
Policy Search with Cross-Entropy Optimization of Basis Functions

Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška

Abstract— This paper introduces a novel algorithm for ap-
proximate policy search in continuous-state, discrete-action
Markov decision processes (MDPs). Previous policy search
approaches have typically used ad-hoc parameterizations de-
veloped for specific MDPs. In contrast, the novel algorithm
employs a flexible policy parameterization, suitable for solving
general discrete-action MDPs. The algorithm looks for the best
closed-loop policy that can be represented using a given number
of basis functions, where a discrete action is assigned to each
basis function. The locations and shapes of the basis functions
are optimized, together with the action assignments. This allows
a large class of policies to be represented. The optimization is
carried out with the cross-entropy method and evaluates the
policies by their empirical return from a representative set
of initial states. We report simulation experiments in which
the algorithm reliably obtains good policies with only a small
number of basis functions, albeit at sizable computational costs.

I. INTRODUCTION

Markov decision processes (MDPs) can be used to ex-

press important, general problems arising in various fields,

including automatic control, operations research, economy,

and computer science. Algorithms to solve general MDPs

are therefore very promising for these fields. For instance,

in automatic control, such an algorithm would provide a

solution to the nonlinear, stochastic optimal control problem.

In an MDP, at each discrete time step, the controller

measures the state of the process and applies an action

according to a control policy.1 As a result of this action, the

process transits into a new state, possibly in a nonlinear and

stochastic fashion, and a scalar reward signal is generated

that indicates the quality of the transition. The controller

measures the new state, and the whole cycle repeats. The

control goal is to maximize the cumulative reward (the

return) over the course of interaction [1], [2]. Because exact

solutions can be found only for MDPs that have state and

action spaces with a finite (and not too large) number of

elements, approximate solutions have to be sought in general.

In this paper, we only consider such approximate solutions.

The most widely used algorithms for solving MDPs rely

on value functions, which give the returns from every state

Lucian Buşoniu, Bart De Schutter, and Robert Babuška are with the
Center for Systems and Control of the Delft University of Technol-
ogy, The Netherlands (email: i.l.busoniu@tudelft.nl, b@deschutter.info,
r.babuska@tudelft.nl). Bart De Schutter is also with the Marine and Trans-
port Technology Dept. of TU Delft. Damien Ernst is a Research Associate
of the Belgian FNRS; he is affiliated with the Systems and Modeling Unit
of the University of Liège, Belgium (email: dernst@ulg.ac.be).

This research is financially supported by the BSIK-ICIS project (grant
no. BSIK03024), by the NWO Van Gogh grant VGP 79-99, and by the
STW-VIDI project DWV.6188.

1Throughout the paper, control-theoretic terms and notations will be
preferred to their artificial intelligence counterparts. For instance, the term
‘controller’ will be used instead of ‘agent’, and ‘process’ instead of
‘environment’.

or state-action pair. The value function is used to compute

a policy. Unfortunately, most state-of-the-art value-function

techniques do not scale well to high-dimensional problems:

they are typically applied to problems with only up to six

continuous state variables [3]–[6]. Moreover, designing value

function approximators is often a difficult, counterintuitive

task [3]. Motivated by these shortcomings, direct policy

search algorithms have been proposed [7]–[11]. These al-

gorithms parameterize the policy and search for an optimal

parameter vector which maximizes the return, without using

a value function. In the literature, typically ad-hoc policy

parameterizations with a few parameters are designed for

specific problems, using intuition and prior knowledge about

the optimal policy [8], [9]. On the other hand, in the area of

value function approximation, significant efforts have been

invested to develop techniques that automatically find good

approximators, without relying on prior knowledge [3], [5],

[6], [12]. Most of these techniques represent value functions

using a linear combination of basis functions (BFs), and

automatically find BFs that lead to an accurate value function

representation.

In this paper, we develop and evaluate a flexible policy

approximator for direct policy search. Unlike previous ap-

proaches from the literature, this approximator can represent

policies for a large class of MDPs. The algorithm works

for continuous states and discrete (or discretized) actions.

Inspired by the work on automatic BF construction for value

function approximation, we propose to represent policies

using N state-dependent BFs, where each BF is associated

with a discrete action in a many-to-one fashion. The type

of BFs and their number N are specified in advance and

determine the approximation power of the representation.

The locations and shapes of the BFs, together with the action

assignments, are the parameters subject to optimization. The

optimization criterion is a weighted sum of the returns from

a set of representative initial states, where each return is

computed with Monte Carlo simulations. The representative

states together with the weight function can be used to focus

the algorithm on important parts of the state space.

Mainly because of the rich policy parameterization, the

performance may be a complicated function of the parameter

vector, e.g., non-differentiable, non-convex, with many local

optima. To address this problem, a gradient-free, global

optimization technique is required; we select the cross-

entropy (CE) method [13] as an illustrative example of

such a technique. We employ CE optimization to optimize

the BFs and the action assignments. We report numerical

results, where CE policy search is used to control a double

integrator and to balance a bicycle riding at a constant

speed. Additionally, CE policy search is compared to a value-

function technique in the double-integrator problem.

The remainder of this paper is structured as follows. Sec-

tion II gives a brief overview of the literature related to our

approach. Section III describes the MDP framework and the

CE method for optimization. In Section IV, the proposed CE

algorithm for policy search is introduced. Section V reports

the results of our numerical experiments, and Section VI

concludes the paper.

II. RELATED WORK

The use of the CE method for policy optimization was

introduced in [10]. The authors of [11] proposed to find a pol-

icy with the model reference adaptive search, which is closely

related to the CE method. Both works focus on solving finite,

small MDPs, although they also propose solving large MDPs

with parameterized policies. In contrast, we focus on flexible

policy parameterizations to solve continuous-state MDPs.

Additionally, we consider representative states associated

with weights as a way to focus the optimization on important

initial states, and to circumvent the need of estimating returns

for every value of the state, which is impossible when the

states are continuous. In [11], the return is optimized starting

from a single initial state, whereas in [10] the returns from

every (discrete) initial state are optimized.

The most widely-used technique for policy search is

gradient-based optimization [7]–[9], [14]. Such work is based

on the assumption that the locally optimal solution found

by the gradient method is satisfactory, which may be true

when the policy parameterization is simple and well suited

for the particular problem. In contrast, for our rich policy

parameterization, the optimization criterion is likely to have

many unsatisfactory local optima and may also be non-

differentiable. We select CE optimization as a representative

technique from the plethora of the available gradient-free,

global optimization methods. Another such method that has

been applied to policy search is evolutionary computation

[11].

Our policy parameterization is inspired by the techniques

to automatically find BFs for value function approximation

[3], [5], [6], [12]. However, rather than searching for value

function BFs, we use optimization to search for policy BFs.

In value function approximation, adapting the BFs while run-

ning the value function estimation algorithm can lead to loss

of convergence, whereas in our policy search approach, the

BFs can be adapted without causing convergence problems.

III. PRELIMINARIES

A. Markov decision processes

In this section, MDPs are formally described and their

optimal solution is characterized [1]. An MDP is defined by

its state space X , its action space U , its transition probability

function f : X × U ×X → [0,∞), and its reward function

ρ : X × U × X → R. At each discrete time step k, given

the state xk, the controller takes an action uk according to

a control policy h : X → U . The probability that the next

state xk+1 belongs to a region Xk+1 ⊂ X of the state space

is then
∫

Xk+1
f(xk, uk, x′)dx′. For any x and u, f(x, u, ·) is

assumed to define a valid density2 of the argument ‘·’. After

the transition to xk+1, a reward rk+1 is provided according

to the reward function ρ: rk+1 = ρ(xk, uk, xk+1). For

deterministic MDPs, the transition probability function X is

replaced by a simpler transition function, f : X×U → X . In

this case, the reward is completely determined by the current

state and action: rk+1 = ρ(xk, uk), ρ : X × U → R.

The expected discounted return of an initial state x0 under

a policy h is:

Rh(x0) = lim
K→∞

Exk+1∼f(xk,h(xk),·)

{
K∑

k=0

γkρ(xk, h(xk), xk+1)

}
(1)

where γ ∈ [0, 1) is the discount factor. The notation a ∼ p(·)
means that the random variable a is drawn from the density

p. The goal is to find an optimal policy h∗ that maximizes

the expected return (1) for every initial state. For any MDP,

there exists at least a deterministic optimal policy. Therefore,

only deterministic policies will be considered in the sequel.

B. Cross-entropy optimization

This section briefly introduces the CE method for opti-

mization [13]. Consider the following optimization problem:

max
a∈A

s(a) (2)

where s : A → R is the score function to maximize,

and the variable a takes values in the domain A. Let the

maximum be denoted by s∗. The CE method for optimization

maintains a density with support A. In each iteration, a

number of samples are drawn from this density and the score

values for these samples are computed. A (smaller) number

of samples that have the highest scores are kept, and the

remaining samples are discarded. The density is then updated

using the selected samples, such that at the next iteration

the probability of drawing better samples is increased. The

algorithm stops when the score of the worst selected sample

no longer improves significantly.

Formally, a family of probability densities {p(·; v)} has to

be chosen. This family has support A and is parameterized

by v. In each iteration τ ≥ 1 of the CE algorithm, a number

NCE of samples is drawn from the density p(·; vτ−1), their

scores are computed, and the (1 − ̺CE) quantile3 λτ of

the sample scores is determined, with ̺CE ∈ (0, 1). Then,

a so-called associated stochastic problem is defined, which

involves estimating the probability that the score of a sample

2For simplicity, we will abuse the terminology by using the term ‘density’
to refer to probability density functions (which describe probabilities of
continuous random variables), as well as to probability mass functions
(which describe probabilities of discrete random variables).

3If the score values of the samples are ordered increasingly and indexed
such that s1 ≤ · · · ≤ sNCE

, then the (1 − ̺CE) quantile is: λτ =
s⌈(1−̺CE)NCE⌉ where ⌈·⌉ rounds the argument to the next greater or equal
integer number (ceiling).

drawn from p(·; vτ−1) is at least λτ :

Pa∼p(·;vτ−1)(s(a) ≥ λτ) = Ea∼p(·;vτ−1) {I(s(a) ≥ λτ)}
(3)

where I is the indicator function, equal to 1 whenever its

argument is true, and 0 otherwise.

The probability (3) can be estimated by importance sam-

pling. For the associated stochastic problem, an importance

sampling density is one that increases the probability of the

interesting event s(a) ≥ λτ . The best importance sampling

density in the family {p(·; v)}, in the sense of the smallest

cross-entropy or Kullback-Leibler divergence, is given by the

parameter that is the solution of:

arg max
v

Ea∼p(·;vτ−1) {I(s(a) ≥ λτ) ln p(a; v)} (4)

An approximate solution of (4) is computed with the so-

called stochastic counterpart:

vτ = arg max
v

1

NCE

NCE∑

is=1

I(s(ais) ≥ λτ) ln p(ais ; v) (5)

CE optimization then proceeds with the next iteration

using the new density parameter vτ (note that the probability

(3) is never actually computed). The updated density aims

at generating good samples with higher probability, thus

bringing λτ+1 closer to the optimum s∗. The goal is to

eventually converge to a density that generates with very

high probability samples close to optimal value(s) of a.

The algorithm can be stopped when the improvement in the

(1 − ̺CE) quantile does not exceed εCE for dCE successive

iterations, or when a maximum number of iterations τmax is

reached. The highest score among the samples generated in

all the iterations is taken as the approximate solution of the

optimization problem, and the corresponding sample as an

approximate location of the optimum.

Under certain assumptions on A and p(·; v), the stochastic

counterpart (5) can be solved analytically. One particularly

important case when this happens is when p(·; v) belongs to

the natural exponential family. For instance, when {p(·; v)}
is the family of Gaussians parameterized by the mean η and

the standard deviation σ (so, v = [η, σ]T), the solution vτ

of (5) consists of the mean and the standard deviation of the

best samples, i.e., of the samples ais for which s(ais) ≥ λτ .

While the convergence of CE optimization is not guaran-

teed in general, the algorithm is usually convergent in prac-

tice [13]. Convergence proofs are available for combinatorial

optimization, where CE optimization provably converges

with probability 1 to a unit mass density, which always

generates samples equal to a single point [15]. Furthermore,

this convergence point can be made equal to an optimal

solution using an adaptive smoothing technique [15].

IV. CROSS-ENTROPY POLICY SEARCH

In this section, the proposed policy parameterization and

optimization approach is described. Denote by D the number

of state variables of the MDP (the dimension of X). In the

U
d

u
1

u
2

u
Mc

1
b

1 θ

X

f
1

f2

f
N

Fig. 1. A schematic representation of the policy parameterization. The
vector θ associates the BFs to the discrete actions. In this example, the
BFs are parameterized by their centers ci and widths bi, so that ξ =
[cT1 , bT1 , . . . , cTN , bTN]T.

sequel, it is assumed that the action space of the MDP is dis-

crete and contains M distinct actions, Ud = {u1, . . . , uM}.
The discrete set Ud can result from the discretization of an

originally continuous action space U .

The policy parameterization is defined as follows. A set

of N BFs over the state space is defined. The BFs are

parameterized by a vector ξ ∈ Ξ, which typically gives their

locations and shapes. Denote these BFs by φi(x; ξ) : X → R,

i = 1, . . . , N , to highlight their dependence on ξ. The

BFs are associated to the discrete actions by a many-to-

one mapping. This mapping can be represented as a vector

θ ∈ {1, . . . ,M}
N

that associates each BF φi to a discrete

action index θ(i), or equivalently to a discrete action uθ(i).

The expression θ(i) is used to denote the i-th element of θ.

A schematic representation of this parameterization is given

in Figure 1. The values in x of the BFs associated to each

discrete action are summed up, and the action with the largest

sum is chosen:

h(x) = uj∗ , j∗ = arg max
j

∑

i∈{i′ | 1≤i′≤N, θ(i′)=j }

φi(x; ξ)

The policy parameter vector a = [ξT, θT]T ranges in the

set A = Ξ×{1, . . . ,M}
N

. CE optimization will be used to

search for an optimal parameter vector that maximizes the

score function:

s(ξ, θ) =
∑

x0∈X0

w(x0)R̂
h(x0) (6)

where R̂h is the estimated return of the policy h given by ξ
and θ, and X0 is a given finite set of representative states,

weighted by w : X0 → (0, 1]. The set X0, together with the

weight function w, will determine the performance of the

resulting policy. Some problems only require to optimally

control the system from a restricted set of initial states; X0

should then be equal to this set, or included in it when the

set is too large. Also, initial states that are deemed more

important can be assigned larger weights. When all initial

states are equally important, the elements of X0 should be

uniformly spread over the state space, and identical weights

equal to 1
|X0|

should be assigned to every element of X0 (|·|
denotes set cardinality).

The return for each state in X0 is estimated by Monte

Carlo simulations:

R̂h(x0) =
1

NMC

NMC∑

i0=1

K∑

k=0

γkρ(xi0,k, h(xi0,k), xi0,k+1)

where xi0,0 = x0, xi0,k+1 ∼ f(xi0,k, h(xi0,k), ·), and NMC

is the number of Monte Carlo simulations to carry out.

Each Monte Carlo simulation i0 uses a system trajectory

that consists of K steps and is generated using the policy h.

The system trajectories are generated independently, so the

score computation is unbiased. To guarantee that an error of

at most εMC is introduced by truncating the discounted sum

of rewards after K steps, the value of K is chosen with:

K =
⌈
logγ [εMC(1− γ)/ ‖ρ‖∞]

⌉
(7)

where ‖ρ‖∞ = maxx,u,x′ |ρ(x, u, x′)| is assumed finite [10].

In order to define the associated stochastic problem (3) for

the optimization problem of maximizing (6), it is necessary to

choose a family of densities with support Ξ×{1, . . . ,M}
N

.

The set Ξ is typically not discrete, so it is convenient to use

separate densities for the two parts ξ and θ of the parameter

vector. Denote the density for ξ by pξ(·; vξ), parameterized

by vξ and with support Ξ, and the density for θ by pθ(·; vθ),

parameterized by vθ and with support {1, . . . ,M}
N

. Let Nvξ

be the number of elements in the vector vξ, and Nvθ
the

number of elements in vθ.

The CE algorithm for direct policy search is given as

Algorithm 1. For easy reference, Table I collects the meaning

of the parameters and variables of CE policy search. The

stochastic counterparts in lines 9 and 10 of Algorithm 1

have been simplified, using the fact that the samples are

already sorted in the ascending order of their scores. When

Algorithm 1 Cross-entropy policy search

Input:

dynamics f , reward function ρ, discount factor γ
representative states X0 and their weight function w
density families {pξ(·; vξ)} , {pθ(·; vθ)}
initial density parameters vξ,0, vθ,0

parameters N , ̺CE, cCE, dCE, εCE, εMC, NMC, τmax

1: set number of samples NCE ← cCE(Nvξ
+ Nvθ

)
2: τ ← 1
3: repeat

4: Generate samples ξ1, . . . , ξNCE
from pξ(·; vξ,τ−1)

5: Generate samples θ1, . . . , θNCE
from pθ(·; vθ,τ−1)

6: Compute s(ξis , θis) by (6), is = 1, . . . , NCE

7: Reorder and reindex s.t. s1 ≤ · · · ≤ sNCE

8: λτ ← s⌈(1−̺CE)NCE⌉

9: vξ,τ ← arg maxvξ

∑NCE

is=⌈(1−̺CE)NCE⌉ ln pξ(ξis ; vξ)

10: vθ,τ ← arg maxvθ

∑NCE

is=⌈(1−̺CE)NCE⌉ ln pθ(θis ; vθ)
11: τ ← τ + 1
12: until (τ > dCE and 0 ≤ λτ−τ ′ − λτ−τ ′−1 ≤ εCE, for

τ ′ = 1, . . . , dCE − 1) or τ > τmax

Output: ξ̂∗, θ̂∗, the best sample; and ŝ∗ = s(ξ̂∗, θ̂∗)

TABLE I

PARAMETERS AND VARIABLES FOR CE POLICY SEARCH.

Symbol Meaning

N ; M number of BFs; number of discrete actions
ξ; θ BF parameters; assignment of discrete actions to BFs
vξ; vθ parameters of the density for ξ; and for θ
NCE number of samples used at every CE iteration
̺CE proportion of samples used in the CE updates
λ (1 − ̺CE) quantile of the sample performance
cCE multiple of the number of density parameters
dCE how many iterations λ should remain roughly constant
εCE; εMC convergence threshold; precision in computing returns
NMC number of Monte Carlo simulations for each state
τ ; τmax iteration index; maximum number of iterations

εCE = 0, the algorithm terminates when λ remains constant

for dCE consecutive iterations. When εCE > 0, the algorithm

terminates when λ improves for dCE consecutive iterations,

and these improvements do not exceed εCE.

Many times it is convenient to use distributions with

unbounded support (e.g., Gaussians) when the BF parameters

are continuous. However, usually the set Ξ must be bounded,

e.g., when ξ contains centers of radial BFs, which must

remain inside a bounded state space. Whenever this situation

arises, samples can be generated from the density with larger

support, and those samples that do not belong to Ξ can

be rejected and replaced by new samples. The procedure

continues until NCE valid samples are generated, and the

rest of the algorithm remains unchanged. The situation is

entirely similar for the discrete action assignments θ, when

it is convenient to use a family of densities pθ(·; vθ) with a

support larger than {1, . . . ,M}
N

. An equivalent algorithm

that uses all the samples can always be given, and therefore

the theoretical basis of the CE optimization procedure is not

affected by sample rejection.

The most important parameters in CE policy search for

optimization are the number of samples NCE and the pro-

portion of best samples used to update the density, ̺CE. The

parameter cCE is taken greater than or equal to 2, so that the

number of samples is a multiple of the number of density

parameters. The parameter ̺CE can be taken around 0.01 for

large numbers of samples, or larger, around ln(NCE)/NCE,

if there are only a few samples (NCE < 100) [13]. The

parameter εMC > 0 can be chosen a few orders of magnitude

smaller than the typical return obtained from the states in

X0. Since it does not make sense to impose a convergence

threshold smaller than the precision of the score function,

εCE should be chosen larger than or equal to εMC. A good

value is εCE = εMC. The number N of BFs determines the

accuracy of the policy approximator, and a good value for

N will depend on the problem. In Section V, we study the

effect of varying N in an example problem. For deterministic

MDPs, a single trajectory is simulated for every initial state

in X0, so NMC = 1. For stochastic MDPs, several trajectories

should be simulated, NMC > 1, with a good value of NMC

depending on the MDP considered.

Next, we describe an instantiation of the CE policy

search algorithm, using state-dependent Gaussian radial basis

functions (RBFs) and a binary representation of the action

assignments. This instantiation will be used in the examples

of Section V.

The (axis-parallel) Gaussian RBFs are given by:

φi(x; ξ) = exp

[
−

D∑

d=1

(xd − ci,d)
2

b2
i,d

]

where D is the number of state variables, and each RBF φi

is parameterized by its center ci ∈ X and its radius bi ∈
(0,∞)D. The parameter vector ξ of the RBFs contains the

N centers and radii: ξ = [cT
1 , . . . , cT

N , bT
1 , . . . , bT

N]T, and is

restricted to the domain Ξ = XN × (0,∞)DN . The total

number of parameters is 2DN .

To define the associate stochastic problem (3) for CE opti-

mization, a scalar Gaussian density is used for each element

of the vector ξ. Each such individual density is parameterized

by its mean and standard deviation, so the complete density

parameter vξ has 4DN elements. At every iteration, samples

that do not belong to Ξ are rejected and replaced by new

samples. As explained in Section III-B, the updated Gaussian

density parameters vξ,τ in line (9) of Algorithm 1 can be

computed analytically, as the mean and the standard deviation

of the best samples ξ⌈(1−̺CE)NCE⌉, . . . , ξNCE
.

The assignments θ of discrete actions to BFs are rep-

resented in binary code. Each element θ(i) in the indices

vector is represented using Nbin = ⌈log2 M⌉ bits, so that the

binary representation of θ has NNbin bits. Every bit is drawn

from a Bernoulli distribution parameterized by its mean

ηbin ∈ [0, 1] (ηbin gives the probability of selecting 1; the

probability of selecting 0 is 1− ηbin). Whenever M is not a

power of 2, bit combinations corresponding to invalid indices

are rejected and generated again. Such a concatenation of

Bernoulli distributions can converge a degenerate distribution

that always generates samples equal to a precise optimum

location. Because every bit has its own Bernoulli parameter,

the total number of Bernoulli parameters vθ is NNbin.

The Bernoulli distribution belongs to the natural exponential

family, so the updated density parameters vθ,τ in line 10 of

Algorithm 1 can be computed analytically, as the mean of

the best samples in their binary representation.

Next, we briefly examine the complexity of the above in-

stantiation of CE policy search. The total number of samples

used is NCE = cCE(Nvξ
+Nvθ

) = cCE(4DN +NNbin). The

largest amount of computation is spent by the algorithm in

the Monte Carlo simulations required to estimate the score

of each sample. Neglecting therefore the other computations,

the complexity of one iteration of the algorithm is at most:

tstep[cCEN(4D + Nbin) |X0|NMCK] (8)

where K is the maximum length (7) of each trajectory, and

tstep is the time needed to compute h(x) for a fixed x and

to simulate the controlled system for one time step.

V. EXPERIMENTAL STUDIES

In the sequel, numerical experiments are carried out to

assess the performance of CE policy search. Two examples

are considered: a double-integrator problem, the simplicity

of which allows extensive experiments to be run, and a more

realistic bicycle balancing problem.

A. Discrete-time double integrator

In this section, a simple example is used to evaluate

the proposed CE policy search, and to compare it with an

algorithm relying on value functions. The example involves

the optimal control of a double integrator, and is chosen so

that optimal and near-optimal trajectories from any initial

state terminate in a small number of steps. This property

permits a significant reduction of the cost (8), and therefore

extensive simulation experiments can be run.

The double-integrator problem is deterministic with a

two-dimensional continuous state space X = [−1, 1] ×
[−0.5, 0.5], a binary action space Ud = {−0.1, 0.1}, and

the following dynamics:

xk+1 = f(xk, uk) =

sat
{
[x1,k + x2,k, x2,k + uk]T,−xmax, xmax

}

where xmax = [1, 0.5]T and ‘sat’ denotes saturation, which

is used to restrict the evolution of the state to X . The states

for which |x1| = 1 are terminal. Applying any action in a

terminal state brings the process back to the same state, with

a zero reward. The goal is to drive the position x1 to either

boundary of the interval [−1, 1] (i.e., to a terminal state), in

such a way that at the moment when x1 reaches the boundary,

the speed x2 as small as possible in magnitude. This goal is

expressed by the reward function:

rk+1 = ρ(xk, uk) = −(1− |x1,k+1|)
2 − x2

2,k+1x
2
1,k+1

The discount factor γ is set to 0.95.

To apply CE policy search, the following grid of repre-

sentative initial states was chosen to compute the score (6):

X0 = {−1,−0.9, . . . , 1}×{−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5}

The states were equally weighted using w(x0) = 1/ |X0|
for any x0. The parameter settings for the algorithm were

cCE = 5, ̺CE = 0.05, εCE = εMC = 0.005, dCE = 5, τmax =
50. Little or no tuning was necessary to choose these values.

Because the system is deterministic, NMC = 1. For all the

experiments presented below, the maximum number of 50
iterations was never reached before convergence.

With these parameter settings, CE policy search was run

while gradually increasing the number N of BFs from 4 to

18. Ten independent runs were performed for every N . The

mean, maximum, and minimum performance obtained across

these ten runs are given in Figure 2(a). For comparison, the

exact optimal score for X0 was computed using a brute-force

search for optimal action sequences, which required 12841 s

of CPU time to complete.4

Moreover, CE policy search is compared with the model-

based, fuzzy Q-iteration algorithm [16]. Fuzzy Q-iteration is

representative for the class of algorithms relying on value

4All the computation times reported in this paper were recorded while
running the algorithms in MATLAB 7.1 on a PC with an Intel Pentium IV
3 GHz CPU, 512 MiB RAM, and using Windows XP.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

−0.9

−0.85

−0.8

−0.75

−0.7

Number of RBFs N

S
c
o

re

mean score

max score

min score

optimal score

(a) Performance of CE policy search.

−0.9

−0.85

−0.8

−0.75

−0.7

Number of fuzzy sets N

S
c
o

re

4
2

6
2

8
2

10
2

12
2

14
2

16
2

18
2

fuzzy Q−iteration score

optimal score

(b) Performance of fuzzy Q-iteration.

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of RBFs N

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

mean execution time

max execution time

min execution time

(c) Execution time of CE policy search.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of fuzzy sets N

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

4
2

6
2

8
2

10
2

12
2

14
2

16
2

18
2

fuzzy Q−iteration execution time

(d) Execution time of fuzzy Q-iteration.

Fig. 2. Comparison between CE policy search and fuzzy Q-iteration for the double integrator. Note the difference in the scale of the horizontal axes
between (a, c) (linear) and (b, d) (quadratic).

functions. Fuzzy Q-iteration computes an approximately op-

timal state-action value function (Q-function) which gives

approximately optimal returns from every state-action pair.

This Q-function is then used to compute an approximately

optimal policy. To approximate the Q-function, fuzzy Q-

iteration uses discretized actions and a fuzzy partition of

the state space (which can be regarded as a collection of

BFs). We select equidistant, triangular BFs for every state

variable. The two-dimensional BFs are then computed as the

products of each combination of one-dimensional BFs [16].

This leads to bilinear interpolation over the state space, on

the equidistant grid of triangle vertices. The evolution of the

fuzzy Q-iteration performance with the number of BFs is

shown in Figure 2(b). The number of BFs for each state

variable was gradually increased from 4 to 18. The total

number of two-dimensional BFs is the square of this number.

In Figure 2(a), CE policy search gives a large variance in

the performance when N = 4, . . . , 10, although the mean

performance is increasing and a near-optimal performance is

reached in some experiments starting from N = 7. Starting

from N = 10, the algorithm consistently and reliably obtains

a near-optimal performance. In contrast, in Figure 2(b) fuzzy

Q-iteration obtains a near-optimal performance only starting

from 9 BFs on each axis, which corresponds to a (much

larger) total number of 81 BFs. So, to obtain a similar

performance to CE policy search with N BFs, fuzzy Q-

iteration requires a number of BFs roughly equal to the

square of this number. This difference is mainly due to the

fact that the BFs used by fuzzy Q-iteration are equidistant

and identically shaped, whereas the CE algorithm optimizes

the shapes and locations of the BFs.

Figures 2(c) and 2(d) compare the execution time of CE

policy search and fuzzy Q-iteration, as a function of N . The

execution time for fuzzy Q-iteration is much smaller than for

CE policy search. This is because an iteration of CE policy

search is much more computationally expensive than a fuzzy

Q-iteration. So, in this problem, optimizing the BFs for the

policy representation leads to a better performance than using

equidistant, identical BFs for value function approximation,

but at significantly higher computational costs. This indicates

that CE policy search should preferably be used when

a flexible policy approximator having a fixed complexity

(determined by the number N of BFs) has to be found,

and the computational costs to optimize this fixed-complexity

approximator are not a concern.

B. Bicycle balancing

In this section, the CE policy search algorithm is applied to

the more involved, stochastic bicycle balancing problem [4],

[5], [17]. In this problem, a bicycle that rides at constant

speed on a horizontal surface has to be prevented from

falling, and the control actions are affected by noise. The

steering column of the bicycle is vertical, which implies

that the bicycle is not self-stabilizing. Instead, it has to

be actively stabilized to prevent it from falling. The state

vector is [ω, ω̇, α, α̇]T, where ω [rad] is the roll angle of

the bicycle measured from the vertical axis, α [rad] is the

angle of the handlebar, taken equal to 0 when the handlebar

is in its neutral position, and ω̇, α̇ [rad/s] are the respective

angular velocities. The control variables are the displacement

δ ∈ [−0.02, 0.02] m of the bicycle-rider common center

of mass perpendicular to the plane of the bicycle, and

the torque T ∈ [−2, 2] Nm applied to the handlebar. The

displacement δ is affected by additive noise drawn from a

uniform distribution over the interval [−0.02, 0.02] m. We

refer the reader to [5] for more details about the bicycle

problem, including its dynamical model.

The bicycle is considered to have fallen when the roll angle

is larger than 12π
180 in either direction, in which case a terminal,

failure state is reached, and a reward of −1 is generated.

All other rewards are 0. The discount factor is γ = 0.98.

The actions are discretized as follows: the rider displacement

is discretized into {−0.02, 0, 0.02}, and the torque on the

handlebar into {−2, 0, 2}. This provides a discrete action

space that is sufficient to balance the bicycle.

In order to study the influence of the set of representative

states X0 on the performance of the resulting policies, exper-

iments were run for two different sets of representative states.

In both cases, the initial states were uniformly weighted

(i.e., w(x0) = 1/ |X0| for any x0 ∈ X0). Because we are

mainly interested in the behavior of the bicycle starting from

different initial rolls and roll velocities, the initial steering

angle α and velocity α̇ are always taken equal to zero; this

also prevents an excessive computational cost of the CE

policy search. The first set of representative states contains

a few evenly-spaced values for the initial roll of the bicycle,

and the rest of the state variables are initially zero:

X0,1 =
{

−10π
180 , −5π

180 , . . . , 10π
180

}
× {0} × {0} × {0}

The second set is the cross-product of a finer roll grid and a

few values of the roll velocity:

X0,2 =
{

−10π
180 , −8π

180 , . . . , 10π
180

}

×
{

−30π
180 , −15π

180 , . . . , 30π
180

}
× {0} × {0}

For X0,1, the optimal score is 0, because a good policy can

always prevent the bicycle from falling for any initial roll

value in X0,1. This is no longer true for X0,2: when ω and ω̇
have the same sign and are too large in magnitude, the bicycle

cannot be prevented from falling by any control policy. Also,

the initial roll velocities are not taken too large in magnitude

to prevent including in X0,2 too many states from which

falling is unavoidable.

A number of N = 8 RBFs was selected,5 and NMC =
10 trajectories were simulated from every initial state to

compute the Monte Carlo score (NMC was not selected

too large to keep the computational requirements of the

algorithm manageable). The rest of the parameters were the

same as in the double-integrator example, i.e., cCE = 5,

̺CE = 0.05, εCE = εMC = 0.005, dCE = 5, τmax = 50.

The maximum number of 50 iterations was never reached

before convergence. Ten independent experiments were run

for each of the two sets of representative states.

5Experiments on a deterministic version of the bicycle (not reported here)
indicated that N = 8 is sufficient to adequately represent good policies.

TABLE II

RESULTS OF CE POLICY SEARCH FOR BICYCLE BALANCING.

Results
Performance Execution time [s]

X0,1 X0,2 X0,1 X0,2

maximum 0 −0.2096 27519 218589
mean 0 −0.2108 22697 180856
minimum 0 −0.2123 16063 153201

The performance of the resulting policies, as well as the

execution time of CE policy search, are reported in Table II.

It can be seen that all the scores for X0,1 are optimal. It is not

as easy to interpret the scores for X0,2; see Figure 3 and the

explanation below for a more intuitive representation of the

obtained performance. The execution times are predictably

much larger than for the simple, deterministic double inte-

grator. Also, the execution times are one order of magnitude

larger for X0,2 than for X0,1; this difference is due to the

similar difference between the numbers of representative

states in the two sets: |X0,2| = 55 and |X0,1| = 5.

Figure 3 illustrates the quality of some typical policies

obtained by CE policy search, by verifying how they gener-

alize to initial states that do not belong to X0 (i.e., how they

generalize). The initial steering angle and velocity are always

0. A number of 10 controlled trajectories are simulated for

every initial state. The length of each trajectory is 50 s.

This length was chosen to verify whether the bicycle is

balanced robustly for a long time. It is roughly 10 times

longer than the length of the trajectory used to evaluate the

score during the optimization procedure, which was 4.56 s

(corresponding from K = 456, which was computed by (7)

with εMC = 0.005). The larger set X0,2 of initial states is

beneficial, because it leads to the bicycle being balanced for

a much larger portion of the (ω, ω̇) plane. Figure 3(b) also

suggests that some states in X0,2 are failure states, from

where the bicycle falls regardless of the policy. These states

correspond to values of ω and ω̇ that are large in magnitude

and have the same sign. This explains why all the score

values obtained for X0,2 are negative in Table II.

Other approaches to control the bicycle found in the

literature use a more involved version of the problem, where

the bicycle also has to ride to a target position in addition

to being kept upright [4], [5]. Therefore, our results cannot

be directly compared with the results of those approaches.

Nevertheless, in [4], a total number of 100 hand-tuned

BFs are used to approximate Q-functions in the context

of policy iteration, whereas in our experiments as few as

8 automatically optimized BFs suffice to obtain a reliable

performance.6 In [5], a decision-tree approximator is auto-

matically constructed in order to approximate the Q-function

in the context of value iteration. The derivation automatically

produces a large number of BFs, in the order of tens of

thousands or more.

6We also applied the algorithm of [4] to bicycle balancing using equidis-
tant BFs, and failed to obtain good results with much larger numbers of
BFs (more than 5000). These results are not reported here.

−0.2 −0.1 0 0.1 0.2

−1

−0.5

0

0.5

1

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(a) Generalization for X0,1.

−0.2 −0.1 0 0.1 0.2

−1

−0.5

0

0.5

1

ω
0
 [rad]

ω
’ 0

 [
ra

d
/s

]

(b) Generalization for X0,2.

Fig. 3. Generalization of two typical policies over initial states not in X0.
White markers mean the bicycle was never balanced starting from that initial
state; gray markers are proportional in size with the number of times the
bicycle was properly balanced out of 10 experiments. Black crosses mark
the initial states in X0.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced and evaluated a CE

policy search technique for continuous-state, discrete-action

MDPs. This novel technique uses a flexible policy parame-

terization, inspired by the work on automatic construction

of BFs for value function approximation. The technique

optimizes a weighted sum of the returns from a set of

representative initial states, where each return is computed

with Monte Carlo simulations. CE policy search has per-

formed well both in a double-integrator example and in the

more difficult problem of balancing an unstable bicycle. The

algorithm has reliably offered a good performance, using

only a small number of BFs to represent the policy. However,

this performance has come at a large computational cost,

e.g., for the double integrator, several orders of magnitude

higher than the value-function based fuzzy Q-iteration. This

indicates that CE policy search should preferably be used

in situations where a flexible policy approximator having a

fixed complexity (determined by the number N of BFs) has

to be found, and the computational costs to optimize this

fixed-complexity approximator are not a concern.

The theoretical study of CE policy search is an important

opportunity for further research. Convergence results for the

CE method are unfortunately only available for combina-

torial optimization [13], [15], whereas CE policy search

also involves the optimization of continuous variables. The

convergence results for the related model-reference adaptive

search [11] require the restrictive assumption that the optimal

policy parameter is unique. It is an open question how

the computational costs of CE policy search compare with

the costs of value-function based algorithms for higher-

dimensional problems than the double integrator; further

experimentation could help answering this question. Another

interesting direction is extending CE policy search to work

for continuous-action policy parameterizations.

While in this paper the CE method for optimization has

been employed, there is in principle no obstacle to applying

any optimization technique to determine good policy param-

eters. In particular, other meta-heuristic optimization tech-

niques like genetic algorithms, tabu search, pattern search,

etc., could be used.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[3] R. Munos and A. Moore, “Variable-resolution discretization in optimal
control,” Machine Learning, vol. 49, no. 2-3, pp. 291–323, 2002.

[4] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal
of Machine Learning Research, vol. 4, pp. 1107–1149, 2003.

[5] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6, pp.
503–556, 2005.

[6] S. Mahadevan and M. Maggioni, “Proto-value functions: A Laplacian
framework for learning representation and control in Markov decision
processes,” Journal of Machine Learning Research, vol. 8, pp. 2169–
2231, 2007.

[7] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in Neural Information Processing Systems 12, S. A.
Solla, T. K. Leen, and K.-R. Müller, Eds. MIT Press, 2000, pp.
1057–1063.

[8] P. Marbach and J. N. Tsitsiklis, “Approximate gradient methods
in policy-space optimization of Markov reward processes,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 13, pp. 111–
148, 2003.

[9] R. Munos, “Policy gradient in continuous time,” Journal of Machine
Learning Research, vol. 7, pp. 771–791, 2006.

[10] S. Mannor, R. Y. Rubinstein, and Y. Gat, “The cross-entropy method
for fast policy search,” in Proceedings 20th International Conference on
Machine Learning (ICML-03), Washington, US, 21–24 August 2003,
pp. 512–519.

[11] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, Simulation-Based
Algorithms for Markov Decision Processes. Springer, 2007.

[12] S. Whiteson and P. Stone, “Evolutionary function approximation for
reinforcement learning,” Journal of Machine Learning Research, vol. 7,
pp. 877–917, 2006.

[13] R. Y. Rubinstein and D. P. Kroese, The Cross Entropy Method. A
Unified Approach to Combinatorial Optimization, Monte-Carlo Simu-
lation, and Machine Learning, ser. Information Science and Statistics,
M. Jordan, J. Kleinberg, B. Scholkopf, F. Kelly, and I. Witten, Eds.
Springer, 2004.

[14] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
Journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[15] A. Costa, O. D. Jones, and D. Kroese, “Convergence properties of the
cross-entropy method for discrete optimization,” Operations Research
Letters, vol. 35, pp. 573–580, 2007.

[16] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Continuous-
state reinforcement learning with fuzzy approximation,” in Adaptive
Agents and Multi-Agent Systems III, ser. Lecture Notes in Computer
Science, K. Tuyls, A. Nowé, Z. Guessoum, and D. Kudenko, Eds.
Springer, 2008, vol. 4865, pp. 27–43.

[17] J. Randløv and P. Alstrøm, “Learning to drive a bicycle using re-
inforcement learning and shaping,” in Proceedings 15th International
Conference on Machine Learning (ICML-98), Madison, US, 24–27
July 1998, pp. 463–471.

