The instability strip of ZZ Ceti white dwarfs

and its extension to extremely low mass pulsators

Valerie Van Grootel⁽¹⁾

G. Fontaine⁽²⁾, P. Brassard⁽²⁾, and M.A. Dupret⁽¹⁾

Introduction of Time-Dependent Convection (TDC):

Van Grootel et al. 2012, A&A, 539, 87

Extension to Extremely Low Mass (ELM) pulsators: Van Grootel et al., ApJ, in press

(1) Université de Liège, Belgium

(2) Université de Montréal, Canada

1. Introduction to ZZ Ceti, DA white dwarfs pulsators

Late stages of evolution of ~97% of stars in the Universe

DA (H-rich atmosphere): ~80%; DB (no/little H atmosphere): ~20% of WDs

From Saio (2012), LIAC40 proceedings

- 4 types of g-mode pulsators along the cooling sequence:
- GW Vir stars (He/C/O atmospheres) T_{eff} ~ 120,000 K, discovered in 1979
- V777 Her stars (He-atmosphere), 1982 T_{eff} ~ 25,000 K
- Hot DQ stars (C-rich/He atmosphere) T_{eff} ~ 20,000 K, discovered in 2007
- ZZ Ceti stars (H-atmosphere, DA) T_{eff} ~ 12,000 K, discovered in 1968
 Most numerous (~160 known including SDSS+Kepler)

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012

Excitation mechanism of ZZ Ceti stars (general picture)

1.2 opacity bump due to MODE: 5.5partial ionization of HI g-mode 0.8 l=1, k=7 F_{c}/F_{t} 432.1 s 4.50.4 Don Winget (1981): or H recombination around T_{eff}~12,000 K × ي 3.5 \Rightarrow envelope opacity increase 0.0 log or strangle the flow of radiation DA MODEL: modes instabilities Ъ $T_{eff} = 11,700 \text{ K}$ 2.5 dW/dlog -0.4Pulsations are destabilized at the M = 0.base of the convection zone 1.5(details: e.g. Van Grootel et al. 2012) convection zone -0.8 $(F_{max}) = 0.999$ "convective driving" -1.20.5 -6.0-10.0-14.0-18.0log q log (1-M(r)/M∗) (H envelope)

Empirical ZZ Ceti instability strip (classic view)

• Observed pulsator; O non-variable DA white dwarf

- Multiperiodic pulsators, observed period range: 100-1500 s (g-modes)
- Reliable atmospheric parameters: work of Bergeron et al., ML2/α=0.6
- Long-term observational efforts: Montreal (Gianninas et al.), Texas (McGraw et al.), Brazil (Kepler et al.), etc. + SDSS
- (most probably) a pure strip
- log g/T_{eff} correlation (with a more pronounced slope for red edge): the lower log g, the lower edge T_{eff}

Empirical ZZ Ceti instability strip (2012 view)

~40 Extremely Low Mass (ELM) DA white dwarfs known (Kilic et al., Brown et al. 2010-2012)

Spectroscopic estimates from model atmospheres of D. Koester, ML2/ α =0.6

Hermes et al. (2012a,b): 3 ELM pulsators (SDSS J1840+6423, J1112+1117, J1518+0658)

Multiperiodic pulsators, 1500-5000 s

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012

2. Evolutionary ZZ Ceti Models

• A standard ZZ Ceti model (C/O core)

- Evolutionary tracks computed for $0.4M_s$ to $1.1M_s$ ($0.1M_s$ step)
- from T_{eff}=35,000 K to 2,000 K (~150 models)
- with ML2 version (a=1,b=2,c=16); α = 1 (ie I = Hp)

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012

2. Evolutionary ZZ Ceti models

Detailed atmosphere

 Extremely Low Mass (ELM) DA white dwarf: H envelope on top of He core

ELM white dwarfs come from stars that never experienced any He-flash, because of extreme mass loss on RGB (from binary interactions or due to high Z)

- 2 kinds of evolutionary tracks computed here:
- I. Standard C core models, but for $0.125M_s$ and $0.15-0.4M_s$ (steps $0.05M_s$)
- II. Pure He core/H envelope models, for the same masses, but thick envelopes

Instability location in T_{eff}-log g plane **insensitive** to detailed core structure and envelope layering

3. Time-Dependent Convection (TDC) approach

For a standard 0.6M_s ZZ Ceti model:

•T_{eff} ~ 12,000 K: convective turnover timescale $\tau_{conv} \ll \sigma$ (pulsation periods) \Rightarrow convection adapts quasi-instantaneously to the pulsations

•T_{eff} ~ 11,000 K: $\tau_{conv} \approx \sigma \Rightarrow$ NEED full Time-Dependent Convection (TDC)

• Frozen convection (FC), i.e. $\tau_{conv} >> \sigma$: NEVER justified in the ZZ Ceti T_{eff} regime

(FC is the usual assumption to study the theoretical instability strip...)

• The Liege nonadiabatic pulsation code **MAD** (Dupret 2002) is the only one to implement convenient TDC treatment

• Full development in Grigahcène et al.(2005), following the theory of M. Gabriel (1974,1996), based on ideas of Unno et al. (1967)

- The timescales of pulsations and convection are **both** taken into account
- Perturbation of the convective flux taken into account here:

$$\delta F_C = \overline{F_C} \left(\frac{\delta \rho}{\overline{\rho}} + \frac{\delta T}{\overline{T}} \right) + \overline{\rho} \overline{T} \left(\overline{\delta \Delta s V} + \overline{\Delta s \delta V} \right)$$

• Built within the mixing-length theory (MLT), with the adopted perturbation of the mixing-length:

$$\frac{\delta l}{l} = \frac{1}{1 + (\sigma \tau_c)^2} \frac{\delta H_p}{H_p}$$

if
$$\sigma >> \tau_{conv}$$
 (instantaneous adaption): $\delta l/l \rightarrow \delta H_p/H_p$
if $\sigma << \tau_{conv}$ (frozen convection): $\delta l/l \rightarrow 0$

4. Stability survey: the theoretical instability strip

- We applied the MAD code to all evolutionary sequences
 - •"normal" C-core ZZ Ceti models, $0.4 1.1M_s$, log q(H)=-4.0
 - ELM, C-core models: 0.125-0.4 M_s, log q(H)=-4.0
 - ELM, He-core models: 0.125-0.4 M_s , log q(H)=-2.0
 - 0.17Ms, He-core models, "thin" envelope log q(H)=-3.7

with ML2/ α = 1, detailed atmospheric modeling, and TDC treatment

- We computed the degree I=1 in the range 10-5000 s (p- and g-modes)
- For the red edge (long-standing problem): based on the idea of Hansen, Winget & Kawaler (1985): red edge arises when

$$\tau_{th} \sim P_{crit} \quad \alpha \; (I(I+1))^{-0.5}$$

 $(\tau_{th}: thermal timescale at the base of the convection zone),$

which means the mode is no longer reflected back by star's atmosphere

Tracks:

Solid lines: He core, thick env. Dotted lines: C-core, thin env. Dashed line: 0.17M_s, thin env.

Edges:

- ··· Edges C-core tracks
- Edges He-core tracks
- o edges 0.17M_s track

\downarrow

Instability domain is **insensitive** to the exact core structure and envelope 7000. layering for models with same T_{eff}/logg

Empirical ZZ Ceti instability strip (2012 view)

Spectroscopic estimates: • ELM white dwarfs: D. Koester •Standard ZZ Ceti: P. Bergeron But both ML2/α=0.6

- TDC blue edgeFC blue edgeRed edge
- Narrower strip at low masses (larger slope for the red edge)
- Evolutionary models: ML2/ $\alpha = 1$

Model atmospheres:

 $ML2/\alpha = 0.6$

Convective efficiency increases with depth?

(consistent with hydrodynamical simulations; Ludwig et al. 1994, Tremblay & Ludwig 2012)

Is the whole ZZ Ceti instability strip **pure**?

Suggestion for observations

DA white dwarfs with T_{eff} /logg close to our instability strip

Not checked for variability so far

Ex: zoom to the 0.2Ms He-core track, Iq(H)=-2.0

Excited I=1 periods for the 0.2Ms He-core track

Valerie Van Grootel - Hakone, Fujihara seminar, November 2012

SDSS J1840+6423

 T_{eff} ~ 9140±170 K, logg ~ 6.16±0.06 He-core model, log q(H)=-2.0

SDSS J1518+0658

 T_{eff} ~ 9810±320 K, log*g* ~ 6.66±0.06 He-core model, log q(H)=4.0 and -2.0

SDSS J1112+1117 T_{eff}~ 9400±490 K, log*g* ~ 5.99±0.12 He-core model, log q(H)=-2.0

Adiabatic properties **are** sensitive to exact interior structure

5. Conclusion and prospects

Conclusions:

- ELM pulsators are low mass equivalent to standard ZZ Ceti pulsators
 - \Rightarrow such pulsators exist from 0.15 to 1.1 M_s (log g = 5 9 !)
- Excellent agreement between theoretical and observed instability strip:

-Blue edge, TDC approach

-Red edge, by energy leakage through the atmosphere

•Is ML2/ α =1.0 the good flavor for convection inside white dwarfs? Related to spectroscopic calibration (ML2/ α =0.6) and hydrodynamical simulations (Tremblay & Ludwig 2011,2012)

Prospects:

- Detection of p-modes in white dwarfs?
- Is the ZZ Ceti instability strip pure?
- Asteroseismology of ELM/standard ZZ Ceti white dwarf pulsators
 - 1. internal structure & fundamental parameters
 - 2. **age**
 - 3. understanding of matter under extreme conditions

1. The difference (~250 K) is **not** negligible !

Width of instability strip: ~1000 K at log g = 8 and ~600 K at log g = 6

2. Van Grootel et al. (2012) and Saio (2012, Liege colloquium)

eigenfunctions TDC/FC are really different, and excitation mechanisms too:

- TDC: convective driving (convective flux can be modulated)
- FC: κ-mechanism with radiative luminosity (<<L_{conv})

But both mechanisms occurs at the same layers (partial ionization zone)