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1. Introduction to ZZ Ceti, DA white dwarfs pulsators
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1. White dwarfs

4 types of g-mode pulsators along 
the cooling sequence:

• GW Vir stars (He/C/O atmospheres) 
Teff ~ 120,000 K, discovered in 1979

• V777 Her stars (He-atmosphere), 1982
Teff ~ 25,000 K

• Hot DQ stars (C-rich/He atmosphere)
Teff ~ 20,000 K, discovered in 2007

• ZZ Ceti stars (H-atmosphere, DA)
Teff ~ 12,000 K, discovered in 1968

Most numerous (~160 known including 
SDSS+Kepler)

Late stages of evolution of ~97% of stars in the Universe

From Saio (2012), LIAC40 proceedings

DA (H-rich atmosphere): ~80%; DB (no/little H atmosphere):  ~20% of WDs
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Excitation mechanism of ZZ Ceti stars (general picture)

• Don Winget (1981):

H recombination around Teff~12,000 K

 envelope opacity increase 

 strangle the flow of radiation 

 modes instabilities

• Pulsations are destabilized at the 
base of the convection zone

(details: e.g. Van Grootel et al. 2012)

log q log (1-M(r)/M*)

(H envelope)

“convective driving”
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1. Pulsating DA white dwarfs

Empirical ZZ Ceti instability strip (classic view)

• Multiperiodic pulsators, observed 
period range: 100-1500 s (g-modes)

• Reliable atmospheric parameters: 
work of Bergeron et al., ML2/α=0.6

• Long-term observational efforts: 
Montreal (Gianninas et al.), Texas 
(McGraw et al.), Brazil (Kepler et al.), 
etc. + SDSS

• (most probably) a pure strip

• log g/Teff correlation (with a more 
pronounced slope for red edge): 
the lower log g, the lower edge Teff

Observed pulsator ;  O non-variable DA white dwarf

Figure from Fontaine & Brassard (2008)
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1. Pulsating DA white dwarfs

Empirical ZZ Ceti instability strip (2012 view)

Hermes et al. (2012a,b): 

3 ELM pulsators
(SDSS J1840+6423, J1112+1117, J1518+0658)

Multiperiodic pulsators, 1500-5000 s

Spectroscopic estimates from model 
atmopsheres of D. Koester, ML2/α=0.6

non variable (<10mmag); pulsator

1.2 Ms

0.20 Ms

0.15 Ms

~40 Extremely Low Mass (ELM) 

DA white dwarfs known

(Kilic et al., Brown et al. 2010-2012) 
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2. Evolutionary ZZ Ceti Models 
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2. Evolutionary ZZ Ceti models

C/O core

He mantle

H envelope

log q log (1-M(r)/M*)

-

0

-4.0

-2.0

“onion-like” stratification

Base of the atmosphere

• A standard ZZ Ceti model (C/O core)

• Evolutionary tracks computed for 0.4Ms to 1.1Ms (0.1Ms step)

• from Teff=35,000 K to 2,000 K (~150 models)

• with ML2 version (a=1,b=2,c=16);  = 1 (ie l = Hp)
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2. Evolutionary ZZ Ceti models

Sup
erficial 
convection 
zone

Detailed modeling of the 
superficial layers

Our evolutionary models have the same T 
stratification as the complete model atmospheres 

”feedback” of the convection on the global 
atmosphere structure

Base of the atmosphere

• Standard grey atmosphere

• Detailed atmosphere
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2. Evolutionary ZZ Ceti models

• Extremely Low Mass (ELM) DA white dwarf: 

H envelope on top of He core

ELM white dwarfs come from stars that never experienced any He-flash, because of extreme 
mass loss on RGB (from binary interactions or due to high Z) 

• 2 kinds of evolutionary tracks computed here:
I. Standard C core models, but for 0.125Ms and 0.15-0.4Ms (steps 0.05Ms) 

II. Pure He core/H envelope models, for the same masses, but thick envelopes

C core

He mantle

H envelope

log q log (1-M(r)/M*)

-

0

-4.0

-2.0
He core

H envelope

log q log (1-M(r)/M*)

-

0

-2.0

Instability location in Teff-log g plane insensitive to detailed core structure

and envelope layering
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3. Time-Dependent Convection (TDC) approach
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3. Time-Dependent Convection approach

•Teff ~ 12,000 K: convective turnover timescale conv   (pulsation periods) 
 convection adapts quasi-instantaneously to the pulsations 

•Teff ~ 11,000 K: conv ≈   NEED full Time-Dependent Convection (TDC)

• Frozen convection (FC), i.e. conv  : NEVER justified in the ZZ Ceti Teff regime

For a standard 0.6Ms ZZ Ceti model:

(FC is the usual assumption to study the theoretical instability strip...)

 = 1500 s

 = 100 s
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3. Time-Dependent Convection theory

• The Liege nonadiabatic pulsation code MAD (Dupret 2002) is the only one to implement 
convenient TDC treatment

• Full development in Grigahcène et al.(2005), following the theory of M. Gabriel (1974,1996), 
based on ideas of Unno et al. (1967) 

• The timescales of pulsations and convection are both taken into account

• Perturbation of the convective flux taken into account here:

• Built within the mixing-length theory (MLT), with the adopted perturbation of the mixing-
length:

if   conv (instantaneous adaption): 

if   conv (frozen convection):
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4. Stability survey: 

the theoretical instability strip
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4. Results: computing the theoretical instability strip

• We applied the MAD code to all evolutionary sequences

•“normal” C-core ZZ Ceti models, 0.4 – 1.1Ms, log q(H)=-4.0

• ELM, C-core models: 0.125-0.4 Ms, log q(H)=-4.0

• ELM, He-core models: 0.125-0.4 Ms, log q(H)=-2.0

• 0.17Ms, He-core models, “thin” envelope log q(H)=-3.7

• We computed the degree l=1 in the range 10-5000 s (p- and g-modes)

with ML2/ = 1, detailed atmospheric modeling, and TDC treatment 

• For the red edge (long-standing problem):

based on the idea of Hansen, Winget & Kawaler (1985): red edge arises when

th ~ Pcrit     α (l(l+1))-0.5

(th : thermal timescale at the base of the convection zone),

which means the mode is no longer reflected back by star’s atmosphere 
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Universality of the instability domain

Solid lines: He core, thick env.

Dotted lines: C-core, thin env. 

Dashed line: 0.17Ms, thin env.

Edges C-core tracks

o

Tracks:

Edges:
…

Edges He-core tracks

edges 0.17Ms track



Instability domain is 
insensitive to the exact core 

structure and envelope 
layering for models with same 

Teff/logg
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non variable (<10mmag); pulsator

Empirical ZZ Ceti instability strip (2012 view)

1.2 Ms

0.20 Ms

0.15 Ms Spectroscopic estimates:

• ELM white dwarfs: D. Koester 

•Standard ZZ Ceti: P. Bergeron

But both ML2/α=0.6



Valerie Van Grootel - Hakone, Fujihara seminar, November 2012 

Theoretical instability strip (g-modes l=1)

18

• Evolutionary models: 
ML2/ = 1

TDC blue edge

FC blue edge

Red edge

non variable (<10mmag); pulsator

Model atmospheres:

ML2/ = 0.6

• Narrower strip at low masses

(larger slope for the red edge)



Convective efficiency 
increases with depth?

(consistent with hydrodynamical 
simulations; Ludwig et al. 1994, 
Tremblay & Ludwig 2012)

1.2 Ms

0.20 Ms

0.15 Ms
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Other ELM/standard ZZ Ceti pulsators ?

19

Suggestion for observations

DA white dwarfs with Teff/logg 
close to our instability strip

Not checked for variability so far

Is the whole ZZ Ceti instability strip pure? 
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Ex: zoom to the 0.2Ms He-core track, lq(H)=-2.0

20

blue edge

red edge


conv 

th 

Pcrit  (l=1)

To the 
surface

To the core

Along the cooling track
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Excited l=1 periods for the 0.2Ms He-core track

21

g-modes

p-modes (P~50 s)

Observable?

k~-5

red edge (oscillations not reflected back)

gap
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SDSS J1112+1117

Teff~ 9400±490 K, logg ~ 5.99±0.12  

He-core model, log q(H)=-2.0

Qualitative fit to the observed periods of the 3 ELM pulsators

SDSS J1840+6423

Teff~ 9140±170 K, logg ~ 6.16±0.06

He-core model, log q(H)=-2.0

SDSS J1518+0658 

Teff~ 9810±320 K,  logg ~ 6.66±0.06

He-core model, log q(H)=4.0 and -2.0

Adiabatic properties are sensitive to exact interior structure
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5. Conclusion and prospects
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5. Conclusion and Prospects

• Detection of p-modes in white dwarfs?

• Is the ZZ Ceti instability strip pure?

• Asteroseismology of ELM/standard ZZ Ceti white dwarf pulsators

1. internal structure & fundamental parameters

2. age

3. understanding of matter under extreme conditions

Conclusions: 

Prospects: 

• ELM pulsators are low mass equivalent to standard ZZ Ceti pulsators

 such pulsators exist from 0.15 to 1.1 Ms (log g = 5 – 9 !)

• Excellent agreement between theoretical and observed instability strip:

-Blue edge, TDC approach

-Red edge, by energy leakage through the atmosphere 

•Is ML2/α=1.0 the good flavor for convection inside white dwarfs?
Related to spectroscopic calibration (ML2/α=0.6) and hydrodynamical simulations 
(Tremblay & Ludwig 2011,2012)
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Why TDC and FC blue edges are not dramatically different?

25

1. The difference (~250 K) is not negligible !

2. Van Grootel et al. (2012) and Saio (2012, Liege colloquium)

eigenfunctions TDC/FC are really different, and excitation mechanisms too:

- TDC: convective driving (convective flux can be modulated)

- FC: κ-mechanism with radiative luminosity (<<Lconv)

But both mechanisms occurs at the same layers (partial ionization zone)

Width of instability strip: ~1000 K at log g = 8 and ~600 K at log g = 6
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