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Abnormal Hypothalamic Response to Light in Seasonal
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Julien Doyon, and Julie Carrier

Background: Vulnerability to the reduction in natural light associated with fall/winter is generally accepted as the main trigger of seasonal
affective disorder (SAD), whereas light therapy is a treatment of choice of the disorder. However, the relationship between exposure to light
and mood regulation remains unclear. As compared with green light, blue light was shown to acutely modulate emotion brain processing
in healthy individuals. Here, we investigated the impact of light on emotion brain processing in patients with SAD and healthy control
subjects and its relationship with retinal light sensitivity.

Methods: Fourteen symptomatic untreated patients with SAD (34.5 � 8.2 years; 9 women) and 16 healthy control subjects (32.3 � 7.7 years;
11 women) performed an auditory emotional task in functional magnetic resonance imaging during the fall/winter season, while being
exposed to alternating blue and green monochromatic light. Scotopic and photopic retinal light sensitivities were then evaluated with
electroretinography.

Results: Blue light enhanced responses to auditory emotional stimuli in the posterior hypothalamus in patients with SAD, whereas green
light decreased these responses. These effects of blue and green light were not observed in healthy control subjects, despite similar retinal
sensitivity in SAD and control subjects.

Conclusions: These results point to the posterior hypothalamus as the neurobiological substrate involved in specific aspects of SAD,

including a distinctive response to light and altered emotional responses.
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W inter seasonal affective disorder (SAD) is a recurrent major
depressive disorder occurring in fall/winter with full re-
mission in spring/summer (1– 4). Patients with SAD tend

to report typical depression complaints such as decreased mood
and motivation but also atypical symptoms such as hypersomnia
and fatigue, and hyperphagia (particularly for carbohydrates) asso-
ciated with weight gain, which implies alteration in sleep/wake
regulation (5,6) and possibly in metabolism (7). Despite substantial
research efforts, the pathophysiology of the disorder is not estab-
lished. Vulnerability to day-length shortening associated with fall/
winter is generally accepted as the main triggering factor of the
disorder. Indeed, SAD prevalence varies with latitude (to reach up
to 3% in Canada and possibly even up to 10% at higher latitude
[2,4]), and light therapy is a treatment of choice for the disorder,
with symptom improvements observed within a few weeks of daily
(generally morning) light exposures (8). However, the mechanism
linking exposure to light and mood regulation is still largely un-
known.
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Retinal light sensitivity was recently reported to be abnormal in
atients with SAD during the depressive episode, with normaliza-

ion of retinal function after 4 weeks of light therapy in winter (9).
ight also regulates circadian rhythms (10) and acutely affects many
rocesses other than vision, such as melatonin secretion, alertness,
leep, performance, and cognition (11–14). These effects of light are

ediated by a photoreception system, which recruits intrinsically
hotosensitive retinal ganglion cells (ipRGCs) expressing the pho-

opigment melanopsin (15,16), in addition to rods and cones (17).
hese melanopsin ipRGCs present a maximal sensitivity to blue

ight (460 – 480 nm) and confer a shorter wavelength maximal sen-
itivity to nonvisual responses to light, as compared with the pho-
opic visual system, which is maximally sensitive to green light (at
round 550 nm) (17).

Seasonal changes in the spectral composition of light occur,
ith relatively less blue light in winter (18), and recent data showed

hat blue light therapy is effective to treat SAD (19 –22). In addition,
lue light therapy requires light levels significantly lower than the

ecommended 10,000 lux of white light, suggesting that nonclassic
hotoreception and melanopsin-expressing ipRGCs contribute to

he therapeutic effects of light exposure. Functional magnetic res-
nance imaging (fMRI) studies in healthy individuals showed that
xposure to blue monochromatic light, as compared with green
onochromatic light, exerts an acute influence on cerebral activa-

ions associated with the processing of auditory emotional stimuli,
otably in the hypothalamus and amygdala (23). Because these
rain areas—involved in emotional processing—are also impli-
ated in mood regulation and mood disorders (23), this acute effect
f light could also be involved in the long-term regulation of mood
y light, possibly through melanopsin-based photoreception. Win-

er depression in SAD could thus be caused by some abnormal
nfluence of light (or lack of light) on brain responses to emotionally
elevant signals.

Here, we studied the acute impact of light on auditory emotional

rocessing in SAD and investigated the role of classical and non-
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classical photoreception in the disorder. We measured retinal light
sensitivity and examined the effect of blue and green light expo-
sures on the brain responses to neutral and emotional auditory
stimuli in untreated symptomatic patients with SAD and healthy
control subjects in fall/winter. We hypothesized that, during the
symptomatic episode of SAD, the impact of light exposure on audi-
tory emotional processing would be abnormal, in key brain areas
for emotion regulation, such as the amygdala and hypothalamus.
We also hypothesized that retinal dysfunction in SAD, which alters
the light signal reaching the brain, would be related to the influence
of light on these emotional responses.

Methods and Materials

More details can be found in Supplement 1.

Subjects
Patients with SAD and control subjects were recruited in the

Montreal area (approximate latitude 45°30’N). They were between
18 and 45 years of age (Table 1 for complete characteristics) and
gave written informed consent. The study was approved by the
institutional Regroupement Neuroimagerie/Québec Ethics Com-
mittee.

Table 1. Subjects Characteristics

Number of Subjects
Age (�18; �45 yrs)
Body Mass Index (�27)
Gender (Male/Female)
Seasonality Score (24)
Depression Level Score (25)
SIGHSAD Total Score (�25) (26)
SIGHSAD Atypical Items Only (�9) (26)
Anxiety Level (29)
Sleep Disturbance (28)
Daytime Propensity to Fall Asleep (62)
Chronotype (63)
Laterality (left/right)
Education, yrs
Women Using Oral Contraceptive
Women in Luteal Phase
Ethnicity (Afro-American/Caucasian)
Born Outside Quebecb

Born Outside Quebec in a “Southern” Country (�5° sou
from Montréal)

Smoking Habits (smoking/nonsmoking)
Date of Experiment (dd/mm/yy) (from 21/11/08 to 07/0
Sleep Time Before Experiment
Wake Time Before Experiment
Sleep Duration Before Experiment
Subjective Sleepiness Immediately Before fMRI Experim
Stimuli Volume in fMRI (arbitrary units)
First 40-sec Light Exposure in fMRI: Blue/Green

Values are mean � SD. None of the characteristic
seasonal affective disorder (SAD) and control subjects alo
resonance imaging (fMRI) activations, as indicated by reg
be attributed to a single clinical symptom such as level
bances.

SIGHSAD, Structured Interview Guide for the Ham
Version.

a 2
p values computed with � test, otherwise with unpaired
bSee Results in Supplement 1 for more details on the plac
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Patients. Candidates had to present a Global Seasonality Score
9 on the Seasonal Pattern Assessment Questionnaire (24), per-

eive seasonal changes as at least a “moderate” problem, and pres-
nt a score �11 on the Beck Depression Inventory II (25). A psychol-
gist then determined the presence of SAD symptoms on the basis
f the Structured Interview Guide for the Hamilton Depression
ating Scale, Seasonal Affective Disorder version (SIGHSAD) (total
core �25; atypical item score �9) (26). The psychologist also ex-
luded bipolarity (with the Mood Disorder Questionnaire [27]) or
ther psychiatric or medical disorders (with a semistructured inter-
iew). Sixteen patients completed the protocol, but two were ex-
luded for technical reasons. All patients participating in the exper-

ment were studied in the absence of any treatment (light therapy
r drugs).

Control Subjects. Control subjects were matched with pa-
ients for gender, laterality, and age (�2 years except for one female
nd one male pair, for which the difference was 4 and 6 years,
espectively). Control subjects presented a Global Seasonality Score

8, with “no problem” with seasonal changes, and a semistruc-
ured interview established the absence of a medical or psychiatric
isorder. No sleep disturbances were reported as determined by

he Pittsburgh Sleep Quality Index Questionnaire (28) (score �5).

SAD Control Subjects p

14 16
34.5 � 8.17 32.25 � 7.66 .74

24.01 � 3.28 23.02 � 2.43 .30
5/9 5/11 .8a

14.07 � 3.08 3 � 2.69 �.001
24 � 10.54 1.38 � 1.45 �.001

31.88 � 5.91 n/a
15.64 � 4.22 n/a
11.65 � 9.6 1.81 � 2.6 �.001

7.64 � 3.15 2.56 � 1.5 �.001
14.15 � 4.28 6.5 � 4.78 .001
53.93 � 11.69 50.44 � 10.26 .4

1/13 1/15 .92a

15.63 � 3.12 15.76 � 2.34 .81
2/9 4/11 .49a

2/9 3/11 .70a

1/13 1/15 .92a

4 5 .87a

ay
1 1 .92a

4/10 1/15 .10a

22/12/08 � 27d 22/12/08 � 29d .94
22:54h � 0:46h 23:40h � 1:09h .073
07:30h � 0:58h 07:22h � 1:00h .74

8.6 � .76 7.89 � .54 .006
4) 5.36 � 1.78 3.25 � 1.15 .006

675 � 435.3 628.1 � 401.2 .76
7/7 8/8 1a

he subjects showing a significant difference between
plained the reported differences in functional magnetic

on analyses in SPM5. Therefore the present result cannot
epression or anxiety, seasonality, or sleep/wake distur-

Depression Rating Scale—Seasonal Affective Disorder
th aw
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All showed normal scores on the 21-item Beck Anxiety Inventory
(29) and Beck Depression Inventory II (25) (scores �11).

Participants. All participants were moderate alcohol consum-
ers (�7 alcohol unit/week) and were not taking medication. They
were asked to refrain from alcohol-containing beverages for at least
36 hours before the experiment. Smokers were included, but smok-
ing was not allowed for the duration of the laboratory experimen-
tations. None had worked on night shifts during the preceding year
or traveled across more than one time zone during the last 2
months. All subjects had been living in the province of Quebec for
at least 3 years. Women were not pregnant or breast-feeding and
were more than 1 year postpartum. Absence of ophthalmic disor-
der (e.g., glaucoma, color blindness) was assessed by an optome-
trist (standard examination). Participants completed additional
questionnaires, but the scores of these questionnaires were not
used as inclusion criteria (Table 1).

At least 1 week before the experiment, participants were famil-
iarized with the magnetic resonance environment during a short
MRI session during which a structural image of the brain was ac-
quired. Volunteers were asked to follow a regular sleep schedule
based on their preferred sleep times and durations during the 5
days preceding the experimentation. Compliance was verified with
sleep logs and actigraphy (Actiwatch-L; MiniMitter/Respironics,
Bend, Oregon).

Experimental Protocol
Participants arrived at the laboratory 2 hours after habitual wake

time and were maintained in dim light (�5 lux) for 1.5 hours (Figure
1A). One drop of tropicamide 1% was administered in each eye 20
min before entering the scanner to inhibit pupillary constriction.
During the fMRI session (12 min), subjects performed an emotional
auditory task while being exposed to alternating 40-sec periods of
blue (480 nm) and green (550 nm) monochromatic lights (full width

Figure 1. Experimental design. (A) General protocol. Arrow: pupil dilator
administration. Time relative to scheduled wake time (hours). Subject per-
formed an emotional task in functional magnetic resonance imaging (fMRI)
(see B for details) before photopic and scotopic electroretinograms were
recorded. (B) Detailed fMRI procedures. Time (seconds) relative to t0, a time
point arbitrarily chosen as a green light onset of the session. The task
consisted of a gender discrimination of auditory vocalizations while ex-
posed to alternating blue (480 nm) and green (550 nm) monochromatic
light (counterbalanced order). Light exposures lasted 40 sec and were sep-
arated by 15–25-sec periods of darkness. Anger (red bars) and neutral (white
bars) prosody vocalizations of the three pseudo-word type (“goster,” “niu-
venci,” or “figotleich”) were pseudorandomly and evenly administered
l
throughout each light condition across the entire session (interstimuli inter-
val: 3–11 sec; mean: 4.8 sec).
t half maximum [FWHM]: 10 nm), separated by 15–25-sec periods
f darkness (30) (order blue and green light was counter-balanced
cross subject within each group). The fMRI session was followed by
hotopic and scotopic electroretinogram (ERG) recordings charac-

erizing cone and rod photoreception, respectively.
Technical Issue. In accordance with our previous studies

31,32) and work of others (e.g., [12,13]), we set the photon densities
f both monochromatic lights used in fMRI at an equal level, so that
omparisons between blue and green exposures could reveal non-
lassic modulation of brain responses. The irradiance used (1013

hoton/cm2/sec) was intermediate between the two irradiances of
ur prior investigation of the impact of light on emotion processing

30) and had successfully been used in another study on the impact
f light on auditory working memory (32). A technical problem,
owever, accidentally set blue and green light irradiance levels at
.1 � 1013 and .9 � 1013 photons/cm2/sec, respectively (which
orresponds to 1.5 and 20 lux, respectively). This affected all data
cquisitions and prevented direct comparisons between blue and
reen exposures but did not compromise comparisons between
atients and control subjects for blue and green light separately.

fMRI Task. Acoustic stimuli consisted of three meaningless
ords (“goster,” “niuvenci,” “figotleich”) pronounced by profes-

ional actors (half women) with two different modalities, anger and
eutral prosody, as validated by extensive behavioral assessments

33) and in previous experiments (30,34,35). Note that negative and
ositive emotions are mediated through common (but not com-
letely identical) pathways (36), but our experience is that negative
motion elicits more robust responses, less influenced by individual
alence perception (37). Stimuli were presented to the subject via
eadphones from an audio player. The task of the subject was to
ress one of two buttons on a keypad (with their right hand) upon
iscriminating the gender of the speaker pronouncing the pseudo-
ord. The goal of the study to measure brain responses to emo-

ional words was hidden from the subjects. Stimuli were matched in
erm of duration (750 msec) and mean acoustic energy. Anger and
eutral prosodies were evenly assigned to each light condition

blue, green, darkness).
fMRI Acquisitions. The fMRI data were acquired with a 3-T

agnetic resonance scanner (TIM-TRIO, Siemens, Erlangen, Ger-
any). Multislice T2*-weighted fMRI images were obtained with a

radient echo-planar sequence (32 axial slices; voxel size: 3.4 �
.4 � 3 mm3 with 30% of gap; matrix size 64 � 64 � 32; repetition
ime � 2180 msec; echo time � 40 msec; flip angle � 90°). Structural
rain images consisted of a T1-weighted 3D magnetization prepared

apid gradient echo (MP-RAGE) sequence (repetition time � 7.92
sec, echo time � 2.4 msec, time of inversion � 910 msec, flip

ngle � 15°, field of view � 256 � 224 mm2, matrix size � 256 �
24, voxel size � 1 � 1 � 1 mm3).

ERG Acquisitions. The ERG recordings were undertaken 4.5
ours after habitual wake time, after the fMRI session. One drop of

ropicamide 1% was administered in each eye again 15 min before
he first ERG. Recordings were obtained with DTL electrodes (Shiel-
ex 33/9 Thread, Bremen, Germany) placed deep in the conjuncti-
al sac, with reference electrodes placed on the canthi and ground
n the forehead (38). Flash stimulations were administered with a
anzfeld Dome (ColorDome, Diagnosys, Lowell, Massachusetts) to
chieve full field retinal stimulation. Participants were first adapted
o a background light (25.5 cd/m2) for 15 min before being admin-
stered a series of white light flashes of increasing intensity (range:

1.12–1.375 log cd/m2/sec; stimuli interval: 1–5 sec) to generate a
hotopic luminance response. Participants were then dark-
dapted for 30 min (0 lux) before being presented with a series of
ight flashes (480 nm broadband blue light to better stimulate rods,

www.sobp.org/journal
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which present peak sensitivity at around 505 nm) of increasing
intensity (range: �4.25 to �1.00 log cd/m2/sec; stimuli intervals:

.5-sec low-intensity; 5-sec high-intensity), to generate a scotopic
uminance response.

ata Analysis
Behavior. Behavioral data were analyzed with Statistica 6.1

StatSoft France, Maisons-Alfort, France). Mixed analyses of vari-
nce with group as the between-subjects factor (SAD, control sub-

ects) and prosody (neutral, anger) as the within-subject factor were
sed to compare reaction times and accuracy on the fMRI task.

fMRI. Brain functional volumes were analyzed with Statistical
arametric Mapping software (SPM5, http://www.fil.ion.ucl.ac.uk/
pm). They were realigned, coregistered, spatially normalized
Montreal Neurological Institute space; standard SPM5 parame-
ers), and smoothed (FWHM: 8 mm). The analysis was conducted in
wo steps, accounting for individual-level fixed effects and group-
evel random effects, respectively. Changes in regional brain re-
ponses were estimated with a general linear model in which emo-
ional and neutral stimuli in each light condition; blue and green
ight onset and offset were modeled with stick functions (“events”)
onvolved with a canonical hemodynamic response function. A
arametric modulation was added to each regressor to track any

inear change of the amplitude of brain responses across time.
egressors derived from the realignment of functional volumes
ere considered as covariates of no interest. High-pass filtering was

mplemented in the matrix design with a cutoff period of 256 sec to
emove low-frequency drifts from the time series. Serial correla-
ions in the fMRI signal were estimated with an autoregressive
order 1) plus white noise model and a restricted maximum likeli-
ood algorithm.

The summary statistic images resulting from the contrasts of
nterest were further smoothed (FWHM: 6 mm) and entered in the
andom effects analyses. This second level analyses consisted of
wo-sample t test on independent measures with unequal variance,
hich constituted maps of the t statistics thresholded at puncorrected �

.001. One-sample t tests were also computed to identify whether
he observed effect was significant in each population separately.
tatistical inferences were performed after correction for multiple
omparisons at a threshold of pcorrected � .05. Corrections for multi-
le comparisons were computed on the entire brain volume (Fam-

ly Wise Error) or on small spherical volumes around a priori loca-
ions of activation (10 mm radius), which were expected in
tructures involved in the processing of emotional auditory stimuli
34,35), in arousal regulation (39,40), in the impact of light on non-
isual brain function (30 –32,41), or in brain areas to which the
elanopsin-expressing ipRGC project (42,43). Multiple regression

nalyses were carried out with questionnaire scores (Table 1) with
standard SPM5 procedure.

ERG. One control subject did not complete the photopic and
scotopic ERG assessment, because of technical problems, and pho-
topic ERG data of another control subject were accidentally not
recorded. Log K, which is the intensity necessary to reach half of the
saturating amplitude of the ERG b-wave and constitutes a measure
of retinal sensitivity (9,38), was computed for scotopic and photopic
data of all the other subjects with sigmoidal curve fitting (Prism 4,
GraphPad, La Jolla, California). Two-sample t tests compared sco-
topic and photopic LogK.

Results

Demographic Data
As expected, patients with SAD presented high SIGHSAD scores
and were significantly more seasonal, anxious, and depressed than i

www.sobp.org/journal
ontrol subjects (Table 1). SAD patients reported feeling sleepier
han control subjects during the day in general and presented
ignificantly more sleep disturbances. Sleep duration and subjec-
ive sleepiness immediately before the experiment were also signif-
cantly higher in SAD patients. By contrast, possible confounds such
s age, body mass index, education level, and chronotype did not
iffer significantly between groups. Wake time before the experi-
ent and the date of the experiment were also similar in both

roups.

erformance of the fMRI Task
Accuracy in the gender discrimination task was high (� 90%) in

oth light conditions but tended to be higher for neutral than anger
rosody [mean � SD; blue: neutral (97.8 � 3.6%) � anger (95.4 �
.7%), F (1,28) � 3.94, p � .057; green: neutral (97.3 � 5.1%) � anger

94.1 � 7.1%), F (1,28) � 3.36; p � .077] (Figure 2A). In both light
onditions, reaction times were significantly slower for anger than
eutral prosody [mean � SD; blue: neutral (1034 � 211 msec) �
nger (1101 � 195 msec), F (1,28) � 7.22, p � .012; green: neutral
1022 � 210 msec) � anger (1101 � 204 msec), F (1,28) � 9.63, p �
004] (Figure 2B). Critically, accuracy and reaction times did not
iffer between patients and control subjects [F (1,28) � 2.5, p � .12]
ith no group � prosody interactions [F (1,28) � 2.2, p � .14].

These results indicate that the emotional content of the stimuli
as equally well perceived by patients and control subjects, pre-

enting behavior bias in the fMRI analyses comparing both groups.

MRI Results
The clinical manifestation of a mood disorder (i.e., the depres-

ive episode) alters normal brain function (23). Therefore, before
nvestigating how blue and green light modulate brain responses
o neutral or angry prosody stimuli, we assessed whether brain
esponsiveness to all stimuli differed between patients and control
ubjects (i.e., irrespective of the light and prosody conditions). We
ound that, as compared with control subjects, patients with SAD
resented increased responses to all auditory stimuli in a dorso-
osterior area of the thalamus compatible with the dorsal pulvinar
nd a dorsal area of brainstem located next to superior cerebellar
eduncle and encompassing several nuclei of the ascending arous-

igure 2. Behavioral results of the functional magnetic resonance imaging
fMRI) task. (A) Accuracy (mean � SD); (B) reaction times (mean � SD).
Significant differences (p � .05); nonsignificant difference (p � .05). ANG,
nger prosody; CON, control subjects; NEU, neutral prosody; SAD, seasonal
ffective disorder patient.
ng system (Figure 3, Table 2). Multiple regression analyses showed

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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that the group differences in thalamic and brainstem responsive-
ness were not related to single characteristic of subjects that dif-
fered between SAD and control participants (cf. Table 1).

Brain responses to auditory stimuli under blue or green light
exposures were compared with brain responses in darkness to take
into account the global difference in brain responsiveness and
allow for group comparisons. Analyses revealed that, as compared

Figure 3. Significant differences between patients with seasonal affective
disorder (SAD) and healthy control subjects (Controls) in the brain re-
sponses to all auditory stimulus types (irrespective of light and prosody
condition). (A) Thalamus (dorsal and posterior); (B) brainstem (median-
posterior, next to superior cerebellar peduncle). Results are overlaid over
the mean structural image of all subjects. Insets: enlargements in represen-
tative subjects. Graphs: activity estimates (arbitrary unit [a.u.] � SEM) of the
brain responses to all auditory stimulus types. #pcorrected � .05 (group differ-

nce).

able 2. fMRI Results

Brain Areas

ll Stimuli Types (irrespective of the light and prosody conditions)
SAD � Control Subjects

Thalamusa

Brainstema

Control Subjects � SAD
No significant voxel

Anger Prosody Stimuli
[Blue � Dark] � [SAD � Control Subjects]

Hypothalamusbc

[Blue � Dark] � [Control Subjects � SAD]
No significant voxel

[Green � Dark] � [SAD � Control Subjects]
No significant voxel

[Green � Dark] � [Control Subjects � SAD]
Hypothalamuscd

XYZ: relative coordinates (mm) in Montreal Neurological Institute space
fMRI, functional magnetic resonance imaging; L, left; R, right; SAD, seaso
aThe same two significant clusters of voxel are obtained in the thalamus

under green light exposure; 3) all stimuli under blue light exposure; 4) emot
green light exposure (i.e., these differences between groups are observed fo

bClusters not affected by an exclusive mask (p � .05) of the (Neutral �
ondition effect was specific to the emotional (angry prosody) stimuli.

cBecause of the difference in irradiance level between blue and green l
nteraction between blue and green light conditions [(Blue � Green)] �
omputed, it shows a single significant difference in the hypothalamus (�2

for each light condition separately.
d
Clusters not affected by an exclusive mask (p � .05) of the (Neutral � [Gree

ondition effect was specific to the emotional (angry prosody) stimuli.
ith darkness, blue light exposure increased responses to angry
rosody stimuli in the posterior hypothalamus, dorsolateral to
ammillary bodies, in patients with SAD (Figure 4, Table 2). In

ontrast, under green light exposure, responses to these emotional
timuli were decreased in a slightly more ventral hypothalamic area

Side X Y Z Z Score p

R 14 �18 4 3.61 .010
L �2 �28 �22 3.58 .011

L �2 �2 �12 3.21 .027

L �4 �2 �18 3.13 .032

ffective disorder.
rainstem if the analyses only included: 1) all stimuli in darkness; 2) all stimuli
stimuli under blue or green light exposure; 5) neutral stimuli under blue or
ry stimuli subgroup).
e � Dark] � [SAD � Control Subjects]) contrast, indicating that the light

see technical issue in Methods and Materials), the contrast computing the
� Control Subjects] is not valid. However, if this contrast is nevertheless

mm; Z � 3.73; psvc � .006) which further strengthens the results obtained

igure 4. Significant differences between patients with SAD and Controls in
he impact of blue and green light exposure on the brain responses to
uditory emotional stimuli. Results are overlaid over the mean structural

mage of all subjects. Inset: enlargement in a representative subject. Graphs:
hange in activity estimates (a.u. � SEM) between the light condition (blue,
reen) and the darkness condition for the processing of auditory emotional
timuli. *pcorrected � .05 (in SAD patients taken in isolation); �pcorrected � .07
in SAD patients taken in isolation); nonsignificant difference puncorrected � .1
in control subjects taken in isolation); #pcorrected � .05 (group difference). B,
rainstem; CP, corpus collusum; F, fornix; MB, mammillary bodies; OT, optic

ract; SC, superior colliculus; T, thalamus; 3V, third ventricle; other abbrevia-
ions as in Figures 1 and 3.
.
nal a

and b
ional
r eve
[Blu

ight (
[SAD
0 �18
n � Dark] � [SAD � Control Subjects]) contrast, indicating that the light
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in patients with SAD. Importantly, these effects of blue and green
light were not observed in control subjects and were significantly
different between patients and control subjects. Again, multiple
regression analyses showed that these results were not significantly
related to single characteristics of subjects that differed between
groups (cf. Table 1). Finally, no impact of light wavelength on the
processing of neutral auditory stimuli was found in either group,
demonstrating the specificity of the effects for emotional stimuli
and for the patients with SAD.

ERG Results
Scotopic and photopic light sensitivity, as indicated by LogK, did

not differ between patients and control subjects [mean � SD; Pho-
opic LogK: patients (.108 � .093), control subjects (.108 � .102),

t (26) � .008, p � .99; Scotopic LogK: patients (�2.72 � .12), control
subjects (�2.75 � .11), t (27) � .66, p � .51].

Discussion

These results demonstrate that exposure to light has an acute
impact on emotional brain processing in untreated symptomatic
patients with SAD in fall/winter and that this impact depends on
light spectral composition; blue light increased and green light
decreased responses to auditory emotional stimuli in the posterior
hypothalamus, as compared with healthy control subjects. This
study also reveals that, in the context of our protocol, SAD patients
presented increased thalamic and brainstem responsiveness to vo-
cal stimuli, regardless of their emotional content and of the light
condition.

Compared with control subjects, patients showed higher tha-
lamic activation to auditory stimuli in the dorsal pulvinar and in
regions of the brainstem compatible with the locus coeruleus and
dorsal raphe nucleus (although fMRI spatial resolution does not
allow identification of specific brainstem nuclei). The locus coer-
uleus and dorsal raphe nucleus are implicated in reward regulation
and depression (44) and constitute an important source of norepi-
nephrine and serotonin, respectively. Interestingly, serotonin levels
seem to be influenced by season and bright sunlight (45), and
altered serotonin receptor functions have been described in SAD
(2,3,46). Animal data also showed that complete light deprivation
reduced noradrenergic projections from the locus coeruleus to the
prefrontal cortex (47), which is essential for cognition (48). In addi-
tion, metabolic and serotoninergic dysfunction in the pulvinar has
been related to depression (49). Therefore, the differential respon-
siveness to vocal stimuli could constitute a marker of a general
increased sensitivity in SAD during the fall/winter depressive epi-
sode, speculatively related to serotonin and norepinephrine func-
tions.

Emotional processing was affected by blue and green light in a
single area of the brain—taking into account baseline differences
between groups (i.e., responses under blue or green light were
compared with darkness)—pointing to light-induced variation in
hypothalamic reactivity specific to SAD, at least during the fall/
winter symptomatic episode. These effects were not observed with
neutral stimuli, showing their specificity for the processing of emo-
tional stimuli. In other words, they were not caused by an overall
change in brain reactivity throughout the 40-sec light exposure. We
showed that, in healthy individuals and as compared with green
light, blue light exposure increased the functional connectivity be-
tween the amygdala, temporal cortex voice-sensitive area, and a
hypothalamic area located in the vicinity of the present significant
hypothalamic cluster (30). Dysfunction in hypothalamus-related
functions is typically observed in SAD, as indicated by changes in

sleep, feeding, metabolism, and motivation (2,3,5–7). One plausible l

www.sobp.org/journal
mplication of our findings is that exposure to light participates in
he long-term normalization of these hypothalamic functions and
eads to remission. However, on the basis of our protocol, we can-
ot determine whether it is the case or whether these abnormal
ypothalamic responses to light constitute a trait-marker trigger-

ng the disorder when light availability declines or a state-marker
econdary to other phenomenon.

Importantly, the data showed no performance differences be-
ween groups, which ensures that our results are not due to behav-
oral differences during data acquisition (e.g., differences in task
ifficulty). Moreover, both populations did not differ for many other
ossible confounds, such as age, gender, education level, wake

ime, or dates of experiments (cf. Table 1). As expected, however,
AD patients differed from control subjects for several aspects typ-

cally related to their pathology, such as daytime sleepiness, anxiety
nd depression levels, sleep duration, and seasonality. Although
everal of these factors are likely to have contributed to our results,
one of them was identified by regression analyses as significantly
ontributing to the results on their own.

The spatial resolution of fMRI does not allow determination of
hich hypothalamic nucleus was specifically affected by light, but a
umber of posterior hypothalamic nuclei receive retinal projec-

ions directly, or indirectly through the suprachiasmatic nucleus
17,50). Some of them, such as the hypocretin/melanin-concentrat-
ng hormone postero-lateral hypothalamus, are involved in the
egulation of sleep, wakefulness, motivation and metabolism.
hrough their numerous projections, hypocretin/melanin-concen-
rating hormone neurons regulate activity in nuclei of the ascend-
ng arousal system of the brainstem, including the locus coeruleus
nd dorsal raphe nucleus, and in the thalamus (51). Likewise, light of
arious wavelengths could also affect the processing of emotional
timuli in the paraventricular nucleus of the hypothalamus, which
s involved in emotional responses (52) and vegetative regula-
ion (53).

Scotopic (rod-dependent) light sensitivity did not differ be-
ween patients and control subjects, which contrasts with our pre-
ictions on the basis of previous observations of lower rod sensitiv-

ty in SAD (9,54,55). This discrepancy cannot be attributed to the
ample of patients, because SIGHSAD scores, depression, and sea-
onality levels were similar to those reported in previous studies on
AD (e.g., [19,46]), including those investigating retinal sensitivity
9,54). It should be noted, however, that it is the seasonal change in
od retinal sensitivity that has been most reported to be abnormal
n SAD, whereas differences between patients and control subjects

ere not systematically detected in fall/winter (54 –56). With regard
o cone function, only one study so far reported decreased function
n symptomatic patients with SAD in fall/winter (9), a result that was
ot observed in the current study. Only short-term light history

preceding hours) was closely controlled in the present protocol.
e cannot therefore exclude that longer-term light history influ-

nced our ERG results (57). However, there seems to be no indica-
ion in the literature for difference in light history between SAD
atients and healthy control subjects (58). In spite of this, our results
uggest that abnormal rod or cone function cannot account for the
ltered hypothalamic responses observed in SAD under blue and
reen light exposures.

The irradiance level we used is compatible with the recruitment
f melanopsin-expressing ipRGCs (59), and a polymorphism in the
elanopsin gene has been linked to SAD (60). However, all photo-

eceptors are likely to have contributed (17), especially given the
esults obtained with green light, and further research is warranted
o identify how each photoreceptor participates in the influence of

ight on emotional brain processing in patients and healthy individ-
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uals. Nonetheless, our results support that the wavelength of light is
an important factor for light therapy as well as for optimal indoor
lighting, particularly for individuals more vulnerable to seasonal
light variation, such as SAD patients, but also for an important part
of the population, namely subsyndromal SAD sufferers (up to 18%
of the North American general population), who experience inter-
mediate seasonal emotional, mood, and vigilance problems that—
although bothersome— do not reach clinical significance (61).

The acute impact of light on emotional brain responses might
ot be related to its long-term impact on mood regulation. How-
ver, emotions and mood are intimately related. Mood alteration in
ood disorders modify emotional brain responses, whereas emo-

ional responses can greatly influence (subsequent) mood (23).
Furthermore, although the impact of light on emotional processing
might differ between negative and positive stimuli, common brain
pathways respond to emotional stimuli, regardless of emotional
valence direction (36), supporting that similar effects of light likely
take place for positive emotions.

As a whole, the results provide experimental evidence for a
central role of the hypothalamus in the seasonal-light-decline sen-
sitivity present in SAD. Abnormal light responsiveness in the poste-
rior hypothalamus constitutes a neurobiological substrate of SAD
during the fall/winter depressive episode that could trigger the
disorder or, conversely, lead to remission. Future studies should
address these questions and compare symptomatic and asymp-
tomatic states in the same individuals, in fall/winter, before and
after light therapy, and spring/summer.
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