High-precision tests of stellar physics from high-precision photometry SpS13-XXVIII IAU GA

The formation of sdB stars Influence of substellar bodies on late stages of stellar evolution

Valerie Van Grootel⁽¹⁾

- S. Charpinet⁽²⁾, G. Fontaine⁽³⁾, P. Brassard⁽³⁾, E.M. Green⁽⁴⁾, S.K. Randall⁽⁵⁾
- (1) Institut d'Astrophysique, Université de Liège, Belgium
- (2) IRAP, Toulouse, France
- (3) Université de Montréal, Canada
- (4) University of Arizona, USA
- (5) European Southern Observatory, Germany

I. Substellar companions for sdB stars

Hot (T_{eff} = 20 000 - 40 000 K) and compact (log g = 5.2 - 6.2) stars belonging to Extreme Horizontal Branch (EHB)

- convective He-burning core (I), radiative He mantle (II) and very thin H-rich envelope (III)
- ~50% of sdB stars reside in binary systems, generally in close orbit ($P_{orb} \le 10$ days)

Two classes of multi-periodic sdB pulsators ($V \sim 14-15$):

- > short-periods (P ~ 80 600 s), A \leq 1%, p-modes (envelope)
- > long-periods (P ~ 45 min 2 h), A ≤ 0.1%, g-modes (core). Space observations required !

KPD 1943+4058 aka KOI55, a pulsating sdB star observed by Kepler

Possible interpretations for these modulations:

- ✓ Stellar pulsations? \rightarrow rejected (beyond period cutoff)
- ✓ Modulations of stellar origin: spots? \rightarrow rejected (pulsations: star rotation ~ 39 d)
- ✓ Contamination from a fainter nearby star? → rejected based on pixel data analysis
- Modulations of orbital origin

What sizes should these objects have to produce the observed variations?

Two effects: light reflection + thermal re-emission, both modulated along the orbit

$$R_{j} = \left(\frac{A_{j}}{\sin i}\right)^{\frac{1}{2}} \left(\frac{\alpha_{j}}{8a_{j}^{2}} + \frac{1}{2R_{*}^{2}}\frac{F_{R}(T_{j}) - F_{R}(\beta T_{j})}{F_{R}(T_{*})}\right)^{-\frac{1}{2}}$$

(see details in Nature paper, supplementary information)

Substellar companions for sdB stars

Inclination of 65 deg 1.00 +1.50 +1.45 +1.40+1.35 +1.30+1.25+1.200.80 +1.15 +1.10+1.05+1.00+0.95+0.90+0.850.60 COROT +0.80+0.75+0.70+0.65+0.60+0.550.40 +0.50+0.45+0.40+0.35 +0.30+0.25+0.200.20 +0.15+0.10+0.05+0.00-0.05 -0.10 0.00 -0.15 0.00 0.20 0.40 0.60 0.80 1.00 $\beta = \langle T_{night} \rangle / \langle T_{dav} \rangle$

log (R/Re)

- From pulsations: i ~ 65°
- Assuming orbits aligned with equatorial plane
- Most relevant parameter range: low values for the albedo and β (day/night temp. contrast)

We have:

- Two Earth-size planets
- Orbiting very close (0.006 and 0.008 AU) to their host star
- Extremely hot (evaporating?)
- Orbiting an evolved, core Heburning star

How can we explain this?

albedo

II. The formation of sdB stars: the theory

sdB stars are He-core burning stars with only a tiny H-rich envelope left How such stars form is a long standing problem

• For sdB in binaries (~50%)

in the red giant phase: Common envelope ejection (CE), stable mass transfer by Roche lobe overflow (RLOF)

The red giant lose its envelope at tip of RGB, when He-burning ignites (He flash)

$\mathbf{\Lambda}$

Remains the stripped core of the former red giant, which is the sdB star, with a stellar companion

• For single sdB stars (~50%)

2 main scenarios:

1. Single star evolution:

enhanced mass loss at tip of RGB, at He-burning ignition (He-flash) mechanism quite unclear (cf later)

2. The merger scenario:

Two low mass helium white dwarfs merge to form a He core burning sdB

star

Common envelope evolution (close binary sdB systems)

CEE: sdB + MS star or white dwarf

Stable Roche lobe overflow (wide binary sdB systems)

RLOF: sdB + MS star (later than F-G)

Single sdBs: single star evolution or He-white dwarfs mergers

Envelope ejection at tip of RGB

mergers

The formation of sdB stars: theoretical mass distributions

III. The empirical mass distribution of sdB stars

I. The asteroseismic sample

15 sdB stars modeled by asteroseismology

Name	$\log g (\mathrm{cm}\mathrm{s}^{-2})$	$T_{\rm eff}$ (K)	<i>M</i> (<i>M</i> _☉)	$\log M_{\rm env}/M$	References
PG 0014+067	5.780±0.008	33550±380	0.490±0.019	-4.31±0.22	Brassard et al. (2001)
	5.775 ± 0.009	34130±370	0.477 ± 0.024	-4.32 ± 0.23	Charpinet et al. (2005a)
	5.772	34130±370	0.478	-4.13	Brassard & Fontaine (2008)
PG 1047+003	5.800 ± 0.006	33150 ± 200	0.490 ± 0.014	-3.72 ± 0.11	Charpinet et al. (2003)
PG 1219+534	5.807 ± 0.006	33600±370	0.457 ± 0.012	-4.25 ± 0.15	Charpinet et al. (2005b)
Feige 48	5.437 ± 0.006	29580 ± 370	0.460 ± 0.008	-2.97 ± 0.09	Charpinet et al. (2005c)
	5.462 ± 0.006	29580 ± 370	0.519 ± 0.009	-2.52 ± 0.06	Van Grootel et al. (2008a)
EC05217-3914	5.730	32000	0.490	-3.00	Billères & Fontaine (2005)
PG 1325+101	5.811±0.004	35050 ± 220	0.499 ± 0.011	-4.18 ± 0.10	Charpinet et al. (2006a)
PG 0048+092	5.711±0.010	33300±1700	0.447 ± 0.027	-4.92 ± 0.20	Charpinet et al. (2006b)
EC 20117-4014	5.856 ± 0.008	34800 ± 2000	0.540 ± 0.040	-4.17 ± 0.08	Randall et al. (2006b)
PG 0911+456	5.777 ± 0.002	31940 ± 220	0.390 ± 0.010	-4.69 ± 0.07	Randall et al. (2007)
BAL 090100001	5.383 ± 0.004	28000 ± 1200	0.432 ± 0.015	-4.89 ± 0.14	Van Grootel et al. (2008b)
PG 1336-018	5.739 ± 0.002	32780 ± 200	0.459 ± 0.005	-4.54 ± 0.07	Charpinet et al. (2008)
PG 1605+072	5.248	32300 ± 300	0.707	-5.78	van Spaandonk et al. (2008)
	5.217	32300±300	0.561	-6.22	
	5.226 ± 0.004	32300 ± 300	0.528 ± 0.002	-5.88 ± 0.04	Van Grootel (2008)
	5.276	32630 ± 600	0.731	-2.83	Van Grootel et al. (2010a)
	5.278	32630 ± 600	0.769	-2.71	
EC09582-1137	5.788 ± 0.004	34805 ± 230	0.485 ± 0.011	-4.39 ± 0.10	Randall et al. (2009)
KPD 1943+4058	5.520 ± 0.030	27730 ± 270	0.496 ± 0.002	-2.55 ± 0.07	Van Grootel et al. (2010b)
KPD 0629-0016	5.450 ± 0.034	26485±195	0.471 ± 0.002	-2.42 ± 0.07	Van Grootel et al. (2010c)
KIC02697388	5.489 ± 0.033	25395 ± 225	0.463 ± 0.009	-2.30 ± 0.05	Charpinet et al. (2011)
	5.499 ± 0.049	25395 ± 225	0.452 ± 0.012	-2.35 ± 0.05	

Valerie Van Grootel – IAU GA, 30 August 2012

II. The binary sample (sdB + WD or dM star)

Light curve modeling + spectroscopy \Rightarrow mass of the sdB component

Name	Log g	$T_{\rm eff}$	M_1	Nature	Eclipses	References
	(cm s ⁻²)	(K)	(M_{\odot})			
KPD 0422+5421	5.565 ± 0.009	25000 ± 1500	0.511 ± 0.049^{a}	sdB+WD	yes	Orosz & Wade (1999)
PG 1241-084	5.63 ± 0.03	28490 ± 210	0.48 ± 0.09	sdB+dM	yes	Wood & Saffer (1999)
	5.60 ± 0.12	28490 ± 210	0.485 ± 0.013^{a}			Lee et al. (2009)
HS 0705+6700	5.40 ± 0.10	28800 ± 900	0.48	sdB+dM	yes	Drechsel et al. (2001)
HS 2333+3927	5.70 ± 0.10	36500 ± 1000	0.38	sdB+dM	no	Heber et al. (2005)
NSVS 14256825	5.50 ± 0.02	35000 ± 5000	0.46	sdB+dM	yes	Wils et al. (2007)
KPD 1930+2752	5.61 ± 0.06	35200 ± 500	0.485 ± 0.035^{a}	sdB+WD	yes	Geier et al. (2007)
PG 1336-018	5.74 ± 0.05	31300 ± 300	0.389 ± 0.005	sdB+dM	yes	Vuckovic et al. (2007)
	5.77 ± 0.06	31300 ± 300	0.466 ± 0.006			
	5.79 ± 0.07	31300 ± 300	0.530 ± 0.007			
2M 1533+3759	5.57 ± 0.07	29230 ± 125	0.376 ± 0.055^{a}	sdB+dM	yes	For et al. (2010)
2M 1938+4603	5.425 ± 0.009	29565 ± 105	0.48 ± 0.03^{a}	sdB+dM	yes	Østensen et al. (2010)
KPD 1946+4340	5.452 ± 0.006	34500 ± 400	0.47 ± 0.03^{a}	sdB+WD	yes	Bloemen et al. (2011)
AA Dor	5.46 ± 0.05	42000 ± 1000	0.471 ± 0.005^{a}	sdB+dM?	no	Klepp & Rauch (2011)

Need uncertainties to build a mass distribution

 \Rightarrow 7 sdB stars retained in this subsample

Extended sample: 15+7 = 22 sdB stars with accurate mass estimates

- 11 (apparently) single stars
- 11 in binaries (including 4 pulsators)

Empirical mass distributions of sdB stars

in the form of an histogram (bin width = σ = 0.024 Ms)

No detectable significant differences between distributions (especially between singles and binaries) IV. Implications for stellar evolution theory (the formation of sdB stars)

Comparison with theoretical distributions

- A word of caution: still small number statistics (need ~30 stars for a significant sample)
- ✓ Distribution strongly peaked near 0.47 Ms
- No differences between subsamples (eg, binaries vs single sdB stars)
- ✓ It seems to have a deficit of high mass sdB stars, i.e. from the merger channel. Especially, the single sdBs distribution ≠ merger distribution.

The single sdBs distribution *≠* merger channel distribution

Moreover, Geier & Heber (2012): 105 single or in wide binaries sdB stars:

all are slow rotators (Vsin i < 10 km s-1)

(the majority of) sdB stars <u>are</u> post-red giant stars, and post-He flash stars

If this scenario holds true, the red giant has experienced extreme mass loss on RGB (Red Giant Branch)

What could cause extreme mass loss on RGB?

- For binary stars: ok, thanks to the stellar companion
- For single stars, it's more difficult:
- Internal rotation => mixing of He => enhanced mass loss on RGB (Sweigart 1997) – "not a simple explanation"
- No differences between single and binaries distributions: it suggests that they form basically in the same way
- Dynamical interactions: Substellar companions (Soker 1998)

Here is the link with the discovery of two close planets orbiting an sdB star!

A consistent scenario

- ✓ Former close-in giant planets were deeply engulfed in the red giant envelope
- The planets' volatile layers were removed and only the dense cores survived and migrated where they are now seen
- The star probably left RGB when envelope was too thin to sustain H-burning shell and experienced a delayed He-flash (or, less likely, He-flash at tip of RGB)
- Planets are responsible of strong mass loss <u>and</u> kinetic energy loss of the star along the Red Giant Branch
- ✓ As a bonus: this scenario explains why "single" sdB stars are all slow rotators

V. Conclusions and Prospects

✓ No significant differences between distributions of various samples (asteroseismic, light curve modeling, single, binaries, etc.)

✓ A consistent scenario to form single sdB stars: delayed He-flasher + strong mass loss in the red giant phase due to planets?

 \checkmark ~ 7 % of MS stars have closein giant planets that will be engulfed during the red giant phase

→ such formation from star/planet(s) interaction(s) may be fairly common

Outlook:

✓ Currently only 22 objects: 11 single stars and 11 in binaries

✓~100 pulsators are now known (e.g. thanks to *Kepler*)

 ✓ Both light curve modeling and asteroseismology are a challenge (accurate spectroscopic and photometric observations, stellar models, etc.)