus that, in the case of this simplified potential,
we have to greatly lower the depth of the well in region III, i.e. to order of 1 MeV, in order to
obtain the desired binding energy for the system OHe-NaI, compared to the WKB analysis
where a well of several keVs was sufficient.

We can therefore wonder which resolution method is the closest to reality : the approx-
imate WKB resolution with the exact potential or the exact resolution with a simplified
potential. First, it may be that the WKB method is not a good approximation, even in the
case of the modified version. In fact, the evaluation of the validity criterion (3.27) for the
wave function φ(x) used for the modified method in the region in x−space, corresponding
to region III in Figure 2.3 on the left of the turning point, shows that it is greater than
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unity. Therefore, even with the modified WKB method, the solution seems not to be a good
approximation in that small region. But it is also possible that the square well potential
is so far from the exact one that the levels in region III are completely modified too. The
biggest difference could lie at large distances : normally, an approaching OHe is supposed
to feel a gradually (negatively) increasing attractive potential (screened Coulomb potential)
but in the case of the square well potential, it feels a single kick, corresponding to a poten-
tial varying abruptly form 0 to a constant value. This could prevent bound states until we
greatly lower the well.

One way to provide a partial answer is to apply the WKB method to the square well
potential. We could therefore compare the approximate results to the exact ones. We have
two options : if the WKB method gives here again levels with a shallow well, it is probably
false in the case of the “exact” potential. But if it gives approximately the same results, then
we have every reason to believe that its application in the case of the “exact” potential is an
improvement. By trying to apply the approximate solutions (3.21) and (3.23) to a constant
potential, we realize very quickly that these solutions are simply the exact solutions of the
form A exp(±ikr) and B exp(±κr) because k and κ are constant. We therefore do not have to
pursue further the calculations and we can conclude that the WKB method gives exactly the
same results as the exact resolution. This reasoning allows us to choose the second option.
Therefore, the WKB approximation improves the results from the square well potential but
is itself flawed due to the non-verified validity criterion.

All the considerations made until now concerned the existence of energy levels in region
III. But we could also consider region I, where deep levels may exist and give rise to high
energy release, of the order of several tens of MeV or more, in the case of tunneling effect from
region III to region I. Of course, many other considerations have to be taken into account,
as the transmission coefficient, to measure the impact of such levels. This will be discussed
later and the best thing we can do at this point is to determine them.

Given the depth of the well in region III, compared to the order of magnitude of the two
other regions (of the order of MeV), we can convince ourselves that regions II and III do
not have a great influence on the determination of deep levels in region I. A WKB analysis
seems therefore not necessary here, and that is the reason why we did not made it before.
Moreover, the parameters related to regions II and III are certainly not very important here
and the choice of the set is therefore less critical.

Let us take Set A and vary U1 form 10 to 200 MeV with a 1-MeV spacing and determine all
the levels of negative energy (at l = 0) of the potential, using expressions (4.37) and (4.38).
Levels determined by expression (4.38) should be associated to bound states of region I and
these determined by (4.37) are simply the DAMA levels of region III that we considered
until now. Figure 4.9 is the result of this calculation and we see that many deep levels are
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Figure 4.9: Absolute value of the levels of negative energy E (MeV) of the square well
potential as a function of the depth of the well in region I U1 (MeV).

present for a given value of U1. For example, for U1 = 60 MeV, which is the standard value
used until now, around 10 levels are present in the well, to be added to the only DAMA
level at ∼ −3 keV. The DAMA levels are found in Figure 4.9 on the U1 axis because they
are much lower than the others and we see that their values are equal to those of Set A, the
7-th or 8-th decimal (when expressed in keV) being affected by a change of U1 of 1 MeV.
We verify therefore for a second time that region I does not have a marked influence on the
levels of region III.

The values and the number of these levels should in fact not be taken strictly (except
for the DAMA levels) in the sense that it is difficult to know which of them are truly free
or occupied. Indeed, they do not represent the levels of the nucleons within the nucleus.
They would actually correspond to the levels of alpha particles (a helium nucleus) within a
nucleus made of alpha particles if we could divide it into an integer number of such particles,
which is not the case for sodium since Z = 11 and A = 23. The interest is therefore reduced
to give an order of magnitude of the energies implied in the transitions to region I.





Chapter 5

Tunneling through dipolar barrier

In this chapter we propose to calculate the transmission coefficients in the non-modified and
modified cases considered in Chapter 4, corresponding to tunneling from region III to region
I of the potential in Figure 2.3. This will allow us to estimate the mean lifetime of a bound
system OHe - nucleus before it enters region I, in which case many nuclear processes are
possible, such as gamma decay or neutron release by an excited compound nucleus after the
fusion of the initial nucleus and the helium nucleus from the OHe system.

5.1 Transmission coefficient

In this section, we illustrate the calculation of a transmission coefficient in the case of the
non-modified WKB approximation explained in Chapter 4. The calculation for the modified
one gives exactly the same analytical result and is therefore not repeated. We place ourselves
in the situation where OHe and the nucleus are bound, so that the energy in the center-of-
mass frame E equals the binding energy of the system, and the angular momentum is equal
to zero.

Let us recall that, in the case of a radial potential, such as the potential of interaction
OHe-nucleus, the solution of the Schrödinger equation independent of time takes the form
ψ(r, θ, ϕ) = u(r)

r
Y

m

l (θ, ϕ). At zero angular momentum l, we have Y 0

0 = 1√
4π
, so that the

complete spatial wave function ψ is only a function of r : ψ(r) = u(r)
r

1√
4π

. The two regions
of interest are here region I and III of Figure 2.3 for which the radial wave functions write

uI(r) = u(0 < r < R)

= A exp(iKr) +B exp(−iKr)
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where K =
√
2µ (E + V0), and

uIII(r) = u(a < r < d)

=
A′√
kIII(r)

exp(+i

ˆ r

a

kIII(r)dr) +
B′√
kIII(r)

exp(−i
ˆ r

a

kIII(r)dr)

where kIII(r) =
√

2µ(E − UIII(r)) and r = d is the turning point. In the last two expres-
sion, the first and second parts correspond each time to the outgoing and incoming waves
respectively. In region II, we have

uII(r) = u(R < r < a)

=
C√
κII(r)

exp(−
ˆ r

R

κII(r)dr) +
D√
κII(r)

exp(+

ˆ r

R

κII(r)dr)

where κII(r) =
√
2µ(UII(r)− E), while in region IV, on the right of the turning point

uIV (r) = u(r > d)

=
C ′√
κIV (r)

exp(−
ˆ r

d

κIV (r)dr)

where κIV (r) =
√
2µ(UIII(r)− E).

The transmission coefficient T form region III to region I is defined as the ratio of the
densities of probability current in region I and III evaluated respectively in r = R and r = a

T =
|
−→
J I(R)|

|
−→
J III(a)|

(5.1)

where the density of probability current is defined as

−→
J =

1

2mi

(
ψ∗−→∇ψ − ψ

−→
∇ψ∗

)
(5.2)

The gradient operator
−→
∇ =

(
∂
∂x
, ∂
∂y
, ∂
∂z

)
can be rewritten in spherical coordinates

−→
∇ =(

∂
∂r
, 1
r

∂
∂θ
, 1
r sin θ

∂
∂ϕ

)
, so that the components of

−→
J in the spherical basis are given by

Jr =
1

2mi

(
ψ∗ ∂

∂r
ψ − ψ

∂

∂r
ψ∗
)

(5.3)

Jθ =
1

2mi

(
ψ∗1

r

∂

∂θ
ψ − ψ

1

r

∂

∂θ
ψ∗
)

(5.4)

Jϕ =
1

2mi

(
ψ∗ 1

r sin θ

∂

∂ϕ
ψ − ψ

1

r sin θ

∂

∂ϕ
ψ∗
)

(5.5)

In the case l = 0, we have Jθ = Jϕ = 0, so that T =
Jr,I(R)

Jr,III(a)
. We are interested in

the tunneling effect through the dipolar barrier in region II of a wave coming from large
r to region I, therefore, the density of probability current must be evaluated by using the
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incoming waves ψI(r) =
B
r
exp(−iKr) 1√

4π
= −A

r
exp(−iKr) 1√

4π
by the condition uI(0) = 0

and ψIII(r) = B′

r
√

kIII(r)
exp(−i

´ r

a
kIII(r)dr)

1√
4π

. Expression (5.3) applied to ψI and ψII

gives

Jr,I(r) = −K|A|2

4πµr2

Jr,III(r) = − |B′|2

4πµr2

⇒ T = K
|A|2

|B′|2
( a
R

)2

(5.6)

We need now to express B′ as a function of A. The requirement of continuity of the wave
function and its first derivative at r = R gives expressions (4.15) and (4.16) of subsection
4.1.2 about the connections of the solution in Chapter 4 in which we have to replace A by
2iA because we used here uI(r) = A exp(iKr) − A exp(−iKr) = 2iA sin(Kr) instead of
uI(r) = A sin(Kr). Then, the connection at r = a gives expressions (4.20) and (4.21) and
we can therefore express B′ in terms of A

B′ = A

{
1

2
XMe

−σII − 1

2
Y Ne

σII +
1

2
i
(
Y e

σII −Xe
−σII

)√kIIIa)

κII(a)

}
(5.7)

where the real X and Y are given by equations (4.17) and (4.18) and

M = −

√
κII(a)

kIII(a)
− 1

2
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are real. With (5.6) and (5.7) we are now ready to write down the transmission coefficient

T =
K(

1
2
XMe

−σII − 1
2
Y Ne

σII
)2

+ 1
4

∣∣∣kIII(a)κII(a)

∣∣∣ (Y eσII −Xe
−σII

)2 ( aR)2

(5.8)

This last expression can in most cases been simplified to

T ' 4K

Y 2

(
N 2 +

∣∣∣kIII(a)κII(a)

∣∣∣)e−2σII

( a
R

)2

(5.9)

We see therefore that the value of T will strongly depend on the integral σII =
´ a

R
κII(r)dr,

which involves the mass of the nucleus through the reduced mass µ, the width (a−R) and
the height of the barrier to cross in the definition of κII . The transmission coefficient T
represents here the probability that the OHe atom and the nucleus, approaching each other
from the turning point in region III at binding energy, cross the dipolar barrier, at each test,
i.e. at each oscillation in the well of the bound state.
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5.2 Mean lifetime

The value of the transmission coefficient is not sufficient to assess the impact of tunneling
through the dipolar barrier. A more relevant quantity is the mean lifetime similar to that
encountered for example in the processes of disintegration. Moreover, the method used here
to give an order of magnitude of it is the same as that used for the alpha decay.

Let us consider a bound system OHe - nucleus. This undergoes oscillations between the
barrier in r = a and the turning point in r = d and therefore hits the barrier at a certain
frequency ν. To calculate it, we need to know the speed in the well (in fact the relative
velocity), which can be obtained from the probability density and current ρ and

−→
J in a

semi-classical framework
−→v =

−→
J

ρ
(5.10)

This calculation requires to know the wave function throughout the interval [a, d], which
is a problem for the WKB solution because we saw that it diverges at the turning point.
Therefore, and since the goad is only to give an order of magnitude, we turn to the square
well potential and use the exact solution. In region III, we have

ψIII(r) =

(
A

r
eikIIIr +

B

r
e−ikIIIr

)
1√
4π

where kIII(r) =
√

2µ (E − Vmin), Vmin being the minimum UIII(a) of the well in region III.
Using the incoming spherical wave, we have

ρIII(r) = |ψIII |2 =
|B|2

4πr2

Jr,III(r) = −kIII |B|2

4πµr2

so that
v =

kIII
µ

Assuming oscillations between r = a and r = d at relative velocity v, we obtain the
frequency of the oscillations

ν =
v

2 (d− a)

=
kIII

2µ (d− a)
(5.11)

The transmission coefficient T represents the probability to cross the barrier at each test
and ν is the number of tests par unit time, so that νT is the probability of tunneling per
unit time. The desired mean lifetime is therefore given by

τ =
1

νT
(5.12)
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The considerations of these first two sections are limited to tunneling of a bound system
OHe - nucleus. We could interest ourselves to the case in which an incident OHe, coming
from infinity at thermal energy, hits the barrier without binding to the nucleus. In this case,
the transmission coefficient has to be calculated with an incident plane wave of well defined
direction of propagation, which is somewhat different from the spherical waves used until
now. This calculation can be performed by developing a plane wave into spherical harmonics
but has not been done in the framework of this thesis. However, the counting rate of events
resulting from tunneling due to collisions between external (not bound) nuclei and the OHe
atoms is calculated in Appendix D given a transition probability T . It is realized on the basis
of a simple model that takes into account the thermal agitation in a medium at equilibrium,
causing collisions at a rate that depends on the temperature, which can then be used together
with the transmission coefficient to know the counting rate.

5.3 Results

First, let us put expression (5.8) corresponding to the non-modified WKB approximation
into a program and calculate the transmission coefficient for nuclei given by the usual formula
(4.26). Let us recall that in this case we had for the nuclear range s = 1.2 fm. The energy
we have to use in equation (5.8) is the binding energy of an OHe - nucleus, which we are
now able to obtain for any nucleus through the analysis of Chapter 4. The results are shown
on Figure 5.1. We see that T decreases of about 30 orders of magnitude from the lightest
nuclei to mass numbers A > 200. This is easily understood because the height of the dipolar
barrier increases with the radius R of the nucleus as well as with the reduced mass µ, making
σII go from ' 2 to ' 36, which greatly decreases T , as is better seen in expression (5.9).

Except for heavy nuclei, it seems that the values in Figure 5.1 are very high. A transmis-
sion coefficient greater than 10−10 for A < 50 represents a very high probability of tunneling
per second given the large frequencies of oscillation with which we are dealing. In particular,
for our nucleus of interest, sodium, we find T = 1.28 · 10−4, while expressions (5.11) and
(5.12) give ν = 1.67 · 1020 Hz and τ = 4.69 · 10−17 s. This last value is obviously incredibly
small and implies that as soon as a bound state is formed, it is destroyed in the nuclear
region by nuclear processes whose products should be visible in any case. Figure 5.2 shows
the mean lifetimes corresponding to the transmission coefficients of Figure (5.1). We see
that even for the heaviest nuclei, the mean lifetime is small (only a few years) and should
be observable.

The calculation of the transmission coefficient in the case of the modified WKB method
is the same, even in the presence of the centrifugal potential that was not present before. In
region II, the height of the barrier is just a little increased and in region III, we are left with
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Figure 5.1: Logarithm in base 10 of the transmission coefficient for mass numbers going to
250.

Figure 5.2: Logarithm in base 10 of the mean lifetime τ (s) for mass numbers going to 250
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Figure 5.3: Logarithm of the modified transmission coefficient for mass numbers going to
250.

a new very extended barrier (see Figure 4.5, regions III and IV) but that has no importance
in the case of a system OHe - nucleus bound in region III. We could expect that the effect
of the increase of the barrier would be to suppress the transmission coefficient greatly. It is
indeed decreased, but very slightly because the centrifugal potential is rather small compared
to the barrier : at its maximum in r = R, it is only equal to 1

8πµ
' 0.02 MeV in the case of

sodium. Moreover, this is offset by the decrease of the width of the barrier because of the
choice s = 0.44 fm instead of 1.2 fm in the case of the non-modified WKB method. Thus we
are left with T = 4.43 · 10−4, which is even slightly larger than previously, ν = 2.44 · 1020 Hz
and τ = 9.24 · 10−18 s. Figure 5.3 shows the modified transmission coefficients for the usual
nuclei and is very similar to Figure 5.1.

The high values of T , leading to very small values of the mean lifetime of a bound system
OHe - nucleus, require some attention and discussion. We could think that the estimations
of the transmission coefficients and the mean lifetime are incorrect. Assigning a velocity to a
quantum system that oscillates between two well-defined spatial regions might seem wrong
except in a semi-classical framework. However, we may expect that the order of magnitude
is correct and in any case, an improvement would certainly not allow to win as many orders
of magnitude for the value of τ to become much greater than the age of the universe, which
would be the only solution to eliminate the problem of tunneling.

It seems therefore that we have to deal with these very small lifetimes, which requires
considering the consequences of tunneling to the first region of the potential of interaction.
As already announced, many nuclear processes, as well as electromagnetic ones, are possible,
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nearly all giving rise to products whose presence cannot be unnoticed. To fix the ideas, in
the case of sodium, the entry of helium (with O−− that has no nuclear interaction) inside
the nucleus gives an aluminum nucleus in an excited state. Taking into account the nuclear
binding energies of these three nuclei, we find indeed that to go from the ground state of
23Na to the ground state of 27Al, about 10 MeV must be released. These can be used to
emit a photon at Eγ = 10 MeV, which is allowed by the conservation of the nuclear spin
because JNa = 3/2, JAl = 5/2 and Jγ = 1, or to eject two neutrons (Jn = 1/2) of binding
energy Eb and that would therefore leave the nucleus with a kinetic energy 10 − Eb. The
study of all the possible processes and their probabilities is of course out of the context of
this thesis but we can already say that the effects should be visible. Another possibility
would be that the helium nucleus, spending a very short time in the nucleus (∼ 10−17 s),
would not have time enough to be involved in a nuclear or electromagnetic reaction. It
could therefore cross the dipolar barrier away and we would have a bound state at −3 keV
that covers regions I, II and III of the potential of interaction, with very frequent crossings
of the barrier, from front to back and vice versa. This low energy bound state, partially
merged into the nucleus, would solve the problem of the products of fusion without having
to increase the lifetime well beyond the age of the universe. But this possibility can in
fact be ruled out immediately because, for nuclei heavier than sodium, the mean lifetime
quickly becomes large enough (10−10 or 10−5 s for example are quite sufficient) to allow
nuclear or electromagnetic reactions to take place, making practically all the nuclei found
in our environment become unstable and radioactive in the presence of OHe. Finally, it
is thought [13] that, when helium merges into the nucleus, the remaining O−− in the new
nucleus is subject only to electrostatic interaction of harmonic oscillator type, corresponding
to the electrostatic interaction of a charge (O−−) placed into a spherical charge distribution
(nucleus of charge Z + 2). This gives rise to abnormal isotopes of known elements, which is
an additional difficulty for the OHe hypothesis if the dipolar barrier can be crossed relatively
easily.



Chapter 6

Conclusion

Currently, the most popular candidates for a dark matter constituted by particles that were
non-relativistic at decoupling from plasma and radiation are the WIMPs (Weakly Interacting
Massive Particles). Such neutral particles, interacting sufficiently weakly so that their exis-
tence has remained unnoticed until now, are actually predicted by supersymmetric theories
(SUSY), where they are called neutralinos. Indirect and direct observations are underway,
the first aiming primarily to detect the annihilation products of these particles with their
antiparticles, the latter corresponding to the detection of the interaction of the dark matter
particles with baryonic matter in a detector. In this case, a popular method is to observe
the faint light produced by the nuclear recoil of a nucleus, caused by a massive weakly inter-
acting particle passing through the earth and hitting the target matter of an underground
scintillator.

This is the approach followed by experiments such as XENON100, DAMA/LIBRA (DArk
Matter / Large sodium Iodide Bulk for RAre processes) and previous DAMA/NaI. While
the first one did not observe any signal corresponding with certainty to the signature of dark
matter, providing only upper limits on the elastic WIMP-nucleon cross section σ as a function
of the WIMP mass mχ, the other two have, during their successive runs, revealed a signal
in the energy range (2− 4) keV presenting an annual modulation with a one-year period
((0.999± 0.002) yr ) and with a modulation amplitude of (0.0116± 0.0013)cpd/kg/keV.
When trying to explain this signal, maybe due to the motion of the earth around the sun
with a one-year period in a dark matter halo, in terms of WIMPs, we realize that the region
delimited in the σ versus mχ space for WIMPs lies out the limits fixed by XENON100.

Note that another experiment, CoGent, using a germanium detector, had also detected an
excess of events that could correspond to the impacts of WIMPs on the nuclei of germanium
in the crystal. No annual modulation phenomenon had been identified so far and the region
in the parameter space, favoring the hypothesis of light WIMPs as for DAMA, was also
in contradiction with the negative results of XENON100. It is only very recently that a
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modulation similar to that observed by DAMA has been reported, in the energy range below
1 keV. If this is confirmed, this will be the first evidence for such kind of signal somewhere else
than at the Gran Sasso National Laboratory in Italy where is located the DAMA experiment.

The contradiction between experimental data from XENON and DAMA or CoGent has
been considered by Khlopov et. al. and the approach is as follows : instead of explaining the
DAMA results (or the more recent ones from CoGent) in terms of WIMPs as it is usually
done, it is possible to interpret the observations using another type of dark matter, called
composite dark matter, without contradicting the other negative results. This kind of dark
matter consists in new heavy stable charged particles bound to baryonic matter in neutral
“dark atoms”. From cosmological arguments, it has been shown that these particles should be
of charge −2 (denoted by O−−) and are bound to primordial He++ , giving rise to hydrogen-
like atoms, called O-helium atoms (O−−

He
++ , denoted by OHe). Such particles, benefiting

from theoretical support predicting their existence, are found to have strongly suppressed
hadronic interactions, making their interactions with terrestrial matter dominated by the
nuclear interactions of He. The mass MO of an O−− is assumed to be around 1 TeV, and
all the following results do not depend of a mass MO > 1 TeV.

Because of these nuclear interactions coming from the helium nucleus, the OHe atoms
falling onto the Earth from a dark matter halo surrounding the galaxy begin to undergo
elastic nuclear collisions as they penetrate below the surface, until they thermalize and fall
down towards the center of the earth. The energy transfer is therefore to low to be detected
as a nuclear recoil but the OHe atoms can form a low energy bound state with nuclei, leading
to the observed signal of DAMA by the process of radiative capture.

A −3 keV bound state had already been found for the system OHe - Na, together with
the fact that no bound states were found for iodine from the DAMA detector and xenon,
by simplifying the potential of interaction by a square well potential. While Khlopov et
al. use at large distance (with respect to the size of an OHe atom) a Coulomb screened
potential plus a Yukawa-like potential corresponding to σ meson exchange between helium
and the nucleus, we considered here only the purely electrostatic part of the interaction at
such distances. It was necessary to perform the calculation using its actual shape. This
was the main objective of this master thesis and it has been done using the approximate
analytical solutions provided by the WKB approximation.

This method was firstly used as a simple copy of its version in one dimension (because of
the similarity between the radial equation in three dimensions and the Schrödinger equation
in one dimension) and then was modified to take into account the fact that the radial variable
r takes only positive values unlike the variable x in one dimension. Applying the non-modified
method to a wide range of stable nuclei with a nuclear range of 1.2 fm included to parameter
a, we found no bound state for the systems 1n, 1H 2H, 3H −nucleus, i.e. for light nuclei.
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The most important result is that a bound state is found at −2.96 keV for sodium, i.e. one
of the two components of DAMA, which allow to explain the observations in the right energy
range and agree with the results of Khlopov et al., but without considering any σ exchange
between helium and nucleus. This result is to be associated with a level at −1.22 keV for the
other component, iodine, which gives a signal at 1.22 keV lying under the energy threshold
at 2 keV of the experiment and therefore contributing to the counting rate in that region.
The parameters V0 and R of the model have no influence on the results and no higher level
at l = 0 is found.

In a general manner, we therefore find bound states for every nuclei (except for the lightest
ones). A bound state is found for xenon, at −1.15 keV in particular for the isotope 132,
and similar values for the other stable isotopes. At operating temperature of XENON100
(−100 °C), this gives a constant part of the modulated signal ξ132Xe = 0.215 cpd/kg, to which
should be added the contributions of the other isotopes. But this is not in contradiction with
the negative results of XENON100 because it lies under the threshold of the experiment,
estimated at 5 keV. For germanium, the binding energies shown in Table 4.2 are centered
around −2 keV and seem too high in absolute value to reproduce the recent modulated
signal observed by CoGent. But this is not a real contradiction because a level is effectively
predicted while it is required to explain the observational results in terms of OHe and a
refinement of the model should allow us to get closer to the required value.

Although these results are encouraging, some aspects should be analyzed further. Among
them, the size effects of nuclei. Indeed, in this model, the nucleus is considered as a point
feature (except for the determination of the regions of the potential). But in view of the
distances involved in the problem, the nuclear radius is not negligible and its size should be
taken into account. Let us illustrate this a bit more : being very massive, the OHe atom
nearly corresponds to the origin of the center of mass frame. We therefore may consider that
the nucleus is immersed in an external central potential, as a potential imposed to a single
point particle. The bound state corresponds to the situation where the nucleus is trapped
in the well of region III, but this is very small. For example, in the case of sodium, we have
a = 8.52 fm and d = 8.79 fm for the turning point at −3 keV. We see that we have to
deal with a nucleus of radius R ' 3.5 fm in a well of width ' 0.27 fm. This could lead to
corrections or weaken and even destroy the bound state for the largest nuclei, as xenon and
iodine. This analysis should therefore be reported to further works.

A modified version of the WKB method has been envisaged, where we turned, by an
appropriate change of variable and function, to a problem characterized by a variable x

going from −∞ to +∞ when r goes from 0 to +∞, so that this new situation is similar in
all respects to a problem in one dimension. Then we applied the WKB solutions, originally
built in one dimension, to this new problem, which proved to be nothing more than applying
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directly the WKB solutions to the three-dimensional problem together with the replacement
of the term l (l + 1) by

(
l + 1

2

)2
in the radial equation. This had the effect of adding a

“centrifugal term” even at l = 0.
In this case, we had to change the nuclear range s and take s = 0.44 fm, giving us a

bound state for sodium at −3 keV, explaining the DAMA results. This is to be associated
with a bound state for iodine at −2.2 keV, giving an unobserved supplementary modulation
amplitude ςI = 0.0334 cpd/kg. But we cannot do without noticing that the corresponding
signal at 2.2 keV is very close to the threshold and we have good reason to think that correc-
tions could bring this value back below 2 keV. More light nuclei are in this case suppressed
(do not have any bound state with OHe), the lightest one to have a bound state with OHe
being 16

N , but we are still left with levels for all heavier nuclei. Here again, no contradiction
appears with the negative results form XENON100 because the binding energies (−2.1 keV
for 132

Xe and similar values for the other isotopes) give rise to a signal by radiative capture
under the energy threshold of the experiment. For the stable isotopes of germanium, how-
ever, we find binding energies going from −3.77 to −3.26 keV, which seem even more difficult
to relate to the results of CoGent than in the case of the non-modified WKB method. But
this time too, we cannot speak about real contradiction but rather about a lack of precision
in the prediction of the binding energies. In any case, attention should be paid to the future
publications of observational results of CoGent. Finally, no higher levels are found at l = 0

for all the considered nuclei.
We are therefore left with two methods, both giving results for sodium and thereby

explaining the DAMA results. It is of course necessary to choose one of them. The non-
modified method has the advantage that the needed value for the nuclear range s falls in a
generally accepted interval. But the modified method seems more appropriate because its
only effect is to get closer to a one-dimensional problem without bringing any additional
complication, and therefore the WKB solutions are necessarily better suited. That is the
reason why we should turn to this version and its associated results. The less probable value
of the nuclear range can be improved by requiring a bound state closer to −2 keV for sodium
(which is also an acceptable value, being in the right energy range) but it is not sufficient to
bring it above the unit. Uncertainties relative to the model and to the WKB method could
also be partially at the origin of this low value, and again, size effects should be taken into
account.

By evaluating the validity criterion of the WKB method, it has been realized that, even
it the modified case, this was greater than unity only in the small region on the left of the
turning point in the potential well of region III. This means that the approximation is poor
in that region, while the WKB connection formulas require its validity on both sides of the
turning point, at least on a reduced interval. This could be the principal source of uncertainty
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(not to mention the uncertainties inherent to the model). It seems difficult to estimate the
error on the binding energy with the WKB approximation but one way to improve the results
would be to keep the higher order terms in the development of the solution in powers of ~
and redo all the calculations with these additional terms, which of course has not been done
in the context of this thesis given the large mathematical complications that this introduces.

A third method of resolution of the Schrödinger equation has been considered, consisting
in, as Khlopov et al., simplifying the potential by a square well potential. After noting
that no level was found by directly replacing the true potential by its simplified version, we
realized that we had to lower the well in region III to about −1 MeV to finally obtain a level
at −3 keV for sodium. This was in contradiction with the WKB method that gives a level
in a well of a few keV of depth. Therefore, we applied the WKB solutions to the simplified
problem, and realized that it gave exactly the same results because the WKB solutions
reduce to the exact solutions in the case of a constant potential. We concluded that the
WKB approximation, applied to the true shape of the potential, should be an improvement.

Extending the calculations to the search of levels in region I (nuclear region) of the
potential, we found the presence of deep levels that correspond to the levels of an alpha
particle (helium nucleus) within a nucleus.

More interest has been given to the dipolar barrier in region II of the potential. In
particular, tunneling through this barrier could lead the nucleus and the helium nucleus
to merge and give an excited larger nucleus that could de-excite through many nuclear or
electromagnetic processes. Because none of the products of these processes are observed,
we expected the transmission coefficient T to be very low, making tunneling very inefficient.
Unfortunately, it was evaluated, for sodium in particular, to T ' 10

−4 , giving a mean lifetime
τ of a bound state OHe - Na of the order of 10−17 s. This poses a real problem, which raises
profound interrogations. If nothing is done to greatly suppress the transmission coefficient,
making the mean lifetime become much large than the age of the universe, the hypothesis of
OHe will no longer seem viable. Further work is therefore needed to find a way to strengthen
the barrier, at its width and height. If no such mechanism can be found, attention should be
payed to the size effects of a nucleus tunneling through a barrier that has roughly the same
size. These effects could indeed have a significant influence on the process of tunneling.

Finally, we must note that until now, the system OHe - nucleus has been considered
as a two-body system (OHe and nucleus separately) with a spherical symmetry, while it is
clear that we have to deal with a three-body problem (O−− - He++ - nucleus) without any
particular symmetry. So it goes without saying that the best thing to do would be to develop
a program that simulates the evolution of this three-body system, taking into account the
extensions of the entities. This would allow to accurately understand the behavior of the
system and to definitively decide for or against the hypothesis of OHe as the constituent of
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dark matter. This point would be a perfect subject for a doctoral thesis, with, in both cases,
an important result at the key.



Appendix A

WKB equations

Here we show the details of calculations of section 3.3 to set the equations (3.24) and (3.25)
in Chapter 3.

Recall the development of the phase S of the wave function to order 1 in ~2 :

S ' S0 + ~2

S1

to be inserted in the differential equation for S :

S ′2 = 2m (E − V ) + ~2

[
3

4

(
S ′′

S ′

)2

− 1

2

S ′′′

S ′

]

We have :

S ′2
0 + 2~2

S ′
0S

′
1 = 2m (E − V ) + h̄

2

3
4

(
S ′′
0 + ~2

S ′′
1

S ′
0 + ~2S ′

1

)2

− 1

2

S ′′′
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S ′′′
1

S ′
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1


= 2m (E − V ) + ~2
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S ′′
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S ′′
1

)2
(

1

S ′
0

)2 (
1− ~2 S ′

1

S ′
0

)2

−1

2

(
S ′′′
0 + ~2

S ′′′
1

) 1

S ′
0

(
1− ~2 S ′

1

S ′
0

)]
by developing 1

1+~2
S′
1

S′
0

at first order in ~2 as 1− ~2 S′
1

S′
0
.

Then,

S ′2
0 + 2~2

S ′
0S

′
1 = 2m (E − V ) + ~2

[
3

4

1

S ′2
0

(
S ′′2
0 + 2~2
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0S

′′
1

)(
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)
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2
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S ′
0
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1
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)]
Therefore, by only keeping the terms of order 0 and 1 in ~2 ,

S ′2
0 + 2~2

S ′
0S

′
1 = 2m (E − V ) +

3

4
~2 1

S ′2
0

S ′′2
0 − 1

2
~2 1
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0
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⇒

S
′2
0 = 2m (E − V ) at order 0

2S ′
0S

′
1 =

3
4

(
S′′
0

S′
0

)2

− 1
2

S′′′
0

S′
0

at order 1

the second giving the equation (3.24).

Let us consider the case E > V :

We know that S ′
0 = ± h̄

λ̄
from the lowest-order equation, with λ̄ defined in (3.20). The

first-order equation gives :

±2
~
λ̄
S ′
1 =

3

4

(
~λ̄′/λ̄2

~/λ̄

)2

− 1

2
(∓)(±)λ̄

λ̄′′λ̄− 2λ̄′
2
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3

4

λ̄′
2

λ̄
+

1

2
λ̄′′ − λ̄′

2

λ̄

Finally, we find :

~S ′
1 = ±

(
1

4
λ̄′′ − 1

8

λ̄′
2

λ̄

)
which proves equation (3.25).



Appendix B

WKB quantization condition

Here it is shown how we set the condition (4.22) for the quantization of the energy in the
case of the non-modified WKB approximation in subsection 4.1.2 of Chapter 4, which is also
used for the modified method.

The condition on the constant D′ of the WKB solution in region IV of the potential
coming from the connection formulas of the WKB approximation is recalled hereafter

D′ = θA′e
iρ

+ θ∗B′e
−iρ

(B.1)

where θ = eiπ/4 and ρ =
´ d

a
kIII(r)dr, to be associated with the condition of non-divergence

of the solution for r → ∞
D′ = 0 (B.2)

By requiring the continuity of the wave function and its first derivative at the points of
discontinuity of the potential, we find the following relations between the constants involved
in the solutions of the different regions of the potential

C = −A
2
X (B.3)

D =
A

2
Y (B.4)
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2
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√
kIII(a) (κII(a))

−1/2
)
e
−σII − 1

2
iD

(√
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√
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C e
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√
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D e
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where
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X =
K√
κII(R)

cos(KR)−
√
κII(R) sin(KR) +

1
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√
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are real.
The use of expressions (B.1), (B.5) and (B.6) gives for D′
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and
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while the condition (B.2) and expressions (B.3) and (B.4), together with previous ones
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and for the imaginary part
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Expression (B.9) is the quantization condition (4.22) that we wanted.



Appendix C

Quantization conditions for the square

well potential

This appendix contains the calculations relative to the energy quantization conditions in
the case of the square well potential of section (4.3), in both cases −U3 < E < 0 and
−U1 < E < −U3. Recall that the simplified potential is shown in Figure 4.8 in section 4.3.

C.1 Case −U3 < E < 0

Let us recall the solutions in the regions I, II, III and IV

uI(r) = AI exp(ikIr) +BI exp(−ikIr)

uII(r) = AII exp(kIIr) +BII exp(−kIIr)

uIII(r) = AIII exp(ikIIIr) +BIII exp(−ikIIIr)

uIV (r) = AIV exp(kIV r) +BIV exp(−kIV r)

where kI =
√

2µ (E + U1), kII =
√
2µ (U2 − E), kIII =

√
2µ (E + U3) and kIV =

√
−2µE.

The finiteness of the wave function at the origin together with the continuity of the solu-
tion and its first derivative at each point of discontinuity of the potential give the following
set of equations

AI +BI = 0 ⇒ uI(r) = A sin(kIr)

A sin(kIR) = AIIe
kIIR +BIIe

−kIIR (C.1)

AkI cos(kIR) = AIIkIIe
kIIR −BIIkIIe

−kIIR (C.2)

AIIe
kIIa +BIIe

−kIIa = AIIIe
ikIIIa +BIIIe

−ikIIIa (C.3)

AIIkIIe
kIIa −BIIkIIe

−kIIa = AIIIikIIIe
ikIIIa −BIIIikIIIe

−ikIIIa (C.4)

AIIIe
ikIIIb +BIIIe

−ikIIIb = AIV e
kIV b +BIV e

−kIV b (C.5)

AIIIikIIIe
ikIIIb −BIIIikIIIe

−ikIIIb = AIV kIV e
kIV b −BIV kIV e

−kIV b (C.6)
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POTENTIAL

These equations can be regarded two by two in order to finally express AIV in terms of A :
(C.1) and (C.2) lead to
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The requirement AIV = 0, allowing the solution not to diverge at infinity, gives therefore,
using (C.9), (C.10) and (C.11)
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By noting

AII =
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BII =
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with obvious definitions of the real S and T from equations (C.7) and (C.8), we get
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e−i(b−a)kIII

]
ekIIa

+T

[
−1

2

(
−ikIII

kIV
− 1 +

kII
kIV

− i
kII
kIII

)
ei(b−a)kIII +

(
1− i

kIII
kIV

+
1

2

(
−1 + i

kIII
kIV

− i
kII
kIII

− kII
kIV

))
e−i(b−a)kIII

]
e−kIIa

and by separating the real and imaginary parts we get respectively

S

[
kII
kIV

cos((b− a)kIII) +
kII
kIII

sin((b− a)kIII) + cos((b− a)kIII)

−kIII
kIV

sin((b− a)kIII)

]
e
kIIa + T

[
− kII
kIV

cos((b− a)kIII) (C.15)

− kII
kIII

sin((b− a)kIII + cos((b− a)kIII)−
kIII
kIV

sin((b− a)kIII

]
e
−kIIa = 0

and

0 = 0

the expression (C.15) giving the transcendental equation for the energy in the case −U3 <

E < 0.

C.2 Case −U1 < E < −U3

This case can be treated exactly in the same manner with the difference that the wave
function in region III is now a real exponential

uIII(r) = AIII exp(kIIIr) +BIII exp(−kIIIr)
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so that the solution is real everywhere. The connections in r = R ((C.1), (C.2)) remain
unchanged while the other become

AIIe
kIIa +BIIe

−kIIa = AIIIe
kIIIa +BIIIe

−kIIIa (C.16)

AIIkIIe
kIIa −BIIkIIe

−kIIa = AIIIkIIIe
kIIIa −BIIIkIIIe

−kIIIa (C.17)

AIIIe
kIIIb +BIIIe

−kIIIb = AIV e
kIV b +BIV e

−kIV b (C.18)

AIIIkIIIe
kIIIb −BIIIkIIIe

−kIIIb = AIV kIV e
kIV b −BIV kIV e

−kIV b (C.19)

(C.16) and (C.17) allow us to express AIII and BIII in terms of AII and BII

AIII =
1

2

[
AII

(
kII
kIII

+ 1

)
e
kIIae

−kIIIa +BII

(
1− kII

kIII

)
e
−kIIae

−kIIIa

]
(C.20)

BIII = AII

[
1− 1

2

(
kII
kIII

+ 1

)]
ekIIaekIIIa (C.21)

+BII

[
1− 1

2

(
1− kII

kIII

)]
e−kIIaekIIIa

while (C.18) and (C.19) give

AIV =
1

2

[
AIII

(
kIII
kIV

+ 1

)
ekIIIbe−kIV b +BIII

(
1− kIII

kIV

)
e−kIIIbe−kIV b

]
(C.22)

BIV = AIII

[
1− 1

2

(
kIII
kIV

+ 1

)]
ekIIIbekIV b (C.23)

+BIII

[
1− 1

2

(
1− kIII

kIV

)]
e−kIIIbekIV b

The condition AIV = 0, together with (C.20), (C.21) and (C.22), implies

AIV = 0

=
1

2
AII

1

2

(
kII
kIII

+ 1

)
e
kIIae

−kIIIa

(
kIII
kIV

+ 1

)
ekIIIbe−kIV b

+
1

2
BII

1

2

(
1− kII

kIII

)
e
−kIIae

−kIIIa

(
kIII
kIV

+ 1

)
ekIIIbe−kIV b

+
1

2
AII

[
1− 1

2

(
kII
kIII

+ 1

)]
ekIIaekIIIa

(
1− kIII

kIV

)
e−kIIIbe−kIV b

+
1

2
BII

[
1− 1

2

(
1− kII

kIII

)]
e−kIIaekIIIa

(
1− kIII

kIV

)
e−kIIIbe−kIV b

(C.13) and (C.14), which are always valid here, give

0 = S

[
1

2

(
kII
kIV

+
kII
kIII

+
kIII
kIV

+ 1

)
ekIII(b−a) +

(
1− kIII

kIV

−1

2

(
kII
kIII

− kII
kIV

+ 1− kIII
kIV

))
e−kIII(b−a)

]
ekIIa

+T

[
1

2

(
kIII
kIV

+ 1− kII
kIV

− kII
kIII

)
ekIII(b−a) +

(
1− kIII

kIV

−1

2

(
1− kIII

kIV
− kII
kIII

+
kII
kIV

))
e−kIII(b−a)

]
e−kIIa
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which finally gives

S

2

[(
1 +

kIII
kIV

+
kII
kIII

+
kII
kIV

)
e
(b−a)kIII +

(
1− kIII

kIV
− kII
kIII

+
kII
kIV

)
e
−(b−a)kIII

]
e
kIIa (C.24)

+
T

2

[(
1 +

kIII
kIV

− kII
kIII

− kII
kIV

)
e
(b−a)kIII +

(
1− kIII

kIV
+
kII
kIII

− kII
kIV

)
e
−(b−a)kIII

]
e
−kIIa = 0

providing the transcendental equation for the energy in the case −U1 < E < −U3.





Appendix D

Event counting rate in a medium at

thermal equilibrium

In this appendix, we calculate, using a very simplified model, the counting rate of events
resulting from tunneling of an external nucleus (or OHe) coming from infinity in a medium
at temperature Te. We assume that the transmission coefficient T is known, even if we do
not provide its expression in this situation.

Let us consider in a medium at temperature Te where the particles are subjected to
thermal agitation with random movements. We first want to determine the number of
collisions with nuclei per unit time that an OHe atom will undergo. OHe is seen as a sphere
of radius r0 (O−− at the center and He++ on its Bohr radius) and the nucleus as a sphere of
radius R. We assume collisions of “billiard ball” type, so that an OHe atom will hit a nucleus
if their center are closer to r0 + R, and that the particles move in a straight line between
two collisions. Therefore, all nuclei that will collide with the OHe atom have their center
in a cylinder of radius r0 + R centered on OHe. The others will not collide with OHe. The
situation is schematized in Figure D.1.

During a time interval dt, a particle travels a distance l = v dt, so that the cylinder has
a volume dV = π (r0 +R)

2

v dt. If n is the numerical density of nuclei, the number of nuclei
in the collision cylinder, and hence the number of collisions during the interval dt, is given
by dN = n dV = nπ (r0 +R)

2

v dt. But we are not in a situation where OHe or nuclei are
at rest, and hence the velocity v to consider is in reality the average relative velocity 〈vrel〉.
To calculate it, let us recall some basic notions of kinetic theory of gases.

In a medium consisting of particles of mass m in equilibrium at temperature Te, the
velocity distribution is given by the Maxwell-Boltzmann distribution

P (−→v )dvxdvydvz =
( m

2πTe

)3/2

exp
(
−m

(
v

2

x + v
2

y + v
2

z

)
/2Te

)
dvxdvydvz (D.1)

The average velocity can be written as 〈v〉 =
´ ´ ´

vP (−→v )dvxdvydvz, which can be calculated
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EQUILIBRIUM

Figure D.1: Collision cylinder between OHe and nuclei subjected to thermal agitation.

by turning to spherical coordinates

〈v〉 =
( m

2πTe

)3/2

4π

ˆ ∞

0

v
3

exp
(
−mv2

/2T
)
dv

= 2π
( m

2πTe

)3/2
(
2Te

m

)2 ˆ ∞

0

z exp (−z) dz

by putting z = mv
2

2Te
. The integral in last expression is the gamma function

´ ∞

0
z exp (−z) dz =

Γ(2) = 1Γ(1) = 1 and we obtain finally

〈v〉 =
√

8Te

πm

In the case of a two-body problem, the mass m must be replaced by the reduced mass µ
and the velocity v becomes the relative velocity vrel

〈vrel〉 =

√
8kTe

πµ
(D.2)

which is the expression we missed. We are now able to write the desired collision rate of an
OHe with nuclei

Z =
dN

dt
= nπ (r0 +R)

2

√
8Te

πµ
(D.3)

which is in fact the usual form of a interaction rate if we write Z = nσv where σ (=
π (r0 +R)

2

here) is the interaction cross section and v the average relative velocity.
We can estimate the order of magnitude of the counting rate χ by assuming that for each

collision, we have a probability T to cross the dipolar barrier1. In cpd/kg units, χ is obtained
1Note that, to be more precise, we should consider the impact parameter of the collision and thus the

angular momentum and use the corresponding transmission coefficient, which would require to determine T
for the different possible values of l. Therefore T is here assumed to be the same for all values of l.
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by multiplying the collision rate Z by the the transmission coefficient T , the number Q of
OHe in one kg of medium of molar mass A (g/mol) and the number of seconds in one day t

χ = n0E
π (r0 +R)

2

QtNA

A

√
8Te

πµ
T (D.4)

where n0E(cm
−3
) is the numerical density of OHe and Q, t and NA were introduced in

subsection 2.2.1 for the counting rate of low energy photons emitted by radiative capture to
a level E in region III. We can put this in a more useful form by calculating the multiplying
factors

χ = 2 · 1033

n0E(cm
−3

)
(r0 +R)

2

(fm
2
)

A

√
Te(GeV )

µ(GeV )
T (cpd/kg) (D.5)

In last expression, n0E can be evaluated using equation (2.2) for the equilibrium concentration
of OHe within the detector for example.





Bibliography

[1] P. Magain, course “Astrophysique Extragalactique” (2010)

[2] M. Moniez, “Review of results from EROS Microlensing search for Massive Compact
Objects”, arXiv:0901.0985 [astro-ph.GA] (2009).

[3] D. H. Perkins, Particle Astrophysics, 2nd ed. (Oxford University, 2009).

[4] E. Aprile [Xenon Collaboration], “The XENON100 dark matter experiment at LNGS:
Status and sensitivity”, J. Phys. Conf. Ser. 203 (2010) 012005.

[5 ] M. Schumann and E. Tziaferi [XENON100 Collaboration], “The XENON100 dark mat-
ter experiment”, http://dx.doi.org/10.3204/DESY-PROC-2008-02/schumann marc.

[6] E. Aprile et al. [XENON100 Collaboration], “Dark Matter Results from 100 Live Days
of XENON100 Data”, arXiv:1104.2549 [astro-ph.CO] (2011).

[7] T. Schwetz, “Direct detection data and possible hints for low-mass WIMPs”,
arXiv:1011.5432 [hep-ph].

[8] C. Kelso and D. Hooper, “Prospects For Identifying Dark Matter With CoGeNT”, JCAP
1102 (2011) 002 [arXiv:1011.3076 [hep-ph]].

[9] Z. Ahmed et al. [CDMS-II Collaboration], “Results from a Low-Energy Analysis of
the CDMS II Germanium Data”, Phys. Rev. Lett. 106 (2011) 131302 [arXiv:1011.2482
[astro-ph.CO]].

[10] E. Armengaud et al. [EDELWEISS Collaboration], “Final results of the EDELWEISS-II
WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved
electrodes”, arXiv:1103.4070 [astro-ph.CO].

[11] M. Y. Khlopov, A. G. Mayorov and E. Y. Soldatov, “Composite Dark Matter and
Puzzles of Dark Matter Searches”, Int. J. Mod. Phys. D 19 (2010) 1385 [arXiv:1003.1144
[astro-ph.CO]].

83



84 BIBLIOGRAPHY

[12] M. Yu. Khlopov et al., Puzzles of Dark Matter - More Light on Dark Atoms? Con-
tribution to Proceedings of XIII Bled Workshop "What Comes Beyond the Standard
Model?" (Bled, Slovenia, July 2010). Bled Workshops in Physics (2010) V. 11, PP.186-
193; e-Print:arXiv:1011.4587

[13] M. Y. Khlopov, A. G. Mayorov and E. Y. Soldatov, “Dark Atoms of the Universe:
towards OHe nuclear physics”, arXiv:1011.4586 [astro-ph.CO].

[14] R. Bernabei et al. [DAMA Collaboration], “First results from DAMA/LIBRA and the
combined results with DAMA/NaI”, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741
[astro-ph]].

[15] R. Bernabei et al., “New results from DAMA/LIBRA”, Eur. Phys. J. C 67 (2010) 39
[arXiv:1002.1028 [astro-ph.GA]].

[16] D. Park: Introduction to the Quantum Theory, 3rd ed. (McGraw-Hill, Inc., New York,
1992).

[17] C. Cohen-Tannoudji, B. Diu, F. Laloë, Mécanique Quantique I (Hermann, 1996)

[18] A. Messiah, Mécanique Quantique-1 (Dunod, 1969)

[19] A. Das, T. Ferbel, Introduction to Nuclear and Particle Physics, 2nd ed. (World Scien-
tific, 2003)

[20] G. Igot, R. M. Thaler, Optical-Model Analysis of the Elastic Scattering of Alpha Par-
ticles, Phys. Rev. Vol. 106, Nbr 1 (1957)

[21] Ashok Kumar, S. Kailas, Sarla Rathi, K. Mahata, Global alpha-nucleus optical poten-
tial, Nuclear Physics A 776 (2006) 105–117

[22] R. E. Langer, “On the Connection Formulas and the Solutions of the Wave Equation”,
Phys. Rev. 51 (1937) 669.

[23] T. Hübsch, The Theory of Alpha Decay, home-
page.mac.com/thubsch/QM2/Alpha%20Decay.pdf (Term Paper in partial fulfillment
of the course requirements for Quantum Mechanics II, Howard Univ., Washington DC
20059, 1997)


