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Abstract Symmetries play a crucial role in electroweak
symmetry breaking models with non-minimal Higgs con-
tent. Within each class of these models, it is desirable to
know which symmetry groups can be implemented via the
scalar sector. In N -Higgs-doublet models, this classification
problem was solved only for N = 2 doublets. Very recently,
we suggested a method to classify all realizable finite sym-
metry groups of Higgs-family transformations in the three-
Higgs-doublet model (3HDM). Here, we present this clas-
sification in all detail together with an introduction to the
theory of solvable groups, which play the key role in our
derivation. We also consider generalized-CP symmetries,
and discuss the interplay between Higgs-family symmetries
and CP-conservation. In particular, we prove that presence
of the Z4 symmetry guarantees the explicit CP-conservation
of the potential. This work completes classification of finite
reparametrization symmetry groups in 3HDM.

1 Introduction

The nature of the electroweak symmetry breaking is one of
the main puzzles in high-energy physics. Very recently, the
CMS and ATLAS collaborations at the LHC announced the
discovery of the Higgs-like resonance at 126 GeV [1, 2],
and their first measurements indicate intriguing deviations
from the Standard Model (SM) expectations. Whether these
data signal that a non-minimal Higgs mechanism is indeed
at work and if so what it is, are among the hottest questions
in particle physics these days.

In the past decades, many non-minimal Higgs sectors
have been considered [3]. One conceptually simple and phe-
nomenologically attractive class of models involves several
Higgs doublets with identical quantum numbers (N -Higgs-
doublet models, NHDM). Its simplest version with only two
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doublets, 2HDM, was proposed decades ago [4], but it is
still actively studied, see [5] for a recent review, and it has
now become a standard reference model of the physics be-
yond the Standard Model (bSM). Constructions with more
than two doublets are also extensively investigated [6–21].

Many bSM models aim at providing a natural explana-
tion for the numerical values of (some of) the SM param-
eters. Often, it is done by invoking additional symmetries
in the model. These are not related with the gauge symme-
tries of the SM but rather reflect extra symmetry structures
in the “horizontal space” of the model. One of the main phe-
nomenological motivations in working with several doublets
is the ease with which one can introduce various symmetry
groups. Indeed, Higgs fields with identical quantum num-
bers can mix, and it is possible that some of these Higgs-
family mixing transformations leave the scalar sector invari-
ant. Even in 2HDM, presence of such a symmetry in the La-
grangian and its possible spontaneous violation can lead to a
number of remarkable phenomena such as various forms of
CP-violation [4, 22–24], non-standard thermal phase transi-
tions which may be relevant for the early Universe [25–27],
natural scalar dark matter candidates [28–30]. For models
with three or more doublets, an extra motivation is the possi-
bility to incorporate into the Higgs sector non-abelian finite
symmetry groups, which can then lead to interesting patterns
in the fermionic mass matrices (for a general introduction
into discrete symmetry groups relevant for particle physics,
see [31]). In this respect, the very popular symmetry group
has been A4 [11–15], the smallest finite group with a three-
dimensional irreducible representation, but larger symmetry
groups also received some attention [6, 16, 17].

Given the importance of symmetries for the NHDM phe-
nomenology, it is natural to ask: which symmetry groups
can be implemented in the scalar sector of NHDM for a
given N?

In the two-Higgs-doublet model (2HDM), this question
has been answered several years ago [32–36], see also [5]
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for a review. Focusing on discrete symmetries, the only real-
izable Higgs-family symmetry groups are Z2 and (Z2)

2. The
Z2 group can be generated, for example, by the sign flip of
one of the doublets (and it does not matter which, because
once we focus on the scalar sector only, the simultaneous
sign flip of both doublets does not change the Lagrangian),
while the (Z2)

2 group is generated by sign flips and the ex-
change φ1 ↔ φ2. If generalized-CP transformations are also
included, then (Z2)

3 becomes realizable as well, the addi-
tional generator being simply the CP conjugation.

With more than two doublets, the problem remains open.
Although several attempts have been made in past to clas-
sify at least some symmetries in NHDM, [18, 19, 21], they
led only to very partial results. The main obstacle here was
the lack of the completeness criterion. Although many ob-
vious symmetry groups could be immediately guessed, it
was not clear how to prove that the given potential does not
have other symmetries. An even more difficult problem is to
prove that no other symmetry group can be implemented for
a given N .

In the recent paper [37] we found such a criterion for
abelian symmetry groups in NHDM for arbitrary N . Since
abelian subgroups are the basic building blocks of any
group, classification of realizable abelian symmetry groups
in NHDM was an important milestone. We stress that this
task is different from just classifying all abelian subgroups
of SU(3), because invariance of the Higgs potential places
strong and non-trivial restrictions on possible symmetry
groups.

In this paper, we solve the classification problem for all
finite symmetry groups in 3HDM, including non-abelian
groups. We do this by using the abelian groups in 3HDM
found in [37] and by applying certain results and methods
from the theory of solvable groups. Some of these results
were already briefly described in [38]. Here, we present a de-
tailed derivation of this classification together with an intro-
duction to the relevant methods from finite group theory. In
addition, we extend the analysis to symmetry groups which
include both Higgs-family and generalized-CP transforma-
tions. This work, therefore, solves the problem of classifica-
tion of finite reparametrization symmetry groups in 3HDM.

We would like to stress one important feature in which
our method differs from more traditional approaches to
symmetry classification problem, at least within the bSM
physics. Usually, one starts by imposing invariance under
certain transformations, and then one tries to recognize the
symmetry group of the resulting potential. In this way it is
very difficult to see whether all possible symmetries are ex-
hausted. We approach the problem the other way around.
We first restrict the list of finite groups which can appear as
symmetry groups of 3HDM, and then we check one by one
whether these groups can indeed be implemented.

The structure of this paper is the following. In Sect. 2 we
describe different types of symmetry in the scalar sector of

NHDM and discuss the important concept of realizable sym-
metry groups. Section 3 contains an elementary introduction
into the theory of (finite) solvable groups. Although it con-
tains pure mathematics, we put it in the main text because
it is a key part of the group-theoretic step of our classifi-
cation, which is presented in Sect. 4. Then, in Sect. 5 we
describe the methods which we will use to prove the ab-
sence of continuous symmetries. Sections 6 and 7 contain
the main results of the paper: explicit constructions of the
realizable symmetry groups and of the potentials symmetric
under each group. Finally, in Sect. 8 we summarize and dis-
cuss our results. For the reader’s convenience, we list in the
Appendix potentials for each of the realizable non-abelian
symmetry groups.

2 Symmetries of the scalar sector
of multi-Higgs-doublet models

2.1 Reparametrization transformations

In NHDM we introduce N complex Higgs doublets with
the electroweak isospin Y = 1/2, which interact with the
gauge bosons and matter fields in the standard way, and also
self-interact via a Higgs potential. The generic renormaliz-
able Higgs potential can contain only quadratic and quar-
tic gauge-invariant terms, and it can be compactly written
as [39–41]:

V = Yab

(
φ†

aφb

) + Zabcd

(
φ†

aφb

)(
φ†

c φd

)
, (1)

where all indices run from 1 to N . Coefficients of the poten-
tial are grouped into components of tensors Yab and Zabcd ;
there are N2 independent components in Y and N2(N2 +
1)/2 independent components in Z.

In this work we focus only on the scalar sector of the
NHDM. Therefore, once coefficients Yab and Zabcd are
given, the model is completely defined, and one should be
able to express all its properties (the number and the posi-
tions of extrema, the spectrum and interactions of the phys-
ical Higgs bosons) via components of Y ’s and Z’s. This ex-
plicit expression, however, cannot be written via elementary
functions, and it remains unknown in the general case for
any N > 2.

A very important feature of the most general poten-
tial is that any non-degenerate linear transformation in the
space of Higgs doublets belonging to the group GL(2,C)

keeps the generic form of the potential, changing only
the coefficients of Y and Z. We call such a transforma-
tion a Higgs-basis change. In addition, the CP transfor-
mation, which maps doublets to their hermitian conjugates
φa → φ

†
a , also keeps the generic form of the potential, up

to coefficient modification. Its combination with a Higgs-
basis change represents a transformation which is usually
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called a generalized-CP transformation [42–46]. The Higgs
basis changes and generalized-CP transformations can be
called together reparametrization transformations because
they preserve the generic structure of the potential and lead
only to its reparametrization.

A reparametrization transformation changes the basis in
the space of Higgs doublets but does not modify the struc-
tural features of the model such as the number and the prop-
erties of minima, the symmetries of the potential and their
spontaneous breaking at the minimum point. These prop-
erties must be the same for all the potentials linked by
reparametrization transformations. Therefore, these prop-
erties must be expressible in terms of reparametrization-
invariant combinations of Y ’s and Z’s [39, 40, 47, 48].

If a reparametrization transformation maps a certain po-
tential exactly to itself, that is, if it leaves certain Y ’s and
Z’s invariant, we say that the potential has a reparametriza-
tion symmetry. Usually, there is a close relation between the
reparametrization symmetry group G of the potential and
its phenomenological properties, both within the scalar and
the fermion sectors. Therefore, understanding which groups
can appear as reparametrization symmetry groups in NHDM
with given N is of much importance for phenomenology of
the model.

2.2 The group of kinetic-term-preserving
reparametrization transformations

Often, one restricts the group of reparametrization trans-
formations only to those transformations which keep the
Higgs kinetic term invariant. In this case, a generic ba-
sis change becomes a unitary transformation φa �→ Uabφb

with U ∈ U(N). A kinetic-term-preserving generalized-CP
transformation is an anti-unitary map φa �→ Uabφ

†
b , which

can be written as UCP = U · J , with a unitary U and with J

being the symbol for the CP-transformation.
The group U(N) contains the group of overall phase rota-

tions, which are already included in the gauge group U(1)Y .
Since we want to study structural symmetries of the NHDM
potentials, we should disregard transformations which leave
all the potentials invariant by construction. This leads to the
group U(N)/U(1) � PSU(N). Note that SU(N), which is
often considered in these circumstances, still contains trans-
formations which only amount to the overall phase shift of
all doublets. They form the center of SU(N), Z(SU(N)) �
ZN , and act trivially on all NHDM potentials. Being invari-
ant under them does not represent any structural property of
the Higgs potential, therefore, we are led again to the fac-
tor group SU(N)/Z(SU(N)) = PSU(N). This allows us to
write the group of kinetic-term-preserving reparametrization
transformations as a semidirect product of the Higgs basis
change group and the Z2 group generated by J (for a more
detailed discussion, see [37]):

Grep = PSU(N) � Z
∗
2. (2)

Here the asterisk indicates that the generator of the corre-
sponding group is an anti-unitary transformation; we will
use this notation throughout the paper.

Below, when discussing symmetry groups of the 3HDM
potential, we will be either looking for subgroups of PSU(3)

(if only unitary transformations are allowed) or subgroups
of this Grep (when anti-unitary reparametrization transfor-
mations are also included). This should always be kept in
mind when comparing our results with the groups which
are discussed as symmetry groups in the 3HDM scalar sec-
tor. For example, in [16, 17] a 3HDM potential symmetric
under Δ(27) or Δ(54) was considered, both groups being
subgroups of SU(3). However, they contains the center of
SU(3), which, we repeat, acts trivially on all Higgs poten-
tials. Therefore, the structural properties of that model are
defined by the factor groups Δ(27)/Z(SU(3)) � Z3 × Z3

and Δ(54)/Z(SU(3)) � (Z3 × Z3) � Z2, which belong to
PSU(3).

2.3 Realizable symmetry groups

There is an important technical point which should be kept
in mind when we classify symmetry groups of NHDM.
When we impose a reparametrization symmetry group G on
the potential, we restrict its coefficients in a certain way. It
might happen then that the resulting potential becomes sym-
metric under a larger symmetry group G̃ properly contain-
ing G.

One drawback of this situation is that we do not have
control over the true symmetry properties of the potential:
if we construct a G-symmetric potential, we do not know
a priori what is its full symmetry group G̃. This might be
especially dangerous if G is finite while G̃ turns out to be
continuous, as it might lead to unwanted Goldstone bosons.
Another undesirable feature is related with symmetry break-
ing. Suppose that we impose invariance of the potential un-
der group G but we do not check what is the true symmetry
group G̃. After electroweak symmetry breaking, the symme-
try group of the vacuum is Gv ≤ G̃, and it can happen that
Gv is not a subgroup of G. This is not what we normally
expect when we construct a G-symmetric model, and it is
an indication of a higher symmetry.

Examples of these situations were encountered in lit-
erature before. For instance, the authors of [19] explicitly
show that trying to impose a Zp , p > 2, group of rephasing
transformations in 2HDM unavoidably leads to a potential
with continuous Peccei–Quinn symmetry. For 3HDM they
find an even worse example, when a cyclic group immedi-
ately leads to a U(1) × U(1)-symmetric potential. Another
well-known example is the A4-symmetric 3HDM potential,
which at certain values of parameters admits vacua with the
S3 symmetry, although S3 is not a subgroup of A4, see an
explicit study in [15]. The explanation is that the potential
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at these values of parameters becomes symmetric under S4

which contains both A4 and S3.
In order to avoid such situations altogether, we must al-

ways check for each G whether the G-symmetric poten-
tials are invariant under any larger group. We are interested
only in those groups G, for which there exists a G-invariant
potential with the property that no other reparametrization
transformation leaves it invariant (either within PSU(3) or
within Grep, depending on whether we include anti-unitary
transformations). Following [21, 37], we call such groups
realizable.

Using the terminology just introduced we can precisely
formulate the two main questions which we address in this
paper:

1. considering only non-trivial kinetic-term-preserving
Higgs-basis transformations (i.e. group PSU(3)), what
are the realizable finite symmetry groups in 3HDM?

2. more generally, considering non-trivial kinetic-term-
preserving reparametrization transformations, which can
now include generalized-CP transformations (i.e. group
Grep), what are the realizable finite symmetry groups in
3HDM?

For abelian groups, these questions were answered in [37]
for general N . Here we focus on non-abelian finite realizable
groups for N = 3.

3 Solvable groups: an elementary introduction

Our classification of realizable groups of Higgs-family sym-
metries in 3HDM contains two essential parts: the group-
theoretic and the calculational ones. The group-theoretic
part will make use of some methods of pure finite group
theory, which are not very familiar to the physics commu-
nity (although they are quite elementary for a mathematician
with expertise in group theory). To equip the reader with all
the methods needed to understand the group-theoretic part
of our analysis, we begin by giving a concise introduction
to the theory of solvable groups. In doing so, we mention
only methods and results which are relevant for the particu-
lar problem of this paper. For a deeper introduction to solv-
able groups and finite group theory in general, see e.g. [49].

3.1 Basics

We assume that the reader is familiar with the basic defini-
tions from group theory. We only stress here that we will
work with finite groups, therefore the order of the group G

(the number of elements in G) denoted as |G| is always fi-
nite, and so is the order of any element g (the smallest pos-
itive integer n such that gn = e, the identity element of the
group).

A group G is called abelian if all its elements commute.
An alternative way to formulate it is to say that all commu-
tators in the group are trivial: [x, y] = xyx−1y−1 = e for all
x, y ∈ G. Working with commutators is sometimes easier
than checking the commutativity explicitly. For example, it
is easy to prove that if every non-trivial element of the group
has order two, g2 = e, then the group is abelian. Indeed, for
any x, y ∈ G we have

[x, y] = xyx−1y−1 = xyxy = (xy)2 = e, (3)

which means that x and y commute.
A group G can have proper subgroups H < G (whenever

we do not require that the subgroup H is proper, we write
H ≤ G), whose order must, by Lagrange’s theorem, divide
the order of the group: |H | divides |G|. If proper subgroups
exist, some of them must be abelian. A simple way to obtain
an abelian subgroup is to pick up an element g ∈ G and con-
sider its powers: if order of the element g is n, we will get
the cyclic group Zn < G.

The inverse of Lagrange’s theorem is not, generally
speaking, true: namely, if p is a divisor of |G|, the group G

does not necessarily have a subgroup of order p. However,
if p is a prime which enters the prime decomposition of |G|,
then according to Cauchy’s theorem such a subgroup must
exist (this group is Zp because there are no other groups of
prime order). It immediately follows that if we have the list
of all abelian subgroups of a given finite group G, then the
prime decomposition of |G| can only contain primes which
are present in the orders of these abelian subgroups.

In fact, there is an existence criterion stronger than
Cauchy’s theorem. Namely, if pa is the highest power of
the prime p that enters the prime decomposition of |G|,
then G contains a subgroup of this order, which is called the
Sylow p-subgroup of the group G. This theorem (known as
the Sylow-E theorem) is the starting point of the theory of
Sylow subgroups, see Chap. 1 in [49].

There are several ways to present a finite group. One pos-
sibility is to list all its elements and write down the |G|×|G|
multiplication table. Clearly, this presentation becomes im-
practical for a sufficiently large group. A more compact and
powerful way is known as presentation by generators and
relations. We call a subset M = {g1, g2, . . . } of the elements
of G a generating set (and its elements are called genera-
tors) if every g ∈ G can be written as a product of elements
of M or their inverses. The fact that G is generated by the
set M is denoted as G = 〈M〉. Finding a minimal generat-
ing set for a given group and listing equalities which these
generators satisfy is precisely presentation of the group by
generators and relations. For example, the symmetry group
of the regular n-sided polygon has the following presenta-
tion by generators and relations:

D2n = 〈
a, b |a2 = b2 = (ab)n = e

〉
. (4)
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This group is known as the dihedral group and has order
|D2n| = 2n (note that there exists an alternative convention
for denoting dihedral groups: Dn; the one which we use has
its order in the subscript).

3.2 Normal subgroups and extensions

Consider two groups G and H . Suppose we have a map f

from G to H , f : G → H , which sends every g ∈ G into its
image f (g) ∈ H . If this map preserves the group operation,
f (g1)f (g2) = f (g1g2), then it is called a homomorphism. If
this map is surjective (i.e. it covers the entire H ) and injec-
tive (distinct elements from G have distinct images in H ),
then f is invertible and is called an isomorphism.

In the case when H = G, we deal with an isomorphism of
the group onto itself, which is called an automorphism. One
can note that composition of two automorphisms is also an
automorphism, and define the group structure on the set of
all automorphisms of G. This automorphism group is de-
noted as Aut(G). The trivial automorphism which fixes ev-
ery element of G is the identity element of Aut(G).

Let us now consider a special class of automorphisms
called inner automorphisms, or conjugations. Fix an ele-
ment g ∈ G and define f : x �→ g−1xg for every x ∈ G.
It can be immediately checked that f is an automorphism,
and that it sends a subgroup of G into a (possibly another)
subgroup of G. It can, however, happen that certain sub-
groups will be mapped onto themselves: g−1Hg = H . Sub-
groups which satisfy this invariance criterion for every pos-
sible g ∈ G are called normal, or invariant subgroups. The
fact that H is a normal subgroup of G is denoted as H � G.

Even when a subgroup H is not normal in G, one can
pick up some elements g ∈ G such that g−1Hg = H . The
set of elements of G with the property g−1Hg = H forms a
group, which is called the normalizer of H in G and denoted
as NG(H). We then have H � NG(H) ≤ G. Working with
normalizers is a useful intermediate step in situations when
it is not known whether the subgroup H is normal in G.

Having a normal subgroup H � G gives some informa-
tion about the structure of G. One can define the group struc-
ture on the set of (left) cosets of H , which is now called
the factor group G/H . Thus, one breaks the group into
two smaller groups, which often simplifies its study. Given
a normal subgroup H � G, one can define the canonical
homomorphism φ : G → G/H which sends every element
g ∈ G into its coset gH . Its kernel (all elements g which
are mapped by φ into the identity element of G/H ) is pre-
cisely H . Thus, every normal subgroup is the kernel of the
corresponding canonical homomorphism. The reverse state-
ment is also true: kernels of homomorphisms are always nor-
mal subgroups.

The group-constructing procedure inverse to factoring is
called extension. Given two groups, N and H , a group G is

called an extension of H by N (denoted as N .H ), if there
exists N0 �G such that N0 � N and G/N0 � H . In the case
when, in addition, H is also isomorphic to a subgroup of G

and G = NH , we deal with a split extension. The criterion
for G to be a split extension can also be written as existence
of N � G and H ≤ G such that NH = G and N ∩ H = 1,
so that G/N = H . The group G is then called a semidirect
product G = N � H .

Even if two groups N and H are fixed, they can support
several extensions and split extensions. Therefore one faces
the problem of classifying of all extensions of two given
groups.

For the most elementary example, consider extensions
of H = Z2 (generated by a) by N = Z2 (generated by
b), which should produce a group of order 4. Then, for
a split extension, we need a group G which has two dis-
tinct subgroups isomorphic to N and H . The only choice
is G = Z2 × Z2, which can be presented as 〈a, b |a2 = b2 =
(ab)2 = e〉. For a non-split extension, we require that only N

is isomorphic to a subgroup of G. Thus, we still have b2 = e,
while a2 must not be the unit element. Then we have to set
a2 = b producing the group Z4. So, Z4 does not split over
Z2, while Z2 × Z2 does.

3.3 Characteristic subgroups

In what concerns embedding of groups, normality is a rela-
tively weak property. Namely, if K �H and H �G, then K

is not necessarily normal in G (it is instead called subnormal
in G). Indeed, recall that a normal subgroup K �H stays in-
variant under all inner automorphisms on H . Here “inner”
is meant with respect to the group H , namely, h−1Kh = K

for all h ∈ H . However, since H � G, one can fix g ∈ G

but g /∈ H and consider an automorphism on H defined by
H → g−1Hg. This is indeed an automorphism on H be-
cause it induces a permutation of elements of H preserving
its group property, but it is not inner, because g does not be-
long to H . Therefore K does not have to be invariant under
it: g−1Kg �= K .

However, there is a stronger property which guarantees
normality for embedded groups. Let us call a subgroup K

characteristic in H if it is invariant under all (not only inner)
automorphisms of H . Then, repeating the above arguments,
we see that if K is characteristic in H , and H is normal in
G, then K is also normal in G. Also, if K is characteristic in
H and H is characteristic in G, then K is also characteristic
in G. Thus, knowing that some subgroups are characteristic
gives even more information than their normality.

There is one simple rule which guarantees that certain
subgroups are characteristic. If we have a rule defined in
terms of the group G which identifies its subgroup H

uniquely, then H is characteristic in G. Two important ex-
amples are:
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• the center of the group G denoted as Z(G), which is the
set of all elements z ∈ G such that they commute with all
elements of G:

Z(G) = {
z ∈ G | [z, g] = e ∀g ∈ G

}
. (5)

The center of an abelian group coincides with the group
itself.

• the commutator subgroup (or derived subgroup) of G de-
noted as G′ and defined as the subgroup generated by all
commutators:

G′ = 〈[x, y]〉, x, y ∈ G. (6)

Note that the word “generated” is needed because the set
of commutators is generally speaking not closed under the
group multiplication. Clearly, the commutator subgroup
of an abelian group is trivial, therefore the size of G′ can
be used to qualitatively characterize how far G is from
being abelian.

3.4 Consequences of existence
of a normal maximal abelian subgroup

Let us now prove a rather simple group-theoretic result,
which, however, will be important for our classification of
symmetries in 3HDM. This result, loosely speaking, is the
observation that a mere existence of a subgroup of G with
some special properties can strongly restrict the structure of
the group G.

First, an abelian subgroup A < G is called a maximal
abelian subgroup if there is no other abelian subgroup B

with property A < B ≤ G. Note that the word “maximal”
refers not to the size but to containment. This definition does
not specify a unique subgroup; in fact a group can have sev-
eral maximal abelian subgroups. They correspond to termi-
nal points in the partially ordered tree of abelian subgroups
of G.

Suppose that A is an abelian subgroup of a finite group G.
Elements of A, of course, commute among themselves. But
it can also happen that there exist other elements g ∈ G,
g /∈ A, which also commute with all elements of A. The set
of all such elements is called the centralizer of A in G:

CG(A) = {
g ∈ G | [g,a] = e ∀a ∈ A

}
. (7)

It is easy to check that CG(A) is a subgroup of G, and it can
be non-abelian. The name “centralizer” refers to the fact that
although A is not the center in G, it is the center in CG(A).

Clearly, A ≤ CG(A). If A is a proper subgroup of CG(A),
then it means that A is not a maximal abelian subgroup. In-
deed, we take an element g ∈ CG(A), g /∈ A, and consider
another subgroup B = 〈A,g〉. This subgroup is abelian and
is strictly larger than A: A < B ≤ G. On the other hand,
an element x ∈ G which commutes with all elements of B

will certainly commute with all elements of A, while the
converse is not necessarily true. Therefore, we get the fol-
lowing chain: A < B ≤ CG(B) ≤ CG(A). Next, we check
whether B is a proper subgroup of CG(B). If so, we can en-
large it again in the same way by considering C = 〈B,g′〉,
where g′ ∈ CG(B), g′ /∈ B . We can continue this procedure
until it terminates with an abelian subgroup K which is self-
centralizing:

A < B < · · · < K = CG(K) ≤ · · · ≤ CG(B) ≤ CG(A). (8)

Since there exists no other element in G which would com-
mute with all elements of K , we conclude that K is a maxi-
mal abelian subgroup in G.

Let us now see what changes if the abelian subgroup A

is normal. Any element g ∈ G acting on A by conjugation
induces an automorphism of A. Thus, we have a map from
G to the group of automorphisms of A, f : G → Aut(A).
The kernel of f consists of such g’s which induce the trivial
automorphism of A, that is, which leave every a ∈ A un-
changed: g−1ag = a ∀a ∈ A. But this coincides with the
definition of centralizer. Therefore we conclude that kerf =
CG(A).

The fact that CG(A) is the kernel of the homomorphism
f implies that CG(A) is a normal subgroup of G. Note that
it is essential that the abelian subgroup in question, A, is
normal; if it were not, CG(A) would not have to be normal.

Now, if A is a normal maximal abelian subgroup of G,
then kerf = CG(A) = A. In other words, the kernel of
G/A → Aut(A) is trivial, and therefore, G/A is isomorphic
to a subgroup of Aut(A). Summarizing our discussion, if A

is a normal maximal abelian subgroup of G, then G can be
constructed as an extension of A by a subgroup of Aut(A):

G � A.K, where K ≤ Aut(A). (9)

This is a powerful structural implication for the group G of
existence of a normal maximal abelian subgroup.

3.5 Automorphism groups

For future reference, we give some details on the automor-
phism groups Aut(A) of certain abelian groups A. In this
subsection we will use the additive notation for the group
operation.

Suppose A = Zn is the cyclic group of order n with gen-
erator e: ne = e + · · · + e︸ ︷︷ ︸

n times

= 0. An automorphism σ act-

ing on A is a group-structure-preserving permutation of
elements of A. Since A is generated by e, this automor-
phism is completely and uniquely defined once we assign
the value of σ(e) = k and make sure that mσ(e) �= 0 for all
0 < m < n. This holds when k and n are coprime (k = 1 is
coprime to any n). The number of integers less than n and
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coprime to n is called the Euler function ϕ(n). Thus, we
have |Aut(Zn)| = ϕ(n). For a prime p, the Euler function
is obviously ϕ(p) = p − 1. In general, if p

k1
1 · · ·pks

s is the
prime decomposition for n, then

ϕ
(
p

k1
1 · · ·pks

s

) = ϕ
(
p

k1
1

) · · ·ϕ(
pks

s

)

= (
p

k1
1 − p

k1−1
1

) · · · (pks
s − pks−1

s

)
.

Suppose now that p is prime and

A = Zp × · · · × Zp︸ ︷︷ ︸
n times

= (Zp)n.

Then G can be considered as an n-dimensional vector space
over a finite field Fp of order p. Vectors in this space can be
written as

x = k1e1 + · · · + knen,

where numbers ki ∈ Fp and “basis vectors” ei are certain
non-zero elements of the ith group Zp . The group of all au-
tomorphisms on (Zp)n is then the general linear group in
this space GLn(p).

Again, in order to define an automorphism σ acting on A,
it is sufficient to assign where the basis vectors ei are sent
by σ and to make sure that they stay linearly independent:
that is, if m1σ(e1) + · · · + mnσ(en) = 0, with mi ∈ Fp , then
all mi = 0. In order to calculate |GLn(p)|, we just need to
find to how many different bases the initial basis {e1, . . . , en}
can be mapped to. The first vector, e1, can be sent to pn − 1
vectors, the second vector, e2, can then be sent to pn − p

vectors linearly independent with σ(e1), and so forth. The
result is

∣∣GLn(p)
∣∣ = (

pn − 1
)(

pn − p
) · · · (pn − pn−1)

= p
n(n−1)

2 (p − 1)
(
p2 − 1

) · · · (pn − 1
)
. (10)

In particular, |Aut(Zp × Zp)| = |GL2(p)| = p(p − 1)(p2 −
1), and the p-subgroup of Aut(Zp × Zp) can only be Zp .

3.6 Nilpotent groups

In group theory, a powerful tool to investigate structure and
properties of groups is to establish existence of subgroup se-
ries with certain properties. For example, a finite collection
of normal subgroups Ni � G is called a normal series for G

if

1 = N0 ≤ N1 ≤ N2 ≤ · · · ≤ Nr = G. (11)

Restricting the properties of the factor groups Ni/Ni−1 for
all i, one can infer non-trivial consequences for the group G.

If all the factor groups in the normal series lie in the cen-
ters, Ni/Ni−1 ≤ Z(G/Ni−1) for 1 ≤ i ≤ r , then (11) be-
comes a central series, and the group G is then called nilpo-
tent. The smallest number r for which the central series ex-
ists is called the nilpotency class of G.

Clearly, abelian groups are nilpotent groups of class 1
because for them G ≤ Z(G). A non-abelian group G whose
factor group by its center G/Z(G) gives an abelian group
is a nilpotent group of class 2, etc. So, nilpotent groups are
often regarded as “close relatives” of abelian groups in the
class of non-abelian ones. One important class of nilpotent
groups is p-groups, i.e. finite groups whose order is a power
of a prime p.

Nilpotent groups bear several remarkable features. We
mention here only two of them which we will use below.
First, a nilpotent group has a normal self-centralizing, and
therefore maximal, abelian subgroup (Lemma 4.16 in [49]),
whose implications were discussed above. Second, if H is
a proper subgroup of a nilpotent group G, then H is also a
proper subgroup of NG(H) (Theorem 1.22 in [49]). In other
words, the only subgroup of a nilpotent group G which hap-
pens to be self-normalizing is the group G itself.

3.7 Solvable groups

A group G is called solvable if it has a normal series (11)
in which all factor groups Ni/Ni−1 are abelian. This is a
broader definition than the one of nilpotent groups. There-
fore we can expect that both criteria and properties of solv-
able groups will be weaker than for nilpotent groups.

One particular example is that unlike nilpotent groups,
a solvable group does not have to possess a normal self-
centralizing abelian subgroup. However, what it does pos-
sess is just a normal abelian subgroup. In order to prove
this statement, let us first introduce another series of nested
subgroups, called the derived series. We first find G′, the
derived subgroup of G, then we find its derived subgroup,
G′′ = (G′)′, then the third derived subgroup, G(3) = (G′′)′,
and so on. The derived series is simply

· · · ≤ G(3) ≤ G′′ ≤ G′ ≤ G. (12)

The relation of the derived series with solvability is the
following: G is solvable if and only if its derived series ter-
minates, i.e. G(m) = 1 for some integer m ≥ 0 (Lemma 3.9
in [49]). The basic idea behind the proof of this statement is
the observations that G′ is the unique smallest normal sub-
group of G with an abelian factor group. Indeed, if N � G

and φ : G → G/N is the canonical homomorphism, then
φ(G′) = (G/N)′ (commutators are mapped into commu-
tators). If we want G/N to be abelian, then (G/N)′ = 1,
and G′ ≤ kerφ = N . Therefore, whatever Nr−1 we choose
in (11), it will contain G′. This argument can be continued
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through the series, and since the normal series terminates, so
does the derived series.

Now, since G(m) = 1 for some finite m, we can consider
G(m−1). It is an abelian group because its derived subgroup
is trivial. Being a characteristic subgroup of G(m−2), it is
definitely normal in G. Thus, we obtain the desired normal
abelian subgroup.

A normal abelian subgroup is not guaranteed to be maxi-
mal. One can, of course, extend it to a maximal abelian sub-
group, but then it is not guaranteed to be normal. Thus, in
order to use the result (9), we need to prove the existence of
an abelian subgroup which combines both properties. This
situation is not generic: a solvable groups does not have to
possess a normal maximal abelian subgroup. However, it
can possess it in certain cases, and we will show below that
in what concerns finite symmetry groups in 3HDM, they do
contain such a subgroup.

4 Structure of the finite symmetry groups in 3HDM

4.1 Abelian subgroups and Burnside’s theorem

Our goal is to understand which finite groups G can be re-
alized as Higgs-family symmetry groups in the scalar sector
of 3HDM. We stress that we look for realizable groups only,
see discussion in Sect. 2.3.

Since finite groups have abelian subgroups, it is natu-
ral first to ask which abelian subgroups G can have. This
can be immediately inferred from our paper [37] devoted to
abelian symmetry groups in NHDM. In the particular case
of 3HDM, only the following groups can appear as abelian
subgroups of a finite realizable symmetry group G:

Z2, Z3, Z4, Z2 × Z2, Z3 × Z3. (13)

The first four are the only realizable finite subgroups of max-
imal tori in PSU(3). The last group, Z3 × Z3, is on its own
a maximal abelian subgroup of PSU(3), but it is not realiz-
able because a Z3 ×Z3-symmetric potential is automatically
symmetric under (Z3 × Z3) � Z2, see explicit expressions
below. However, since it appears as an abelian subgroup of
a finite realizable group, it must be included into considera-
tion. Trying to impose any other abelian Higgs-family sym-
metry group on the 3HDM potential unavoidably makes it
symmetric under a continuous group.

Let us first see what order the finite (non-abelian)
group G can have. We note that the orders of all abelian
groups in (13) have only two prime divisors: 2 and 3. Thus,
by Cauchy’s theorem, the order of the group G can also have
only these two prime divisors: |G| = 2a3b . Then according
to Burnside’s paqb-theorem the group G is solvable (The-
orem 7.8 in [49]), and this means that G contains a normal
abelian subgroup, which belongs, of course, to the list (13).

In order to proceed further, we need to prove that one
can in fact find a normal maximal (that is, self-centralizing)
abelian subgroup of G, a property which is not generic to
solvable groups but which holds in our case.

4.2 Existence of a normal abelian
self-centralizing subgroup

Suppose A < G is a normal abelian subgroup, whose ex-
istence follows from the solvability of G. In this subsec-
tion we prove that even if it is not self-centralizing, i.e. A <

CG(A), then there exists another abelian subgroup B > A,
which is normal and self-centralizing in G.

Suppose that A < CG(A). Then for every b ∈ CG(A)\A,
the group Ab = 〈A,b〉 is an abelian subgroup of G, which
properly contains A. Figure 1 should help visualize embed-
ding of various abelian subgroups of this kind in CG(A).
Note that CG(A) can be non-abelian. There are two possi-
bilities compatible with the list (13):

(i) A = Z2, and then Ab can be either Z2 × Z2 or Z4,
(ii) A = Z3, and then Ab = Z3 × Z3.

Thus CG(A) is either a 2-group or a 3-group. Below we as-
sume that p = 2 if CG(A) is a 2-group, and p = 3 if CG(A)

is a 3-group.
Since CG(A) is a p-group, it is nilpotent, and according

to discussion in Sect. 3.6, it possesses a normal maximal
abelian subgroup B (which of course can be represented
as Ab for some b), while B properly includes A = Zp:
A < B ≤ CG(A). In particular, B is self-centralizing in
CG(A), so according to our discussion in Sect. 3.4, the fac-
tor group CG(A)/B is a subgroup of Aut(B). If B = CG(A),
then CG(A) is abelian and, being a centralizer of a nor-
mal subgroup, it is normal in G. Clearly B ≤ CG(B) ≤
CG(A) = B , therefore CG(A) is the desired normal abelian
self-centralizing subgroup of G.

Assume now that B �= CG(A):

A < B = CCG(A)(B)
︸ ︷︷ ︸

=CG(B)

< CG(A) < G. (14)

Fig. 1 Illustration of CG(A) and some of its subgroups
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The illustration in Fig. 1 refers to this case. Since B is
an abelian subgroup of G, it must be in list (13). So, ei-
ther B = Zp × Zp or B = Zp2 (the last case occurs only
if p = 2), and in any of these cases we obtain |B| = p2.
Now, recall that CG(A) is a p-group, and so is CG(A)/B . If
B = Zp ×Zp , then CG(A)/B is a p-subgroup of GL2(p), in
particular, |CG(A)/B| = p. If B = Zp2 , then CG(A)/B is a
p-subgroup of Aut(Zp2). Since ϕ(p2) = p(p−1), it follows
that |CG(A)/B| = p. So in any case we have |CG(A)| = p3.

Now the arguments depend on p.

• In the case p = 2, we see that CG(A) is a non-abelian
group of order 8. Thus CG(A) is either dihedral group D8

or the quaternion group Q8. If CG(A) is dihedral, then it
possesses the unique (and hence characteristic) subgroup
H = Z4, so H is the desired normal self-centralizing sub-
group of G. If G = Q8 is quaternion then, as we describe
in Sect. 6.3.3, trying to impose a Q8 symmetry group on
the 3HDM potential will result in a potential symmetric
under a continuous group. Thus, this situation cannot hap-
pen if we search for finite realizable groups G. Note that
this feature is purely calculational and does not rely on the
existence of a normal maximal abelian subgroup which
we prove here.

• In the case p = 3, we find that CG(A) is a non-abelian
group of order p3 = 27 and exponent 3, i.e. for every
g ∈ CG(A) we have g3 = 1. It is non-abelian and cannot
contain elements of order 9 because (13) does not contain
abelian groups of orders 9 or 27.

In this case we do not yet know whether B is normal
in G, but it is definitely normal in its own normalizer
B � NG(B) ≤ G. Moreover CG(A) ≤ NG(B), since B

is normal in CG(A). These relations are visualized by the
following relations:

B � CG(A) ≤ NG(B) ≤ G < PSU(3). (15)

We can then consider the factor group NG(B)/B . We
know that B = Z3 × Z3 is a maximal abelian group in
PSU(3) [37]; therefore it is self-centralizing in PSU(3)

and, consequently, in G and in its subgroup NG(B).
Then, in particular, we see that NG(B)/B is a subgroup
of Aut(B) = GL2(3). Moreover, the analysis which will
be exposed in detail in Sect. 7 allows us to state that
NPSU(3)(B)/B = SL2(3), so NG(B)/B is a subgroup of
SL2(3). We show in Sect. 7 that one cannot use elements
of order 3 from SL2(3) because the potential will then
become invariant under a continuous symmetry group.
Therefore, NG(B)/B cannot have elements of order 3,
which implies that B is a Sylow 3-subgroup of NG(B).
The same statement holds for every group that lies “be-
tween” NG(B) and B , in particular, to CG(A). This
contradicts the fact that |CG(A) : B| = 3 and CG(A) ≤
NG(B). So this case is impossible.

Summarizing the group-theoretic part of our derivation, we
proved that any finite group G which can be realized as a
Higgs-family symmetry group in 3HDM is solvable, and in
addition it contains a normal self-centralizing abelian sub-
group A belonging to the list (13). Then, according to (9)
the group G can be constructed as an extension of A by a
subgroup of Aut(A).

This marks the end of the group-theoretic part of our
analysis. We now need to check all the five candidates for A,
whose explicit realization were already given in [37], and by
means of direct calculations see which extension can work
in 3HDM.

5 Detecting continuous symmetries

Before we embark on analyzing each particular abelian
group and its extensions, let us discuss an important issue.
In this paper, we focus on discrete symmetries of the scalar
sector in 3HDM. The symmetry groups we study must be
realizable, that is, we need to prove that a potential sym-
metric under a finite group G is not symmetric under any
larger group containing G. In particular, we must prove that
a given G-symmetric potential does not have any continuous
symmetry.

In principle, it would be desirable to derive a basis-
invariant criterion for existence or absence of a continu-
ous symmetry. Such condition is known for 2HDM [32–36],
while for the more than two doublets a necessary and suffi-
cient condition is still missing. However, in certain special
but important cases it is possible to derive a sufficient con-
dition for absence of any continuous symmetry. Since this
method relies on the properties of the orbit space in 3HDM,
we start by briefly describing it.

5.1 Orbit space in 3HDM

The formalism of representing the space of electroweak-
gauge orbits of Higgs fields via bilinears was first developed
for 2HDM [32–36, 50–52], and then generalized to N dou-
blets in [20]. Below we focus on the 3HDM case.

The Higgs potential depends on the Higgs doublets via
their gauge-invariant bilinear combinations φ

†
aφb , a, b =

1,2,3. These bilinears can be organized into the following
real scalar r0 and real vector ri , i = 1, . . . ,8:

r0 = (φ
†
1φ1) + (φ

†
2φ2) + (φ

†
3φ3)√

3
,

r3 = (φ
†
1φ1) − (φ

†
2φ2)

2
,

r8 = (φ
†
1φ1) + (φ

†
2φ2) − 2(φ

†
3φ3)

2
√

3
,
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r1 = Re
(
φ

†
1φ2

)
, r2 = Im

(
φ

†
1φ2

)
, r4 = Re

(
φ

†
3φ1

)
,

r5 = Im
(
φ

†
3φ1

)
, r6 = Re

(
φ

†
2φ3

)
, r7 = Im

(
φ

†
2φ3

)
.

(16)

The last six components can be grouped into three “complex
coordinates”:

r12 = (
φ

†
1φ2

) = r1 + ir2,

r45 = (
φ

†
3φ1

) = r4 + ir5,

r67 = (
φ

†
2φ3

) = r6 + ir7.

(17)

It is also convenient to define the normalized coordinates
ni = ri/r0. The orbit space of the 3HDM is then represented
by an algebraic manifold lying in the 1 + 8-dimensional Eu-
clidean space of r0 and ri and is defined by the following
(in)equalities [20]:

r0 ≥ 0, �n2 ≤ 1,
√

3dijkninjnk = 3�n2 − 1

2
, (18)

where dijk is the fully symmetric SU(3) tensor. It can also
be derived that |�n| is bounded from below:

�n2 = α,
1

4
≤ α ≤ 1. (19)

The value of α parametrizes SU(3)-orbits inside the orbit
space. In particular, we will use this relation below when
substituting r2

3 + r2
8 by αr2

0 − |r12|2 − |r45|2 − |r67|2.
Any U(3) transformation in the space of doublets φ1, φ2,

φ3 leaves r0 invariant and induces an SO(8) rotation of the
vector ri . Note that this map is not surjective, namely not ev-
ery SO(8) rotation of ri can be induced by a U(3) transfor-
mation in the space of doublets. Therefore, unlike in 2HDM,
we do not expect the orbit space of 3HDM to be SO(8)-
symmetric, and the last condition in (18) stresses that.

Let us take a closer look at the (n3, n8)-subspace. It fol-
lows from (18) that the orbit space intersects this plane along
the equilateral triangle shown in Fig. 2. Its vertices P , P ′,
P ′′ lie on the “neutral” manifold, which satisfy the condition
�n2 = 1 and which would correspond to the neutral vacuum
if the minimum of the potential were located there, while
the line segments joining them correspond to the charge-
breaking vacuum, see details in [20]. The orbit space in this
plane clearly lacks the rotational symmetry and has only the
symmetries of the equilateral triangle.

5.2 Absence of continuous symmetries

The convenience of the formalism of bilinears is that the
most general Higgs potential becomes a quadratic form in
this space:

V = −M0r0 − Miri + 1

2
Λ00r

2
0 + Λ0i r0ri + 1

2
Λij rirj . (20)

Fig. 2 The orbit space of 3HDM in the (n3, n8)-subspace (all other
ni = 0). The outer and inner circles correspond to |�n| = 1 and
|�n| = 1/2, respectively

The real symmetric matrix Λij has eight real eigenvalues
(counted with multiplicity). In order for the potential to be
symmetric under a continuous group of transformations, Λij

must have eigenvalues of multiplicities > 1. Note that any
statement about eigenvalues of Λij is basis-invariant and
therefore it can be checked in any basis. Furthermore, if we
find a basis in which Λij has a block-diagonal form, and
if eigenvalues from different blocks are distinct, then a con-
tinuous symmetry requires that each block is either invariant
under this symmetry, or contains eigenvalues with multiplic-
ity >1.

Let us consider an important special case of this sit-
uation. Suppose that the potential has no terms of type
(φ

†
aφa)(φ

†
bφc), where a, b, c are all distinct. This implies

the absence of terms r0,3,8r1,2,4,5,6,7, and the block-diagonal
form of Λij , in which two blocks correspond to the (r3, r8)

subspace and to its orthogonal complement. Suppose also
that the eigenvalues of Λij in the (r3, r8) subspace are dis-
tinct from those in the orthogonal complement. It follows
then that any possible continuous symmetry must act triv-
ially in the (r3, r8) subspace, because the orbit space here
lacks the rotational invariance. However, if r0, r3, and r8

are fixed, then φ
†
1φ1, φ

†
2φ2, and φ

†
3φ3 are also fixed. So, the

doublets do not mix, and the possible continuous symmetry
group can only be a subgroup of the group of pure phase
rotations, which were studied in [37].

If in addition it is known that a given potential is not
symmetric under continuous phase rotations, then we con-
clude that it does not have any continuous symmetry from
PSU(3). It turns out that all the cases of various finite sym-
metry groups we consider below, except the last one, are of
this type. Since the arguments of this section provide a suffi-
cient condition for absence of continuous symmetries, they
guarantee that the corresponding potentials can have only fi-
nite symmetry groups. Absence of a continuous symmetry
in the very last case will be proved separately.
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6 Possible extensions: the torus chain

We now check all the candidates for A from the list (13)
and see which extension can work in 3HDM. In this section
we will deal with the first four groups from the list, which
arise as subgroups of the maximal torus; the last group will
be considered later. For each group A, we use its explicit
realization given in [37] as a group of rephasing transfor-
mations, and then we search for additional transformations
from PSU(3) with the desired multiplication properties.

6.1 Representing elements of PSU(3)

Before we start analysis of each case, let us make a gen-
eral remark on how we describe the elements of PSU(3).
Using the bar notation for the canonical homomorphism
SU(3) → PSU(3), we denote H̄ < PSU(3) if its full preim-
age in SU(3) is H . Denoting the center of SU(3) as Z =
Z(SU(3)) � Z3, we have Z = {1, z, z2}, where

z = diag(ω,ω,ω), ω = e2πi/3. (21)

The elements of the group H (a, b, . . . ∈ H ) will be writ-
ten as 3 × 3 matrices from SU(3). The elements of H̄

(ā, b̄, . . . ∈ H̄ ) are the corresponding cosets of Z in H . Ex-
plicit manipulation with these cosets is inconvenient, there-
fore in our calculation we represent an element ā ∈ PSU(3)

by any of the three representing elements from SU(3): a,
az, or az2. We will usually choose a and then prove that this
representation is faithful (does not depend on the choice of
representing element).

6.2 Extending Z2 and Z3

The smallest group from the list is A = Z2, whose automor-
phism group is Aut(Z2) = {1}, so that G = Z2. This case
was already considered in [37].

The next possibility is A = Z3, whose Aut(Z3) = Z2. The
only non-trivial case to be considered is G/A = Z2, which
implies that G can be either Z6 or D6 � S3, the symmetry
group of the equilateral triangle. The former can be disre-
garded because it does not appear in the list (13), thus we
focus only on the D6 case.

6.2.1 Constructing D6

The group D6 is generated by two elements a, b with the
following relations: a3 = 1, b2 = 1, ab = ba2. Following
[37], we represent the Z3 group by phase rotations:

a = diag
(
ω,ω2,1

)
. (22)

There are in fact three such groups which differ only by the
choice of the doublet which is fixed. However, their gener-
ators, a, az, and az2, differ only by a transformation from

the center, and therefore all of them correspond to the same
generator ā from PSU(3). It is straightforward to check that
selecting a to represent ā is a faithful representation.

The explicit solution of the matrix equation ab = ba2

shows that b ∈ SU(3) must be of the form

b =
⎛

⎝
0 eiδ 0

e−iδ 0 0
0 0 −1

⎞

⎠ , (23)

with an arbitrary δ. The choice of the mixing pair of doublets
(φ1 and φ2 in this case) is fixed by the choice of invariant
doublet in a.

The fact that b is not uniquely defined means that there
exists not a single D6 group but a whole family of D6

groups parametrized by the value of δ. Below, when check-
ing whether a potential is D6 symmetric, we will need to
check its invariance under all possible D6’s from this fam-
ily.

The generic Z3-symmetric potential contains the part in-
variant under any phase rotation

V0 = −
∑

1≤i≤3

m2
i

(
φ

†
i φi

) +
∑

1≤i≤j≤3

λij

(
φ

†
i φi

)(
φ

†
j φj

)

+
∑

1≤i<j≤3

λ′
ij

(
φ

†
i φj

)(
φ

†
j φi

)
,

and the following additional terms:

VZ3 = λ1
(
φ

†
2φ1

)(
φ

†
3φ1

) + λ2
(
φ

†
1φ2

)(
φ

†
3φ2

)

+ λ3
(
φ

†
1φ3

)(
φ

†
2φ3

) + h.c. (24)

with complex λ1, λ2, λ3. At least two of them must be non-
zero, otherwise the potential will be symmetric under a con-
tinuous group of Higgs-family transformations [37]. Let us
denote their phases by ψ1, ψ2, and ψ3, respectively. If the
parameters of V0 satisfy

m2
11 = m2

22, λ11 = λ22,

λ13 = λ23, λ′
13 = λ′

23,
(25)

and if, in addition, |λ1| = |λ2|, then the whole potential be-
comes symmetric under one particular D6 group constructed
with b in (23) with the value of δ = (ψ2 − ψ1 + π)/3 +
2πk/3. The extra freedom given by 2πk/3 corresponds to
three order-two elements of D6: b, ab, a2b. We opt to de-
fine b by setting k = 0. Alternatively, we can be compactly
write the condition as

3δ = π − ψ1 + ψ2. (26)

To summarize, the criterion of the D6 symmetry of the po-
tential is that, after a possible doublet relabeling, conditions
(25) and (26) are satisfied.



Page 12 of 25 Eur. Phys. J. C (2013) 73:2309

Let us also note that when constructing the group D6

we could have searched for b satisfying not ab = ba2 but
ab = ba2 · zp , with p = 1,2. Solutions of this equation ex-
ist, but they do not lead to any new possibilities. Indeed, let
us introduce a′ = azp . Then, we get a′b = ba′2. Thus, we
get the same equation for b as before, up to a cyclic permu-
tation of doublets, the possibility which we already took into
account.

6.2.2 Proving that D6 is realizable

This construction allows us to write down an example of
the D6-symmetric potential: it is V0 restricted by condi-
tions (25) plus VZ3 in (24) subject to |λ1| = |λ2|. In order to
show that D6 is realizable, we need to demonstrate that this
potential is not symmetric under any larger Higgs-family
transformation group.

This proof is short and contains two steps. First, we note
that the conditions described in Sect. 5 are fulfilled: the
(r3, r8)-subspace does not couple to its orthogonal comple-
ment via Λij , and that the eigenvalues in these two sub-
spaces are defined by different sets of free parameters. The
extra terms (24) guarantee that there is only finite group of
phase rotations, the group Z3. Therefore, the sufficient con-
ditions described in Sect. 5 are satisfied, and the generic D6-
symmetric potential has no continuous symmetry.

Second, we need to show that the generic D6-symmetric
potential has no higher discrete symmetries. This is proved
by the simple observation that all other finite groups to
be discussed below which could possibly contain D6 lead
to stronger restrictions on the potential than (25) and
|λ1| = |λ2|. Therefore, not satisfying those stronger restric-
tions will yield a potential symmetric only under D6.

6.2.3 Including antiunitary transformations

Any generalized-CP (antiunitary) transformation acting on
three doublets is of the form

J ′ = c · J, c ∈ PSU(3). (27)

Here J is the operation of hermitian conjugation of the dou-
blets. If G is the symmetry group of unitary transformations,
then it is normal in 〈G,J ′〉, and J ′ induces automorphisms
in G. So, when we search for J ′, we require that

(
J ′)2 ∈ G,

(
J ′)−1

aJ ′ ∈ G, (28)

where a generically denotes the generators of G. If such a
transformation is found, the group is extended from G to
G � Z

∗
2, where the asterisk on the group indicates that its

generator is antiunitary.
Note the crucial point of our method: when extending G

by an antiunitary transformation, we require that the uni-
tary transformation symmetry group remains G. The logic

is simple. If we start with a realizable group G of unitary
transformations but do not impose condition (28), we will
end up with a potential being symmetric under G̃�Z

∗
2, with

G̃ > G. But at the end of this paper we will have a complete
list of all finite realizable symmetry groups of unitary trans-
formations, and this list will contain G̃ anyway. So, this pos-
sibility is not overlooked but will be studied in its due time
after construction of G̃.

Now, turning to extension of D6 by an antiunitary sym-
metry, we first note that the resulting group D6 �Z

∗
2 is a non-

abelian group of order 12 containing a normal subgroup D6.
Among the three non-abelian groups of order 12, there ex-
ists only one group, namely D6 × Z

∗
2, with a subgroup D6

(which is automatically normal because all subgroups of in-
dex 2 are normal). This fact can also be proved in a more
general way without knowing the list of groups of order 12.
Note that it contains, among other, the subgroup Z

∗
6; its pres-

ence does not contradict the list (13) because that list refers
only to the groups of unitary transformations.

Next, let us denote the generator of Z
∗
2 by J ′ = cJ . Since

J ′ centralizes the entire D6, it follows that (J ′)−1aJ ′ = a,
(J ′)−1bJ ′ = b, and (J ′)2 = cJ cJ = cc∗ = 1. The matrix c

satisfying these conditions must be of the form

c =
⎛

⎝
0 eiγ 0

eiγ 0 0
0 0 −e−2iγ

⎞

⎠ , (29)

with arbitrary γ . Requiring the potential to stay invariant
under J ′, we obtain the following conditions on γ : 6γ =
−2(ψ1 + ψ2) = 2ψ3. Therefore, if the following extra con-
dition is fulfilled:

2(ψ1 + ψ2 + ψ3) = 0 (30)

the D6-invariant potential becomes symmetric under the
group D6 × Z

∗
2. If this condition is not satisfied, the sym-

metry group remains D6 even in the case when antiunitary
transformations are allowed. We conclude that both D6 and
D6 × Z

∗
2 are realizable in 3HDM.

It is interesting to note that if we set λ3 = 0, then the po-
tential would still be invariant under D6. However, in this
case it becomes symmetric under J ′ with 6γ = −2(ψ1 +
ψ2), without any extra condition on ψ1 and ψ2, and the po-
tential becomes automatically invariant under D6 × Z

∗
2. So,

we conclude that the fact that D6 is still realizable even if
antiunitary transformations are included is due to the special
feature of the Z3-symmetry: we have three, not two terms in
the Z3-symmetric potential, and it is the third term that pre-
vents an automatic antiunitary symmetry.

6.3 Extending Z4

Let us now take A = Z4 generated by a. Then Aut(Z4) = Z2,
so that G = Z4 .Z2 generated by a and some b /∈ Z4. The
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two non-abelian possibilities for G are the dihedral group
D8 representing symmetries of the square, and the quater-
nion group Q8. In both cases b−1ab = a3, with the only
difference that b2 = 1 for D8 while b2 = a2 for Q8. Note
that extension leading to the dihedral group is split, D8 =
Z4 � Z2, while Q8 is not.

6.3.1 Constructing D8

Representing a by phase rotations a = diag(i,−i,1), we
find that b satisfying these conditions is again of the form
(23) with arbitrary δ. However, now we do not have the free-
dom to choose the pair of doublets which are mixed by b:
this pair is fixed by a. Also, unlike the Z3 case, the matrix
equation ab = ba3 · z does not have solutions for b ∈ SU(3).

The Z4-symmetric potential (for this choice of a) is V0 +
VZ4 , where

VZ4 = λ1
(
φ

†
3φ1

)(
φ

†
3φ2

) + λ2
(
φ

†
1φ2

)2 + h.c. (31)

The phases of λ1 and λ2 are, as usual, denoted as ψ1 and ψ2,
respectively. Upon b, the first term here remains invariant,
while the second term transforms as
(
φ

†
1φ2

)2 �→ e−4iδ
(
φ

†
2φ1

)2
. (32)

This means that the potential (31) is always symmetric under
(23) provided that we choose

δ = ψ2/2. (33)

Therefore, in order to get a D8-symmetric potential we only
require that V0 satisfies conditions (25). The proof that D8 is
realizable (as long as only unitary transformations are con-
cerned) follows along the same lines as in Sect. 6.2.2.

6.3.2 Including antiunitary transformations

In [37] we found that exactly the same conditions, namely
(25) and (33), must be satisfied for existence of an antiu-
nitary transformation commuting with the elements of Z4.
This transformation is again J ′ = cJ , where c is given by
(29) with 6γ = 2ψ1, and it commutes with all elements
of D8. Therefore, if we include antiunitary transformations,
we automatically get the group D8 ×Z

∗
2, while D8 becomes

non-realizable. Note that the resulting group does not con-
tain Z

∗
8. Indeed, we showed in [37] that imposing Z

∗
8 sym-

metry group leads to a potential with continuous symmetry.

6.3.3 Attempting at Q8

Solving matrix equations ab = ba3 and b2 = a2, we get the
following form of b:

b(Q8) =
⎛

⎝
0 eiδ 0

−e−iδ 0 0
0 0 1

⎞

⎠ . (34)

By checking how VZ4 in (31) transforms under it, we find
that the first term simply changes its sign. The only way to
make the potential symmetric under Q8 is to set λ1 = 0. But
then we know from [37] that the potential becomes invariant
under a continuous group of phase rotations. Therefore, Q8

is not realizable.

6.4 Extending Z2 × Z2

If A = Z2 × Z2, then Aut(Z2 × Z2) = GL2(2) = S3. The
group Z2 × Z2 can be realized as the group of indepen-
dent sign flips of the three doublets with generators a1 =
diag(1,−1,−1) (equivalent to the sign flip of the first dou-
blet) and a2 = diag(−1,1,−1) (equivalent to the sign flip
of the second doublet), so that a1a2 is equivalent to the sign
flip of the third doublet. The potential symmetric under this
group contains V0 and additional terms

VZ2×Z2

= λ̃12
(
φ

†
1φ2

)2 + λ̃23
(
φ

†
2φ3

)2 + λ̃31
(
φ

†
3φ1

)2 + h.c. (35)

with at least two among coefficients λ̃ij being non-zero. The
coefficients can be complex; as usual we denote their phases
as ψij . This model is also known as Weinberg’s 3HDM [6].

The non-abelian finite group G can be constructed as ex-
tension of A by Z2, by Z3, or by S3.

6.4.1 Extension (Z2 × Z2) .Z2

Consider first the extension (Z2 × Z2) .Z2. The only exten-
sion leading to a non-abelian group is (Z2 × Z2) .Z2 = D8,
and we already proved that this group is realizable. Never-
theless, we prefer to explicitly work it out to see the reduc-
tion of free parameters.

The element b which we search for must act on {a1, a2,

a1a2} as a transposition of any pair. In addition, b2 ∈
Z2 × Z2. It does not matter which pair of generators is
transposed, as this choice can be changes by renumbering
the doublets. So, we take b such that b−1a1b = a2 and
b−1a2b = a1. Then, b2 can be either 1 or a1a2, because
choices b2 = a1 or a2 lead to inconsistent relations. Indeed,
if we assume b2 = a1, then

a2 = b−1a1b = b−1b2b = b2 = a1,

which is a contradiction. In both cases (b2 = 1 and b2 =
a1a2) we get the group D8. Even more, we get the same D8

group: if b2 = a1a2, then b′ = ba1 satisfies b′2 = 1, while its
action on a1 and a2 remains the same. So, it is sufficient to
focus on the b2 = 1 case only.

Again, explicitly solving the matrix equations, we get b

of the form (23) with arbitrary δ. Then, we check how the
potential (35) changes upon b and find that we need to set
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4δ = 2ψ12, 2δ = −(ψ23 + ψ31), |λ̃23| = |λ̃31|.
(36)

Equations on the phase δ can be satisfied if

2(ψ12 + ψ23 + ψ31) = 0 ⇔ Im(λ̃12λ̃23λ̃31) = 0. (37)

So, if: (1) this condition is satisfied, (2) two among |λ̃ij | are
equal, (3) condition on V0 (25) is satisfied, then the potential
is D8-symmetric. Note also that if λ̃12 = 0 (which we are
allowed to consider because (35) contains three rather than
two terms), then condition on the phases is not needed.

It might seem that these conditions on the potential to
make it D8-symmetric are more restrictive than in the Z4

extension we studied above. However, note that the Z2 ×Z2-
symmetric potential (35) has six free parameters, and we
placed two conditions to reduce the number of free parame-
ters in the D8 potential to four (apart from V0). On the other
hand, (31) had only four from the beginning, and without
any restriction this number survives. Therefore we have the
same number of degrees of freedom when constructing D8

in either way.

6.4.2 Constructing (Z2 × Z2) � Z3 = T

The extension by Z3 is necessarily split, (Z2 × Z2) � Z3,
leading to the group T � A4, the symmetry group of the
tetrahedron. To construct it, we need b such that b3 = 1 with
the property that b acts on {a1, a2, a1a2} by cyclic permuta-
tions. Fixing the order of permutations by b−1a1b = a2, we
find that b must be of the form

b =
⎛

⎝
0 eiδ1 0
0 0 eiδ2

e−i(δ1+δ2) 0 0

⎞

⎠ , (38)

with arbitrary δ1, δ2. It then follows that if the coefficients
in (35) satisfy

|λ̃12| = |λ̃23| = |λ̃31|, (39)

then VZ2×Z2 is symmetric under one particular b with

δ1 = 2ψ12 − ψ31 − ψ23

6
, δ2 = 2ψ23 − ψ31 − ψ12

6
.

Then, by a rephasing transformation one also make the
phases of all λ̃ij equal and bring (35) to the following form:

VT = λ̃
[(

φ
†
1φ2

)2 + (
φ

†
2φ3

)2 + (
φ

†
3φ1

)2] + h.c. (40)

with a complex λ̃. In this form, the parameters δ1 = δ2 = 0,
and the matrix b is just the cyclic permutation of the dou-
blets. In addition, the symmetry under b places stronger con-
ditions on the parameters of V0, so that the most general V0

satisfying them is

V0 = −m2[(φ†
1φ1

) + (
φ

†
2φ2

) + (
φ

†
3φ3

)]

+ λ
[(

φ
†
1φ1

) + (
φ

†
2φ2

) + (
φ

†
3φ3

)]2

+ λ′[(φ†
1φ1

)(
φ

†
2φ2

) + (
φ

†
2φ2

)(
φ

†
3φ3

)

+ (
φ

†
3φ3

)(
φ

†
1φ1

)]

+ λ′′(|φ†
1φ2|2 + |φ†

2φ3|2 + |φ†
3φ1|2

)
. (41)

6.4.3 Constructing (Z2 × Z2) � S3 = O

The last extension, (Z2 ×Z2) . S3, is also split, otherwise we
would obtain Z6. It leads to the group O � S4, the symme-
try group of the octahedron and the cube. As it includes T

as a subgroup, the most general O-symmetric potential is
V0 from (41) plus VT from (40) with the additional condi-
tion that λ̃ is real (the extra symmetry with respect to the
T -symmetric case is a transposition of any two doublets).

6.4.4 Including antiunitary transformations

The case of D8 has been already considered in Sect. 6.3.2.
The tetrahedral potential VT + V0 from (40) and (41) is

symmetric under the following antiunitary transformation:

J ′ =
⎛

⎝
0 1 0
1 0 0
0 0 −1

⎞

⎠ · J, (42)

which generates a Z
∗
2 group. Therefore the symmetry group

of this potential is the full achiral tetrahedral group Td �
T � Z

∗
2, which is isomorphic to S4.

The octahedral potential is a particular case of the tetra-
hedral one, therefore it is also invariant under an antiunitary
transformation. The extra Z

∗
2 subgroup is generated by the

complex conjugation, J , and this transformation commutes
with the entire Higgs-family group O . Therefore, the sym-
metry group of the potential is the full achiral octahedral
symmetry group Oh � O × Z

∗
2.

6.5 Extensions of abelian groups
by an antiunitary transformation

The last type of extension we need to consider is of the
type A .Z∗

2, where A is one of the four abelian groups of
Higgs-family transformations lying in a maximal torus, that
is, the first four groups in the list (13), while the Z

∗
2 is as

usual generated by an antiunitary transformation J ′ = cJ .
This problem was partly solved in [37], where such exten-
sions leading to abelian groups were analyzed. It was es-
tablished that only the following four abelian groups of this
type are realizable: Z

∗
2, Z

∗
4, Z2 × Z

∗
2, and Z2 × Z2 × Z

∗
2.

Here, we consider non-abelian extensions of this type.
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6.5.1 Anti-unitary extension of Z3

The smallest non-abelian group we can have is Z3 �

Z
∗
2 � D6. We stress that this D6 group we search for

is different from what we analyzed in Sect. 6.2, because
there the D6 group contained only unitary transforma-
tions, see a discussion in Sect. 8.3. Using the same nota-
tion for the generator a of the Z3 group, we find that the
transformation c in the definition of J ′ must be diagonal:
c = diag(eiξ1, eiξ2 , e−i(ξ1+ξ2)). Then, studying how the Z3-
symmetric potential V0 + VZ3 changes under J ′ = cJ , we
find that the only condition to be satisfied is (30).

If this condition is satisfied, then the potential is invari-
ant under Z3 � Z

∗
2 � D6, if not, then the symmetry group

remains Z3. This proves that both groups are realizable in
3HDM. Note that in contrast with the D6 × Z

∗
2 case, we do

not place any extra condition such as (25).

6.5.2 Anti-unitary extension of Z4

A priori, the two non-abelian extensions here are again D8

and Q8. With the usual convention for a, the generator of
Z4, we again find that c must be of the same diagonal form.
This immediately excludes the Q8 case because we have
(J ′)2 = c∗c = 1.

The case of Z4 �Z
∗
2 � D8 is possible. Even more, it turns

out that the Z4-symmetric potential V0 +VZ4 is always sym-
metric under some J ′ of this type. It means, therefore, that
if anti-unitary transformations are included, Z4 is not real-
izable anymore: the true symmetry group of the potential is
Z4 � Z

∗
2 � D8. In more physical terms, we conclude that

the presence of a Z4 group of Higgs-family transformations
makes the potential explicitly CP-conserving.

6.5.3 Anti-unitary extension of Z2 × Z2

The only non-abelian extension of the type (Z2 × Z2) .Z∗
2

can produce only D8, which was already considered. We
only remark here that c turns out to be of the type (29),
which places extra constraints on V0. Not satisfying these
constraints will keep the symmetry group Z2 × Z2, which
means that it is realizable.

7 The Z3 × Z3 chain

7.1 The group and its extensions

The last abelian group from the list (13), Z3 × Z3, requires
a special treatment due to a number of reasons. First, it does
not belong to any maximal torus of PSU(3) but is a max-
imal abelian subgroup of PSU(3) on its own [37], and its
full preimage in SU(3) is the non-abelian group Δ(27) [53].

Second, its automorphism group Aut(Z3 ×Z3) is sufficiently
large and requires an accurate description.

Let us first remind the reader how this group is con-
structed. We first consider the subgroup of SU(3) generated
by

a =
⎛

⎝
1 0 0
0 ω 0
0 0 ω2

⎞

⎠ , b =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ . (43)

This group known as Δ(27) is non-abelian because a and b

do not commute, but their commutator lies in the center of
SU(3):

[a, b] = aba−1b−1 = z2 ∈ Z
(
SU(3)

)
. (44)

Therefore, its image under the canonical homomorphism
SU(3) → PSU(3) becomes the desired abelian group
Δ(27)/Z3 = Z3 × Z3. The true generators of Z3 × Z3 are
cosets ā = aZ(SU(3)) and b̄ = bZ(SU(3)) from PSU(3),
and they obviously commute: [ā, b̄] = 1. Note that since
Z3 × Z3 is a maximal abelian subgroup in PSU(3), there is
no other element in PSU(3) commuting with all elements of
this group, so CPSU(3)(Z3 × Z3) = Z3 × Z3.

If the normal self-centralizing abelian subgroup of G,
whose existence was proved in Sect. 4.2, is A = Z3 × Z3,
then G can be constructed as an extension of A by a sub-
group of Aut(Z3 × Z3) = GL2(3), the general linear group
of transformations of two-dimensional vector space over the
finite field F3. The order of this group is |GL2(3)| = 48, and
it will prove useful if we now digress and describe the struc-
ture of this group in some detail.

7.1.1 Z3 × Z3 as a vector space over F3

The finite field F3 is defined as the additive group of integers
mod 3, in which the multiplication is also introduced. It is
convenient to denote the elements of this field as 0,1,−1
with obvious addition and multiplication laws. Unlike the
integers themselves, F3 is closed under division by a non-
zero number, the property that makes F3 a field.

A vector space over a finite field is defined just as over
any “usual” field. The group Z3 × Z3 can be thought of
as a 2D vector space over F3; its elements are (with the
additive notation for the group operation) x̄ = qaā + qbb̄,
where qa, qb ∈ F3, and ā, b̄ are, as before, the generators of
the group Z3 × Z3. In the multiplicative notation, we write
x̄ = āqa b̄qb .

It is possible to define an antisymmetric scalar prod-
uct in this space. For any x̄ ∈ Z3 × Z3, take any element
of its preimage, x ∈ Δ(27). Then, for any two elements
x̄, ȳ ∈ Z3 × Z3, construct the number (x̄, ȳ) as [x, y] ∈ F3.
This map is faithful: although we can select different x for a
given x̄, all of them give the same [x, y].
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Clearly, (x̄, ȳ) = −(ȳ, x̄), in the additive notation. Be-
sides, the so defined product is linear in both arguments:

(x̄1 + x̄2, ȳ) = (x̄1, ȳ) + (x̄2, ȳ),

(x̄, ȳ1 + ȳ2) = (x̄, ȳ1) + (x̄, ȳ2).
(45)

Indeed, for any three elements of any group the following
relation holds:

[xy, z] = xyzy−1x−1z−1 = xyzy−1 · z−1x−1xz · x−1z−1

= x[y, z]x−1[x, z]. (46)

If in addition all commutators take values in the center of
the group SU(N), then x and x−1 can be canceled, and
we get [xy, z] = [y, z][x, z]. In our case we represent x1 =
āqa1 b̄qb1zr1 and similarly for x2 and y, and noting that all
zri are inessential, we recover the above linearity in the first
argument. Thus, Z3 × Z3 becomes a vector space over F3

equipped with an antisymmetric scalar product.
Note that all antisymmetric products in Z3 × Z3 are pro-

portional to (ā, b̄). Indeed, if two elements x̄ and x̄′ are de-
fined by their vectors �q = (qa, qb) and �q ′ = (q ′

a, q ′
b), then

due to bilinearity we get

(
x̄, x̄′) = (

qaq
′
b − qbq

′
a

)
(ā, b̄) = εij qiq

′
j (ā, b̄), (47)

where εij is the standard antisymmetric tensor with ε12 =
−ε21 = 1, ε11 = ε22 = 0.

7.1.2 The automorphism group of Z3 × Z3

The automorphism group of Z3 × Z3 can then be viewed as
the group of non-degenerate matrices with elements from F3

acting in this 2D space, which explains why Aut(Z3 ×Z3) =
GL2(3). Each matrix q can be defined by its action on the
generators ā, b̄: ā �→ qaaā + qabb̄, b̄ �→ qbaā + qbbb̄, and
can therefore be written as

q =
(

qaa qab

qba qbb

)
, detq �= 0. (48)

The group operation in GL2(3) is just the matrix product.
Recall now that the elements of both the Z3 × Z3 group

and its automorphism group are represented in our case as
unitary or antiunitary transformations of the three doublets
(that is, we work not with the abstract groups but with their
three-dimensional complex representations). Since Z3 × Z3

is assumed to be normal in G, the elements g ∈ Aut(Z3 ×Z3)

act on the elements of Z3 ×Z3 by conjugation: x̄ �→ g−1x̄g,
which we denoted by g(x̄). Then the antisymmetric prod-
uct defined above changes upon this action in the following
way:

(
g(x̄), g(ȳ)

)

= g−1[x, y]g = g−1zrg

=
{

zr = (x̄, ȳ), if g is unitary,

(z∗)r = (z−1)r = −(x̄, ȳ), if g is anti-unitary.
(49)

Here we used the fact the commutator of any two el-
ements of Δ(27) lies in the center Z(SU(3)), and that
the CP conjugation operator J acts on any x ∈ SU(3) by
J−1xJ = x∗. So, unitary transformations preserve the anti-
symmetric product, while anti-unitary ones flip its sign.

Generically, the subgroup of a general linear group which
conserves an antisymmetric bilinear product in a vector
space is called symplectic. Here we have the group Sp2(3) <

GL2(3). It turns out that Sp2(3) = SL2(3). Indeed, sup-
pose g ∈ GL2(3) acts in the 2D space over F3 by mapping
qi �→ g(q) = gii′qi′ . Then, the product transforms as

(x̄, ȳ) �→ (
g(x̄), g(ȳ)

) = εij gii′gjj ′q(x)

i′ q
(y)

j ′ (ā, b̄)

= detg · (x̄, ȳ). (50)

Since detg = ±1, we get two kinds of transformations:
those which conserve all products (detg = 1, so that g ∈
SL2(3)) and those which flip their signs (detg = −1), hence
the identification of Sp2(3) and SL2(3) follows.

We conclude that the finite symmetry group G of unitary
transformations with the normal self-centralizing abelian
subgroup Z3 × Z3 can be constructed as extension (Z3 ×
Z3) .K , where K ≤ SL2(3).

7.1.3 Explicit description of SL2(3)

The structure of the group SL2(3) is well-known, but it will
prove useful to have the explicit expressions for some of its
elements.

The order of the group is |SL2(3)| = 24. It contains ele-
ments of order 2, 3, 4, and 6, generating the corresponding
cyclic subgroups. The subgroup Z2 is generated by the cen-
ter of the group

c =
(−1 0

0 −1

)
, (51)

which in the multiplicative notation means ā �→ ā2, b̄ �→ b̄2.
There are four distinct Z3 subgroups generated by

f1 =
(

1 1
0 1

)
, f2 =

(
1 0
1 1

)
,

f3 =
(

0 1
−1 −1

)
, f4 =

(
0 −1
1 −1

)
,

(52)

three Z4 subgroups generated by

d1 =
(

0 1
−1 0

)
, d2 =

(
1 1
1 −1

)
,

d3 =
(−1 1

1 1

)
,

(53)
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and four Z6 subgroups, which we do not write explicitly be-
cause they are absent in the list (13).

Every element of SL2(3) can be represented by a unique
(up to center) SU(3) matrix, which can be found by explic-
itly solving the corresponding matrix equations defining the
action of this element. For example, the transformation c is
defined by

c(a) = c−1ac = a2, c(b) = c−1bc = b2. (54)

Rewriting these equations as 3 × 3 matrix equations ac =
ca2, bc = cb2 and solving them explicitly, we find the ma-
trix c:

c =
⎛

⎝
−1 0 0
0 0 −1
0 −1 0

⎞

⎠ . (55)

7.2 Generic potential

A generic potential symmetric under Z3 × Z3 is

V = −m2[φ†
1φ1 + φ

†
2φ2 + φ

†
3φ3

]

+ λ0
[
φ

†
1φ1 + φ

†
2φ2 + φ

†
3φ3

]2

+ λ1√
3

[(
φ

†
1φ1

)2 + (
φ

†
2φ2

)2 + (
φ

†
3φ3

)2

− (
φ

†
1φ1

)(
φ

†
2φ2

) − (
φ

†
2φ2

)(
φ

†
3φ3

) − (
φ

†
3φ3

)(
φ

†
1φ1

)]

+ λ2
(∣∣φ†

1φ2
∣∣2 + ∣∣φ†

2φ3
∣∣2 + ∣∣φ†

3φ1
∣∣2)

+ (
λ3

[(
φ

†
1φ2

)(
φ

†
1φ3

) + (
φ

†
2φ3

)(
φ

†
2φ1

)

+ (
φ

†
3φ1

)(
φ

†
3φ2

)] + h.c.
)

(56)

with real m2, λ0, λ1, λ2 and complex λ3. All values here are
generic. This potential can be found by taking the potential
symmetric under the Z3 group of phase rotations described
above and then requiring that it be invariant under the cyclic
permutations on the doublets. Written in the space of bilin-
ears, the potential has the form

V = −√
3m2r0 + 3λ0r

2
0 + √

3λ1
(
r2

3 + r2
8

)

+ λ2
(|r12|2 + |r45|2 + |r67|2

)

+ λ3
(
r12r

∗
45 + r67r

∗
12 + r45r

∗
67

)

+ λ∗
3

(
r∗

12r45 + r∗
67r12 + r∗

45r67
)

= −√
3m2r0 + 3λ0r

2
0 + Λij rirj . (57)

It is important to prove that this potential has no continuous
symmetry. Using the approach described in Sect. 5, we cal-
culate the eigenvalues of Λij and find that it has four distinct
eigenvalues of multiplicity two:
√

3λ1, λ2 + λ3 + λ∗
3, λ2 + ωλ3 + ω2λ∗

3,

λ2 + ω2λ3 + ωλ∗
3.

(58)

The first eigenvalue corresponds to the subspace (r3, r8),
while the rest are three 2D subspaces within its orthogo-
nal complement (r1, r2, r4, r5, r6, r7). For generic values of
the coefficients, they do not coincide. Then, according to
our discussion in Sect. 5, a continuous symmetry group, if
present, must consist only of phase rotations of the doublets.
But the λ3 term selects only the Z3 group of phase rotations,
which proves that no continuous symmetry leaves this po-
tential invariant.

7.3 Extension (Z3 × Z3) � Z2

It turns out that Z3 × Z3 is not realizable because the poten-
tial (56) is symmetric under a larger group (Z3 ×Z3)�Z2 =
Δ(54)/Z3, which is generated by ā, b̄, c̄ with the following
relations:

ā3 = b̄3 = 1, c̄2 = 1, [ā, b̄] = 1,

c̄āc̄ = ā2, c̄b̄c̄ = b̄2.

In terms of explicit transformation laws, c̄ is the coset
cZ(SU(3)), with c being the exchange of any two dou-
blets, for example (55). Note that 〈ā, c̄〉 = S3 is the group
of arbitrary permutations of the three doublets. Thus, if
G = (Z3 × Z3) .K , then a G-symmetric potential must be
a restriction of (56), and K must contain a Z2 subgroup.

There are three kinds of subgroups of SL2(3) contain-
ing Z2 but not containing Z6: Z2, Z4, and Q8. In each case
it would give a split extension, so G must contain a sub-
group isomorphic to one of these groups. Since, as we ar-
gued above, the quaternion group Q8 is not realizable in
3HDM, K can only be Z2 or Z4. Therefore, the only ad-
ditional case to consider is (Z3 × Z3) � Z4, the group also
known as Σ(36) [53].

7.4 Extension (Z3 × Z3) � Z4

There are three distinct Z4 subgroups in SL2(3) generated
by d1, d2, and d3, listed in (53). In principle, all of them
are conjugate inside SL2(3), but for our purposes all of them
need to be checked. Explicit solutions of the matrix equa-
tions give the following transformations:

d1 = i√
3

⎛

⎝
1 1 1
1 ω2 ω

1 ω ω2

⎞

⎠ ,

d2 = i√
3

⎛

⎝
1 1 ω

ω 1 1
ω ω2 ω

⎞

⎠ ,

d3 = i√
3

⎛

⎝
1 1 ω2

ω 1 ω

1 ω ω

⎞

⎠ .

(59)
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Note that the prefactor i/
√

3 can also be written as
1/(ω2 − ω).

Let us mention here that when searching for explicit
SU(3) realizations of the transformations d1, we solve equa-
tions d−1

1 ad1 = b, d−1
1 bd1 = a2. However, we could also

use other representative matrices, a′ and b′, which differ
from a and b by transformations from the center. For ex-
ample, we can also ask for solutions of

d ′−1
1 ad ′

1 = zn1b, d ′−1
1 bd ′

1 = zn2a2. (60)

However, the solution of this equation can be written as

d ′
1 = d1a

n1bn2 . (61)

Therefore the resulting group 〈d̄ ′
1, ā, b̄〉 coincides with

〈d̄1, ā, b̄〉. The similar results hold for d2 and d3.

7.4.1 Conditions for the (Z3 × Z3) � Z4 symmetry

We should now check how the potential (56) changes un-
der these transformations and when it remains invariant. The
calculation is simplified if we introduce the following com-
binations of bilinears (here i∗j stands for φ

†
i φj ):

A0 = 1∗1 + 2∗2 + 3∗3, A1 = 1∗1 + ω2∗2 + ω23∗3,

A2 = A∗
1, B0 = 1∗2 + 2∗3 + 3∗1,

B1 = 1∗2 + ω2∗3 + ω23∗1,

B2 = 1∗2 + ω22∗3 + ω3∗1,

B∗
0 = 2∗1 + 3∗2 + 1∗3, B∗

1 = 2∗1 + ω23∗2 + ω1∗3,

B∗
2 = 2∗1 + ω3∗2 + ω21∗3.

Next, introducing

X = 1√
3

[(
φ

†
1φ1

)2 + (
φ

†
2φ2

)2 + (
φ

†
3φ3

)2 − (
φ

†
1φ1

)(
φ

†
2φ2

)

− (
φ

†
2φ2

)(
φ

†
3φ3

) − (
φ

†
3φ3

)(
φ

†
1φ1

)]
,

= 1√
3
|A1|2,

Y = ∣∣φ†
1φ2

∣∣2 + ∣∣φ†
2φ3

∣∣2 + ∣∣φ†
3φ1

∣∣2
(62)

= |B0|2 + |B1|2 + |B2|2
3

,

Z∗ = (
φ

†
1φ2

)(
φ

†
1φ3

) + (
φ

†
2φ3

)(
φ

†
2φ1

) + (
φ

†
3φ1

)(
φ

†
3φ2

)

= |B0|2 + ω2|B1|2 + ω|B2|2
3

,

we write the potential (56) as

V = −√
3m2r0 + 3λ0r

2
0 + λ∗

i Xi,

where λ∗
i Xi = λ1X + λ2Y + λ3Z

∗ + λ∗
3Z (63)

is the scalar product of the vector of coefficients and the vec-
tor of coordinates. Now, it follows from explicit calculations
that the action of di can be compactly represented by the fol-
lowing transformations:

d1: A1 → B0, B0 → A∗
1,

B1 → ω2B2, B2 → B∗
1 ,

d2: A1 → B1, B1 → ωA∗
1,

B0 → ωB∗
2 , B2 → B0,

d3: A1 → B2, B2 → ωA∗
1,

B0 → B1, B1 → ωB∗
0 ,

or even more compactly

d1: |A1|2 ↔ |B0|2, |B1|2 ↔ |B2|2,
d2: |A1|2 ↔ |B1|2, |B0|2 ↔ |B2|2, (64)

d3: |A1|2 ↔ |B2|2, |B0|2 ↔ |B1|2.
Therefore, their action in the space of (X,Y,Z,Z∗) is given
by the following hermitian and unitary matrices:

T (d1) = 1

3

⎛

⎜⎜
⎝

0
√

3
√

3
√

3√
3 2 −1 −1√
3 −1 −1 2√
3 −1 2 −1

⎞

⎟⎟
⎠ ,

T (d2) = 1

3

⎛

⎜⎜
⎝

0
√

3 ω2
√

3 ω
√

3√
3 2 −ω2 −ω

ω
√

3 −ω −1 2ω2

ω2
√

3 −ω2 2ω −1

⎞

⎟⎟
⎠ ,

and T (d3) = [T (d2)]∗. It can be also noted that T (d2)

acts in the space of (X,Y,ω2Z,ωZ∗) by the matrix T (d1).
So, T (d1), T (d2) and T (d3) represent the same type of
transformations acting in the spaces (X,Y,Z,Z∗), (X,Y,

ω2Z,ωZ∗), or (X,Y,ωZ,ω2Z∗), respectively. That is, if
(x, y, z, z∗) is an eigenvector of T (d1), then (x, y,ωz,ω2z∗)
is an eigenvector of T (d2) and (x, y,ω2z,ωz∗) is an eigen-
vector of T (d3). This observation restores the expected sym-
metry among the three types of Z4 subgroup inside SL2(3).

Since these matrices are hermitian and unitary, they act
by pure reflections, which implies that each of them is diago-
nalizable and has eigenvalues ±1. If we want the potential to
be symmetric under one of these di , it must induce the same
transformations in the space of λi = (λ1, λ2, λ

∗
3, λ3). There-

fore, in order to find conditions that the potential is invariant
under di , we need to find eigenvectors of T (di) correspond-
ing to the eigenvalue −1 and require that λi ’s projection on
these eigenvectors is zero.

Consider first T (d1). It has two eigenvectors correspond-
ing to the eigenvalue −1: (−√

3,1,1,1) and (0,0,1,−1).
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Therefore, we obtain the following condition for the poten-
tial to be symmetric under d1:

λ3 is real and λ3 =
√

3λ1 − λ2

2
. (65)

Similarly, for d2 we have

ωλ3 is real and ωλ3 =
√

3λ1 − λ2

2
. (66)

For d3 we have the complex conjugate condition. Therefore,
the potential (56) is symmetric under (Z3 × Z3) � Z4 if

(
2λ3√

3λ1 − λ2

)3

= 1, (67)

which encompasses all these cases. Let us also mention that
when these conditions are taken into account, the spectrum
of the matrix Λij given in (58) becomes even more degener-
ate: it contains two eigenvalues of multiplicity four (we refer
to this spectrum as 4 + 4).

7.4.2 Absence of a continuous symmetry

In order for the group (Z3 × Z3) � Z4 to be realizable, we
need to show that the potential (56) with parameters satisfy-
ing (67) is not symmetric under any continuous group.

We first note that even if such a continuous symmetry
group existed, it could only be U(1). Indeed, the spectrum
of Λij in our case is 4+4, while for U(1)×U(1) and SU(2)

it must be 6 + 2, and for SO(3) it must be 5 + 3.
Let us now consider, for example, the d1-symmetric po-

tential. Using
∑8

i=1 r2
i = αr2

0 , where 1/4 ≤ α ≤ 1 parametr-
izes SU(3)-orbits in the orbit space, we can rewrite it as

V = −√
3m2r0 + (3λ0 + α

√
3λ1)r

2
0

−
√

3λ1 − λ2

2

(|r12 − r45|2 + |r45 − r67|2

+ |r67 − r12|2
)
. (68)

Suppose the potential (68) is invariant under a U(1) group
of transformations of doublets, generated by the generator t

from the algebra su(3). Since the potential (68) is invariant
under the S3 group of arbitrary permutations of the doublets,
then the same potential must be also invariant under other
U(1) subgroups which are generated by various tg , which
are obtained by acting on t by g ∈ S3. If t �= tg (or to be more
accurate, if their corresponding U(1) groups are different),
then the continuous symmetry group immediately becomes
larger than U(1), which is impossible. Therefore, tg must be
equal (up to sign) to t for all g ∈ S3. In other words, S3 must
stabilize the U(1) symmetry group.

There exist only two elements in the algebra su(3) with
this property:

t1 =
⎛

⎝
0 i −i

−i 0 i

i −i 0

⎞

⎠ and t2 =
⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠ . (69)

t2 generates pure phase rotations. It is explicitly S3-invariant,
therefore the corresponding U(1) group is also invariant.
t1 induces SO(3) rotations of the doublets around the axis
(1,1,1). It is Z3-invariant, while reflections from S3 flip the
sign of t1. However, the U(1) group is still invariant. Since
t1 and t2 realize different representations of S3, one cannot
take their linear combinations. So, the list of possibilities is
restricted only to t1 and t2 themselves.

The eigenvalues and eigenvectors of t1 are

ζ = 0:
⎛

⎝
1
1
1

⎞

⎠ , ζ = √
3:

⎛

⎝
1
ω2

ω

⎞

⎠ ,

ζ = −√
3:

⎛

⎝
1
ω

ω2

⎞

⎠ .

(70)

The presence of the eigenvalue ζ = 0 implies that the com-
bination φ1 +φ2 +φ3 is invariant under the U(1) group gen-
erated by t1. Bilinear invariants are

|φ1 + φ2 + φ3|2,
∣∣φ1 + ω2φ2 + ωφ3

∣∣2
,

∣∣φ1 + ωφ2 + ω2φ3
∣∣2

,

(71)

which simply means that r1 + r4 + r6 and r2 + r5 + r7 are,
separately, invariant. So, if the potential depends only on r0

and these two combinations, then it is symmetric under the
U(1) generated by t1. The point is that our potential (68)
cannot be written via these combinations only, therefore it is
not invariant under this group.

Consider now t2. Its eigensystem is

ζ = 2:
⎛

⎝
1
1
1

⎞

⎠ , ζ = −1:
⎛

⎝
0
1

−1

⎞

⎠ and

⎛

⎝
2

−1
−1

⎞

⎠ .

(72)

There is no zero eigenvalue, therefore no linear combination
of φ’s is invariant. The independent bilinear combinations
are

|φ1 + φ2 + φ3|2, |φ2 − φ3|2,
|2φ1 − φ2 − φ3|2,
(
φ

†
2 − φ

†
3

)
(2φ1 − φ2 − φ3).

(73)
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In addition, there exists a triple product of φ’s which is also
invariant but it is irrelevant for our analysis because our po-
tential contains only two φ’s and two φ†’s. These invariants
can also be rewritten as the following linearly independent
invariants (here ρi = φ

†
i φi ):

ρ1 + 2r6, ρ2 + 2r4, ρ3 + 2r1, r2 + r5 + r7.

(74)

Despite the fact that we now have more invariants than in
the previous case, it is still impossible to express (68) via
these combinations. This means that (68) is not symmetric
under t2.

This completes the proof that the potential (56) subject to
conditions (67) is not invariant under any continuous group.

7.4.3 Absence of a larger finite symmetry group

Although the group-theoretic arguments guarantee that no
other extension can be used, it is still instructive to check
what happens if we try to impose invariance under other sub-
groups of SL2(3).

Let us first note that if we try to impose simultaneous
invariance under two among di (trying to get Q8), we must
set λ3 = 0. But then the potential has an obvious continuous
symmetry, and our attempt fails.

Next, let us assume that the potential is invariant under
(Z3 ×Z3)�Z3, where the last Z3 is generated by one of the
generators f in (52), for example f = f1. Its representative
matrix in SU(3) is

f = −i√
3

⎛

⎝
1 ω2 1
1 1 ω2

ω2 1 1

⎞

⎠ , f 3 = 1. (75)

An analysis similar to what was described above allows us
to find the corresponding transformation matrix in the space
of X,Y,Z,Z∗:

T (f1) = 1

3

⎛

⎜⎜
⎝

0
√

3
√

3ω2
√

3ω√
3 2 −ω2 −ω√

3ω2 −ω2 −ω 2√
3ω −ω 2 −ω2

⎞

⎟⎟
⎠ . (76)

It leads to the following conditions for the potential to be
symmetric under (Z3 × Z3) � Z3:

λ3 = λ∗
3 and λ1 = λ2 − λ3√

3
. (77)

In the space of bilinears, the potential can then be compactly
written as

V = −√
3m2r0 + (

3λ0 + √
3λ1α

)
r2

0

+ λ3|r12 + r45 + r67|2. (78)

The spectrum of Λij becomes of the type 6 + 2. This high
symmetry hints at existence of a possible continuous sym-
metry of the potential, and it is indeed the case. For ex-
ample, the following SO(2) rotations among three doublets,
φa �→ Rab(α)φb , leave r12 + r45 + r67 invariant:

R(α) = 1

3

⎛

⎝
1 + 2 cosα 1 + 2 cosα′′ 1 + 2 cosα′
1 + 2 cosα′ 1 + 2 cosα 1 + 2 cosα′′
1 + 2 cosα′′ 1 + 2 cosα′ 1 + 2 cosα

⎞

⎠ ,

(79)

with α ∈ [0,2π) and α′ = α + 2π/3 and α′′ = α + 4π/3.
Note that at α = 0, 2π/3 and 4π/3 we recover the Z3

group 〈b〉.
We conclude therefore that imposing invariance under

Z3 < SL2(3) makes the potential symmetric under a con-
tinuous group. In this way, we completely exhausted possi-
bilities offered by SL2(3).

7.5 Anti-unitary transformations

We showed in Sect. 7.1 that antiunitary transformations cor-
respond to elements of GL2(3) not lying in SL2(3) as they
have negative determinant and flip the sign of the antisym-
metric scalar product in A = Z3 × Z3. The complex conju-
gation operator, J , acts in A by sending a to a2 and leaving
b invariant. Therefore, the corresponding matrix is

J =
(−1 0

0 1

)
. (80)

Since any antiunitary transformation can be written as J ′ =
qJ , where q is unitary, it follows that q must belong to
SL2(3).

Next, we need to find which q’s can be used. Clearly,
(J ′)2 = qJqJ = qq∗ ∈ SL2(3). If we are looking for an an-
tiunitary symmetry of a (Z3 ×Z3)�Z2-symmetric potential,
then qq∗ must be either 1 or c, which generates the center
of SL2(3).

Let us first consider the second possibility.

If q =
(

x y

z t

)
, then q∗ =

(
x −y

−z t

)
. (81)

Using this to solve qq∗ = c, we get six possible solutions,
but all of them have detq = −1, that is, they do not belong
to SL2(3). Therefore, the only possibility is qq∗ = 1.

But then we can apply the results of our search for an-
tiunitary transformations for the D6 case. Our group (Z3 ×
Z3) � Z2 contains the D6 subgroup with δ = π . Therefore,
we arrive at the conclusion: in order for our potential to be
symmetric under an antiunitary transformation, we must re-
quire

6 argλ3 = 0. (82)
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If this criterion is satisfied, the symmetry group becomes
(Z3 × Z3) � (Z2 × Z

∗
2); otherwise the group remains (Z3 ×

Z3) � Z2. Therefore, both groups are realizable in 3HDM.
Now, consider the case of the extended symmetry group,

(Z3 × Z3) � Z4 � Σ(36). In this case (82) is satisfied auto-
matically due to (67). We then conclude that in this case the
realizable symmetry is Σ(36) � Z

∗
2.

8 Summary and discussion

8.1 List of realizable finite symmetry groups in 3HDM

Bringing together the results of the search for abelian sym-
metry groups [37] and of the present work, we can finally
give the list of finite groups which can appear as the sym-
metry groups of the scalar sector in 3HDM. If only Higgs-
family transformations are concerned, the realizable finite
groups are

Z2, Z3, Z4, Z2 × Z2,

D6, D8, T � A4, O � S4,

(Z3 × Z3) � Z2 � Δ(54)/Z3,

(Z3 × Z3) � Z4 � Σ(36).

(83)

This list is complete: trying to impose any other finite sym-
metry group of Higgs-family transformations leads to the
potential with a continuous symmetry.

Figure 3 should help visualize relations among different
groups from this list. Going up along a branch of this tree
means that, starting with a potential symmetric under the
lower group, one can restrict its free parameters in such a
way that the potential becomes symmetric under the upper
group.

If both unitary (Higgs-family) and antiunitary (generaliz-
ed-CP) transformations are allowed, the list becomes

Z2, Z3, Z2 × Z2, Z
∗
2, Z

∗
4,

Z2 × Z
∗
2, Z2 × Z2 × Z

∗
2,

Fig. 3 Tree of finite realizable
groups of Higgs-family
transformations in 3HDM

Z3 � Z
∗
2 � D6, Z4 � Z

∗
2 � D8,

D6, D6 × Z
∗
2, D8 × Z

∗
2, (84)

A4 � Z
∗
2 � Td, S4 × Z

∗
2 � Oh,

(Z3 × Z3) � Z2, (Z3 × Z3) �
(
Z2 × Z

∗
2

)
,

Σ(36) � Z
∗
2.

As usual, an asterisk here indicates that the generator of
the corresponding group is an anti-unitary transformation.
Note that Higgs-family transformation groups Z4, D8, A4,
S4, and Σ(36) become non-realizable in this case, because
potentials symmetric under them are automatically symmet-
ric under an additional anti-unitary transformation. In all
cases apart from A4 this is a consequence of our finding
in Sect. 6.5 that presence of the Z4 group of Higgs-family
transformations always leads to an additional anti-unitary
symmetry.

These lists complete the classification of realizable finite
symmetry groups of the scalar sector of 3HDM. Conditions
for the existence and examples of the potentials symmetric
under each of these groups have been given in [37] and in
the present work. For the reader’s convenience, we collect
examples with non-abelian groups in the appendix.

8.2 Interplay between Higgs-family symmetries
and explicit CP-violation

In 2HDM, presence of any Higgs-family symmetry imme-
diately leads to a generalized-CP symmetry. In other words,
it is impossible to write down an explicitly CP-violating
2HDM potential with any Higgs-family symmetry. In this
sense, generalized-CP symmetries can be viewed as the
smallest building blocks of any symmetry group in 2HDM.

By comparing lists (83) and (84), we see that this con-
clusion is no longer true for 3HDM, namely there are some
Higgs-family symmetry groups which are compatible with
explicit CP-violation. However, we found another, quite re-
markable feature in 3HDM: the presence of a Z4 group of
Higgs-family transformations guarantees that the potential
is explicitly CP-conserving. This is, of course, a sufficient
but not necessary condition for explicit CP-violation. Put in
other words, explicit CP-violation is incompatible with the
Higgs-family symmetry group Z4.

8.3 Two different D6 groups

It is interesting to note that the list (84) contains two dif-
ferent D6 groups. One is Z3 � Z

∗
2, generated by a Higgs-

family transformation of order 3 and a generalized-CP trans-
formation. The other D6 is a group of Higgs-family trans-
formations only, and a potential invariant under it does not
have any generalized-CP symmetry. Clearly, they lead to
different phenomenological consequences, as the first case
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is explicitly CP-conserving, while the latter is explicitly CP-
violating.

Such a situation was absent in the two-Higgs-doublet
model, where fixing the symmetry group uniquely de-
fined the (tree-level) phenomenological consequences in the
scalar sector. What makes it possible in 3HDM is a looser
relation between Higgs-family and generalized-CP symme-
tries just discussed. In particular, it is possible to have a
potential with the Higgs-family D6 symmetry group with-
out any generalized-CP symmetry. 2HDM does not offer
this kind of freedom: any non-trivial Higgs-family symme-
try group automatically leads to a generalized-CP symme-
try.

8.4 Further directions of research

Certainly, our results do not provide answers to all sym-
metry-related questions which can be posed in 3HDM. Our
paper should rather be regarded as the first step towards sys-
tematic exploration of all the possibilities offered by three
Higgs doublets. Here are some further questions which de-
serve closer study:

• Continuous symmetry groups should also be included in
the list. There exist only few Lie groups inside PSU(3):
U(1), U(1) × U(1), SU(2), SU(2) × U(1), SO(3). The
non-trivial question is which of these groups can be
merged with some of the finite groups and with anti-
unitary transformations (the case of abelian groups was
analyzed in [37]).

• It is well-known that the vacuum state does not have to
respect all the symmetries of the Lagrangian, so the fi-
nite symmetry groups described here can be broken upon
electroweak symmetry breaking. What are the symme-
try breaking patterns for each of these groups? Clearly,
if the symmetry group is very small, then the vacuum
state can either conserve it or break it, either completely
or partially. But when the finite group becomes suffi-
ciently large, there are two important changes. First, some
of the groups can never be conserved upon EWSB; the
origin of this feature and some 3HDM examples were
discussed in [54]. Second, a sufficiently large symmetry
group cannot break down completely, as it would create
too many degenerate vacua, which is not possible from
the algebraic-geometric point of view. Indeed, in the ge-
ometric reformulation of the Higgs potential minimiza-
tion problem [21], the points of the global minima in the
(r0, ri)-space are precisely the contact points of two nine-
dimensional algebraic manifolds: the orbit space and a
certain quadric. Intersection of two algebraic manifolds
of known degrees is also an algebraic manifold of a cer-
tain degree (the planar analog of this statement is Bezout’s
theorem). In the degenerate case when this manifold is re-
duced to a set of isolated points, there must exist an upper

limit for the number of these points. Unfortunately, we
have not yet found this number for 3HDM, but its exis-
tence is beyond any doubt.

• What are possible symmetries of the potential beyond
the unitary and antiunitary transformations? For exam-
ple, the full reparametrization group of the 2HDM poten-
tial is GL(2, ) � Z

∗
2 rather than SU(2) � Z∗

2 , [34–36]. It
means that a potential can be left invariant by transforma-
tions which are neither unitary nor anti-unitary. Although
these transformations played important role in the geo-
metric constructions in the 2HDM orbit space, they did
not produce new symmetry groups beyond what was al-
ready found from the unitary transformations. It would
be interesting to check the situation in 3HDM. Unfor-
tunately, the geometric method which worked well for
2HDM becomes much more intricate with more than two
doublets [20, 21].

• It would also be interesting to see if the potential can have
symmetries beyond reparametrization transformations. In
the case of 2HDM, this problem was analyzed in [55, 56].
Although these additional symmetries cannot be extended
to kinetic term, they could still provide useful information
on the structure of the Higgs potential and properties of
the physical Higgs bosons.

In summary, we found all finite groups which can be re-
alized as symmetry groups of Higgs-family or generalized-
CP transformations in the three-Higgs-doublet model. Our
list (84) is complete: trying to impose any other discrete
symmetry group on the 3HDM Higgs potential will make
it symmetric under a continuous group.
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Appendix: 3HDM potentials with non-abelian
Higgs-family symmetry group

Here, for the reader’s convenience, we list once again Higgs
potentials with a given symmetry group. We focus here on
cases with non-abelian groups from the list (84) because
abelian ones were already discussed in detail in [37]. In
each case we start from the most general potential compat-
ible with the given realizable group presented in the main
text and use the residual reparametrization freedom to sim-
plify the coefficients of the potential (usually, it amounts
to rephasing of doublets which makes some of the coeffi-
cients real). For each group G, the potential written below
faithfully represents all possible Higgs potentials with real-
izable symmetry group G. In this sense, the symmetry group
uniquely defines the phenomenology of the scalar sector of
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3HDM, the only exception being D6 with its two distinct
realizations.

Group D6 � Z3 � Z
∗
2 Consider the most general phase-

independent part of the Higgs potential

V0 = −
∑

1≤i≤3

m2
i

(
φ

†
i φi

) +
∑

1≤i≤j≤3

λij

(
φ

†
i φi

)(
φ

†
j φj

)

+
∑

1≤i<j≤3

λ′
ij

(
φ

†
i φj

)(
φ

†
j φi

)
,

and the additional terms

VZ3 = λ1
(
φ

†
2φ1

)(
φ

†
3φ1

) + λ2
(
φ

†
1φ2

)(
φ

†
3φ2

)

+ λ3
(
φ

†
1φ3

)(
φ

†
2φ3

) + h.c. (A.1)

For generic λi , these terms are symmetric only under the
group Z3 generated by

a3 =
⎛

⎝
ω 0 0
0 ω2 0
0 0 1

⎞

⎠ , ω = exp

(
2πi

3

)
. (A.2)

If it happens that the product λ1λ2λ3 is purely real, then by
rephasing of doublets one can make all coefficients in (A.1)
real. The resulting potential, V0 + VZ3 , is symmetric under
D6 � Z3 � Z

∗
2 generated by a3 and the CP-transformation.

Group D8 � Z4 � Z
∗
2 Consider now terms

VZ4 = λ1
(
φ

†
3φ1

)(
φ

†
3φ2

) + λ2
(
φ

†
1φ2

)2 + h.c., (A.3)

which are symmetric under the group Z4 generated by

a4 =
⎛

⎝
i 0 0
0 −i 0
0 0 1

⎞

⎠ . (A.4)

It is always possible to compensate the phases of λ1 and
λ2 by an appropriate rephasing of the doublets. Therefore,
the potential V0 + VZ4 is symmetric under the group D8 �
Z4 � Z

∗
2 generated by a4 and the CP-transformation.

Group D6 of unitary transformations Let us restrict the co-
efficients of V0 in the way that guarantees the symmetry un-
der φ1 ↔ φ2. Then, V0 turns into

V1 = −m2
11

[(
φ

†
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†
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)] − m2
33
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)
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φ
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12
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1φ2

∣∣2
, (A.5)

where all coefficients are real and generic. Imposing the
same requirement on VZ3 and performing rephasing, we ob-
tain

VD6 = λ1
[(

φ
†
2φ1

)(
φ

†
3φ1

) − (
φ

†
1φ2

)(
φ

†
3φ2

)]

+ |λ3|eiψ3
(
φ

†
1φ3

)(
φ

†
2φ3

) + h.c., (A.6)

where λ1 is real and sinψ3 �= 0. The resulting potential,
V1 + VD6 , is symmetric under D6 generated by a3 and

b =
⎛

⎝
0 1 0
1 0 0
0 0 −1

⎞

⎠ . (A.7)

There are no other Higgs-family or generalized-CP transfor-
mations which leave this potential invariant. Any explicitly
CP-violating D6-symmetric 3HDM potential can always be
brought into this form.

Group D6 × Z
∗
2 If in the previous case we set sinψ3 =

0 in (A.6), then the potential becomes symmetric under
D6 × Z

∗
2 generated by a3, b, and the generalized CP-

transformation b · CP.

Group D8 ×Z
∗
2 The potential V1 +VZ4 is symmetric under

the group D8 × Z
∗
2 generated by a4, b, and b · CP.

Group A4 � Z
∗
2 A potential symmetric under A4 � Z

∗
2 can

be brought into the following form:

VA4�Z
∗
2

= −m2[φ†
1φ1 + φ

†
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†
3φ3
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†
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φ
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φ
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†
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)2] + h.c.
)

(A.8)

with complex λ̃. Its symmetry group is generated by inde-
pendent sign flips of the individual doublets, by cyclic per-
mutations of φ1, φ2, φ3, and by the exchange of any pair of
doublet together with the CP-transformation. An alternative
form of this potential is

VA4�Z
∗
2

= −m2[φ†
1φ1 + φ

†
2φ2 + φ

†
3φ3

]

+ λ
[
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†
1φ1 + φ

†
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†
3φ3

]2

+ λ′[(φ†
1φ1

)(
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†
2φ2

) + (
φ

†
2φ2

)(
φ

†
3φ3

)
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+ (
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†
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†
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[(
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Group S4 ×Z
∗
2 If the parameter λ̃ in (A.8) is real or, equiv-

alently, λReIm = 0 in (A.9), the potential becomes symmetric
under S4 ×Z

∗
2 generated by sign flips, all permutation of the

three doublets, and the CP-transformation.

Group (Z3 × Z3) � Z2 � Δ(54)/Z3 Consider the follow-
ing potential:

VΔ(54)/Z3
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)] + h.c. (A.10)

with generic real m2, λ0, λ1, λ2 and complex λ3. The sym-
metry group of this potential is (Z3 ×Z3)�Z2 = Δ(54)/Z3.
Here, Δ(54) is generated by the same a3 and b as before and,
in addition, by the cyclic permutation

c =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , (A.11)

while the subgroup Z3 is the center of SU(3).

Group (Z3 × Z3) � (Z2 × Z
∗
2) The potential (A.10) be-

comes symmetric under a generalized-CP transformation if
λ3 = k · π/3 with any integer k. In this case, one can make
λ3 real by a rephasing transformation. The extra generator
then is the CP-transformation.

Group Σ(36) � Z
∗
2 The same potential (A.10) becomes

symmetric under the group Σ(36) � Z
∗
2 if, upon rephasing,

λ3 = (3λ1 − λ2)/2. The potential can then be rewritten as

VΣ(36)�Z
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2
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†
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∣∣2)
. (A.12)

Here I0 and I1 are the SU(3)-invariants

I0 = r0√
3

= φ
†
1φ1 + φ

†
2φ2 + φ

†
3φ3,

I1 =
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i
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i
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†
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3
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∣∣2 + ∣∣φ†

2φ3
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3φ1
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.

(A.13)

It is remarkable that this potential has only one “structural”
free parameter, and the term containing it reduces the full
SU(3) symmetry group to a finite subgroup Σ(36).
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