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Nucleon-to-pion transition distribution amplitudes
and backward electroproduction of pions
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Baryon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of
the nonlocal three quark operator between a nucleon and a meson state, extend the concept of
generalized parton distributions. These non-perturbative objects which encode the information on
three quark correlations inside the nucleon may be accessed experimentally in backward meson
electroproduction reactions. We suggest a general framework for modelling nucleon to pion (πN)
TDAs employing the spectral representation for πN TDAs in terms of quadruple distributions.
The factorized Ansatz for quadruple distributions with input from the soft-pion theorem for πN
TDAs is proposed. It is to be complemented with a D-term like contribution from the nucleon
exchange in the cross channel. We present our estimates of the unpolarized cross section and of
the transverse target single spin asymmetry for backward pion electroproduction within the QCD
collinear factorization approach in which the non-perturbative part of the amplitude involves πN
TDAs. The cross section is sizable enough to be studied in high luminosity experiments such as
J-lab@12GeV and EIC.

Sixth International Conference on Quarks and Nuclear Physics,
April 16-20, 2012
Ecole Polytechnique, Palaiseau, Paris

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:ksemenov@ulg.ac.be


P
o
S
(
Q
N
P
2
0
1
2
)
0
5
7

πN TDAs and backward electroproduction of pions K. Semenov-Tian-Shansky

1. Introduction

The backward kinematical regime for the pion electroproduction off nucleons (1.1)

e(k1)+N(p1)→
(
γ
∗(q)+N(p1)

)
+ e(k2)→ e(k2)+π(pπ)+N′(p2). (1.1)

provides experimental access to nucleon to pion transition distribution amplitudes (πN TDAs).
Backward kinematics implies that Q2 = −q2 and s = (p1 + q)2 are large, xB = Q2

2p1·q and skew-
ness variable are kept fixed (skewness is defined with respect to the u-channel momentum transfer
∆ = pπ− p1: ξ =− ∆·n

(pπ−p1)·n , where n is the conventional light cone vector occurring in the Sudakov
decomposition of the momenta); the u-channel momentum transfer squared u≡ ∆2 is supposed to
be small (|u| ∼ 0 corresponds to a pion produced in a near backward direction in γ∗N center-of-
mass frame). πN TDAs first considered in [1] arise within the collinear factorization approach for
the reaction (1.1) in the backward kinematics (see right panel of Fig 1). It’s worth to specially em-
phasize that backward kinematics is complementary to the conventional generalized Bjorken limit
(large Q2 and s; fixed xB j and skewness defined with respect to the t-channel momentum transfer
ξ = − (p2−p1)·n

(p1−p1)·n and small t-channel momentum transfer squared |t| ∼ 0) in which the factorized
description [2] in terms of generalized parton distributions (GPDs) applies to the reaction (1.1).

πN TDAs may be seen as further development of the GPD concept. They are defined through
the πN matrix element of the three-local quark operator on the light-cone [3], [4]:

Ôαβγ

ρτχ (λ1n, λ2n, λ3n) = Ψ
α
ρ (λ1n)Ψβ

τ (λ2n)Ψγ

χ(λ3n), (1.2)

were α , β , γ stand for quark flavor indices and ρ , τ , χ denote the Dirac spinor indices; antisym-
metrization in color is implied; and the gauge links are omitted in the light-like gauge A ·n = 0.

The extensive studies of the properties and physical interpretation of πN TDAs are presented
in Refs. [5, 6, 7, 8, 9, 10]. Conceptually, πN TDAs share common features both with GPDs
and nucleon distribution amplitude. Indeed, the crossing transformation relates πN TDAs with
πN generalized distribution amplitudes (GDAs), defined as the matrix element of the same light
cone operator between πN state and the vacuum. In their turn, πN GDAs reduce to combinations
of the usual nucleon DA in the soft pion limit. On the other hand, similarly to GPDs [11], a
comprehensible physical picture may be obtained by switching to the impact parameter space.
Baryon to meson TDAs are supposed to encode new informations on the hadron structure in the
transverse plane. There are hints [12] that πN TDAs may be used as a tool to perform the femto-
photography [13] of nucleon’s pion cloud.

2. πN TDAs: theoretical constrains and modelling

Below we summarize the fundamental requirements for πN TDAs which follow from the
symmetries of QCD established in Refs. [8, 9, 10].

• For given flavor contents spin decomposition of the leading twist-3 πN TDA involve eight
invariant functions V πN

1,2 , AπN
1,2 , T πN

1,2,3,4 each depending on the longitudinal momentum frac-
tions xi (∑3

i=1 xi = 2ξ ), skewness parameter ξ and the u-channel momentum transfer squared
∆2 ≡ (pπ − p1)2 as well as on the factorization scale µ2.
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Figure 1: Collinear factorization for hard production of pions off nucleon in the conventional hard meson
production (HMP) kinematics ( left) versus the collinear factorization in the backward kinematics regime
( right). DA (DA’) denote pion (nucleon) distribution amplitude; CF (CF’) are coefficient functions com-
putable in perturbative QCD.

• Isotopic and permutation symmetries reduce the number of independent leading twist πN
TDAs to just eight: four in both the isospin- 1

2 and the isospin- 3
2 .

• The support of πN TDAs in three longitudinal momentum fractions xi is given by the inter-
section of the stripes −1+ξ ≤ xi ≤ 1+ξ (∑3

i=1 xi = 2ξ ). One can distinguish the Efremov-
Radyushkin-Brodsky-Lepage-like (ERBL-like) domain, in which all xi are positive and two
type of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-like (DGLAP-like) domains, in which
one or two xi turn negative.

• The evolution properties of πN TDAs are described by the appropriate generalization [5] of
the ERBL/ DGLAP evolution equations specific for the domain in xi.

• Underlying Lorentz symmetry results in the polynomiality property for the Mellin moments
of πN TDAs in the longitudinal momentum fractions xi. Similarly to the GPD case, the
(n1, n2, n3)-th (n1 + n2 + n3 ≡ N) Mellin moments of nucleon to meson TDAs in x1, x2, x3

are polynomials of powers N or N +1 in the skewness variable ξ .

• Crossing transformation relates πN TDAs to πN GDAs, defined by the matrix element of the
same operator (1.2) between the πN state and the vacuum. Therefore the soft pion theorem
[14] for πN GDAs [15] expresses πN TDAs at the soft pion threshold ξ = 1, ∆2 = M2 (M is
the nucleon mass) through the combinations of nucleon DAs V p, Ap and T p.

An elegant strategy allowing to ensure the polynomiality and the restricted support properties
for πN TDAs consists in the use of the spectral representation in terms of quadruple distributions
[8]. It generalizes for the TDA case Radyushkin’s double distribution representation for GPDs. The
suggested approach of modelling πN TDAs is largely analogous to that employed for modelling
nucleon GPDs with the help of Radyushkin’s double distribution Ansatz [16].

However, contrary to GPDs, πN TDAs lack a comprehensible forward limit (ξ = 0). There-
fore, in order to work out the physical normalization for πN TDAs it is illuminating to consider the
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alternative limit ξ = 1 in which πN TDAs are constrained by chiral dynamics and crossing due to
the soft pion theorem. A convenient form of the spectral representation for πN TDAs reads [10]:

H(wi, vi, ξ ) =
∫ 1

−1
dκi

∫ 1−κi
2

− 1−κi
2

dθi

∫ 1

−1
dµi

∫ 1−µi
2

− 1−µi
2

dλi δ
(
wi−

κi−µi

2
(1−ξ )−κiξ

)
×δ
(
vi−

θi−λi

2
(1−ξ )−θiξ

)
F(κi, θi,µi, λi), (2.1)

where F is a quadruple distribution. The index i = 1,2,3 here refers to one of three possible choices
of independent variables (quark-diquark coordinates): wi = xi−ξ , vi = 1

2 ∑
3
k,l=1 εiklxk.

We suggest to use the following factorized Ansatz for the quadruple distribution F in (2.1):

F(κi, θi, µi, λi) = 4V (κi, θi)h(µi, λi), (2.2)

where V (κi, θi) is the combination of nucleon DAs V (y1,y2,y3) (∑3
i=1 yi = 1) to which πN TDA

in question reduces in the soft pion limit ξ = 1 expressed in terms of independent variables: κi =
2yi−1; θi = ∑

3
k,l=1 εiklyk.

The profile function h(µi, λi) is normalized as
∫ 1
−1 dµi

∫ 1−µi
2

− 1−µi
2

dλi h(µi, λi) = 1 . The support of

the profile function h is also that of a baryon DA. The simplest assumption for the profile is to take
it to be determined by the asymptotic form of baryon DA (120y1y2y3 with ∑

3
i=1 yi = 1) rewritten in

terms of variables µi, λi:

h(µi, λi) =
15
16

(1+ µi)((1−µi)2−4λ
2
i ). (2.3)

Similarly to the GPD case [17], in order to satisfy the polynomiality condition in its complete
form the spectral representation for πN TDAs {V1,2, A1,2, T1,2}πN should be supplemented with a
D-term like contribution. The simplest possible model for such a D-term is the contribution of the
u-channel nucleon exchange into πN TDAs computed in [9]. Thus we suggest a two component
mode for πN TDAs which includes: the spectral part based on the factorized Ansatz for quadruple
distributions with input at ξ = 1 from chiral dynamics; and the nucleon exchange contribution as
a D-term. Phenomenological solutions for nucleon DAs (see e.g. [18]) are used as the numerical
input for our model.

3. Unpolarized cross section and single transverse target spin asymmetry

In our factorized approach the leading order (both in αs and 1/Q) amplitude of backward hard
pion production M λ

s1s2
reads [6]:

M λ
s1s2

= C
1

Q4Ū(p2,s2)
[
Ê (λ )γ5I (ξ ,∆2)+ Ê (λ )∆̂T γ

5I ′(ξ ,∆2)
]
U(p1,s1). (3.1)

We employ Dirac’s hat notation vµγµ ≡ v̂; E denotes the polarization vector of the virtual photon

and Ū , U are the usual nucleon Dirac spinor. C is the normalization constant C ≡−i (4παs)2√4παem f 2
N

54 fπ
,

where αem(αs) stands for the electromagnetic (strong) coupling, fπ is the pion decay constant and
fN is the normalization constant of the nucleon wave function [19]. The coefficients I , I ′ result
from the calculation of 21 diagrams contributing to the hard scattering amplitude (see [6]).
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Figure 2: Unpolarized cross section ( left) and single transverse target spin asymmetry ( right) for backward
π+ (solid lines) and π0 (dashed lines) production off proton.

Within the suggested factorization mechanism for backward pion electroproduction only the
transverse cross section d2σT

dΩπ
receives a contribution at the leading twist level. The unpolarized

transverse cross section expresses as follows through the coefficients I , I ′ introduced in (3.1):

d2σT

dΩπ

= |C |2 1
Q6

Λ(s,m2,M2)
128π2s(s−M2)

1+ξ

ξ

(
|I |2− ∆2

T

M2 |I
′|2
)
, (3.2)

where Λ(x,y,z) =
√

x2 + y2 + z2−2xy−2xz−2yz is the usual Mandelstam function. Within our
two component model for πN TDAs I receives contributions both from the spectral representation
component and nucleon pole exchange contribution while I ′ is determined solely by the nucleon
pole contribution. The scaling law for the unpolarized cross section (3.2) is 1/Q8. This is to
be compared with 1/Q4 behavior of the unpolarized cross section dσ

dΩπ
in the conventional HMP

regime.
On the left panel of Fig. 2 we present our estimates for the unpolarized cross section d2σT

dΩπ
of

backward production of π+ and π0 off protons for Q2 = 10GeV2 and u = −0.5GeV2 in nb/sr as
the function of xB. CZ solution [19] for the nucleon DAs is used as phenomenological input for
our model. The magnitude of the cross sections is large enough for a detailed investigation to be
carried at high luminosity experiments such as J-lab@6GeV and especially J-lab@12GeV and EIC
[20]. First experimental results on backward pion electroproduction which would allow to check
validity of the factorized description based on TDAs are expected to appear soon [21].

As a more sensitive observable to test the factorized description of hard reactions it is conve-
nient to consider asymmetries. These quantities, being the ratios of the cross sections, are much less
sensitive to the perturbative corrections. For backward pion electroproduction an evident candidate
is the single transverse target spin asymmetry (STSA) defined as:

A =
1
|~s1|

(∫
π

0 dϕ̃|M s1
T |2−

∫ 2π

π
dϕ̃|M s1

T |2
)

(∫ 2π

0 dϕ̃|M s1
T |2
) =− 4

π

|∆T |
M Im(I ′(I )∗)

|I |2− ∆2
T

M2 |I ′|2
. (3.3)

Here ϕ̃ ≡ ϕ −ϕs, where ϕ is the angle between leptonic and hadronic planes and ϕs is the angle
between the leptonic plane and the transverse spin of the target ~s1. On the right panel of Fig. 2
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we show the result of our calculation of the STSA for backward π+ and π0 electroproduction off
protons for Q2 = 10GeV2 and u = −0.5GeV2 as the function of xB. For backward pion elec-
troproduction measurement of STSA, which according to our estimates turns to be sizable in the
valence region, should be considered as a crucial test of the applicability of our collinear factorized
approach for backward reactions.

This work is supported in part by the Polish NCN grant DEC-2011/01/B/ST2/03915 and by
the French-Polish Collaboration Agreement Polonium.

References

[1] L. L. Frankfurt, P. V. Pobylitsa, M. V. Polyakov and M. Strikman, Phys. Rev. D 60 (1999) 014010;
L. Frankfurt, M. V. Polyakov, M. Strikman, D. Zhalov and M. Zhalov, arXiv:hep-ph/0211263.

[2] J. C. Collins, L. Frankfurt and M. Strikman, Phys. Rev. D 56 (1997) 2982.

[3] A. V. Efremov and A. V. Radyushkin, Theor. Math. Phys. 42 (1980) 97 [Teor. Mat. Fiz. 42 (1980)
147].

[4] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22 (1980) 2157.

[5] B. Pire and L. Szymanowski, Phys. Lett. B 622 (2005) 83.

[6] J. P. Lansberg, B. Pire and L. Szymanowski, Phys. Rev. D 75, 074004 (2007) [Erratum-ibid. D 77,
019902 (2008)].

[7] J. P. Lansberg, B. Pire and L. Szymanowski, Phys. Rev. D 76, 111502 (2007) [arXiv:0710.1267
[hep-ph]].

[8] B. Pire, K. Semenov-Tian-Shansky and L. Szymanowski, Phys. Rev. D 82, 094030 (2010).

[9] B. Pire, K. Semenov-Tian-Shansky and L. Szymanowski, Phys. Rev. D 84, 074014 (2011).

[10] J. P. Lansberg, B. Pire, K. Semenov-Tian-Shansky and L. Szymanowski, Phys. Rev. D 85, 054021
(2012).

[11] M. Burkardt, Phys. Rev. D 62 (2000) 071503.

[12] M. Strikman and C. Weiss, Phys. Rev. D 80 (2009) 114029.

[13] J. P. Ralston and B. Pire, Phys. Rev. D 66 (2002) 111501.

[14] P. V. Pobylitsa, M. V. Polyakov and M. Strikman, Phys. Rev. Lett. 87 (2001) 022001.

[15] V. M. Braun, D. Y. Ivanov, A. Lenz and A. Peters, Phys. Rev. D 75 (2007) 014021.

[16] I. V. Musatov and A. V. Radyushkin, Phys. Rev. D 61 (2000) 074027.

[17] M. V. Polyakov and C. Weiss, Phys. Rev. D 60 (1999) 114017.

[18] V. M. Braun, A. Lenz and M. Wittmann, Phys. Rev. D 73, 094019 (2006) [hep-ph/0604050].

[19] V.L. Chernyak and I.R. Zhitnitsky, Nucl. Phys. B 246 (1984) 52.

[20] D. Boer, et al., arXiv:1108.1713 [nucl-th].

[21] K. Park, A. Kubarovsky, V. Kubarovsky, P. Stoler, private communications; to appear in the
proceedings of CIPANP 2012, St. Petersburg, Florida.

6


