
Biorthogonalization Techniques for Least Squares Temporal Difference Learning
Tobias Jung

Montefiore Institute, University of Liège, Belgium
email: tjung@ulg.ac.be

Abstract

We consider Markov reward processes and study OLS-

LSTD, a framework for selecting basis functions from a set

of candidates to obtain a sparse representation of the value

function in the context of least squares temporal difference

learning. To support efficient both updating and downdat-

ing operations, OLS-LSTD uses a biorthogonal representa-

tion for the selected basis vectors. Empirical comparisons

with the recently proposed MP and LARS frameworks for

LSTD are made.

Introduction

Markov reward processes

A Markov reward process over state space X (e.g., X ⊂
R
D) is specified through the two components

• pπ(· |xt) (transitions)

• rπ(xt+1, xt) (reward)

Assume in the following that we don’t know pπ, rπ.

The problem

We are given a history of observations obtained from exe-

cuting π over a sequence of N steps:

{x0, r1, x1, . . . , xN−1, rN , xN} (“training” data) (1)

where xi ∼ pπ(· |xi−1) and ri = rπ(xi, xi−1), i = 2, . . . , N .

Our goal is to be able to estimate how “good” any given

state x ∈ X is, provided that the system will always de-

velop according to π. The “goodness” of a state is mea-

sured in terms of the expected accumulated reward that we

will receive from it. More precisely, we want to estimate

the quantity (infinite horizon discounted sum of expected

rewards) V π(x) = E{
∑∞

t=0 γ
trπ(xt+1, xt) |x0 = x}, where

γ ∈ (0, 1) is a discount factor, and which obeys the linear

fixed point equation (∀x)

V π(x) = Ex′∼pπ(· |x)

{

rπ(x′, x) + γV π(x′)
}

. (2)

Since we do not know pπ and rπ (and even if we did, the

state space is typically too large to solve the equation ex-

actly), we have to somehow use the training data to infer a

function Ṽ (· ;w), parameterized by w, such that Ṽ (x;w) is

close to V π(x).

Where does it arise?

Estimating the value function V π (from samples), which is

also known as policy evaluation, arises as the fundamental

computational substep in policy iteration for determining

optimal control policies π∗ in the context of reinforcement

learning / approximate dynamic programming. Further-

more, there are some applications where knowing V π by

itself is of interest, e.g., intrusion detection or marketing.

Solution via LSTD

Assume a linearly parameterized Ṽ : X ×R
k → R

Ṽ (· ;w) =

k
∑

i=1

wiφi(·)

with coefficients wi ∈ R and where πi : X → R is a basis

function or “feature” that extracts a certain property from

the state. Now there are two questions:

1. How to choose wi, given the φi?

2. How to choose the φi?

The answer to the first is simple. Given φ1, . . . , φk, we form

from the observed sample transitions (1) the twoN×k ma-

trices

Φ̃k = [α1| · · · |αk], where αi =





φi(x0)
...

φi(xN−1)





Φ̃′
k = [α′

1| · · · |α
′
k], where α′

i =





φi(x1)
...

φi(xN)





and the N ×1 vector R̃ with entries [R̃]i = rπ(xi, xi−1). Let

Vk = span{α1, . . . , αk} and let PVk denote the orthogonal

projection onto Vk. In least squares temporal difference

learning (LSTD), the coefficients w are obtained by solv-

ing the following equation

Φ̃kw = PVk

(

R̃ + γΦ̃′
kw

)

, (3)

the solution of which “converges” (with growing number

of samples N) to the solution of a projected version of the

original fixed point equation (2) weighted by the stationary

state distribution (Bertsekas, 2007).

Feature generation or feature selection?

The second question raises a conceptual issue and is more

difficult to answer. The problem one faces is one of fea-

ture selection (i.e., given a large set of candidate φi, which

ones to use in the representation of Ṽ) and feature genera-

tion (i.e., where do the candidate φi’s come from). Our aim

with this contribution will be to only address the (easier)

problem of feature selection.

Feature selection in LSTD via OLS

Assume that we are given a large set of basis function can-

didates {φ1, . . . , φM} together with our training samples

(1). From the basis functions and samples we can compute

the corresponding basis vectors {αi}
M
i=1, {α

′
i}
M
i=1 as defined

above; note that only the αi will be used to represent Ṽ .

The framework we propose works incrementally by com-

bining forward selection with backward deletion steps. At

each step k of the procedure, we maintain a list of currently

selected basis vectors and will

• either add from the unselected basis vectors the one

which contributes the most (reduces the most the norm

of the Bellman residual wrt the current LSTD solution),

• or delete from the selected basis vectors the one which

contributes the least,

• or do a combination of both

Basic forward selection

Assume that at step k, Vk = span{αi}
k
i=1, i.e., that the in-

dices are ordered such that the first k correspond to the se-

lected basis vectors. Let Vk⊕i = Vk⊕〈αi〉, i = k+1, . . . ,M ,

be the (k + 1)-dimensional space if unselected basis vector

αi is selected next, and let PV⊥
k⊕i

= I − PVk⊕i be the projec-

tion onto the orthogonal complement space (in R
N). Each

step of the forward selection now performs the following

operations:

1. Find index i∗ ∈ {k + 1, . . . ,M} which maximizes reduction of the

Bellman residual in the current LSTD solution wk for Vk:

i∗ = argmin
i=k+1,...,M

errk⊕i, where errk⊕i = ‖PV⊥
k⊕i

(

R̃ + γΦ̃′
kwk

)

‖2

2. Add α∗ = αi∗ to the list of selected basis vectors. Set Vk+1 =
span{α1, . . . , αk, α∗}, append a column to Φ̃k+1 = [Φ̃k | α∗], Φ̃

′
k+1 =

[Φ̃′
k | α

′
∗] and swap elements such that index k + 1 corresponds to in-

dex i∗.

3. Compute wk+1 as LSTD solution for Vk+1, i.e., solve Φ̃k+1w =
PVk+1

(

R̃ + γΦ̃′
k+1w

)

.

Orthogonal representation of unselected elements

To efficiently determine the novel contribution for each un-

selected basis vector in Step 1, we store ψ
(k)
i = PV⊥

k
αi,

i = k + 1, . . . ,M . The next best element to add is then

simply

Add: i∗ = argmax
i=k+1,...,M

|〈ψ
(k)
i , R̃ + γΦ̃′

kwk〉|/‖ψ
(k)
i ‖.

Whenever an unselected basis vector α∗ is selected in Step

2, the remaining ψ
(k)
i need to be reorthogonalized with re-

spect to the new Vk+1 = Vk ⊕ 〈α∗〉.

Biorthogonal representation of selected elements

Each selected basis vector αi spanning Vk is associated

with a biorthogonal basis vector β
(k)
i with the property

〈β
(k)
i , αj〉 = δij for j = 1, . . . , k. The β

(k)
i span the same

space Vk and are chosen such they represent the projection

onto Vk in terms of the original (non-orthogonalized) basis

vectors αi; i.e.,

PVkz =

k
∑

i=1

〈β
(k)
i , z〉αi.

With a biorthogonal basis representation, PVk can be easily

updated in both directions PVk⊕i (adding an element) and

PVk⊖i (deleting an element) [3].

Add: Initially, set β
(1)
1 = α1/‖α1‖. Then, whenever in step

k unselected basis vector α∗ gets selected, the current β
(k)
i

are modified as follows:

β∗ = ψ(k)
∗ /‖ψ(k)

∗ ‖2, β
(k+1)
i = β

(k)
i − β∗〈β

(k)
i , α∗〉/‖α∗‖

for i = 1, . . . , k and appending β
(k+1)
k+1 = β∗.

Del: To decide whether we want to remove an element

from the currently selected ones, we find the one with the

minimum contribution

Del: i∗ = argmin
i=1,...,k

|〈β
(k)
i , R̃ + γΦ̃′

kwk〉|/‖β
(k)
i ‖.

Whenever an element j is deleted, we downdate the projec-

tion PVk⊖j by setting:

β∗ = β
(k)
j /‖β

(k)
j ‖, β

(k−j)
i = β

(k)
i − β∗〈β∗, β

(k)
i 〉.

Empirical comparison with LARS and MP

We examine variants of OLS-LSTD in the benchmark

problem mountain car (nonlinear optimal control, deter-

ministic, 2-dimensional state space), following the optimal

policy π∗ during sample generation (starting from random

initial states) and thus trying to estimate V ∗.

Methods compared

• OLS-F(kmax): select kmax basis vectors via forward se-

lection.

• OLS-FB(kmax): select 2 × kmax basis vectors via for-

ward selection, then remove kmax via backward deletion.

• OLS-FB2(λ): add ℓ0 regularization to (3). At each

step, either add or delete a basis vector until no further

improvement is possible.

• MP-F(kmax): implemented as described in [1].

• LARS(β): implemented as described in [2].

Mountain car

Stats: 2504 training samples, 7513 test samples, 1365 ba-

sis function candidates (RBFs on a grid at various levels of

coarseness).

LARS-LSTD

β =Error (abs)nBasis

50 5.22 25

10 2.86 57

1 1.78 138

0.1 1.58 321

OLS-FB2-LSTD

λ =Error (abs)nBasis

20 14.61 19

5 2.82 53

1 1.79 126

0.1 1.42 290

MP-LSTD

nBasisError(abs)

25 3.21

50 2.80

100 1.75

200 1.63

300 1.60

OLS-F-LSTD

nBasisError (abs)

25 7.75

50 2.83

100 1.96

200 1.57

300 1.37

OLS-FB-LSTD

nBasisError (abs)

25 2.89

50 1.94

100 1.91

200 1.50

300 1.34

Related work

[1] C. Painter-Wakefield and R. Parr. Greedy algorithms for sparse reinforcement

learning. In: Proc. of ICML, 2012

[2] J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-

squares temporal difference learning. In: Proc. of ICML, 2009

[3] M. Andrle, L. Rebollo-Neira, and E. Sagianos. Backward-optimized orthogonal

matching pursuit approach. IEEE Signal Processing Letters, 11(9):705-708, 2004

