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1 Asteroseismology and White Dwarf Stars

The technique of asteroseismology exploits the information contained in the
normal modes of vibration that may be excited during particular phases in
the evolution of a star. Such modes modulate the emergent flux of a pulsating
star and manifest themselves primarily in terms of multiperiodic luminos-
ity variations. In its simplest form, observational asteroseismology consists
in gathering light curves, i.e., monitoring the (variable) brightness of pul-
sating stars as a function of time. Standard signal processing methods, such
as Fourier techniques for example, are then used to extract the periods (or,
equivalently, frequencies), the apparent amplitudes, and the relative phases of
the detected pulsation modes.

The next step — in essence the most basic component of the asteroseismo-
logical approach as a whole — consists in comparing the observed pulsation
periods with periods computed from stellar models with the hope of finding
an optimal model that provides a good physical description of the real pul-
sating star under scrutiny. To insure that the search for the optimal model in
parameter space is done objectively and automatically requires good model-
building capabilities, efficient period-matching algorithms, and considerable
computing power. Otherwise, with simpler trial-and-error search methods,
there always remains a doubt about the uniqueness and validity of the best
period-matching model that comes out of the exercise, a weakness that has
plagued most of asteroseismology so far.
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The periods of pulsation modes of stellar models can generally be com-
puted quite accurately and reliably within the framework of the linear theory
of stellar pulsations in its adiabatic version (see below). The same framework
(although complementary nonadiabatic calculations are then necessary) may
be used to compute first-order corrections to the unperturbed emergent flux,
an approach that is fundamental in the exploitation of the additional informa-
tion contained in the observed amplitudes and relative phases of the detected
pulsation modes. And indeed, constraints on the angular geometry of a given
observed pulsation mode may be obtained by comparing theoretical ampli-
tude ratios and phase differences with those observed in different wavebands
through multicolor photometry and/or time-resolved spectroscopy. The same
is true when exploiting the relative amplitudes of modes in a given waveband
in conjunction with those of their harmonics and cross-frequency components
in the Fourier domain. When available, such inferences on the angular geom-
etry of pulsation modes may provide extremely valuable constraints in the
search for the optimal model in parameter space. In the end, if successful, an
asteroseismological exercise leads to the determination of the global structural
parameters of a pulsating star and provides unique information on its internal
structure and evolutionary state. An outstanding example of such a successful
exercise is that provided recently by [11] for the pulsating sdB component of
the close eclipsing binary system PG 1336—018.

The technique of asteroseismology has found particularly fertile grounds
at the bottom of the HR diagram where several distinct types of pulsating
stars have been discovered. These are generally referred to as the compact
pulsators (i.e., those with surface gravities log g 2 5). Figure 1 illustrates
that portion of the surface gravity-effective temperature plane where these
families are found. Those include the ZZ Ceti stars which are H-atmosphere
white dwarfs with Teg ~ 12,000 K (first discovered by [26]), the V777 Her stars
which are He-atmosphere white dwarfs with Teg ~ 25,000 K ([45]), and the
GW Vir pulsators which are He/C/O-atmosphere white dwarfs with Teg ~
120,000 K ([28]). Figure 1 also indicates the locations of two other categories of
pulsators which were discovered more recently. These are the V361 Hya stars
which are short-period pulsating hot B subdwarf (sdB) stars ([24]), and the
long-period V1093 Her pulsators which are cooler and less compact sdB stars
([21]). In addition, short-period pulsations have also been reported in the, so
far, unique object SDSS J1600+0748 ([46]), a very hot sdO subdwarf with log
g ~ 5.9 and Teg ~ 71,000 K ([19]). This object may or may not be related to a
group of four sdO subdwarfs found in the cluster w Cen, and clustered around
Ter ~ 50,000 K, for which pulsational instabilities were recently discovered
([35]). Moreover, [30] have found the presence of at least one pulsation mode
in SDSS J1426+5752, a member of an entirely new and unexpected kind of
very rare white dwarfs, those of the so-called Hot DQ spectral type, which
are relatively cool (Tegr ~ 20,000 K) stars with atmospheres dominated by
carbon ([13]). At the time of this writing, four more pulsating Hot DQ white
dwarfs have been found (see, e.g., [14]). In all cases, the pulsators that we
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Fig. 1. Region of the log g—log Tea plane where the compact pulsators are found.
Each of five distinct families is identified by its official TAU name, and the year of
the report of the discovery of the prototype of each class is also indicated. Two
more categories are identified by the year of their discovery, 2006—2011 and 2008,
respectively. Typical evolutionary tracks are plotted showing 1) the track followed
by a 0.6 Mo post-AGB, H-rich star which becomes a H-atmosphere white dwarf
(dashed curve), 2) the path followed by a 0.6 Mg post-AGB, H-deficient star which
becomes a He-atmosphere white dwarf (solid curve), and 3) the path followed by a
0.478 Mg post-EHB model which leads to the formation of a low-mass H-atmosphere
white dwarf (dotted curve).

refer to are isolated stars or components of non-interacting binaries, and their
luminosity variations are caused by internal partial ionization mechanisms.
For completeness, we further point out that pulsational instabilities have also
been discovered in several accreting white dwarfs in cataclysmic variables
([43]; [1] and references therein).

In the rest of this paper, we focus exclusively on the four kinds of isolated
pulsating white dwarfs that we currently know of. Representative light curves,
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Fig. 2. Segments of typical optical light curves for each of the four known types of
isolated pulsating white dwarfs. The curves referring to PG 01224200, GD 358, and
G207—9 were obtained with LAPOUNE, the Montréal portable 3-channel photome-
ter attached to the 3.6 m CFHT telescope. This photometer uses photomultiplier
tubes as detectors. No filter was used, so these are integrated “white light” data.
In comparison, the curve for the much fainter star SDSS J2200—0741 was obtained
by Betsy Green and Patrick Dufour using the Mont4K CCD camera mounted on
the Steward Observatory 1.6 m Kuiper telescope through a Schott 8612 broadband

filter.
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one each for each of the different kinds, are shown in Figure 2. They are typical
in that they all show multiperiodic variations and a clear tendency to exhibit
increasingly nonlinear behavior with increasing amplitude (as exemplified by
the case of the large-amplitude pulsating DB white dwarf GD 358 shown
here). Pulsating white dwarfs generally have light curves that show peak-to-
peak amplitudes in the range from ~0.4 millimag in the lowest amplitude
pulsators known to upward of 0.3 mag in the largest amplitude ones. The
luminosity variations are due to the presence of low-degree (I=1 and [=2)
and low- to medium-order gravity modes that are excited through a partial
ionization mechanism (see below). The observed periods generally lie in the
range from about 100 s to some 1400 s, although the upper limit can extend
to several thousand seconds in low-gravity GW Vir pulsators.

The properties of the pulsating white dwarfs have been extensively re-
viewed recently by [17] and we refer the reader to that paper for the relevant
details. In addition, [44] have provided another review on these stars. Given
the availability of those papers, we felt that it would be more useful to discuss
the topic from another point of view rather than provide what would neces-
sarily amount to a shortened version of those manuscripts. Hence, in a ped-
agogical spirit, we decided to use our allocated space to present a discussion
of the principles underlying the theory of pulsating stars as applied to white
dwarfs. Our target audience is therefore researchers not necessarily familiar
with pulsation theory and those that are but may not be well-acquainted with
the peculiarities of white dwarf physics.

2 Normal Modes of Vibration in a Homogeneous
Continuous Elastic Medium

It is useful to first recall some elementary physics concerning normal modes of
vibration in simple mechanical systems. Thus, under the specific assumption
that the displacements of matter have small amplitudes compared to the di-
mensions of the system (this is the realm of the linear approach), the spatial
and temporal behaviors of perturbations in a homogeneous elastic medium
are governed by the classical wave equation,

Y (r,t)  o(k)?_.

9 7721527 ) = (]{:2) v2¢ (Tat)a (1)
where 9 (r,t) is, in general, a continuous function of space and time. This
wave function could represent, for example, the (small) displacement of an
element of matter with respect to its equilibrium position. In this equation,
o(k) is the angular frequency and k is the wave number.

The general solution to this equation corresponds to an acoustic or sound
wave which propagates with a speed ¢ = o/k, a constant characteristic of
the specific elastic medium of interest. In an infinite medium, a continuum of
frequencies is allowed, 0 < ¢ < 00, in principle. For finite dimensions, however,
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there are boundary conditions to be respected at the frontiers of the domain,
where waves are reflected. Only the waves with the “correct” wavelength or
frequency (generally those with a node or an extremum at the boundaries)
will resonate, the others disappearing through destructive interference after
several reflections. The normal modes of vibration are the solutions of the
classical wave equation in presence of boundary conditions (which transform
the problem into an eigenvalue problem). Only certain solutions are allowed
(the normal modes or eigenfunctions), corresponding to a discrete spectrum of
possible values of the angular oscillation frequency (the eigenvalues op < 01 <
02,...). In a normal mode, all moving parts oscillate at the same frequency
and go through their equilibrium positions at the same time.

As a specific example, consider the simple case of the transverse oscillations
of an ideal elastic rectangular membrane of dimension X x Y that is attached
at the edges. In that case, the wave function is a simple scalar, ¢¥(z,y,t),
and the appropriate boundary conditions are specified by ¥(z = 0,y,t) =
v = X,y,t) = ¢(x,y = 0,t) = ¢¥(z,y = Y,t) = 0. The solution of the
classical wave equation for this simple problem is well known. Specifically, the
eigenfunctions are given by,

U(@,y,t) ~ sin(ky, z)sin(ky, y)e e ", (2)
Note that the amplitude remains undefined (as in any linear problem) and
is usually normalized to some convenient arbitrary constant. Likewise, the

eigenvalues are given by,
Ongny = C\/ K, + K3, (3)

where ¢ is the (constant) speed of sound, and

s
N

X

m
BVl

kn, = (ny +1) %

ny =0,1,2,..., and k,, = (n, +1) ny,=0,1,2,..

(4)
Hence, in our 2D system, there are 2 “quantum” numbers , n, and n,, to
specify a mode. These numbers correspond, respectively, to the number of
nodal lines that cut the x and y axis. Note that if there are symmetries
(e.g., a square membrane), then different modes may have the same oscillation
frequency. Such modes are called degenerate modes. It is easy to infer that an
eigenmode in 3D should be specified by three quantum numbers representing
the number of nodal surfaces that cut across the system. Furthermore, if
there are symmetries such as that found in a spherical model of a star, then
degenerate eigenmodes are automatically present.

3 Normal Modes of Vibration in Stars

Stars are not homogeneous systems. They can be generally considered, in a
first approximation, as self-gravitating fluid spheres with a depth-dependent
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chemical composition. The speed of sound is not uniform (it depends on depth)
and, furthermore, the fluid elements in a star are subjected to a variable
gravitational acceleration from g = 0 at the center to g = g5 at the surface.
The waves that propagate inside a star are no longer pure acoustic (or sound)
waves, but they are of the gravito-acoustic type. Such waves are subjected to
specific boundary conditions at the center and at the surface of the star. The
waves are reflected there and one often speaks of a gravito-acoustic cavity to
describe a star in relation to its normal modes of vibration.

In its most basic form (see, in this context, the excellent textbook by
[40]), the linear theory of nonradial stellar oscillations uses as a starting point
three well-known hydrodynamic equations that govern the behavior of a fluid
in presence of gravity: the equation of motion, the equation of continuity,
and Poisson’s equation that relates the gravitational potential with the den-
sity distribution of matter. In this version, the exchange of energy between
the thermal bath (the internal energy of the gas/fluid) and the oscillations
(the kinetic energy of the macroscopic fluid motions) is neglected. This is the
adiabatic approzimation which only allows a description of the mechanical
behavior of the oscillations and does not address the question of the sta-
bility of the modes (which involves thermal properties and the question of
energy exchange). However, it turns out that nonadiabatic effects generally
only marginally influence the value of the oscillation frequency of a pulsation
mode in a stellar model, so the adiabatic version can be used with confi-
dence for computing frequencies (periods) to sufficient accuracy to be of use
in asteroseismological exercises.

The next step is to consider only small perturbations in order to be able
to linearize the basic hydrodynamic equations. The unperturbed equilibrium
configuration is usually that of a purely spherical stellar model. In keeping
with the fundamental properties of a normal vibration mode, all perturbed
quantities of interest are assumed to oscillate in phase and go through their
equilibrium positions at the same time. Hence, the dependent variables that
appear in the linearized equations are assumed to have a temporal dependence
given by the standard oscillatory term in linear physics, i.e., e°t, where o is
the frequency and ¢ is the time. The technique of separation of variables is then
used to characterize the spatial behavior of a mode in terms of a radial part
and an angular part. For unperturbed spherical models, the angular behavior
of a mode comes out, not unexpectedly, to be given by a spherical harmonic
function Y;™ (6, ¢). One ends up with a system of 4 linear differential equations
with real variables (depending now only on the radial coordinate) which, be-
cause of boundary conditions to be respected at the center and at the surface
of the star model, permits only certain solutions (the modes) corresponding
to specific values of the oscillation frequency o (the eigenvalues).

A stellar pulsation mode is defined in terms of 3 discrete numbers, k, I,
and m, the first one giving the number of nodes in the radial direction of
the eigenfunction, and the others (I and ) being the indices of the spherical
harmonic function that specifies the angular geometry of the mode. The index
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k is termed the “radial order” and may take on all positive integer values,
ie, k=0, 1, 2 etc. The index [ is called the “degree” of the mode and
gives the total number of nodal planes that divide the stellar sphere (I =
0, 1, 2,...). The number m is called the “azimuthal order” and its absolute
value |m| gives the number of nodal planes that divide the stellar sphere
perpendicular to the equator while going through the poles. There are 2] + 1
possible values for m (=1, -1 +1,...0,...l — 1,1). Non-rotating (spherical) stars
have eigenfrequencies that are (21 4+ 1)-fold degenerate in m. In that case, the
period of a pulsation mode is trivially related to its angular frequency through
the expression Py; = 27 /0y, independent of m.

It should be pointed out that there exist two distinct but complementary
behaviors of gravito-acoustic waves in a spherical star, one fundamentally of
acoustic origin (as in a homogeneous sphere), and the other related to the
action of gravity. In terms of normal modes of vibration, these behaviors
are respectively referred to as “pressure modes” (or p-modes) and “gravity
modes” (or g-modes).! These different behaviors are related to two fundamen-
tal quantities that appear in the linearized pulsation equations: the so-called
Brunt-Viisila frequency N defined by,

1 dlnP dlnp
N? =g — —
g(n dr dr ) 5)

and the Lamb frequency L; defined by,

1)c? P
W+ e with === (6)

r2 p
where c is the local adiabatic sound speed and the other symbols have their
standard meaning.

Consider in this context an element of fluid in equilibrium with its envi-
ronment at some arbitrary depth in a star. If a perturbation is applied to this
element such that it is compressed without changing position in the star, a
restoring force proportional to the contrast in density (or, equivalently, to the
pressure gradient) between the perturbed element and its environment will
establish itself. Freed of the initial constraint, the element will react to the
restoring force by oscillating in volume (density, pressure) about its equilib-
rium configuration. These oscillations will occur at a characteristic frequency,
the Lamb frequency, which is intimately related to the local speed of sound
at the equilibrium point in the star. These oscillations are then essentially
acoustic in nature, and one speaks of acoustic waves or, equivalently because
the restoring force is due to a pressure gradient, pressure waves. In normal
situations (e.g., in stable stars), the oscillations are ultimately damped.

Consider again an element of fluid in equilibrium with its environment
at some arbitrary depth in a star. This time, the perturbation consists in

L} =

! The gravity waves should not be confused with the gravitational waves of general
relativity.
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displacing the fluid element in the vertical direction, say above its equilib-
rium position. The element is then heavier than it should be (its density is
higher than that of its new surroundings), and, freed of its initial constraint,
will return toward its equilibrium position, and will oscillate up and down
about it. Normally, the oscillations generated by the initial perturbation are
damped over a characteristic timescale that depends on the local viscosity.
These oscillations will occur at a characteristic frequency which depends on
the local physical conditions at the point of equilibrium, the Brunt-Vaisila
frequency. In that case, it is buoyancy that provides the restoring force and
since buoyancy is directly related to the magnitude of the local gravitational
acceleration, one speaks of gravity waves.

It should be clear that one cannot separate completely the effects of pres-
sure from those of gravity. For instance, in the last example, the contrast in
density (pressure) betwen the displaced element and its surroundings should
also play a role. Hence, even though it is customary to divide the gravito-
acoustic waves in two separate branches (one speaks of pressure modes and of
gravity modes in stellar pulsation theory), the eigenfrequencies of the normal
pulsation modes of a star depend at the same time on both the variation of
the Lamb frequency with depth and on that of the Brunt-Vaiisila frequency.

It is possible to derive a useful dispersion relation for gravito-acoustic
waves by making two simplifying assumptions. The first one is the so-called
Cowling approximation which consists in neglecting the perturbation of the
gravitational potential. In that approximation, the adiabatic pulsation equa-
tions reduce to a system of 2 linear differential equations. Although the Cowl-
ing approximation is not very good for modes with low values of k and [ and,
more generally, for p-modes (it is not used in detailed numerical calculations),
it is sufficient in the context of the present discussion.

The second approximation, termed the local approximation, focusses on
an arbitrary shell in a stellar model in which most of the quantities appearing
in the two remaining pulsation equations (speed of sound, Lamb frequency,
Brunt-Viisila frequency, local gravitational acceleration) can be seen as not
varying very much in the radial direction over the shell region which, at the
same time, covers a large number of radial wavelengths. This is possible only
for modes with large values of the radial order k. If the radial variations are
completely neglected, then one finds that the eigenfunctions have a behavior of
the type exp(ik,r), where k, is a radial wave number that obeys the following
dispersion relation,

R =

Al

o — L}) (¢® — N?). (7)

This indicates that the oscillations propagate radially (oscillatory behavior)
if k, is a real quantity or are evanescent (exponential behavior) if k,. is an
imaginary quantity.

According to the dispersion relation, there exist two propagation zones
in a stellar model corresponding to two distinct types of pulsation modes.
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Specifically, k2 is positive (and k, is thus real) when o® > L7, N?. This
corresponds to the p-modes. Likewise, k2 is again positive when 0® < L?, N2,
and this occurs for the g-modes. In the regions of the star where L} < 0% < N?
or N* < 0? < L?, k? is negative (k, is imaginary), and the gravito-acoustic
waves are evanescent.

It is possible to obtain further qualitative information as to the behaviors
of the eigenfrequencies (periods) of both p-modes and g-modes by considering
two limiting cases. Specifically, in the limit where o? > L? N2, the above
dispersion relation leads to,

o’ =0, =kl . (8)
This is the limit where essentially pure acoustic or pressure modes are found
since only the speed of sound is involved in the right hand side term of equation
(8). One can see that the frequency (period) of a p-mode increases (decreases)
when k, (i.e, the number of nodes in the radial direction) increases.

In the opposite limit where o < L7, N?, equation (7) reduces to,

I(l+1)N?
2 _ 2
P’ =0y 9)

This is the limit of pure gravity modes since only the Brunt-Viisild frequency
(and no acoustic term) is involved in the expression. One can infer that the
frequency (period) of a g-mode decreases (increases) when the radial order
increases. In addition, the frequency (period) of a g-mode of given radial
order increases (decreases) when the degree index [ increases. Furthermore,
g-modes with a degree index [ = 0 — these would be radial modes — do not
exist as they have a frequency of zero.

In brief, gravito-acoustic modes behave as almost pure pressure modes at
very high frequencies, while they behave as almost pure gravity modes at very
low frequencies. In both cases, these limits correspond to very large values of
the radial order, i.e., k > 1, sometimes referred to as the “asymptotic limit”.
As indicated above, it is important to realize that for gravito-acoustic modes
of low radial order (such as those generally observed in white dwarf stars
for instance), the eigenfrequencies depend at the same time on both acoustic
and gravity effects. Despite this, the usual nomenclature in stellar pulsation
theory is to keep the terms p-modes and g-modes for all modes with radial
order k > 1.

Figure 3 summarizes these considerations on the basis of an exact calcula-
tion of the low-order, low-degree period spectrum of a typical model of a ZZ
Ceti pulsator. This model is characterized by a total mass M = 0.6 M and an
effective temperature T, = 11,800 K. It has a pure carbon core surrounded by
a helium mantle containing 103 of the total mass of the star, itself surrounded
by a hydrogen outer layer containing 10~% of the total mass of the star. The
chemical profile in the compositional transition layers has been computed un-
der the assumption of diffusive equilibrium. The model-defining parameters
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Fig. 3. Low-order and low-degree period spectrum for a representative model of a
ZZ Ceti star. Results are shown for values of the degree index [ = 0, 1, 2, and 3.
The values of the radial order k are also indicated up to k = 5. The two families
of gravito-acoustic modes, the p-modes and the g-modes, are clearly illustrated.
Sometimes, depending on the convention adopted, the radial indices of g-modes are
assigned negative values, so that, on a frequency scale, the values of k increase with
increasing frequency over the full spectrum.

are fully representative of a ZZ Ceti star. This equilibrium structure will be
used again below as a reference model.

We computed all pulsation modes with values of I = 0, 1, 2, and 3 in the
period window 1—1000 s for our reference model. Figure 3 neatly illustrates the
p-mode and g-mode branches of the gravito-acoustic period spectrum, as well
as the so-called “fundamental mode” for modes with [ > 2. The fundamental
mode has no node in the radial direction (k = 0) and falls between the p- and
g-branch. In white dwarfs, that mode is more akin to a p-mode than a g-mode,
although, once again, it does depend on both acoustic and gravity effects. It
is noteworthy that an isolated star cannot have a fundamental mode if the
degree value is | = 1 since this would imply a motion of the center of mass
during a pulsation cycle, an impossibility for a star subject to no external
forces. Also, as indicated earlier, g-modes with [ = 0 do not exist. Modes
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with [ = 0 are known as radial modes because all motions are restricted to
the radial direction as there is no angular dependence (Y (6, $) = constant).
They are simply a particular case of nonradial p-modes. Their eigenperiod
spectrum does contain a fundamental mode.

It should be pointed out that a stellar atmosphere loses its capacity to
reflect back toward the interior outgoing gravito-acoustic waves in the limit
of very high radial order k. Indeed, in this limit, pulsation eigenmodes are
strongly damped by outwardly propagating waves in the atmosphere and are
not expected to belong to the gravito-acoustic cavity mentioned above. In
other words, high radial order modes “leak through” the atmosphere and their
energy is lost to the outside. A method for estimating these cutoff — or critical
— periods in a white dwarf context has been developed by [23]. Applying this
approach to the representative ZZ Ceti star model used in Figure 3, we find
that p-modes with periods less than ~0.1 s and g-modes with periods larger
than ~6000/+/1(l + 1) s are not expected to be of interest in that model.

4 Properties of Pulsation Modes in White Dwarfs

In the adiabatic approximation, there are four distinct eigenfunctions that
come out of the numerical eigenvalue problem and which specify a given pul-
sation mode. It is possible to express two of those? directly in terms of &.(r)
and &, (r), the radial and horizontal component of the Lagrangian displace-
ment vector, respectively. The latter is given by,

1 0
sinf O¢
and has an obvious physical interpretation. In the following, we use the two
distinct (radial) eigenfunctions, &,.(r) and &, (r), to illustrate some interesting
properties of pulsation modes in white dwarfs. Note that, for a given mode,
both &.(r) and &, (r) have, of course, the same number of nodes in the radial
direction (that is the radial order k of the mode), but those nodes do not over-
lap in space. For g-modes, the nodes of the &, eigenfunction are systematically
higher in the star than the corresponding nodes of the &, eigenfunction. The
opposite is true for p-modes.

6 = a6 60 V0, 0)e, (10)

4.1 Propagation diagram

Figure 4 is known as a “propagation diagram” and illustrates the behavior of
the modes in relation to the profiles of the Brunt-Vaisild frequency and of the
Lamb frequency as functions of depth. The plot refers to our representative

% In practice, at the numerical level, the actual eigenfunctions are conveniently ex-
pressed in terms of dimensionless quantities such as the well-renowned “Dziem-
bowski variables” ([16]).
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Fig. 4. Propagation diagram for quadrupole (I = 2) modes computed using a rep-
resentative model of a ZZ Ceti pulsator. The solid curve shows the profile of the
logarithm of the square of the Brunt-Viisédla frequency as a function of fractional
mass depth. The value of log ¢ = 0 corresponds to the center of the stellar model.
The locations of two atmospheric layers, those with 7r = 1072 and 7r = 1, are
also indicated by the vertical dotted lines on that scale. Likewise, the dashed curve
gives the logarithmic profile of the square of the Lamb frequency for modes with [
= 2. The labelled horizontal dotted lines show the low-order frequency spectrum,
again on a scale involving the logarithm of the square of the frequency. The dots
give the locations of the nodes of the (radial) eigenfunction &,(r) for the different
modes illustrated.

ZZ7 Ceti star model and features an abscissa defined by the logarithm of the
fractional mass depth, a scale chosen to emphasize the outer layers where
most of the “action” goes on in terms of modal behavior in white dwarfs.
This scale is used repeatedly below in other figures. The solid curve shows the
distribution of the logarithm of the square of the Brunt-Véisald frequency.
The well in the profile is due to the presence of a superficial convection zone
caused by H partial ionization in the model. In addition, there are two bumps
in the distribution of the Brunt-Viisili frequency, one centered around log ¢
~ —6 and associated with the H/He compositional transition zone, and the
other centered around log ¢ ~ —3 and associated with the He/C transition
zone. The former feature is stronger than the latter because there is a larger
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contrast in mean molecular weight between H and He than between He and
C.

The dashed curve in Figure 4 shows the profile of the logarithm of the
square of the Lamb frequency for quadrupole (I = 2) modes, the ones chosen
for this illustrative example. Bumps due again to the presence of compositional
transition zones are present, but the one associated with the He/C transition
region is quite weak and is hardly visible in the plot. These compositional
features are significant as they “pinch” the eigenfunctions and produce mode
trapping and mode confinement, ultimately leading to a nonuniform period
distribution. The effect is particularly important in g-modes as can be seen
in the low-order modes of the kind illustrated in Figure 3 above.

The horizontal dotted lines give the values of the logarithm of the square
of the eigenfrequencies for quadrupole modes in a range covering from the k =
6 g-mode (termed gg) at the low-frequency end to the & = 6 p-mode (termed
pe) at the high-frequency end of the retained interval. Note, in passing, the
nonuniform distribution of eigenfrequencies that is particularly evident for the
low-order g-modes considered here, a characteristic that was mentioned just
above in the previous paragraph. The dots in the figure give the locations of
the nodes in the radial direction for each of the modes illustrated. Hence, the
f-mode shows no node, consistent with its radial order £ = 0. The locations
of the nodes indicate where, in a stellar model, a given pulsation mode has
an oscillatory behavior in the radial direction, a region where the mode is
said to propagate. Figure 4 then clearly reveals that p-modes propagate when
0? > L?, N?, while g-modes do when ¢ < L}, N2. This result, coming from
detailed numerical computations, is entirely consistent with the considerations
presented in the previous section. In addition, Figure 4 shows that low-order
p-modes in white dwarfs propagate in much deeper layers than low-order g-
modes, which instead propagate in the outermost layers. Quite interestingly,
this is the exact opposite of the behavior encountered in main sequence stars
and in all nondegenerate stars in general.

We note, in this context, that the search for g-modes in the Sun is con-
sidered of fundamental interest in helioseismology, as a successful detection
would allow the extension of asteroseismological probing of the solar interior
to much deeper regions than is currently possible on the basis of the observed
p-modes. In white dwarfs, only low- to medium-order g-modes have been ob-
served so far, and it is the low-order p-modes that would allow to probe the
core best. Although the presence of excited p-modes is expected from nona-
diabatic pulsation theory, such modes have yet to be found in white dwarfs.
The latest (unsuccessful) attempt to detect p-modes in white dwarfs using the
VLT has been reported by [39].

4.2 Angular modal dependence

In a nonradially pulsating star in general, the luminosity variations are due to
superficial temperature waves, changes of volume, and changes of shape, all
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of which can be modeled in terms of temperature, radius, and surface grav-
ity perturbations. In pulsating white dwarfs, it was first shown by [36] that
the luminosity variations are completely dominated by temperature pertur-
bations, a result that has been formally confirmed by [34], although the latter
authors pointed out that this is not necessarily true in the cores of absorption
lines. Hence, to a good approximation, the luminosity variations of a pulsating
white dwarf may be visualized solely in terms of temperature waves across a
disk that otherwise does not change in shape or surface area.

Figure 5 illustrates typical angular geometries for nonradial pulsation
modes expected in white dwarfs, given that the modes for which the degree
index has been identified so far have values of [ = 1 or [ = 2. One recognizes,
of course, the geometries of spherical harmonic functions. Each column refers
to a mode with fixed angular indices ! and m, and shows the instantaneous
temperature distribution on the visible disk over half a pulsation cycle cov-
ered by five distinct phases. For each of the five different modes depicted (the
five columns), it is assumed that the stellar sphere is inclined such that the
angle between the line-of-sight and the symmetry axis of the pulsation mode
is equal to 1 radian (to be regarded as a representative value).

The first two columns refer to dipole (I = 1) modes, i.e., to a geometry in
which there is one nodal plane that divides the stellar sphere into two equal
hemispheres. The case m = 0 (first column) corresponds to a nodal plane
that is the same as the equatorial plane (i.e., the cut is perpendicular to the
symmetry axis), while the case |m| =1 (second column) corresponds to a nodal
plane that is akin to a great meridian plane (i.e., the cut is along the symmetry
axis). It should be understood that, at any given time, all eigenfunctions of
interest have zero amplitude on an angular nodal plane, from the center to
the surface of the model.

The last three columns refer to quadrupole (I = 2) modes, i.e., they involve
two nodal planes. The case m = 0 (third column) corresponds to two nodal
planes parallel to the equatorial plane, the case |m| = 1 (fourth column) to
one nodal plane fused into the equatorial plane and one nodal plane along the
symmetry axis, and the case |m| = 2 (fifth column) to two nodal planes going
through the pulsation axis and perpendicular to each other. It is interesting to
point out that modes with m = 0 have nodal planes that do not change with
time, whereas modes with |m| # 0 have |m| planes that “rotate”about the
symmetry axis. From that point of view, the angular component of a m = 0
mode may be considered as a standing wave, while that of a |m| # 0 mode may
be considered as a running wave. Note that the two modes with the same value
of |m| but with different signs have similar temperature distributions (or other
eigenfunctions of interest) that “rotate” at the same absolute speed about the
symmetry axis, but one clockwise and the other counterclockwise. It should
be noted that the “rotation speed” is directly related to the eigenfrequency
.

Figure 5 shows further that for standing angular waves (m = 0 modes),
the instantaneous temperature distribution becomes uniform across the visible
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1=1, m=0 1=1, [m|=1 1=2, m=0 1=2, [m|=1 1=2, [m|=2

Fig. 5. Instantaneous temperature distributions on the visible disk of a white dwarf
model for different modal angular geometries. Each column refers to a given pair
(I,;m), and covers half a pulsation cycle in five phases. The pulsation frequency is
arbitrary and remains undefined in this plot. In each case, the angle of inclination
between the line-of-sight and the axis of symmetry of the pulsation has been fixed
to 1 radian. The color code is such that the deepest blue may correspond to the
highest local temperature (above the average one), the deepest red may correspond
to the lowest local temperature (below the average), and purple corresponds to the
average unperturbed temperature.
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disk twice during a pulsation cycle. This is well illustrated in the first and
third column for the phase corresponding to 1/4 of a full cycle. In contrast,
running angular waves (Jm| # 0) never show a phase when the temperature
distribution is uniform across the visible disk. Finally, for completeness, it
should be remembered that pulsation modes with a value of the azimuthal
order m = 0 are sometimes referred to as “zonal modes”, while those with
I = |m| are called “sectorial modes”.

4.3 Radial modal dependence

Figure 6 illustrates the typical radial dependence of the &, and &, eigenfunc-
tions corresponding, respectively, to the radial and horizontal component of
the displacement vector in a pulsating white dwarf. We again refer to our rep-
resentative ZZ Ceti star model, and we consider the lowest order quadrupole
modes from g5 to ps, including the f-mode.

The upper panel of the figure depicts the profile of &, as a function of
depth for the f-mode, three low-order p-modes (p1, p3, and ps), and the three
corresponding low-order g-modes (g1, g3, and ¢5). The modes with radial order
k =2 and k = 4 were not plotted in order to not clutter the diagram too much.
In keeping with our remark above in Section 2 related to the linear approach,
the amplitudes of the eigenfunctions in the linear theory of stellar pulsations
have to be arbitrarily normalized at some convenient value and location. Here,
the amplitude of the &, eigenfunction has been normalized to the value of one
at the surface of the model for each mode considered, i.e., &.(r = R) = 1.
Hence, a comparison of the &, profiles for various modes becomes meaningful
if one understands that the amplitudes of all the modes are normalized to be
the same at the surface of the star.

One can see that the amplitudes of the low-order p-modes are generally
much larger than those of the low-order g-modes in the deeper layers. The
latter exhibit nodes much higher in the star than the former (these nodes
are, of course, the same as those shown in Figure 4 above). It is interesting
to observe that the f-mode keeps the largest amplitude over the full stellar
model. Also, the g3 mode behaves differently from the g; and g5 modes in that
its amplitude in the stellar core remains comparatively large, whereas the two
other modes show very small amplitude values at these depths. This is because
the g3 mode is partially confined below the H/He transition layer due to a
resonance condition: the second node in &, (counting from the surface inward)
falls just below the H/He compositional transition zone, while, at the same
time, the first node in &, falls just above. The corollary condition for trapping
of a g-mode above a compositional transition zone is that the n** node of the
&, eigenfunction falls just above the transition region, while the nt* node of the
&y, eigenfunction falls just below. This notion of mode confinement and mode
trapping for g-modes in white dwarfs caused by the onion-like compositional
stratification has thoroughly been discussed by [4], including these conditions
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Fig. 6. Upper panel: Profile of the radial eigenfunction &, as a function of depth
for the lowest order quadrupole modes in our reference ZZ Ceti star model. Lower
panel: Absolute ratio of the horizontal to the radial component of the displacement
vector for the same modes.

log q

of resonance. The reader is referred to that paper for more details. We briefly
revisit the concept of mode confinement/trapping below.

The lower panel of Figure 6 shows the absolute ratio of the horizontal to
radial components of the displacement vector as a function of depth for the
same modes. This is a particularly interesting plot as the results are inde-
pendent of the actual normalization adopted. That is, whatever the actual
amplitude of a mode, linear theory predicts a given amplitude ratio between
|€n] and |€,| as shown in the figure. The maxima in the curves correspond to
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the nodes in the &, eigenfunction, while the minima correspond to the nodes
in the &, eigenfunction. As indicated above, the number of nodes for a given
mode is the same for the radial and horizontal displacement eigenfunctions,
but they do not fall at the same locations in the star.

It is quite instructive to focus on the amplitude ratio at the surface of
the model. Thus, in the observable atmospheric layers of a pulsating white
dwarf, matter is displaced much more horizontally than vertically during the
pulsation cycle of a g-mode. Indeed, according to the lower panel of the figure,
the ratio of the horizontal to radial components of the displacement vector
already exceeds 100 for a k = 3 mode, and it increases rapidly with increasing
radial order. Conversely, the ratio of the radial to horizontal displacement
increases rapidly with increasing radial order for p-modes, reaching nearly
100 for the p; mode illustrated in Figure 6. The contrast between horizontal
and radial displacements is even larger for [ = 1 modes, being some three
times larger for the k£ = 3 g-mode than the g3 quadrupole mode shown in the
figure. It is therefore certain that the g-modes observed in pulsating white
dwarfs correspond to material motions that are essentially horizontal in the
superficial layers. The very large surface gravity characteristic of white dwarfs
(log g ~ 8) is at the origin of this phenomenon.

4.4 Kinetic energy

An interesting global property of a pulsation mode is its kinetic energy defined
by the general relation,

Eyi, = 1/ pv” dV ) (11)
2 )y

where the integration is carried out over the total volume occupied by the star.
If one neglects the rotation of the star and any other possible macroscopic
velocity field (such as convection or meridional circulation), one can express
the kinetic energy in terms of a radial integral involving the two eigenfunctions
fr and fh;

R
Fign = % / (&) + 11+ 1) & ()] pr® dr . (12)

Given the arbitrary normalization of the eigenfunctions in linear theory,
the kinetic energy of a mode is known only to within a multiplicative factor. In
practice, this means that only relative comparisons between the kinetic ener-
gies of different modes have a physical sense. Hence, to excite a mode with the
same observable amplitude at the surface of a star as that of a reference mode
requires (more or less) energy, and that increment is given by the difference,
AEy;,, between the kinetic energies of the two modes.

Figure 7 shows the distribution of the kinetic energy as a function of
the period for the series of quadrupole modes with periods falling between
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Fig. 7. Kinetic energy as a function of period for the family of quadrupole modes
with periods in the range from 1 s to 1000 s as computed using our reference ZZ
Ceti model.

1 s and 1000 s as computed on the basis of our representative ZZ Ceti star
model. Given the behavior of its displacement eigenfunctions — as can be
observed in Figure 6 — in conjunction with equation (12), it is not surprising
that the f-mode comes out with the largest kinetic energy of the lot. Indeed,
the amplitude of the fundamental mode (both in &, and &) is basically larger
than any other mode over the whole stellar model. This means that the f-
mode requires the most energy to be excited to a given surface amplitude.
Sometimes, such a mode is referred to as the one with the most “inertia”.
The fact that the low-order p-modes have significantly larger amplitudes
than their g-mode counterparts in the deeper regions of a white dwarf (see
again Figure 6), combined with the large values of the density p at these depths
compared to its envelope values, readily explains why the kinetic energies of
the p-modes are much larger than those of the g-modes. This is an important
characteristic of white dwarf stars. In addition, the eigenfunctions depicted in
Figure 6 for both p-modes and g-modes exhibit an outward “migration” with
increasing radial order in the sense that their amplitudes tend to drop to very
small values in an outwardly growing region from the center. This explains
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the significant drop of the kinetic energy with increasing radial order along
the two branches of nonradial modes.

The case of g-modes merits further discussion as these are the modes
observed in real pulsating white dwarfs. For instance, a mode like g3 in Figure
7 shows a local maximum in kinetic energy along the g-branch. As briefly
alluded to above, such a mode can be seen as partially confined below the
H/He transition zone. It exhibits the larger amplitudes below that region
as compared to other g-modes and, therefore, it has a larger kinetic energy.
Conversely, the gg¢ mode shows a local minimum in kinetic energy due to the
fact that it tends to be partially trapped above the H/He transition zone, with
the consequence that it has lower amplitudes below that region as compared
to its immediate adjacent modes.

4.5 Weight function

It has been shown by [27] (and see also [7]) that the eigenvalues of the adiabatic
pulsation equations can be estimated from a variational approach. For a purely
spherical model, the square of an eigenfrequency is given by,

ol== , (13)

where D and A are two integral expressions involving the eigenfunctions of
that eigenfrequency. This expression can be used, after the solution of the
eigenvalue problem has been obtained, to derive a variational estimate of the
eigenfrequency. While this is generally less accurate than the result provided
by the eigenvalue itself, in part due to the fact that the boundary conditions
used in the variational approach are not exactly the same as those used in
the eigenvalue problem, the approach is often used as a measure of internal
counsistency. Of greater interest, however, is the fact that equation (13) involves
integral expressions over the stellar model. While the integral A appearing in
the denominator is simply proportional to the kinetic energy defined above,
the integrand of the integral D appearing in the numerator provides a measure
of the contribution of each shell in the stellar model to the overall integral.
As such, the integrand of the integral D for a given pulsation mode is often
referred to as the “weight function” of the mode. This concept is very useful
for inferring which regions of a stellar model contribute most to the formation
of a mode. The integral D may be written,

R
D:/[53N2+ ()’ +¢'< P +§,=N72>] pr? dr , (14)
0

Flpp Flp

where two other adiabatic eigenfunctions explicitly appear: @' (the Eulerian
perturbation of the gravitational potential), and P’ (the Eulerian perturbation
of the pressure).
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Fig. 8. Upper panel: Normalized weight function as a function of depth for a few
low-order quadrupole modes in our reference ZZ Ceti star model. The normalization
insures that the area under each curve is the same. Lower panel: Normalized weight
function for a confined mode (gs3) and a trapped mode (ge).

Figure 8 illustrates the weight functions for a few of the low-order quadrupole
pulsation modes that have been discussed above for our representative white
dwarf model. The weight function of each mode is normalized such that the
area under each curve is the same. In keeping with our previous discussion, it
is not surprising to observe in the upper panel that a p-mode of a given radial
order has a weight function indicating a sensitivity to much deeper layers than
its corresponding g-mode. Again, this indicates that p-modes depend more on
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the physical conditions in the interior than g-modes do. The latter are mostly
envelope modes in cool pulsating white dwarfs such as ZZ Ceti stars.

The lower panel of Figure 8 shows the weight functions of the quadrupole
modes g3 and gs that have been discussed above. The former is partially
confined below the H/He transition zone centered on log ¢ ~ —6, while the
latter is partially trapped above that compositional transition region. Clearly,
their weight functions reflect this state of affair. It should be evident that
this concept of mode confinement/trapping must be seen as the result of a
(relatively weak) partial wave reflection in the transition layers, allowing the
confined mode to extend above the transition region, and the trapped mode to
extend below that region. The modes remain global (as always), but they are
more sensitive to the conditions found above or below, depending on whether
or not they are trapped or confined.

It is very instructive to investigate the evolution of the weight function
of a pulsation mode along the evolutionary track followed by a cooling white
dwarf. In this way, one can appreciate the change of regime from the GW Vir
hot phase of evolution to the cool ZZ Ceti phase (which has been emphasized
through the use of our reference model in the illustrative examples presented
so far). Along the cooling track (see, e.g., the curves shown in Figure 1), the
overall degeneracy of a white dwarf model increases and this pushes the region
of g-mode formation outwards. This implies that mode sensitivity to model
parameters changes from the GW Vir phase to the V777 Her phase and the
77 Ceti regime.

This notion of changing mode sensitivity along the white dwarf cooling
track is well illustrated in the top panel of Figure 9. In order to avoid the
complications caused by chemical layering, i.e., mode confinement and trap-
ping which would cause the weight function not to behave monotonically and
confuse the plot, the evolution of a pure C model was considered. The figure
shows the weight function of the lowest-order (k =1) dipole g-mode in terms
of depth, and in terms of different phases of cooling as quantified by the ef-
fective temperature. The weight function is again normalized so that the area
under each curve is the same. Figure 9 clearly reveals the outward migration
of the region of g-mode formation with cooling. This implies that the pulsa-
tion modes of a white dwarf (the g-modes as observed) progressively lose their
ability to probe the deep interior (GW Vir regime) and become more sensitive
to the details of the outermost layers (ZZ Ceti regime) as cooling proceeds.
It is particularly obvious here that the ¥ =1, [ = 1 g-mode in the 10,117 K
model does not probe the core very well.

The panel at the bottom of Figure 9 illustrates, in contrast, the fact that
there is little migration of the region of mode formation for a p-mode in an
evolving white dwarf. There is some outward migration, particularly below
30,000 K, but the effect remains mild. Hence, even at Teg = 10,117 K, the p;
mode still probes the deep core as it did at much higher effective temperatures.
The g-modes are thus much more sensitive to the outward progression of the
degeneracy boundary in an evolving white dwarf than p-modes can be. The
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reason for this is to be found in the different behavior of the Brunt-Viisila
frequency compared to that of the Lamb frequency.

4.6 Rotational splitting

The variational approach put forward by [27] is again of great use for estimat-
ing the effects of slow rotation on the eigenfrequency spectrum of a pulsating
star. In practice, “slow rotation” means that {2 < o, where (2 is the rotation
frequency of the star. The variational method allows the treatment of slow ro-
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tation as a perturbation and leads to corrections to the eigenfrequencies that
are given in terms of integral expressions involving the unperturbed eigen-
functions, i.e., those coming out of the solution of the eigenvalue problem for
purely spherically symmetric models (such as &, and &, encountered above).

The main effect of slow rotation is to destroy the spherical symmetry of
the star and, as a consequence, the (21 + 1)-fold degeneracy that exists for
the eigenfrequencies of modes with different values of m but belonging to the
same pair (k,l) in a nonrotating model is lifted. Under the assumption that the
angular rotation frequency is a simple function of depth, 2(r), the frequency
of a mode, now defined by the three indices k, [, and m, is given through
first-order perturbation theory by,

R
Okim = Okl — m/ 2(r) Ky (r)dr ) (15)
0

where oy, is the frequency of the degenerate modes (k,l) in the absence of
rotation, and the second term on the right side is the first-order correction to
that frequency, with m taking on the values —I,—l+1,...,1 — 1,1. The quan-
tity Kpi(r) appearing in the correction term is referred to as the first-order
rotation kernel. It obviously plays the role of a weight function, very much
similar to the weight function discussed above for the eigenfrequency, but,
this time, referring to the regions contributing to the frequency splitting due
to rotation. It is given by the following expression involving the unperturbed
eigenfunctions,

_ @+ [0 +1) — 18 — 266} pr?
ST v 10+ 1) pr? dr

If the star is further assumed to rotate as a solid body ({2 # 2(r)), equation
(15) reduces to,

chl (T‘)

(16)

Okim = Okl — mQ(l - Clcl) ) (17)

where (2 is the (uniform) angular rotation frequency, and C}; is a dimension-
less quantity named the first-order solid body rotation coefficient (or Ledoux
coefficient). It is given by,

L+ Gt dr
kl — TR .. 2 N

fo {& +1(1+1)& }pr? dr
Given the solution of the eigenvalue problem for a mode, equation (18) allows
the evaluation of the C}; coefficient for that mode. Note that first-order solid

body rotation leads to a set of equally-spaced frequencies with a splitting
between adjacent frequency components given by,

(18)

Ao =12 (]. - Clcl) . (19)
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Figure 10 shows the values of the first-order solid body rotation coefficient
for a series of quadrupole modes (the same as those illustrated in Fig. 7)
covering the period interval 1—1000 s, and referring to our representative
white dwarf model. As is the case for all types of stars, the values of Cy; for
p-modes tend to become very small compared to 1 in the asymptotic limit
of high radial order. In contrast, the values of Cy; for g-modes tend towards
a nonzero value, 1/(I(I + 1)), in the same limit, as can be seen in the figure
for [ = 2. Note that the lowest-order g-modes — of most interest for pulsating
white dwarfs — show significantly different values of C}; from one mode to
another, a good thing because this may help in constraining the radial order
of a mode versus another one in presence of observed rotational splitting.
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Fig. 10. First-order solid body rotation coefficient as a function of period for the
family of quadrupole modes with periods in the range from 1 s to 1000 s as computed
on the basis of our reference ZZ Ceti star model. The format is similar to that of
Fig. 7 above, and the modes considered are the same.

Figure 11 shows examples of frequency spectra, with and without rotation,
obtained from our reference white dwarf model. A relatively small value of 3
h was assumed for the rotation period of the model in order to clearly see the
split components in frequency space. Note that such a value is “slow” from a
dynamical point of view for a compact star such as a white dwarf. In practice,
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rotational splitting has been detected and used to infer the rotation period
of some 14 pulsating white dwarfs so far (see Table 4 of [17]). The inferred
rotation periods vary from 5 h to 55 h, which is again quite slow.

TS
i K

v =g/2m = 1/P (mHz)

Fig. 11. Rotational splitting in our representative ZZ Ceti star model. The low-
order g-mode frequency spectra for both dipole and quadrupole modes, with and
without rotation turned on, are illustrated. It is assumed that the star rotates as a
solid body and with a (relatively) short period of 3 h. Degenerate dipole modes split
into triplets, while quadrupole modes split into quintuplets. The spacings between
adjacent components within a given multiplet are the same in frequency space as
shown here.

5 Period Evolution

Another observable of high potential interest for white dwarf asteroseismology
is the rate of period change of a mode in a given pulsating star. If the period
change is due primarily to the secular evolution of the star, and not to external
causes such as, e.g., the cyclic orbital motion in a close binary or planet-
harboring star, then adiabatic asteroseismology can be used to infer additional
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properties or confirm/test the properties derived from using the period data
in a standard asteroseismological exercise.
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Fig. 12. Representative examples of period evolution for dipole g-modes during
the GW Vir, V777 Her, and ZZ Ceti phases. Note the offset in age between these
different phases of evolution. The radial order k is indicated for some of the modes
depicted here.

Figure 12 is meant to illustrate how pulsation periods typically evolve for
the three main categories of pulsating white dwarfs that are known: the GW
Vir, V777 Her, and ZZ Ceti stars. In each case, the evolving model is specified
by a total mass of 0.6 Mg and a uniform core composition made of carbon and
oxygen in the same proportions by mass fraction. The envelope in the GW
Vir model is made of a representative PG1159 composition (X (He)=0.38,
X (€)=0.40, and X (0)=0.20) and contains 102 of the total mass of the star.
The envelope of the V777 Her model also has an envelope representing 102
of the total mass of the star, but it is made of pure helium. In the case of
the ZZ Ceti model, there is a pure helium mantle containing a mass fraction
of 1072 surrounded by a pure hydrogen envelope containing 10~* of the total
mass. Given the different timescales involved — the evolution of a white dwarf
considerably slows down with decreasing luminosity — and our desire to plot
the results in the same figure, we used the logarithm of the cooling time (with
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respect to some arbitrary zero point) as the abscissa and we introduced a shift
of —0.80 (—1.45) dex for the V777 Her (ZZ Ceti) model.

For each type of pulsator of interest, the lower part of the dipole g-mode
spectrum (starting with k¥ = 1) was computed for several equilibrium con-
figurations mapping the instability strip. In the case of the GW Vir phase,
the equilibrium models considered cover the “turning of the bend” in the HR
diagram (see, e.g., Fig. 1) corresponding to the final contraction phase during
which the star gets hotter and more compact and the pulsation period of a
mode decreases, followed by the beginning of the cooling phase during which
the star gets cooler and (slightly) more compact and the pulsation period in-
creases. The period of a g-mode in a GW Vir model goes through a minimum
practically when the model reaches its maximum effective temperature in its
excursion in the HR diagram. Things are simpler for the V777 Her and ZZ
Ceti families which correspond to purely cooling phases and, therefore, such
stars exhibit pulsation periods that increase monotonically with passing time,
although not at the same rate from one mode to another as can be appreciated
in Figure 12. The increase of the pulsation period of a g-mode in a cooling
white dwarf is intimately related to the outwardly growing degenerate region
which has the effect of lowering the value of the Brunt-Viisild frequency.?

It should be noted that the phases covered in Figure 12 encompass the
empirical instability strips and are meant to be primarily illustrative. For in-
stance, the coolest model considered in the GW Vir phase is somewhat cooler
at Tog ~ 77,000 K than the actual observed red edge. Also, the V777 Her
phase maps a range of effective temperatures from about 28,000 K to 21,000
K, while the ZZ Ceti phase covers an interval from about 13,000 K to about
10,300 K, somewhat larger than the widths of the observed instability strips.
It should further be noted that the figure reveals significant wavy structures
in the computed period distributions, most obvious for the GW Vir phase.
These structures, sometimes referred to as “mode bumpings” and “avoided
crossings”, are due to the phenomenon of mode trapping/confinement at com-
positional transition layers in our white dwarf models. Purely radiative models
with a uniform chemical composition would not show these wavy features.

In the case of the GW Vir model, in particular, the nodes of a given radial
overtone first migrate inwards and then outwards as the model turns around
the bend in the spectroscopic HR diagram. These nodes successively pass
through the composition transition region at the interface of the C/O core
and the envelope, where conditions for partial mode confinement or trapping
are met. Hence, a given mode is alternatively partially trapped and partially
confined as a function of time, and this produces the period variations that
can be seen in Figure 12. For higher order modes, the nodes are more numer-
ous and closer together, so there are more “waves” in their temporal period
distribution as can also be observed in the figure.

3 For a completely degenerate, zero-temperature stellar configuration, the Brunt-
Viisdla frequency is strictly equal to zero.
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Fig. 13. Upper panel: Evolution of the rates of period change for three representative
dipole modes (k = 1, k = 20, and k = 40) across the GW Vir instability strip. The
evolutionary paths are shown by the solid curves and start with a dot. The dotted
curves show the values of dP/dt for the 40 overtones at three distinct epochs during
the evolution. Middle panel: Similar, but for the k = 1, k = 14, and k = 27 overtones
across the V777 Her instability strip. Also, only the initial and final distributions for
the 27 modes are shown by the dotted curves. Lower panel: Similar to the middle
panel, but for the £ = 1, k = 13, and k = 25 modes in the ZZ Ceti strip.

Figure 13 shows some results for values of the rates of period change com-
puted from these evolutionary sequences. As expected from the wavy structure
illustrated in the previous figure, the behavior of dP/dt as a function of time
for a given mode, and as a function of radial order for a given epoch, is rather
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complicated. For instance, in the upper panel of Figure 13, the evolutionary
paths followed by dP/dt for dipole g-modes with k = 1, k = 20, and k = 40 are
illustrated by the solid curves. The starting point for each path is indicated
by a small dot, and this corresponds to an early epoch when the model enters
the GW Vir region at low gravity and (relatively) low effective temperature,
still contracting and getting hotter. The dotted curve connecting the three
“starting” points shows the spectrum of dP/dt values for the first 40 dipole
overtones when the model enters the strip. The quasi-periodic behavior along
the spectrum is again due to mode trapping/confinement effects. The spec-
trum is equivalent to measuring the slope for each of the 40 modes on the
left side of the 40 curves shown in Figure 12 and referring to the GW Vir
regime. In this early phase, all slopes are negative and the dP/dt values for a
contracting model of a pre-white dwarf are all negative.

In contrast, by the time the model exits the GW Vir domain as a high-
gravity cooling white dwarf with Teg ~ 80,000 K, all values of dP/dt are
positive (top dotted curve in the upper panel of the figure). In between, there
exist epochs when, in a given model, one can find both modes with positive
values of the rate of period change and modes with negative values, depending
on their radial order. This is illustrated by the middle dotted curve in that
same panel, which corresponds to an evolutionary phase near the turning of
the bend in the HR diagram. This particular circumstance, if observed, may
be of high value for pinning down the precise evolutionary status of a GW
Vir pulsator.

The evolutionary paths shown in Figure 13 are complicated in that they
again reflect the effects of mode trapping/confinement. For instance, the path
for the £ = 40 mode crosses the zero value several times, meaning that the rate
of period change for that particular mode is initially negative, then changes
sign a few times around the turning of the bend, and finally takes on a positive
value by the time the star leaves the GW Vir region. This path is equivalent
to measuring the slope along the GW Vir k = 40 curve in Figure 12.

For their part, dP/dt values for g-modes due to secular evolution are
always positive for V777 Her and ZZ Ceti pulsators as can be seen in both
Figures 12 and 13. This is due to the fact that white dwarfs in these evolu-
tionary phases are purely cooling bodies and that the overall decrease of the
Brunt-Vaiisila frequency in their internal regions due to the growing degener-
acy pushes the periods of g-modes to higher values. Of notable interest, Figure
13 also reveals that the values of dP/dt for modes of comparable radial order
decrease substantially along the white dwarf cooling sequence. For instance,
the typical order of magnitude for the rate of period change for a GW Vir
pulsator is dP/dt ~ 107! s/s, for a V777 Her star it is dP/dt ~ 10713 s/s,
and for a ZZ Ceti pulsator it drops to the low value of dP/dt ~ 10~1* s/s.
These numbers simply reflect the very different evolutionary timescales that
characterize these three phases. The numbers show that it is much more dif-
ficult to measure the rate of period change of a mode in a ZZ Ceti star than
it is in a GW Vir pulsator.
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It should be realized that the measurement of dP/dt for a mode in a pul-
sating white dwarf, assuming that such measurement is available and credible,
is not easy to interpret without having first derived a reliable seismic model
for the pulsator under scrutiny. Such a model, obtained from the analysis of
the period data (and additional input such as multicolor photometry as may
be the case), provides estimates of the structural parameters of the pulsator
and a mode identification. These are essential ingredients required for inter-
preting the measurement of the rate of period change. And indeed, it can be
shown that a given value of dP/dt may be shared by modes with different
radial order or degree index, or by models with different masses, envelope
layerings, core compositions, and effective temperatures. Hence, it is abso-
lutely necessary to know these parameters to a good level of accuracy before
attempting to exploit the dP/dt data.

Figure 14 summarizes the results of numerical experiments featuring rep-
resentative modes of interest (dipole g-modes with k = 1, 8, and 15) for models
of ZZ Ceti stars. It shows how the values of dP/dt for these modes change
as the models cool through the ZZ Ceti instability strip. In the upper panel,
two similar models are used: they both have a total mass of 0.6 Mg, a uni-
form core composition made of carbon and oxygen in the same proportions by
mass fraction, and a pure helium mantle containing a mass fraction of 102,
but they differ in that one (dashed curves) has a pure H outermost envelope
containing a mass fraction of 10=% (let us call it the “reference model” in this
Section), while the other (solid curves) has a much thinner hydrogen layer of
mass fraction 107!°. In the same spirit, the middle panel of the figure refers
to the reference evolutionary model (dashed curves) and a similar one (solid
curves) differing only in its total mass, now equal to 0.9 Mg. Likewise, the
lower panel refers to additional models similar to the reference model (dashed
curves), but one having a pure C core composition (solid curves), and the
other a pure O core composition (dotted curves).

There are some differences between the values of dP/dt for the lowest-order
(k = 1) mode considered in Figure 14 depending on the model parameters,
but these differences remain small on the scales used here, and they are much
smaller than those found for the higher order modes. Generally speaking, the
rates of period change are highly dependent on modal and model parame-
ters. It should therefore be clear from this that the interpretation of a dP/dt
measurement must rest on the availability of a reliable seismic model.

6 The Nonadiabatic Approach

6.1 Basic considerations

In its full version, the linear theory of nonradial stellar pulsations takes into
account the energy exchanges between the environment and the macroscopic
fluid motions during a pulsation cycle. Two more hydrodynamic equations, the



Basic Principles of White Dwarf Asteroseismology 33
4.0

3.0

2.0

1.0

| L L L B

0.0
1.5

1

T
1

L

1

1.0

T T T
L

0.5

T
1

T T T
L

0.0
2.0

I
1

dP/dt (107" s/5s)

1.5

1.0

0.5

core composition T T =

oo b by v by |

0.0 b R T T u,

1 1 1 1 1 1 1 1 1 1 1 1

13000 12000 11000
Teff (K>

Fig. 14. Effects of varying the envelope layering, the total mass, and the core
composition on the rates of period change for representative dipole g-modes (k = 1,
8, and 15) in evolving ZZ Ceti star models.

energy conservation equation and the energy transfer equation, are thus called
upon at the outset. After linearization, one ends up with a system of 6 linear
differential equations with 6 dependent complex eigenfunctions.* As compared
to the adiabatic approximation (which leads to a set of 4 linear equations

* This is true for models in which only radiative (and conductive) transport is taken
into account, although the one extreme treatment of convection that has been
used most often for white dwarfs, the so-called frozen convection approximation,
does not require additional equations. A time-dependent version of convective
transport does, however.
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with real variables), the full approach becomes a much more complicated
problem from a numerical point of view. This is the price to pay, however, to
verify if a pulsation mode is excited or not in a stellar model. Likewise, the
full nonadiabatic approach is necessary to understand why a pulsating star
pulsates, and to map instability strips, among other things.

In the full nonadiabatic version, the eigenfrequency o of a mode is a com-
plex number and its temporal dependence takes on the form,

ezcrt — ez(a'R+za'1)t — ethefa'It , (20)

where og is the (angular) oscillation frequency of the mode, and o (also
expressed in rad s71) is directly related to the so-called e-folding time of the
mode defined by 7. = —1/o7. (In some references, the term “growth rate”
is also defined by the expression v = —or/og). When oy is positive, the
amplitude of the initial perturbation decays according to equation (20), and
the mode is said to be stable, damped, or not excited, and the mode is not
expected to be observable. Conversely, when o is negative, the amplitude of
the initial perturbation blows up exponentially (this is linear theory), and the
mode is said to be unstable, driven, or excited. Such a mode may grow to an
observable amplitude in a real pulsator. Note that, quite generally in stellar
models and especially for low-order modes, |or| > |o;|, which partly explains
why the adiabatic approximation is usually justified for computing oscillation
frequencies (periods) at a sufficient level of accuracy.

In nonadiabatic pulsation theory, one very useful concept is that of a “work
integral” which may be evaluated from the (nonadiabatic) eigenfunctions after
the solution of the eigenvalue problem has been obtained. In a way similar
to the weight function discussed in Subsection 4.5 above, the integrand of
the work integral indicates which regions of a stellar model contribute to the
driving of a pulsation mode, and which regions contribute to damping. The
integrand of the work integral may be written in the form,

aw - _ LRe{(S;* |:5€N—5<%V‘(FR+FC>:|} ; (21)

dMT OR

where the terms have their standard meaning. The nuclear term, den, has
yet to prove its relevance for pulsating white dwarfs, although it could drive,
through the appropriately named e-mechanism, short-period g-modes in some
models of GW Vir stars with residual He shell burning according to [37] (and
see also [12]). Short period pulsations of the type have yet to be discovered in
GW Vir stars, however, and it is now generally acknowledged that the modes
observed in the pulsators of the kind are driven by the so-called k-mechanism
involving the modulation of the radiative flux Fr around an opacity bump
in the envelope (see, e.g., [31], and references therein). The e-mechanism,
this time based on H shell burning, could also drive short-period (40—125 s)
g-modes in some low-mass DAO white dwarfs which result from post-EHB
evolution as demonstrated by [9]. In this context, the heavy solid segment of
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the dotted curve shown in Figure 1 indicates the predicted instability region.
No low-mass DAO white dwarf has been found to pulsate yet (see, in partic-
ular, [22]), but these objects are quite rare and the jury is still out about the
possibility. This is particularly true in the light of the recent study of [20] who
have shown that the presumed post-EHB DAO white dwarfs studied for vari-
ability by [22] are, in fact, post-AGB white dwarfs. In the cases of the V777
Her and ZZ Ceti stars, residual shell burning is completely negligible and the
e-mechanism cannot operate. Instead, the modulations of both the radiative
and convective flux must be taken into account in the driving process as these
cooler white dwarfs have developed extensive superficial convection zones that
interact with the pulsations. For lack of a better approach, stability studies
of white dwarfs of the kind have largely been based on the so-called frozen
convection approximation, which consists in neglecting the perturbations of
the convective flux. Fortunately, progress has been made recently on this front
by implementing, for the first time, an approach based on a time-dependent
treatment of convection in a white dwarf context ([15], [33], [42])

The sign of the integrand dW/dM, indicates if, locally, a region of the
star has a stabilizing or destabilizing effect on a mode. If dW/dM, < 0, the
region will be short of energy after a pulsation cycle and that energy will
be taken from the kinetic energy of the mode. The amplitude of the mode
tends then to decrease locally, and the region contributes to damping of the
mode. If, on the other hand, dW/dM, > 0, the region ends up with a positive
energy increment after a cycle, which is transfered as extra kinetic energy
to the mode. The amplitude has then a tendency to grow locally, and the
region contributes to driving. The global stability of a mode is determined by
summing over the contributions of all regions in a model, and this is the work
integral given by,

M

dw
- M, . 22
w /erd (22)

0

If W < 0, damping dominates over driving and the mode is globally stable.
Conversely, if W > 0, the mode is globally excited.

6.2 Excitation of pulsation modes in white dwarfs

The phenomenon ultimately responsible for driving pulsation modes in white
dwarfs is the partial ionization of the main envelope constituents. Indeed,
the K-shell electrons of carbon and oxygen ionize and then recombine during
the excursion around the bend in the GW Vir phase of the evolution of a
H-deficient, post-AGB star, helium recombines in the stricly cooling phase of
a He-atmosphere white dwarf corresponding to the V777 Her regime, and so
does hydrogen in the even cooler phase of a H-atmosphere star corresponding
to the ZZ Ceti regime. Both the recombination of helium and carbon con-
tribute to the excitation of g-modes in models of cooling Hot DQ stars. In
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each case, partial ionization leads to a very important increase of the enve-
lope opacity, and this tends to choke the outgoing energy flux. In the case of
V777 Her models, and even more so in Hot DQ models and ZZ Ceti stars,
the opacity bump becomes so large that a superficial convection zone devel-
ops as a result of the buildup of a superadiabatic temperature gradient, and
this significantly affects the mechanics of the actual process responsible for
the excitation of pulsation modes. Convective energy transport must then be
taken into account in addition to the usual radiative channel. Figure 15 il-
lustrates some opacity profiles and convective flux profiles in the envelopes
of typical models of pulsating white dwarfs. The monotonic increase of the
opacity maximum with decreasing effective temperature (GW Vir, V777 Her,
Hot DQ, ZZ Ceti) is noteworthy.
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Fig. 15. Opacity profiles (heavy curves) in the envelopes of representative models
of the four types of pulsating white dwarfs. The ratio of the convective to total flux
is also plotted (thin curves), except for the GW Vir model in which there is no
convection.

Figure 16 illustrates the details of the driving/damping region in a rep-
resentative model of a GW Vir pulsator. In this diagram, the abscissa corre-
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Fig. 16. Details of the driving/damping process for a typical g-mode excited in a
model of a GW Vir star.

sponds to the logarithm of the fractional mass above the depth of interest, the
same as used in our Figure 4 above, for example. On this scale, the center of
the star would be at a log ¢ value of 0.0.> However, because all of the “action”
in terms of driving/damping is going on only in the outer envelope of the
model, it is appropriate to emphasize only that part of the star in the plot.
The first vertical dotted line when moving into the star from the right gives
the location of the photosphere (corresponding to optical depth 7 = 2/3),
and the second vertical dotted line indicates the position of the base of the
atmosphere (g = 100). The dotted curve shows the profile of the Rosseland
opacity — to be read on the right-hand ordinate axis — as a function of depth.

® Contrary to most asteroseismologists who work on nondegenerate stars, we prefer
in the white dwarf field to use log ¢ as the abcissa in this type of diagram instead
of the temperature. This is because elements such as H, He, or C do not ionize
at the known “canonical” values of the temperature in white dwarfs because of
pressure effects on the ionization balance.
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One can notice two maxima in the opacity profile: the larger one nearer to
the surface is the usual “Z-bump”, while the deeper one corresponds to the
partial ionization of the K-shell electrons in carbon and oxygen. Note that the
envelope chemical composition of this model is uniform and made of a mixture
of He, C, and O in proportions typical of those observed in the atmospheres
of real GW Vir pulsators (X (He) = 0.38, X(C) = 0.40, X(0O) = 0.20, Z =
0.02).

Of the many g-modes found excited in this model, a representative one
with indices k¥ = 7 and [ = 1 has been singled out. It has a period of 296.6
s. For this particular mode, the solid curve shows the arbitrarily normalized
integrand dW /dlog ¢ of the work integral discussed in Subsection 6.1 above.
This derivative is obtained with respect to the independent variable log ¢ in-
stead of M, as given in equation (21), but it will be understood that this boils
down to an arbitrary choice for the abscissa variable. As discussed previously,
a negative value of dW/dlog ¢ at a given depth means that the mode is lo-
cally damped. Conversely, a positive value implies that the mode is locally
driven. The dashed curve is related and illustrates the running work integral
W, from left to right, i.e, from the center toward the surface of the model.
This quantity is also arbitrarily normalized. A final positive value of the work
integral at the surface — as is the case illustrated here — means that the mode
is globally excited and is potentially observable. Conversely, a negative value
of the work integral at the surface would imply that the mode is globally
damped and should not be seen.

Figure 16 clearly reveals that maximum driving corresponds to the opac-
ity bump associated with the partial ionization of the K-shell electrons in
C and O. Of prime interest, the work integral curves bear the telltale sig-
nature of a classic xk-mechanism. Note that there is no contribution to the
driving/damping process coming from the region associated with the higher
maximum in the opacity profile in the figure, and this is simply because it is
located in the atmospheric layers where there is practically no mass.

Figure 17 is similar, but it refers to a representative model of a V777 Her
pulsator. It has the same format as the previous plot, except for the addition
of the profile of the ratio of the convective to the total flux, F./F; (long-dashed
curve). The g-mode with £ = 7 and [ = 1 is again excited in this model and was
picked as an illustrative example. Here, the envelope is constituted of pure He,
and one can observe a large opacity peak caused by the partial ionization of
He I near the photosphere and, more importantly, that of He II in the deeper
layers where the opacity reaches a maximum around log ¢ ~ —12.7. The two
partial ionization zones of helium are practically fused together in this 25,000
K white dwarf model because of pressure effects. This leads to the formation
of a significant convection zone extending from above the photosphere well
into the driving/damping region below. Quite importantly, this convection
zone carries up to 98% of the total flux at maximum efficiency.

One can notice from the figure that maximum driving does not occur at
the depth where the opacity reaches its maximum value, but somewhat below.
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Fig. 17. Details of the driving/damping process for a typical g-mode excited in a
model of a V777 Her star.

Also, driving (dW /d—log ¢— > 0) is concentrated in a broad region near the
base of the convection zone, a region in which the fraction of the flux carried by
convection varies from zero at the base to its maximum value near the top of
that region. Contrary to GW Vir pulsators then, convection has a significant
role to play in the pulsation of V777 Her white dwarfs. Its presence in the
driving region implies that it is not the classic xk-mechanism that is at work
in these stars because that mechanism only operates in a purely radiative
environment,.

A very similar situation is encountered in ZZ Ceti stars, but the physical
conditions are even more extreme in these cooler objects than in V777 Her
pulsators. This is illustrated in Figure 18 which now refers to the case of a
typical model of a pulsating DA white dwarf. Taking into account the different
scale used for the opacity axis as compared to the previous figure for example,
one can notice the huge opacity peak in the pure H envelope of this model. This
bump is due to the partial ionization of neutral hydrogen. It is appropriate
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to recall in this context the gradual increase of the opacity maximum from
Figure 16 to Figure 18 (as described as well in Fig. 15).
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Fig. 18. Details of the driving/damping process for a typical g-mode excited in a
model of a ZZ Ceti star.

The convection zone associated with this opacity feature extends all the
way from the photosphere to the base of the driving region. It is more impor-
tant than in the DB model in the sense that up to 99.9% of the total flux can
be carried convectively in this zone. The driving region is again concentrated
at the base of the convection zone, but in a narrower domain than in the V777
Her case. Moreover, maximum driving is clearly more separated from maxi-
mum opacity than in the previous case. We can see, from both Figures 17 and
18, that pulsation driving in V777 Her and ZZ Ceti stars is intimately asso-
ciated with the physical conditions near the base of the superfical convection
zone.
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Fig. 19. Details of the driving/damping process for a typical g-mode excited in a
model of a Hot DQ star.

The physics is essentially the same for the Hot DQ model depicted in
Figure 19, although the mixed envelope composition leads to two distinct
regions of driving in the model. The envelope composition is again assumed
to be uniform, and is made of a mixture defined by X(C) = X (He) = 0.5.
The maximum in the opacity profile, located at log ¢ ~ — 12.4 is caused by
the partial ionization of He II, CIII, and CIV in the envelope mixture. The
secondary maximum, located at log ¢ ~ — 9.0 is caused instead by the partial
ionization of CV and CVI. Those two opacity bumps are “active” in the sense
that both contribute to the driving/damping process. It can be observed in
the figure that the regions on the descending side (going in from the surface)
of an opacity bump contribute locally to driving, while the deeper adjacent
zones, where the opacity decreases to relatively low values, contribute instead
to damping. In the present model, the two opacity bumps are relatively close
to each other and are part of a single convection zone. The damping region
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between the two bumps is relatively narrow and the overall work integral
comes out positive for this particular mode.
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Fig. 20. Absolute value of the growth rate, v = —o/or, as a function of period
for the family of quadrupole modes with periods in the range from 1 s to 1000 s
as computed on the basis of our reference ZZ Ceti star model. The excited (stable)
modes are indicated by the small filled (large open) circles. The format is similar to
that of Fig. 7 above, and the modes considered are the same.

It should be noted that, while the classic k-mechanism is at work in GW
Vir pulsators, the presence of convection in the driving/damping regions of
V777 Her, Hot DQ, and ZZ Ceti models implies that the detailed excitation
process in those pulsators should be associated with the so-called “convective
driving” mechanism first proposed by [6]. A more detailed description of the
interaction occuring between pulsations and convection in these cooler white
dwarfs is provided by [15], [33], and [42]. In addition, and for completeness,
it is worthwhile to recall that low-order p-modes, including radial modes, are
expected to be excited in some DB and some DA white dwarfs according
to [38]. And indeed, the mechanism able to drive low-order g-modes in these
cooler white dwarfs ought to work also for low-order p-modes. This is also what
we find in Figure 20 which illustrates the behavior of the growth rate for the
family of quadrupole modes already considered above for a representative ZZ
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Ceti star model. Except for the higher-order g-modes (identified with large
open circles), all of the modes are predicted to be excited, including all of the
low-order p-modes considered. However, short period p-mode pulsations have
yet to be found in white dwarfs, and this has remained a small mystery. We
note that the growth rates are significantly lower for the illustrated p-modes
compared to the g-modes, but other explanations may be necessary (see, e.g.,

[17]).

6.3 Expected instability strips for white dwarfs

Nonadiabatic calculations are essential for understanding the very existence
of a given type of pulsating star. They are also required to map the instability
strips in the HR diagram. Comparisons of “nonadiabatic observables” with
predictions of nonadiabatic theory are of fundamental importance for inferring
the thermal properties and the evolutionary status of pulsating stars. Among
such observables one may identify the boundaries of an instability domain
for a given family of pulsators, and the range of excited periods along with
the periods themselves in individual stars. We illustrate these concepts in this
subsection with the help of examples taken from white dwarf asteroseismology.

Figure 21 shows the predicted ranges of periods for excited dipole (I = 1)
modes computed from GW Vir models with log g and Teg values culled from
the evolutionary calculations of [37]. These ranges are shown as functions of
the effective temperature for an evolving model with M = 0.56 Mg (filled
circles) and for another one with M = 0.60 M (open circles). Along these
evolutionary tracks, equilibrium structures were pulsated and the resulting
excited modes are represented by small circles. The envelope composition
of these structures is a representative mixture for a GW Vir star specified
by X (He) = 0.38, X(C) = 0.40, X(O) = 0.20, Z = 0.02 in units of mass
fraction, the same as that used in a previous experiment above. Each circle
has a size that gives a logarithmic measure of the modulus of the imaginary
part of the complex eigenfrequency, i.e., |oy|. The bigger the circle, the more
unstable the mode. These predicted period ranges reproduce very well the
results of [37]. In particular, one can note that the 0.60 Mg models show
two distinct instability phases along their evolutionary track, while the 0.56
M models show a single one. The modes depicted in the figure are excited
through the C/O k-mechanism; the e-mechanism was not considered in these
computations.

Another example is provided in Figure 22, which displays the locations
of theoretical instability strips for evolving 0.6 Mg white dwarf models with
different envelope compositions. Along with the usual V777 Her (pure He)
and ZZ Ceti (pure H) instability strips, one can recognize the red edge of the
pulsating pure C envelope white dwarf models. In fact, the pure C instability
strip extends all the way up to the GW Vir regime as described at length in
[32]. On the other hand, models with a mixed He and C envelope composition
can also pulsate, but in different temperature intervals. For instance, Figure
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Fig. 21. Predicted ranges of periods for excited dipole modes computed from GW
Vir models culled from two different evolutionary sequences: M = 0.56 Mg (filled
circles) and M = 0.60 My (open circles).

22 illustrates an instability strip between the V777 Her and the ZZ Ceti do-
mains associated with white dwarf models with a mixed envelope composition
specified by X (He) = X (C) = 0.5, as appropriate for Hot DQ stars. Naively,
one could have expected to find such a strip in between the pure C and pure
He strips, but structural differences in the mixed envelope composition models
explain why this is not so.

Nonadiabatic asteroseismology can also be used to infer properties of in-
dividual pulsators or of a class of pulsators as a whole. An example of that
comes from ZZ Ceti stars and concerns the calibration of the mixing-length
theory in the layers where driving occurs, in effect providing a measurement of
the depth of the convection zone in such stars. This becomes possible because
pulsational instabilities first set in along the evolutionary track of a cooling
H-atmosphere white dwarf when the base of the convection zone that devel-
ops due to hydrogen recombination reaches a certain critical depth. When
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Fig. 22. Predicted spectra of excited g-modes computed from four distinct evolu-
tionary sequences, each characterized by a total mass of 0.6 M, but with a different
envelope composition: pure C, pure He, X (He) = X (C) = 0.5, and pure H, from left
to right.

this occurs, the star enters the blue edge of the instability strip. In this con-
text, it was mentioned above that the driving region in a ZZ Ceti pulsator
is essentially located at the base of the H convection zone, so there is a di-
rect connection between the effective temperature at the blue edge and the
depth of the H convection zone. Since convection is still modeled in terms of
the mixing-length theory in white dwarfs, a comparison of the empirical blue
edge of the strip with that provided by nonadiabatic calculations may be used
to infer the convective efficiency at the base of the convection zone, i.e., in the
driving region.

The principle of the method is exposed in Figure 23. That figure displays
the instability domain in the log g — Teg diagram for the ZZ Ceti stars. The
positions of the pulsators are indicated by the filled circles, while those of the
nonvariable stars are given by the open circles. The error cross in the lower left
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Fig. 23. Calibrating the mixing-length theory in ZZ Ceti stars by matching the
empirical blue edge of the instability strip with the predicted blue edge computed
under the assumption of various convective efficiencies (see text).

part of the figure gives the typical uncertainties on the atmospheric parame-
ters. The dotted curves illustrate evolutionary tracks for H-atmosphere white
dwarfs of different masses, from 0.4 Mg above to 1.1 Mg below in steps of 0.1
Mg, The solid curve on the left (right) gives the location of the theoretical
blue edge assuming a convective efficiency given by the so-called ML2/a=1.0
(ML2/a=0.6) version of the mixing-length theory used in the construction of
the equilibrium models employed in the nonadiabatic calculations. These the-
oretical boundaries were obtained using the instantaneous convective response
hypothesis, which is certainly justified since the convective turnover timescale
is much smaller than the periods of excited modes in these models at the
blue edge. One can see that the ML2/a=1.0 version provides a rather good
match to the empirical data. In contrast, models computed using the same
two versions of the mixing-length theory (dashed lines), but within the frame-
work of the frozen convection approximation fare a lot worse at matching the
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empirical blue edge. While this needs to be refined, the approach probably
remains the best way for calibrating the mixing-length theory in white dwarfs
as appropriate for the deep envelope regions.

7 Example of a Successful Asteroseismological Exercise

We end our presentation by providing an example of an asteroseismological
exercise carried out succesfully for the pulsating white dwarf GD 165, with
the aim of deriving the global structural parameters of the star on the basis of
period-matching algorithms. This is carried out within the framework of the
adiabatic approximation, but nonadiabatic considerations are also presented
in a complementary discussion.

GD 165 (V:14,32) CFH7035 CFHT/LAPOUNE 1995, May 22
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Fig. 24. Representative broadband optical light curve obtained on GD 165 using
the CFHT/LAPOUNE combination. The amplitude is expressed in terms of residual
intensity relative to the mean brightness of the star. Each plotted point represents
a sampling time of 10 s.

7.1 Observations and period extraction procedure

The pulsating white dwarf GD 165 (V' = 14.32+0.01) is one of those “simple”
low-amplitude pulsators found in the hotter region of the ZZ Ceti instability
strip which tend to show stable and relatively uncomplicated light curves. Its
time-averaged atmospheric properties place it at Teg = 11,980 K and log g =
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8.06 in the spectroscopic HR diagram (see, e.g., Table 1 of [17]. An analysis
of a Whole Earth Telescope (WET) campaign carried out on GD 165 in 1990
May was presented by [2]. The campaign resulted in some 233 h of broadband
“white light” photometric data gathered from six different sites using small
telescopes. The formal resolution achieved during the campaign was 1.2 pHz,
and the duty cycle was 35%. Despite these considerable efforts, the results
turned out to be rather disappointing as only three main periodicities could
be detected. Furthermore, it was not possible to decide if the fine structure
observed in the two largest peaks in the Fourier transform of the light curve
was due to triplets or quintuplets. In brief, the exercise was defeated by the
low signal-to-noise ratio (S/N) of the observations in regard to the relatively
low amplitudes of the modes excited in GD 165.

Table 1. Observed properties of the 13 modes detected in GD 165, assigned rotation
coefficients, and inferred rotation period

P(s) A(%) v(pHz) Av(pHz) Cri  Prwot(h) 1ID

120.3202£0.0008 0.1173£0.0052 8311.16+0.05 2.470£0.054
120.3559+0.0002 0.5244+0.0052 8308.69+0.01 <2.464+0.032> 0.492 57.27+0.74 f1
120.3916£0.0006 0.1649£0.0052 8306.23£0.04 2.460£0.040

192.5701£0.0015 0.2289+0.0078 5192.924+0.04 2.965+0.058
192.6801£0.0015 0.228740.0078 5189.951+0.04 <2.937+0.054> 0.399 56.85£1.05 fo
192.7828+0.0052 0.0683£0.0078 5187.18+0.14 2.766+£0.145

250.158940.0066 0.0574+0.0051 3997.46+£0.11 2.670+0.268 0.487 53.37£5.36 f3
250.326140.0154 0.0253+£0.0051 3994.79£0.25

114.2344+0.0015 0.044610.0043 8753.93+0.12  8.9501+0.327 0.084 56.85+2.08 f4
114.3513£0.0039 0.0174£0.0043 8744.98+0.31

146.3160£0.0011 0.044740.0060 6834.53+0.16 3.915+0.394 0.156 59.88+6.02 f5
146.3998£0.0077 0.0195£0.0060 6830.61+0.36

168.1912£0.0074 0.0272£0.0059 5945.62+0.26 fs

Another broadband photometric campaign on GD 165 was carried out
by two of us using the CFHT/LAPOUNE combination in 1995 May. The
light curve of GD 165 was sampled for a total of 27.8 h over six consecutive
nights. The formal resolution achieved was 2.2 pHz and the duty cycle was
equal to 22%. The conditions on Mauna Kea during that run were superb
as can be appreciated from the sample light curve shown in Figure 24. Be-
cause of the much improved sensitivity achieved during the CFHT campaign,
eight statistically significant peaks were detected as can be seen in Figure 25
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Fig. 25. Comparison of the Fourier amplitude spectrum of the light curve of GD
165 obtained 1) during the 1995 CFHT run (upper curve), and 2) during the 1990
WET campaign (lower curve plotted upside down).

displaying the Fourier amplitude spectra of the two campaigns in the 0—10
mHz bandpass (the f1 + f2 nonlinear frequency peak is present in the CFHT
data, but it falls outside the range of frequency considered in Fig. 25). Stan-
dard techniques (Fourier transforms, least-square fits to the light curve, and
prewhitening) were used to extract the frequencies (periods) present in the
light curve of GD 165. Excluding the nonlinear frequency peaks f; — fo and
f1 + f2 which are not independent modes, a total of 13 modes were uncov-
ered out of six main peaks — identified as f; through f¢ in Figure 25 — which
include two triplets, three doublets, and a singlet. The first four columns of
Table 1 summarize the results of the frequency extraction exercise. It should
be noted that the uncertainties on the periods P, the amplitudes A, and the
frequencies ¥ = 1/ P have been estimated with the formalism proposed by [29].
Except for the 146.3998 s component which has a 3.30 amplitude, the other
modes have amplitudes above the 40 criterion preferred by many researchers.
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With an output of 13 frequencies (corresponding to 13 independent pulsation
modes) uncovered in GD 165, the CFHT campaign constitutes an eloquent
demonstration that single site data, contrary to the seemingly widespread
belief in the white dwarf community, can be superior to multisite efforts. In
this connection, the virtue of high S/N seems to have been often forgotten by
many in the past.

J. o i

_l__ _meWmmuww

168

Fig. 26. Prewhitening sequences for each of the six main frequency peaks detected
in the Fourier transform of the CFHT light curves on GD 165. One tick mark in
abscissa corresponds to 1 mHz, and one in ordinate to 0.2%.

Figure 26 shows the prewhitening sequences (from top to bottom) for each
of the six significant peaks that appear in the Fourier amplitude spectrum. The
segments of the Fourier transform are displaced, both vertically and horizon-
tally, for visualization purposes. Each column illustrates, from top to bottom,
the prewhitening sequence obtained for a given peak identified by its approx-
imate central period (in s). One can distinguish two triplets, three doublets,
and one singlet. It is very likely that there are multiplet components in the
doublets and the singlet that have not been detected because their ampli-
tudes are smaller than the detection level. Figure 27 provides an interesting
zoomed-in view on the 120 s (f1) complex. Note the very low level of noise in
the CFHT data as illustrated by the lower curve. Given the observed spacings
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between the frequency components within given multiplets (see column 4 of
Table 1), this fine structure is best interpreted as rotational splitting due to
slow rotation of the star. This is used below to estimate the rotation period
of GD 165, once a convincing seismic model has been found for it.
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Fig. 27. Prewhitening sequence for the dominant 120 s structure.

7.2 Search for the optimal model in parameter space

For the comparison of the period data with periods computed from spheri-
cal models (as usual in the field), it is necessary to assign a priori the m =
0 components of multiplets to the unperturbed periods. This leads to some
ambiguities, especially for multiplets with an even number of detected com-
ponents, but it should be recalled that, at the level of accuracy with which
periods can be matched with current models of white dwarfs, this does not



52 G. Fontaine et al.

pose a significant problem, given that the period differences between multi-
plet components are very small. Hence, out of the 13 frequency components
extracted from the light curve of GD 165, only six are useful for comparison
with spherical models. These are the six periods identified by f; through fg
in Table 1. Given this set of six periods, a search for a suitable model in
parameter space was carried out along the lines pioneered by [5] and further
developed by [10].

The technique relies on a double-optimization scheme that, first, best fits
the six observed periods (denoted Ppps in what follows) with six periods (de-
noted Pypheo) belonging to the spectrum of a given model (note that the match
might be quite poor if the model has properties quite different from those of
the real star) and, second, searches for the best-matching model in parameter
space. No a priori mode identification is imposed on the observed periods,
except that they have to belong to degree index ! = 1 or [ = 2 in keeping with
what is known about identified modes in white dwarfs. For a given model,
theoretical periods are computed in a window that encompasses the range
of observed periods for modes with [ =1 and 2. For the reasons mentioned
above, sufficiently accurate periods may be computed in the adiabatic ap-
proximation, so this is adopted as a major time-saving measure because an
adiabatic code (solving a set of four linear differerential equations with real
variables) is much faster than its nonadiabatic counterpart (dealing with a
set of six linear equations with complex variables and requiring, as input and
initial guess, the adiabatic eigenfunctions). The quality of the match between
the observed and computed periods is measured quantitatively with a merit
function defined by,

Nove 2
52 = Z ( (:bs - tlheo) ) (23)

i=1
where Nopbs = 6 in the present case. The goal of the exercise is to find, if
possible, the minimum of S? in parameter space and, hopefully, a minimum
that identifies a good and credible optimal model. To objectively and auto-
matically carry out this search for the optimal model in parameter space (an
exercise in the so-called forward approach in asteroseismology) requires con-
siderable computing resources. Currently, a typical exercise of this kind for
white dwarfs necessitates the computations of a few million models and of
their period spectra. This is best done on a cluster of dedicated PC’s such
as CALYS (currently containing 320 nodes) being developed in Montréal, for
example.

5 A better approach would be to use models perturbed by rotation at the outset
and attempt to match in the best possible way the 13 periods simultaneoulsy
without making a priori assumptions as to the identification of the m = 0 compo-
nents. This has been used successfully in the recent asteroseismological analysis
carried out by [41] on the short-period pulsating hot B subdwarf star Feige 48,
for example.
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To define a full (but static) white dwarf model, it is necessary to specify
the surface gravity (or the mass via the mass-radius relation), the effective
temperature, the envelope layering, the core composition, and the convective
efficiency — for a star such as GD 165 — via a flavor or another of the mixing-
length theory. Quite realistic static models of white dwarfs can be computed
(as compared to full evolutionary models) since in these cooling bodies the
approximate relationship between the local luminosity and integrated mass,
L(r) o< M(r), becomes quite accurate and, thus, may be used to provide an
excellent estimate of the luminosity profile. As shown in Figure 42 of [17],
the periods of low-order g-modes in ZZ Ceti star models practically do not
depend on the choice of the assumed convective efficiency, so it is fully justified
to adopt one version of the mixing-length theory and not worry further about
it. This is especially justified in a star like GD 165 showing rather short
periods in the range from ~114 s to ~250 s, because such periods have to be
associated with low-order modes. Likewise, very little sensitivity is expected
of the periods on the core composition in a highly degenerate star such as GD
165 due to the phenomenon of g-mode migration discussed at some length
in Subsection 4.5. In the present asteroseismological exercise, the so-called
ML2/a=1.0 version of the mixing length theory was therefore adopted and a
pure carbon core was assumed. These parameters were not varied in parameter
space.

The question of envelope layering deserves some comments. It is specified
not only by the total amount of mass there is in the helium mantle, AM (He),
and the total amount of mass there is in the hydrogen outer envelope, AM (H),
but also by the actual composition profiles in the transition zones themselves.
This is because mode trapping/confinement, which has a very significant effect
on the g-mode period spectrum in a white dwarf, is very sensitive to the
conditions encountered in the composition transition zones. One standard
assumption, based on physics as opposed to using some arbitrary profiles at
the composition interfaces, has been to invoque diffusive equilibrium in order
to compute the chemical distributions in the transition zones. The experiments
reported by [3] have been quite enlightening in this respect, in that they have
shown that the assumption of diffusive equilibrium does not hold in GD 165.
Indeed, this assumption leads, after a full search in parameter space, to a
rather poor optimal model characterized by a merit function of S? ~ 140.7, a
value that is not at all impressive compared to those that have been reached
in other pulsating white dwarfs.

The optimal model found by [3], although giving a poor match to the six
periods observed in GD 165, still suggested the presence of a rather thick
hydrogen layer in that star, a result consistent with the earlier independent
arguments put forward by [18]. If true, then the assumption of diffusive equi-
librium, which is justified at the base of a thin envelope, had to be questioned.
Indeed, one could argue that, at the depths corresponding to the base of a
rather thick envelope, diffusion may not have had the time to reach equi-
librium (the diffusion timescale increases rapidly with increasing depth in
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white dwarfs). This proposition was verified explicitly by [3] who carried out
detailed evolutionary calculations including diffusion at the composition in-
terfaces. They were able to conclude that diffusive equilibrium is indeed not
reached at the composition interfaces in a ZZ Ceti star model with thick hy-
drogen and helium layers. More importantly for the present purpose, they
were able to “calibrate” the steepness of the composition profiles in a model
of GD 165, and it is this calibration that is used here in the present example
of an asteroseismological exercise.

With the core composition fixed, the convective efficiency chosen, and two
transition zone parameters calibrated (H/He and He/C interfaces), the search
for the optimal model in parameter space boils down to a 4D exercise in
terms of Teg, log g, log AM (He)/M, and log AM (H)/M, still a formidable
numerical challenge. To guide the procedure, and to be consistent with the
spectroscopic evidence, the search was confined to a range of Teg and a range
of log g corresponding to the 1o “spectroscopic box” defined by the published
uncertainties on these atmospheric parameters, i.e., 11,980 £350 K in effective
temperature and 8.06 £ 0.05 dex in surface gravity. The mass of the helium
mantle was allowed to vary in the range —4.0 < log AM (He)/M < —1.5, and
the mass of the hydrogen envelope was allowed to vary in the range —8.0 <
log AM (H)/M < —2.0, with the condition AM (He)/M > AM(H)/M.

Some of the results of the search procedure are presented in Figure 28
showing the behavior of the goodness-of-fit function S? in terms of isocontours
in the log g-Tex domain that was surveyed. Note that each grid point shows
the value of S? corresponding to the optimized solution in the two other
dimensions as well, i.e., in terms of log AM (He)/M and log AM(H)/M. It
is very interesting to find out that there is a minimum in S? corresponding
to Teg = 12,055 K and log g = 8.045. There is indeed never any guarantee
at the outset that a minimum will be found within the spectroscopic box.
This is the kind of consistency that gives credibility to a seismic solution.
In terms of its two other defining parameters, the optimal model coming out
of the search exercise has a helium layer mass of log AM (He)/M = —1.634,
and a hydrogen layer mass of log AM (H)/M = —4.144. The optimal model
is characterized by a merit function of S? = 1.92, which is excellent for a fit
involving six different periods considering the limitations of current models.
It is to be noted that the minimum shown in Figure 28 is rather shallow,
which suggests that what was found is more a family of equally acceptable
models, particularly along the “valley” defined by the contours with $? = 2.0.
A detailed analysis is required to assess the statistical significance of the other
model members of the family, but the detailed results indicate that they all
correspond to the same mode identification. In the rest of this example, focus
is put on the optimal model per se.

The search method yields the mode identification (in terms of the indices [
and k for spherical models) consistent with the best S? value as output. Table
2 summarizes the period match obtained and the mode identification inferred
for the optimal model found for GD 165. In the worst case (the 146.316 s
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Fig. 28. Contours of the merit function S? in the log g-Tes plane.

Table 2. Period fit and mode identification for the optimal model of GD 165

I k Pobs(s) Ptheo(s) |AP|(S) Ckl lOg Ekin

11 120.356 120.143 0.213 0.492 46.553
12 192.680 192.770 0.090 0.399 47.517
13 250.159 251.015 0.856 0.487 45.318
21 .. 69.406 ... 0.158 46.552
22114.234 114.061 0.173 0.084 47.416
2 3 146.316 145.281 1.035 0.156 45.303
2 4 168.191 168.008 0.183 0.153 45.073

25 ... 205824 .. 0.147 44.444
26 ... 224865 ... 0.099 44.334
27 ... 239894 ... 0.108 44.252

28 ... 269.077 .. 0.151 43.625
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Fig. 29. Comparison of the six observed periods in GD 165 (dashed line segments)
with the theoretical g-mode period spectrum of the optimal model (solid line seg-
ments). The dipole (quadrupole) modes are illustrated in the lower (upper) half of
the plot and the radial order of each mode is indicated.

mode), there is a difference of 1.035 s between the observed period and the
theoretical period of the assigned [ = 2, k¥ = 3 mode in the optimal model.
Figure 29 provides a graphic representation of this excellent overall fit.

It may be significant that the search exercise has assigned the three largest
amplitude oscillations in GD 165 to [ = 1 modes, and the three smallest ampli-
tude ones to | = 2 modes (and see again Fig. 25). This is indeed the expected
hierarchy in view of geometrical cancellation effects, but this argument should
be used with caution as there are known cases of pulsating stars (including
white dwarfs) that show [ = 2 modes with larger amplitudes than ! = 1 modes.
It is also of interest to point out that the assigned modes in Table 2 have con-
secutive values of the radial order; from k£ = 1 to kK = 3 for the dipole modes,
and from k = 2 to k = 4 for the quadrupole modes. This is again circum-
stantial evidence that adds to the credibility of the optimal model because
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nonadiabatic theory (see below) usually predicts that pulsation modes should
be excited in bands of Ak modes in radial order.

It is the a posteriori analysis of the multiplet data, interpreted as rota-
tional splitting, that gives us the most confidence in the validity of the inferred
seismic model, however. To this end, the values of the first-order solid body
rotation coefficient Cj; of the modes computed in the optimal model have
been listed in Table 2. (The values of the kinetic energy have also been tabu-
lated, but this is just for completeness and to relate to Subsection 4.4.) The
interesting aspect is that these values are significantly different; for example
Cri = 0.492 for the I = 1, k = 1 mode (its corresponding observed mode
shows a fine structure triplet), but Cx; = 0.084 for the [ = 2, k¥ = 2 mode
(its corresponding observed mode shows a fine structure doublet). This means
that significantly different frequency splittings should be observed from one
multiplet to another, thus providing a robust test of the inferred mode iden-
tification.

The values of the Cy; coefficients for the five observed modes showing fine
structure have been reported in Table 1 (5th column). Using equation (17),
and remembering that ¢ = 27v and {2 = 27/ Py, we computed estimates
of the rotation period of GD 165 for each of the multiplets as indicated in
the 6th column of the table. The quoted uncertainties come solely from the
uncertainties in the values of the frequency splittings between adjacent mul-
tiplet components. Table 1 indicates a most remarkable internal consistency
between the five estimates of P, thus obtained. The rms average gives a
remarkably accurate estimate (~1%) of 57.09+0.57 h for the rotation period
of GD 165, the most reliable value ever obtained for a ZZ Ceti star.

Figure 30 nicely summarizes the excellent agreement that exists between
12 of the observed frequencies and the split frequencies coming out of the
assigned modes in the optimal model assuming solid body rotation with a
period of 57.09£0.57 h. Of course, to produce this figure, we have shifted the
central components of the observed and theoretical multiplets to the same
zero value, as the optimal fit (see Table 2) does not reproduce the frequencies
at a perfect level of accuracy. For a given theoretical multiplet, the central
component was fixed at zero with no uncertainty, and the m # 0 components
were computed using equation (19) and the uncertainty of 0.57 h on the
assumed rotation period. For their part, the uncertainties on the individual
values of the 12 frequencies come from Table 1. It is most improbable that
the agreement between the values of the frequency spacings between the two
sets of values can be due to chance. This excellent agreement must rather be
seen as a solid proof of the basic validity of the seismic model obtained for
GD 165.

It is interesting to examine the rotation kernel of each of the five modes
identified with observed multiplets. This is shown in Figure 31 which clearly
illustrates that these modes are sensitive to rotation only in the outer part of
the stellar model, which contains little mass. Hence, our results that suggest
that GD 165 rotates rigidly have to be interpreted in the light of this obser-
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Fig. 30. Comparison of the observed multiplet structures with those predicted on
the basis of the optimal model assuming a solid body rotation with a period of
57.09£0.57 h.

vation: the internal rotation profile is only probed adequately in the outer ~
30% of the radius of GD 165 with the modes available. One could not exclude
for example that the inner regions rotate at different rates than the outer part.
This limitation is a characteristic of very degenerate white dwarfs such as ZZ
Ceti stars. In contrast, as shown by [8], the rotation kernels for g-modes are
rather uniformly distributed from the center to the surface in very hot white
dwarfs of the GW Vir type. This allows the probing of the entire rotation
profile in these objects. Very much like the case of the outward migration of
the weight function of an eigenfrequency as discussed above in the context of
Figure 9, cooling also pushes the rotation kernel of a given g-mode toward the
outer layers as a result of the general increase of the state of degeneracy in
the interior and the concomitant decrease of the Brunt-Viisili frequency.
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Fig. 31. Normalized rotation kernel for each of the five modes identified in the
optimal model of GD 165 and associated with observed rotationally-split multiplets.

7.3 Nonadiabatic considerations and the optimal model

It is instructive to analyze the optimal model with a nonadiabatic pulsation
code to verify if the modes identified with the observed ones are indeed pre-
dicted to be unstable. This provides a very important consistency check and, if
successful, adds credibility to the inferred seismic model. As stated previously,
the periods of the low-order modes found in GD 165 are quite insensitive to
the choice of the convective efficiency that has been made in the model build-
ing phase. However, the question of the stability of the modes does depend
sensitively on the choice of the assumed convective efficiency as was discussed
around Figure 23 above. The models that were built in the search exercise used
the ML2/a=1.0 version of convection which, not by accident, is the version
that was “calibrated” by matching the theoretical with the empirical blue edge
of the ZZ Ceti instability strip. This calibration is based on the assumption
that the perturbation of the convective flux adjusts instantaneously, which is
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a reasonable hypothesis near the blue edge of the strip since the convective
turnover timescale there is much smaller than the pulsation periods of interest
as pointed out in Subsection 6.3.

Table 3. Nonadiabatic properties of the optimal model of GD 165

lk P(s) or(rad/s) or(rad/s) Te(yT)

11120.143 5.23 x 1072 —2.60 x 1073 1.23 x 10°
12192.770 3.53 x 1072 —2.12 x 10™*% 1.50 x 10°
13 251.015 2.50 x 1072 —9.72 x 10~ 3.28 x 10
21 69.406 9.05 x 1072 —2.88 x 1072 1.11 x 10°
22 114.061 5.51 x 1072 —3.24 x 10~** 9.82 x 10*
23 145.281 4.33 x 1072 —1.11 x 1071° 2.86 x 102
2 4 168.008 3.74 x 1072 —3.38 x 1071% 9.41 x 10*
2 5205.824 3.05 x 1072 —3.30 x 107° 9.67 x 10°
2 6 224.865 2.79 x 1072 —6.13 x 10™° 5.20 x 10°
2 7239.894 2.61 x 1072 —9.75 x 107° 3.27 x 10°
2 8 269.077 2.34 x 1072 —6.67 x 1078 4.78 x 107}

Table 3 summarizes some of the results obtained with the Montréal nona-
diabatic pulsation code. The modes identified with the observed ones in GD
165 are indeed excited in the optimal model. In fact, all dipole modes with
radial order between £ = 1 and k = 22, and all quadrupole modes with radial
order between k£ = 1 and k& = 25 are predicted to be driven in the optimal
model, as well as many low-order p-modes, including radial modes. This is a
fairly common situation in nonadiabatic linear physics which tends to predict
wider bands of excited periods than those observed.” But the important test
is that the modes in the optimal model assigned to the observed modes in
GD 165 are indeed expected to be excited. Doubts could justifiably have been
cast on the credibility of the optimal model if it had failed this test.

The table also indicates that, for all modes, |og| > |o;|, which is consistent
with an earlier remark made above. In addition, the e-folding timescales listed
there are all much smaller than the evolutionary timescale of GD 165, meaning
that the predicted unstable modes have plenty of time to develop an observable
amplitude. And indeed, it takes 1—3 x 108 yr for a typical H-atmosphere white
dwarf to cross the ZZ Ceti instability strip.

" Some researchers prefer to refer to “unstable” modes as those predicted to be
driven, and to “excited” modes as those actually observed to have grown a de-
tectable amplitude in a real star. Given that linear nonadiabatic theory does not
specify which of the unstable modes will become an observable mode, this point
of view merits consideration.



Basic Principles of White Dwarf Asteroseismology 61
7.4 The inferred properties of GD 165

The primary quantities derived from our asteroseismological exercise for GD
165 are the effective temperature Teg = 12,055+1370 K, the surface gravity
log g = 8.045+0.070, the fractional mass of the He mantle log AM (He)/M =
—1.63%0.12, and the fractional mass of the H outer envelope log AM (H)/M
= —4.1440.22. The uncertainties on the derived parameters have been esti-
mated using the method described in [5]. Given the particular mass-radius
relationship that white dwarfs must obey, a star with these parameters and
with a pure C core must have a mass M = 0.633+0.034 Mg and a radius of
R = 0.0125+0.0007 Rg. This assumes that the uncertainties on the gravity
are shared equally by the mass and the radius. Knowing the radius and the
effective temperature, the luminosity follows, L = 3.0 1.7 x 10~3 L. The
relatively large uncertainty associated with L is mostly due to the uncertain
effective temperature, which is a consequence of the relatively low sensitiv-
ity of the pulsation periods on that parameter as can be appreciated from
the shape of the S? contour curves in Figure 28 above. Furthermore, and in
conjunction with an appropriate model atmosphere based on the ML2/a=1.0
version of the mixing-length theory, the absolute magnitude in the V band
is obtained as My (Teg,M,g) = 11.73+0.46. The latter result is combined
with the apparent magnitude V = 14.32 £ 0.01, leading to an estimate of
the distance to GD 165 of d = 33.0£7.1 pc, quite close to the best available
astrometric value of d = 31.5 &+ 2.5 pc ([25]). The rotation period of GD 165
is inferred to be 57.09+0.57 h, leading to a negligible equatorial velocity of
Veq = 0.267£0.017 km s~ 1.

As discussed above, the periods observed in GD 165 are insensitive to the
core composition and the choice of the convective efficiency assumed to build
the model, so no useful inference can be made on the basis of the period data
for those two parameters. However, nonadiabatic calculations based on the
“calibrated” ML2/a=1.0 version of the mixing-length theory and applied to
the seismic model of GD 165 indicate that the observed pulsation modes are
indeed expected to be excited. In addition, [3] have shown that GD 165 is cur-
rently still undergoing element separation and that the standard assumption
of diffusive equilibrium is unjustified, at least for this star. This is an inter-
esting piece of information about GD 165 and relates directly to the actual
shapes of the chemical profiles in the transition zones in this cooling white
dwarf. Additional inferences can also be made using after-the-fact full evolu-
tionary calculations built on the basis of the derived structural parameters.
For instance, if GD 165 has a pure C core, its cooling age would be 4.15 x 10%
yr, while it would be equal to 3.64 x 108 yr if it has a pure O core. Presumably,
its true age is sandwiched in between those two values as a typical white dwarf
with a mass of ~ 0.63 My, is expected to have a C/O core (but in unknown
proportions). These extra evolutionary calculations also lead to the prediction
that the rate of period change of the 120.356 s mode in GD 165 (the largest
amplitude mode in that star) should be dP/dt = 6.8 x 10716 s/s if the core
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is made of pure carbon, and of dP/dt = 7.8 x 1071¢ s/s if the core is made of
pure oxygen. Unfortunately, due to the smallness of these values, it is doubtful
that this will ever be measured, but the prediction is made.

8 Conclusion

We have tried in this book chapter to provide an original approach to white
dwarf asteroseismology. In particular, given the recent availability of two very
detailed reviews on the properties of pulsating white dwarfs ([17]; [44]), we
have refrained from providing what would have been, at best, a detailed sum-
mary of these reviews. In this context, the long reference lists found in [17]
and in [44] remain precious material.

In the spirit of this book, we have instead concentrated on a pedagog-
ical approach, with the aims of describing the most basic aspects of as-
teroseismology as applied to white dwarf stars. We first established several
fundamental notions of pulsation theory using pulsating white dwarfs as ex-
amples. In this process, we developed and used original material to a large
extent. Our demonstration culminated with the example of a successful as-
teroseismological analysis carried out for the ZZ Ceti star GD 165. This ex-
ample underlines, in a nice way we believe, the power of asteroseismology
in its “forward approach” version, a method that has been underexploited
in our view. We hope that our efforts will be useful to the general reader.
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