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Abstract

Clinical diagnosis of disorders of consciousness (DOC) caused by brain injury poses great challenges since patients are often
behaviorally unresponsive. A promising new approach towards objective DOC diagnosis may be offered by the analysis of
ultra-slow (,0.1 Hz) spontaneous brain activity fluctuations measured with functional magnetic resonance imaging (fMRI)
during the resting-state. Previous work has shown reduced functional connectivity within the ‘‘default network’’, a subset of
regions known to be deactivated during engaging tasks, which correlated with the degree of consciousness impairment.
However, it remains unclear whether the breakdown of connectivity is restricted to the ‘‘default network’’, and to what
degree changes in functional connectivity can be observed at the single subject level. Here, we analyzed resting-state inter-
hemispheric connectivity in three homotopic regions of interest, which could reliably be identified based on distinct
anatomical landmarks, and were part of the ‘‘Extrinsic’’ (externally oriented, task positive) network (pre- and postcentral
gyrus, and intraparietal sulcus). Resting-state fMRI data were acquired for a group of 11 healthy subjects and 8 DOC
patients. At the group level, our results indicate decreased inter-hemispheric functional connectivity in subjects with
impaired awareness as compared to subjects with intact awareness. Individual connectivity scores significantly correlated
with the degree of consciousness. Furthermore, a single-case statistic indicated a significant deviation from the healthy
sample in 5/8 patients. Importantly, of the three patients whose connectivity indices were comparable to the healthy
sample, one was diagnosed as locked-in. Taken together, our results further highlight the clinical potential of resting-state
connectivity analysis and might guide the way towards a connectivity measure complementing existing DOC diagnosis.
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Introduction

The coupling between conscious awareness and its external

motor manifestation is so pervasive that it is difficult to

comprehend the devastating state of fully conscious patients who

are unable to respond. Severe brain injury can lead to such cases,

termed the ‘‘locked-in’’ syndrome (LIS). As a result of motor

disconnection, it is challenging to differentiate such cases from

those in which awareness itself is disrupted – termed vegetative

state (VS) or minimally conscious state (MCS). The differential

diagnosis between VS and MCS is even more challenging and up

to 40% misdiagnosis has been reported [1,2,3,4]. The method of

choice for diagnosis of conscious status has been careful bedside

observations, which are challenging due to fluctuation in arousal,

motor deficits and other deficits attributed to the injury, such as

aphasia. This method, due to its subjective nature could partly

contribute to the misdiagnosis rate [5]. Recent studies have

demonstrated that fMRI may provide some DOC patients with a

means for communication through blood oxygen level dependent

(BOLD) signals evoked by mental imagery, even in the complete

absence of motor outputs [6,7]. However, this method relies on

patient cooperation as well as attentional capacity and may not be

suitable for the general patient population. Even more problematic

is prognosis, the ability to predict which patients have better

chances of recovery. These challenges highlight the urgent need

for an objective physiological measure complementing current

evaluation tools.

Recently, a series of studies uncovered a robust phenomenon

that offers exciting potential for a complementary diagnosis of

unresponsive patients. Even in the absence of intentional sensory-

motor tasks, the human cortex manifests high-amplitude ultra-slow

(,0.1 Hz) fluctuations in its BOLD signals that reflect distinct

functional systems [8,9,10]. These spontaneous fluctuations show

anatomical specificity in that correlations (also termed functional-

connectivity) are more pronounced between the functionally

related cortical regions (e.g. right and left auditory cortices) than
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between functionally unrelated cortical regions (e.g. ‘Extrinsic’/

‘task-positive’ and ‘default-mode’ networks [11]). A particularly

striking and consistent aspect of this connectivity is the correlation

across homotopic sites in the two hemispheres [9,12,13,14]. More

recently, a likely neuronal correlate of these spontaneous BOLD

fluctuations was found in ultra-slow modulations of neuronal firing

rates and gamma power in local field potentials [12,15,16].

Although the functional role of the ultra-slow spontaneous

fluctuations remains unclear, they could potentially aid clinical

diagnosis. Indeed, such fluctuations and their network correlations

were shown to be altered in several neurological and neuropsy-

chiatric disorders [10,17,18,19,20]. The spontaneous nature of

ultra-slow fluctuations, emerging without the need for intentional

cooperation, makes them ideally suited as a complementary

diagnostic tool in DOC. It has been recently shown that

connectivity within the default-network [21], a subset of regions

that are deactivated during externally oriented tasks, is negatively

correlated with the degree of clinical consciousness impairment

[22], see also [23]. In these studies resting–state connectivity

within the default mode network (DMN) was assessed using

probabilistic independent component analysis in DOC patients

and an alteration in the spatial extent of the DMN was found at

the group level [22] and at the individual level [23].

Although it has been suggested that the DMN is associated with

basic functions related to consciousness [24], such as self-related

processes [25,26], it is not clear whether the reduction in

connectivity is restricted to the default-mode network or rather

extends into externally oriented regions. Furthermore, in order to

use connectivity analyses for the diagnosis of these patients, it will

have to be established how reliable these measures are on a

subject-by-subject basis.

Here, we examined resting-state inter-hemispheric connectivity

in three homotopic regions of interest, which were easily identified

based on anatomical landmarks, and were part of the externally

oriented network. We found reduction in inter-hemispheric

functional connectivity in impaired awareness subjects as com-

pared to intact awareness subjects. In addition, functional

connectivity was correlated with the level of consciousness and

was found to deviate from the healthy sample in in 5/8 patients

using a single case statistical test. Importantly, of the three patients

whose connectivity indices were comparable to the healthy

sample, one was diagnosed as locked-in. These results suggest

that resting-state functional connectivity might prove beneficial in

the future as a complementary measure in the diagnosis of DOC

patients.

Materials and Methods

The study was approved by the ethics committee of the Faculty

of Medicine at the University of Liège, Belgium. Written informed

consent for healthy volunteers and patients was obtained from all

subjects and legal guardians, respectively.

Subjects
Nineteen subjects participated in the study. Eleven healthy

subjects with no neurological or psychiatric history were recruited

(age 28.864.5 years). Eight neurological patients (age 53.4616.7

years) were evaluated using the CRS-R scale [27], and a diagnosis

of locked-in syndrome (LIS, n = 1), minimally conscious state

(MCS, n = 2), vegetative state (VS, n = 2), coma (n = 2), or brain

death (BD, n = 1) was established. The LIS subject was diagnosed

using the CRS-R and the FOUR scales [28]. BD diagnosis was

established when CRS-R testing showed no brain stem reflexes,

and was further confirmed by a physician conducting apnea tests

[29] as well as EEG recordings [30]. Recovery was assessed using

the Glasgow Outcome Scale, GOS [31]. The etiology of brain

injuries was traumatic (n = 1), anoxic (n = 2), due to cerebral

vascular accidents (CVA, n = 2), hemorrhagic (n = 1), meningitis

(n = 1), or meningioma (n = 1). See Table S1 for further clinical

details.

Data
The data used for this project were also used for two other

published studies that have applied different methods of analysis

and addressed functional connectivity in different cortical

networks. Data from fifteen subjects were used in a study

published by Vanhaudenhuyse and colleagues [22], which

addressed default network connectivity using Independent Com-

ponent Analysis. The brain dead subject has also been analyzed in

a study by Boly and colleagues [32], who addressed functional

connectivity in the default mode network. Data from the three

remaining subjects (two controls and one MCS patient) were not

used in any previously published work.

Functional imaging
Functional magnetic resonance imaging (fMRI) data were

obtained in a 10 minute resting-state scan using a Siemens Tim

Trio 1.5T scanner at the University Hospital Centre CHU-Sart

Tilman in Liège, Belgium. Healthy subjects were instructed to lie

still and keep their eyes closed for the duration of the scan, with no

overt task being imposed. No sedation was applied in patients.

Three-dimensional functional images using blood oxygen level

dependent (BOLD) contrast were obtained with a gradient echo

planar imaging (EPI) sequence (TR = 3000 ms, TE = 30 ms, 36

slices; voxel size: 3.7563.7563.6 mm, flip angle 90u). T1-weighted

anatomical images were acquired using a 3D MPRAGE sequence

(TR = 1670 ms, TE = 4.5 ms, TI = 1000 ms, 144 slices, voxel size:

1.260.961.4 mm, flip angle 8u). Subjects with excessive head

motion (.1 mm translation, .1 deg rotation) were excluded from

the analysis; nine subjects (7 patients; 2 healthy controls)

considered for MRI were excluded during acquisition due to

excessive movement in the scanner. DOC patients tend to exhibit

involuntary movements due to increased muscle tone. As our

patients were not sedated during the MR scan, we had to exclude

7 patients from the analysis.

fMRI preprocessing
FMRI data were preprocessed using BrainVoyager QX 1.9

(Brain Innovation, Maastricht, The Netherlands) and comple-

mentary software written in MATLAB R2009b (The MathWorks,

USA). The first two images of each functional scan were discarded

to avoid T1 saturation effects. Preprocessing of functional scans

included 3D motion correction, linear trend removal, and spatial

smoothing using a Gaussian filter kernel of 8 mm full-width-at-

half-maximum (FWHM). For all further analysis, data were band-

pass filtered between 0.01 and 0.08 Hz. Twenty volumes were

removed from the beginning and the end of the scan to avoid edge

artifacts induced by the filtering, leaving 158 volumes for the

analysis. Several sources of spurious variance were removed from

the signal time-course of each voxel through linear regression [33]:

1) the average signal from each subject’s ventricles, 2) the average

signal from each subject’s white matter voxels, and 3) the average

signal from each subject’s grey matter voxels (‘‘global signal’’).

Data were normalized to the Talairach coordinate system [34],

and the cortical surface was reconstructed for each subject as

described previously [35]. Inflated and flattened cortical maps

were used to visualize statistical parametric maps.

Reduced Connectivity in Disorders of Consciousness
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ROI definitions
We focused on long-distance inter-hemispheric correlations

because these are less susceptible to local noise sources, such as

local blood flow modulations [8,12]. Regions of interest (ROIs)

serving as ‘‘seeds’’ for the inter-hemispheric correlations were

manually identified in the pre- and post-central gyrus (preCG,

postCG) and in the intra-parietal sulcus (IPS) of the right

hemisphere. This choice of ROIs was guided by multiple

considerations in addition to the goal of assessing connectivity

outside the DMN. First, previous studies indicate that inter-

hemispheric correlations are reliably observed in these regions

[14,36]. Second, correlations between regions on the lateral

cortical mantle were less affected by correlated noise due to shared

vascular supply, movement artifacts, or spatial spread of midline

signals [12]. Third, and most importantly, we anticipated the

potential use of such analysis in routine clinical procedures and

thus selected regions that are easily identifiable through simple

anatomical landmarks.

PostCG and preCG ROIs were defined based on the

localization of the ‘‘hand knob’’ on the central sulcus, known to

be largely consistent with the motor hand area [37]. Areas from

the gyri anterior and posterior to this knob were defined as preCG

(209.4645.9 voxels, isotropic voxel size: 36363 mm) and postCG

(208.4643 voxels) ROIs, respectively. The ROI in IPS (83.9631.9

voxels) was defined based on the intersection of the post-central

sulcus with the intra-parietal sulcus [38]. In addition, we

confirmed that the results were robust to the precise delineation

of the ROIs, by demonstrating a tight correlation with results

based on ROIs marked by an independent researcher (see

Material S1 for further details).

fMRI data analysis
For each subject, three resting-state functional connectivity

maps were computed within the framework of the General Linear

Model [39], using ‘‘seed’’ time-courses sampled from right

hemisphere ROIs as regressors (preCG, postCG, IPS). Fits to

the model were evaluated after removing the auto-regression

factor [40]. Unless otherwise stated, the resulting statistical

parametric maps were thresholded at p,0.01. Correction for

multiple comparisons at the cluster level was performed using the

AlphaSim plugin for BrainVoyager QX [41]. Subjects were

divided into two groups based on their level of awareness [42]: the

‘intact awareness’ group comprising healthy and LIS subjects and

the ‘impaired awareness’ group comprising MCS, VS, coma and

brain-dead patients. Second-level statistical analysis across subjects

within each group was performed using a random-effects analysis.

The resulting three resting-state functional connectivity group

maps were projected on an inflated and flattened 3D reconstruc-

tion of the cortical surface. The difference between the group

maps was evaluated using two-sample t-tests. Thus, the resulting t-

test maps (Figure S2) reflect regions that show significantly

different resting-state functional connectivity in the two groups.

Note that the two-sample t-test accounts for the different sample

sizes of the two groups by weighting the variance terms. The t-test

maps were thresholded at p,0.05. Finally, an inter-hemispheric

correlation index (ICD) was computed for each subject by

averaging across the three inter-hemispheric correlations of

spontaneous BOLD fMRI activity between homotopic ROIs

(i.e., left and right postCG/preCG/IPS). To test for a relationship

between individual ICD values and the level of consciousness, we

calculated the non-parametric Spearman correlation coefficient.

To test whether individual ICD scores from patients significantly

deviate from the healthy subjects (used as normative sample), we

applied a t-test specifically developed for single case studies [43].

This modified t-statistic by Crawford & Howell tests for the rarity

or abnormality of a patient’s score, using the standard deviation of

a group of healthy subjects (as the normative sample of size N) as

an estimate for the population standard deviation and N-1 degrees

of freedom.

Results

We examined correlations between spontaneous BOLD activity

in selected cortical regions of interest (ROIs) of the ‘‘Extrinsic’’-

externally oriented, task-positive network [11,44] and all other

cortical regions. Subjects were tentatively grouped into intact and

impaired awareness (see methods for further details). Figure 1

shows the correlation map computed for a ‘‘seed’’ ROI in the right

preCG. In the intact awareness group (Figure 1A), activity in the

preCG significantly correlated with neighboring somato-sensory

cortex, and with the homotopic ‘‘mirror’’ region in the left

hemisphere. Activity in the cingulate sulcus was also significantly

correlated with that of the preCG (Figure S1). Negative

correlations were observed in the posterior cingulate cortex,

lateral temporal cortex, and inferior parietal lobule, which are

commonly referred to as the default-mode network [45,46] or

‘‘intrinsic’’ network [11,25]. In the impaired awareness group,

significant correlations were restricted to immediately neighboring

cortex, while inter-hemispheric correlations were largely absent

(Figure 1B). This drastic reduction of inter-hemispheric correla-

tions was confirmed by statistically comparing the group maps

(Figure S2) taking into account the different sample sizes. Highly

similar results were observed for ‘‘seed’’ regions in the right intra-

parietal sulcus (IPS, Figure S3) and the right posterior central

gyrus (postCG, Figure S4).

To obtain a quantitative measure of the inter-hemispheric

correlations in each subject, we introduced an inter-hemispheric

correlation index (ICD). This index represents the average inter-

hemispheric correlations between the pre-defined ROIs (for details

see materials and methods). We found that ICD values were

decreased in the majority of DOC patients (Figure 2). Individual

ICD scores were found to significantly correlate with the degree of

consciousness, ranging from brain dead, coma, VS, MCS, LIS, to

healthy controls (Spearman’s correlation coefficient r = .61,

p = .0057). Since a decrease of resting-state connectivity with age

has been reported for the DMN [[47]; but see [48]], we confirmed

that lower ICD values in the patient group did not reflect age

differences. Indeed, the correlation between age and ICD value for

all participants was not statistically significant. (Spearman’s

correlation coefficient r = 2.36, p = .128). In addition, when using

age as a control variable in a partial correlation analysis, the

correlation between ICD and the level of consciousness remained

significant (r = .52, p = .027). We further addressed this concern by

analyzing data from additional 11 healthy controls that were

matched for age (53.54615.97 years). Resting-state data and

structural scans were downloaded from a freely available online

source (http://fcon_1000.projects.nitrc.org/indi/pro/nki.html),

and identical preprocessing and analysis was performed (see

Figure S5, Table S2 and Material S2 for further details). The

results show that when individual ICD values of DOC patients

were tested against the normative sample of age-matched controls

(see below), highly similar statistical results were obtained as found

in the younger control group.

To test whether individual ICD scores from patients signifi-

cantly deviate from the healthy subjects (used as normative

sample), we used a t-test specifically developed for single case

studies [43]. As shown in Table 1, individual ICD values from 5/8

patients were significantly different (p,.05) from the average ICD

Reduced Connectivity in Disorders of Consciousness
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value of the healthy controls. In addition to the ICD measure, the

disruption of inter-hemispheric correlations in DOC patients

could also be discerned to a large extent in individual BOLD time

courses (Figure 3) and single-subject maps (Figure S6).

Taken together, these results demonstrate that impaired

awareness was associated with reduced inter-hemispheric correla-

tions and was largely evident at the single subject level. The three

patients with non-significant difference from the healthy control

group were the LIS patient (which was expected to have normal

ICD since his consciousness level is identical to a healthy control),

one Coma patient (which showed a trend towards significance,

p = .0517) and one VS patient (which would be expected to have

decreased correlation values). The ICD value of this VS patient,

studied seven days after anoxic brain damage was 0.65, well within

the range of healthy controls (0.5660.1; mean 6 SD). Impor-

tantly, shortly after the brain imaging (13 days), this patient

progressed to a state of MCS and later (40 days post scan),

recovered consciousness, reaching a state of ‘‘moderate disability’’

according to the Glasgow Outcome Scale [31]. In our sample, this

was the only patient to improve in diagnosis, (see Glasgow

Outcome Scale for all patients in Table S1), one patient remained

in a MCS and the rest of the patients did not survive.

Importantly, inter-operator variability was low; control analysis

based on ROIs drawn by a separate fMRI researcher yielded a

significant correlation (r = 0.65, p,0.01, Figure S7) between the

ICD scores obtained by these two independent investigators,

supporting of the future potential of this method for clinical use

(see Table S3 and Material S1 for further information).

Discussion

In this study, we show reduced inter-hemispheric connectivity

between homologous cortical regions within the ‘‘Extrinsic’’, task

positive network using resting-state fMRI in DOC patients. The

observed decrease in connectivity was significantly correlated with

Figure 1. Correlations between spontaneous BOLD fluctuations in right pre-central gyrus and other cortical regions. Group
correlation maps between a ‘‘seed’’ region in the pre-central gyrus (preCG) and all other cortical voxels, projected on inflated left (LH) and right (RH)
hemispheres (lateral view). (a) Correlations of spontaneous activity in the intact awareness group (n = 12). (b) Correlations in the impaired awareness
group (n = 7). Red arrow, ‘‘seed’’ region location. Blue arrow, homotopic ‘‘mirror’’ regions in the left hemisphere. Note that inter-hemispheric
correlations are largely absent in the impaired awareness group. Abbreviations: CS, central sulcus; LS, lateral sulcus; IPS, intra-parietal sulcus.
doi:10.1371/journal.pone.0037238.g001

Figure 2. Inter-hemispheric Correlation Index (ICD) in individ-
ual subjects. Subjects are separated on the x-axis depending on their
clinical state (patients in red and healthy controls in black). The solid
line represents the mean ICD value in the healthy controls group and
the dashed line represents the mean-2*standard deviation. Abbrevia-
tions: H, healthy; L, locked-in syndrome; V, vegetative state; M,
minimally conscious state; C, coma; B, brain death.
doi:10.1371/journal.pone.0037238.g002
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the degree of consciousness impairment, and was evident to a large

extent at the single subject level.

Inter-hemispheric correlations, or symmetry, between homolo-

gous regions is one of the prominent characteristics of resting-state

fMRI and have been demonstrated in healthy populations using

various techniques, such as region of interest based analysis [9,44],

independent component analysis (ICA) [14,36], and whole brain

approaches [49,50]. Inter-hemispheric symmetry appears to be a

ubiquitous characteristic of brain anatomy [51] and function [52].

Inter-hemispheric connections, in analogous fashion to within-

hemisphere connections, play a role in the integration of

information and coordination between the two hemispheres. Not

surprisingly, alteration in inter-hemispheric correlation has been

demonstrated in various diseases and behavioral impairments

[53,54,55,56,57] illustrating the importance of intactness of

communication/synchronization for the normal functioning of

the brain. Although the link between reduction in connectivity

within the DMN and DOC has been shown previously [22,23], it

has remained unclear whether a reduction in connectivity is

restricted to this network alone. Our results demonstrate a

significant reduction in connectivity between homotopic regions

belonging to the ‘‘Extrinsic’’, task positive network. This finding

raises the question of how widespread the reduction of connec-

tivity is in DOC patients. Since reduction in connectivity is not

restricted to one network, it seems, however, that DOC might

reflect a more global impairment in functional connectivity and in

the integrity of different circuits. In other words, it may be that

reduced connectivity within specific cortical networks may affect

specific behaviors but is not sufficient to affect the overall level of

consciousness. Along this line, it has been shown in stroke patients

that a reduction in connectivity that is specific to the attention

network is reflected behaviorally as neglect symptoms, but not in

the level of consciousness [58]. Indeed, reduction in connectivity

within one network might not be a sufficient marker for the

diagnosis of DOC patients, and a whole brain analysis might be

better suited to test more global impairments.

The exact source of the reduction in connectivity is still not fully

understood. However, it is beyond the scope of our paper to

investigate whether the striking disruption in the inter-hemispheric

correlations observed in DOC patients is due to a widespread

cortical, subcortical or white matter damage. Although structural

damage will evidently lead to loss of connectivity, especially in the

immediate time following injury [59], but see [60] and [61], such

reduction may be linked to synaptic changes well below the

resolution of brain imaging and could also be influenced by

plasticity changes following the injury through sub-cortical

connections [60]. In addition, reduction in functional connectivity

following structural damage has been reported for areas that

appear structurally intact [58,62]. Recently, Bruno et al. reported

a case of ‘‘functional hemispherectomy’’ in two DOC patients,

with near-normal DMN components in one hemisphere, given a

structural and metabolic deficit in the other hemisphere [63]. This

result highlights the need for a multimodal neuroimaging

approach, as one of the challenges related to connectivity

measures in the population of DOC patients will be to conceive

a quantification of the heterogeneous damage typically observed in

Figure 3. Correlations between spontaneous BOLD signal time-
courses across hemispheres. (a) Anatomical locations of regions-of-
interest (ROIs) in the right pre-central gyrus (red arrow) and the
homotopic ROI in the left hemisphere (blue arrow). (b) Time-courses in
a healthy subject exhibit high correlation (r = 0.77). (c) Time-courses in
the vegetative patient who recovered consciousness exhibit high
correlation (r = 0.73). (d) Time-courses in an impaired awareness patient
exhibit low correlation (r = 20.02). Red and blue time-courses denote
signals from the right and left hemispheres, respectively normalized to
percent signal change. Abbreviations: CS, central sulcus; LS, lateral
sulcus; IPS, intra-parietal sulcus.
doi:10.1371/journal.pone.0037238.g003

Table 1. ICD values and Crawford and Howell test results.

Consciousness level ICD value t(10) p – value

LIS 0.4757 20.8417 0.2098

MCS1 0.1033 24.3682 0.0007*

MCS2 0.2877 22.6219 0.0128*

VS1 0.1126 24.2799 0.0008*

VS2 0.6489 0.798 0.2217

Coma1 0.3113 22.3987 0.0187*

Coma2 0.3753 21.7923 0.0517

Brain Death 0.1506 23.9196 0.0014*

Control1 0.3683 - -

Control2 0.4592 - -

Control3 0.4894 - -

Control4 0.5156 - -

Control5 0.5415 - -

Control6 0.5875 - -

Control7 0.6047 - -

Control8 0.6261 - -

Control9 0.6308 - -

Control10 0.6803 - -

Control11 0.7072 - -

doi:10.1371/journal.pone.0037238.t001
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this population, taking into account asymmetric structural damage

which poses a challenge for the ICD measure proposed in our

study.

On a more general scope, the inference one can make about the

cognitive level from spontaneous fMRI fluctuations remains

controversial. On the one hand, spontaneous fluctuations can

appear in the absence of any task or intentional activity, are

detectable during anesthesia [64,65], and even accentuated during

sleep [12,66]. On the other hand, other evidence implicates a

contribution of ultra-slow fluctuations in perceptual decision

making [67,68] and motor control [69]. Furthermore, the fact

that the spatial organization of spontaneous ultra-slow activity

replicates task-related activity of functional networks [8,9,14]

suggests that their presence may reflect a hebbian co-activation

process [70], and conversely, their disruption may thus be due to a

reduction in network functionality.

As to the clinical significance of our findings, the results point to

the potential usefulness of the ICD in diagnosing individual cases

of impaired awareness. In order to validate such measure for

future clinical use, a larger population of DOC patients and

healthy subjects need to be tested, thus also allowing for an

estimation of the ICD measure’s specificity and sensitivity. The

fact that we did not observe the lowest ICD value in the brain

dead patient further emphasizes the need for a larger sample to

separate ‘‘true’’ ICD values from ICD values generated by

spurious noise. In a recent paper by Boly and colleagues, using a

seed based approach in the default mode network, a brain dead

patient failed to show any significant correlations in a whole brain

map [32].

The unexpected recovery of the VS patient showing a normal-

level ICD, points to the promising possibility that the ICD index

may serve, at least in specific cases, as a prognostic measure for

recovery from DOC. However, this single observation is of course

far from providing a conclusive demonstration and should be

taken at this stage only as a catalyst for a wide-scope search for

additional similar cases.

To conclude, we propose the ICD index as a measure of

symmetry in functional connectivity that can be used as a

diagnostic marker in DOC. This measure has the advantage of

relying on spontaneous fMRI signal fluctuations and thus does not

depend on patient cooperation, which is often absent in DOC

patients.

Supporting Information

Material S1 Inter-operator variability analysis.

(DOC)

Material S2 Comparison of the ICD to an aged-matched
control group.

(DOCX)

Figure S1 Correlations between spontaneous BOLD
fluctuations in right pre-central gyrus and all other
cortical regions. Group correlation maps between a ‘‘seed’’

region in the pre-central gyrus (preCG) and all other cortical

voxels. (a) Correlations of spontaneous activity in the intact

awareness group (n = 12) projected on inflated hemispheres as seen

from a lateral view (top left) and a medial view (top right), as well

as a flat format (bottom). (b) Correlations in the impaired

awareness group (n = 7). Format as above. Red arrow, ‘‘seed’’

region location. Blue arrow, ‘‘mirror’’ regions in the left

hemisphere. Note that inter-hemispheric correlations are largely

absent in the impaired awareness group. Abbreviations: LH, left

hemisphere; RH, right hemisphere; CS, central sulcus; LS, lateral

sulcus; IPS, intra-parietal sulcus; CinS, cingulate sulcus; POS,

parieto-occipital sulcus.

(PNG)

Figure S2 Voxel-by-voxel differences in Spontaneous
BOLD correlations between intact- and impaired-aware-
ness groups. Statistical maps of two-sample t-tests (see Methods)

comparing BOLD signal correlations in the two subject groups

(intact, n = 12; impaired, n = 7) separately for each voxel. Maps

are projected on inflated cortical surfaces as seen from lateral (top)

and medial (bottom) views in each panel. Panels show differences

in BOLD correlations of spontaneous activity with a ‘‘seed’’ in the

(a) right intra-parietal sulcus, (b) right post-central gyrus, and (c)

right pre-central gyrus. Note that in all maps, significant

differences were found in contralateral ‘‘mirror’’ sites (yellow

ellipses in the left hemisphere), as well as in the vicinity of seed

regions. Abbreviations: LH, left hemisphere; RH, right hemi-

sphere; IPS, intra-parietal sulcus; CS, central sulcus.

(PNG)

Figure S3 Correlations between spontaneous BOLD
fluctuations in right intra-parietal sulcus and all other
cortical regions. Group correlation maps between a ‘‘seed’’

region in the intra-parietal sulcus (IPS) and all other cortical

voxels. (A) Correlations of spontaneous activity in the intact

awareness group (n = 12) projected on inflated hemispheres as seen

from a lateral view (top left) and a medial view (top right), as well

as a flat format (bottom). (B) Correlations in the impaired

awareness group (n = 7). Format as above. Red arrow, ‘‘seed’’

region location. Blue arrow, ‘‘mirror’’ regions in the left

hemisphere. Note that inter-hemispheric correlations are largely

absent in the impaired awareness group. Abbreviations: LH, left

hemisphere; RH, right hemisphere; CS, central sulcus; LS, lateral

sulcus; IPS, intra-parietal sulcus; CinS, cingulate sulcus; POS,

parieto-occipital sulcus.

(PNG)

Figure S4 Correlations between Spontaneous BOLD
fluctuations in right post-central gyrus and all other
cortical regions. Group correlation maps between a ‘‘seed’’

region in the post-central gyrus (postCG) and all other cortical

voxels. (A) Correlations of spontaneous activity in the intact

awareness group (n = 12) projected on inflated hemispheres as seen

from a lateral view (top left) and a medial view (top right), as well

as a flat format (bottom). (B) Correlations in the impaired

awareness group (n = 7). Format as above. Red arrow, ‘‘seed’’

region location. Blue arrow, ‘‘mirror’’ regions in the left

hemisphere. Note that inter-hemispheric correlations are largely

absent in the impaired awareness group. Abbreviations: LH, left

hemisphere; RH, right hemisphere; CS, central sulcus; LS, lateral

sulcus; IPS, intra-parietal sulcus; CinS, cingulate sulcus; POS,

parieto-occipital sulcus.

(PNG)

Figure S5 Inter-hemispheric Correlation Index (ICD) in
individual subjects in all three groups. Subjects are

separated on the x-axis depending on their group (controls1:

non-aged matched group; controls2: aged-matched group, and

patients). Abbreviations: (*) refers to the VS patient who regained

consciousness shortly after scan (VS2 in the supplementary tables),

(+) refers to the Locked-in patient.

(TIF)

Figure S6 Single subject inter-hemispheric correlation
maps (seed: right PreCG) ordered according to the ICD
values. Correlation maps with a ‘‘seed’’ time-course in the right

pre-central gyrus (pre-CG) are shown in flat, left hemisphere
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(‘‘mirror site’’) cortical format for each subject separately. (a)

Location of seed (red ellipse) and location of the ‘‘mirror site’’ in

the contra-lateral hemisphere (black arrow). (b) Intact awareness

group, (c) Impaired awareness group. Abbreviations: LH, left

hemisphere; RH, right hemisphere; CS, central sulcus; LS, lateral

sulcus; I, individual ICD value; VS*, vegetative state patient who

recovered consciousness shortly following our study; LIS, locked-in

syndrome.

(PNG)

Figure S7 Inter-operator correlation of ICD measure.
ICD values as computed on a subsample of 11 subjects by two

independent operators drawing the ROIs. Abbreviations: CCC,

concordance correlation coefficient; r, Pearson correlation.

(TIF)

Table S1 Clinical, electrophysiological and structural
imaging data of patients. Abbreviations: LIS, locked-in

syndrome; VS, vegetative state; MCS, minimally conscious state.

(DOCX)

Table S2 ICD values and Crawford and Howell test
results for the age-matched sample. Abbreviations: LIS,

locked-in syndrome; VS, vegetative state; MCS, minimally

conscious state.

(DOCX)

Table S3 Inter-operator variability data. Abbreviations:

IPS, intra-parietal sulcus; preCG, pre-central gyrus; postCG, post-

central gyrus.

(DOCX)
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