Termites as a tool to improve lignocellulose biomass valorization: study of enzymatic complex in termites and its common symbionts by comprehensive metabolite profiling.

Catherine Brasseur¹², Julien Bauwens³, Cédric Tarayre⁴, Christel Mattéotti⁵, Philippe Thonart⁴, Jacqueline Destain⁴, Frédéric Francis³, Eric Haubruge³, Daniel Portetelle⁵, Micheline Vandenbol⁵, Edwin De Pauw², Jean-François Focant¹

The main challenges of lignocellulose biomass conversion are to improve enzymatic efficiency and reduce costs for industrial application. Termites, notorious for their wood cravings, may provide the key to greener fuels and chemicals from cellulosic materials. Up to now, a lot of studies on termites have focused mostly in the genetic and microbiological fields. There is an interest to extend investigations to proteomic and metabolomic studies with the emergence of new techniques, and to achieve a functional understanding of the microsymbionts-termite host association to use cellulose from wood.

Comprehensive two-dimensional gas chromatography (GCxGC) coupled to time-of-flight mass spectrometry (TOFMS) is used to study metabolite profiles in termites. The aim of the study is to develop a powerful analytical method to challenge the detection, separation and identification of compounds released in the tiny 1μ L termite fluid gut volume.

Reticulitermes santonensis De Feytaud were collected on Oleron Island, France. The culture was maintained in a laboratory on wet wood at 27°C and 70% humidity. Only adult workers were selected for experiments and washed in a 70% ethanol solution before removing the entire gut. Sets of 1 to 10 guts were collected and homogenized using a piston pellet (Eppendorf) in methanol/water and kept at -80°C until derivatization and GCxGC-TOFMS analysis.

Hundreds of peaks were detected with a $1\mu L$ injection volume of extracts with reduced number of collected guts. Metabolites detected with library identification included amino acids, sugars, phosphates, organic acids, fatty acids and urea. Interesting compounds like sugars and modified sugars were investigated to identify and understand metabolic strategy pathways used by termites and its symbionts to produce efficient energy from cellulose.

¹Department of Chemistry/Organic and Biological Analytical Chemistry - University of Liège, 4000 Liège, Belgium.

²Department of Chemistry/Mass Spectrometry Laboratory - University of Liège, 4000 Liège, Belgium

³Department of Functional and Evolutionary Entomology - Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.

⁴Department of Bio-Industries - Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.

⁵Department of Microbial and Animal Biology - Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.