The instability strip of ZZ Ceti white dwarfs

and its extension to extremely low mass pulsators

Valerie Van Grootel(1)

G. Fontaine⁽²⁾, P. Brassard⁽²⁾, and M.A. Dupret⁽¹⁾

Introduction of Time-Dependent Convection (TDC):

Van Grootel et al. 2012, A&A, 539, 87

Extension to Extremely Low Mass (ELM) pulsators: Van Grootel et al., ApJ, in press

(1) Université de Liège, Belgium

(2) Université de Montréal, Canada

1. Introduction to ZZ Ceti, DA white dwarfs pulsators

Late stages of evolution of ~97% of stars in the Universe

DA (H-rich atmosphere): ~80%; DB (no/little H atmosphere): ~20% of WDs

From Saio (2012), LIAC40 proceedings

- 4 types of g-mode pulsators along the cooling sequence:
- GW Vir stars (He/C/O atmospheres) $T_{\text{eff}} \sim 120,000$ K, discovered in 1979
- V777 Her stars (He-atmosphere), 1982 $T_{\text{eff}} \sim 25,000 \text{ K}$
- Hot DQ stars (C-rich/He atmosphere) $T_{\text{eff}} \sim 20,000$ K, discovered in 2007
- ZZ Ceti stars (H-atmosphere, DA) $T_{\text{eff}} \sim 12,000$ K, discovered in 1968 Most numerous (~160 known including SDSS+Kepler)

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012 **39 Steps 19 Ste**

Excitation mechanism of ZZ Ceti stars (general picture)

 1.2 opacity bump due to MODE: 5.5 partial ionization of HI g-mode 0.8 $l=1, k=7$ $\rm{F_{c}/F_{t}}$ $432.1 s$ 4.5 0.4 • Don Winget (1981): ð H recombination around T_{eff} ~12,000 K ≽ $3.5\;$ ϵ \Rightarrow envelope opacity increase 0.0 log ä strangle the flow of radiation DA MODEL: modes instabilities þ $T_{\text{eff}} = 11,700 \text{ K}$ $dW/dlog$ 2.5 -0.4 $\log g = 7.993$ • Pulsations are destabilized at the $M = 0$ base of the convection zone 1.5 (details: e.g. Van Grootel et al. 2012) convection zone -0.8 $F_{1}(\text{max}) = 0.999$ **"convective driving"** -1.2 0.5 -6.0 -10.0 -14.0 -18.0 log q D log (1-M(r)/M $_{*}$) **(H envelope)**

Empirical ZZ Ceti instability strip (classic view)

Observed pulsator ; O non-variable DA white dwarf

- Multiperiodic pulsators, observed period range: 100-1500 s (g-modes)
- Reliable atmospheric parameters: work of Bergeron et al., ML2/α=0.6
- Long-term observational efforts: Montreal (Gianninas et al.), Texas (McGraw et al.), Brazil (Kepler et al.), etc. + SDSS
- (most probably) a **pure** strip
- $log g/T_{\text{eff}}$ correlation (with a more pronounced slope for red edge): the lower log g, the lower edge T_{eff}

Empirical ZZ Ceti instability strip (2012 view)

~40 Extremely Low Mass (ELM) DA white dwarfs known (Kilic et al., Brown et al. 2010-2012)

Spectroscopic estimates from model atmopsheres of D. Koester, ML2/α=0.6

Hermes et al. (2012a,b): 3 ELM pulsators (SDSS J1840+6423, J1112+1117, J1518+0658)

Multiperiodic pulsators, 1500-5000 s

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012 **60 minutes et al. 1999 et al. 1999 et al. 1999 et a**

2. Evolutionary ZZ Ceti Models

• A standard ZZ Ceti model (C/O core)

- Evolutionary tracks computed for $0.4M_s$ to $1.1M_s$ (0.1 M_s step)
- from T_{eff} =35,000 K to 2,000 K (~150 models)
- with ML2 version (a=1,b=2,c=16); $\alpha = 1$ (ie $l = Hp$)

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012 **89 aastal 1996 van de konstantineer van de konst**

- Standard grey atmosphere
- Detailed atmosphere

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012 9

• Extremely Low Mass (ELM) DA white dwarf: H envelope on top of He core

ELM white dwarfs come from stars that never experienced any He-flash, because of extreme mass loss on RGB (from binary interactions or due to high Z)

- 2 kinds of evolutionary tracks computed here:
- I. Standard C core models, but for $0.125M_s$ and 0.15 -0.4 M_s (steps $0.05M_s$)
- II. Pure He core/H envelope models, for the same masses, but thick envelopes

Instability location in Teff-log g plane insensitive to detailed core structure and envelope layering

3. Time-Dependent Convection (TDC) approach

For a standard $0.6M_s$ ZZ Ceti model:

 $\cdot T_{\text{eff}}$ ~ 12,000 K: convective turnover timescale $\tau_{\text{conv}} \ll \sigma$ (pulsation periods) \Rightarrow convection adapts quasi-instantaneously to the pulsations

 $\cdot {\sf T}_{\sf eff}$ ~ 11,000 K: $\tau_{\sf conv}$ \approx σ \Rightarrow NEED full Time-Dependent Convection (TDC)

• Frozen convection (FC), i.e. $\tau_{\text{conv}} \gg \sigma$: NEVER justified in the ZZ Ceti T_{eff} regime

(FC is the usual assumption to study the theoretical instability strip...)

• The Liege nonadiabatic pulsation code **MAD** (Dupret 2002) is the only one to implement convenient TDC treatment

• Full development in Grigahcène et al.(2005), following the theory of M. Gabriel (1974,1996), based on ideas of Unno et al. (1967)

- The timescales of pulsations and convection are **both** taken into account
- Perturbation of the convective flux taken into account here:

$$
\delta \boldsymbol{F}_C = \overline{\boldsymbol{F}_C} \Big(\frac{\delta \rho}{\overline{\rho}} + \frac{\delta T}{\overline{T}}\Big) + \overline{\rho} \overline{T} \big(\overline{\delta \Delta s V} + \overline{\Delta s \delta V}\big)
$$

• Built within the mixing-length theory (MLT), with the adopted perturbation of the mixinglength:

$$
\frac{\delta l}{l} = \frac{1}{1+(\boldsymbol{\sigma}\boldsymbol{\tau}_c)^2}\frac{\delta H_p}{H_p}
$$

if σ >> τ_{conv} (instantaneous adaptation):
$$
\delta l/l \rightarrow \delta H_p/H_p
$$

if σ << τ_{conv} (frozen convection): $\delta l/l \rightarrow 0$

4. Stability survey: the theoretical instability strip

- We applied the MAD code to all evolutionary sequences
	- \bullet "normal" C-core ZZ Ceti models, 0.4 1.1M $_{\rm s}$, log q(H)=-4.0
	- ELM, C-core models: 0.125-0.4 M_s log q(H)=-4.0
	- \bullet ELM, He-core models: 0.125-0.4 M $_{\rm s}$, log q(H)=-2.0
	- 0.17Ms, He-core models, "thin" envelope log q(H)=-3.7

with ML2/ α = 1, detailed atmospheric modeling, and TDC treatment

- We computed the degree $l=1$ in the range 10-5000 s (p- and g-modes)
- For the red edge (long-standing problem): based on the idea of Hansen, Winget & Kawaler (1985): red edge arises when

$$
\tau_{\text{th}} \sim P_{\text{crit}} \quad \alpha \ (\text{l(l+1)})^{-0.5}
$$

 (τ_{th}) : thermal timescale at the base of the convection zone),

which means the mode is no longer reflected back by star's atmosphere

Tracks:

Solid lines: He core, thick env. Dotted lines: C-core, thin env. Dashed line: 0.17M_s, thin env.

Edges: …

- Edges C-core tracks
- Edges He-core tracks \bullet
- o edges 0.17M_s track

\bigcup

Instability domain is insensitive to the exact core structure and envelope layering for models with same Teff/logg

- TDC blue edge FC blue edge Red edge
- Narrower strip at low masses (larger slope for the red edge)
- Evolutionary models: $ML2/\alpha = 1$

Model atmospheres: $ML2/\alpha = 0.6$ \bigcup

Convective efficiency increases with depth?

(consistent with hydrodynamical simulations; Ludwig et al. 1994, Tremblay & Ludwig 2012)

Is the whole ZZ Ceti instability strip **pure**?

Suggestion for observations

DA white dwarfs with T_{eff} /logg close to our instability strip

Not checked for variability so far

Ex: zoom to the 0.2Ms He-core track, lq(H)=-2.0

Excited l=1 periods for the 0.2Ms He-core track

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012

SDSS J1840+6423

Teff~ 9140±170 K, log*g* ~ 6.16±0.06 He-core model, log q(H)=-2.0

SDSS J1518+0658

 T_{eff} ~ 9810±320 K, logg ~ 6.66±0.06 He-core model, $log q(H)=4.0$ and -2.0

SDSS J1112+1117 Teff~ 9400±490 K, log*g* ~ 5.99±0.12 He-core model, log q(H)=-2.0

Adiabatic properties are sensitive to exact interior structure

5. Conclusion and prospects

Conclusions:

- ELM pulsators are low mass equivalent to standard ZZ Ceti pulsators
	- \Rightarrow such pulsators exist from 0.15 to 1.1 M_s (log g = 5 9 !)
- Excellent agreement between theoretical and observed instability strip:

-Blue edge, TDC approach

-Red edge, by energy leakage through the atmosphere

•Is ML2/ α =1.0 the good flavor for convection inside white dwarfs? Related to spectroscopic calibration ($ML2/\alpha=0.6$) and hydrodynamical simulations (Tremblay & Ludwig 2011,2012)

Prospects:

- Detection of p-modes in white dwarfs?
- Is the ZZ Ceti instability strip **pure**?
- Asteroseismology of ELM/standard ZZ Ceti white dwarf pulsators
	- 1. internal structure & fundamental parameters
	- 2. **age**
	- 3. understanding of matter under extreme conditions

1. The difference (~250 K) is **not** negligible !

Width of instability strip: \sim 1000 K at log g = 8 and \sim 600 K at log g = 6

2. Van Grootel et al. (2012) and Saio (2012, Liege colloquium)

eigenfunctions TDC/FC are really different, and excitation mechanisms too:

- TDC: convective driving (convective flux can be modulated)
- FC: κ -mechanism with radiative luminosity (κ -L_{conv})

But both mechanisms occurs at the same layers (partial ionization zone)