
Académie Wallonie Europe

Université de Liège

Faculté des Sciences Appliquées

Mécanique Numérique Non Linéaire

From medical imaging to

finite element simulations: a

contribution to mesh generation and

locking-free formulations for tetrahedra.

Vinciane d’OTREPPE de BOUVETTE

Ingénieur civil électromécanicien (aérospatiale)

Aspirante F.R.S.-FNRS

Thèse présentée en vue de l’obtention

du grade légal de Docteur en Sciences de l’Ingénieur

Octobre 2012





Abstract

Patient-specific finite element (FE) modelling is gaining more and more attention over the years

because of its potential to improve clinical treatment and surgical outcomes. Thanks to patient-

specific modelling, the design of individualised implants and prostheses, surgical pre-operative

planning and simulation, and the computation of stresses and strains in a patient’s organ for

diagnostic purposes will become a reality in the future. This work investigates two of the most

challenging tasks of patient-specific modelling: the creation of image-based finite element meshes

and the development of a low-order locking-free tetrahedral element.

First, a general meshing strategy for tetrahedral mesh generation from segmented 3D images

is proposed. The originality of the approach is the addition of surface reconstruction algorithm

to the traditional image-to-mesh pipeline. The main advantages for this are: the generation

of smooth boundaries, robustness to segmentation noise, a user-defined mesh resolution and a

good fidelity of the mesh boundaries with respect to the underlying image. Also, the proposed

meshing strategy is capable of generating meshes of heterogeneous structures, containing several

interconnected types of tissues. Applications demonstrate that the interfaces between distinct ma-

terial regions are topologically correct, i.e. the connections are edge-on-edge and node-on-node.

Specific mesh decimation and mesh smoothing algorithms were designed for this multi-material

tetrahedral mesh generator. In a last chapter, patient-specific hexahedral meshes are created by

combining the proposed surface reconstruction algorithm with a classical voxel-conversion algo-

rithm.

Second, a low-order tetrahedral element for the solution of solid mechanics problems involv-

ing nearly incompressible materials is developed. The formulation is based on F-bar methodolo-

gies and nodal-based formulations. As in nodal based formulations, nodal Jacobians are defined.

These nodal quantities are then averaged over the element to define a modified elemental Jaco-

bian, which is used to define a modified deformation gradient, F-bar, for the element. Both 2D

triangular and 3D tetrahedral are proposed and they can be used for both implicit and explicit

analysis. The exact stiffness terms for the tangent stiffness matrix are derived so that a quadratic

convergence rate in ensured for the Newton-Raphson equilibrium iterations. Most importantly,

the new element can be used regardless the material model. Benchmarking 2D and 3D numerical

tests using several constitutive models indicate a substantial removing of both the volumetric and

the shear locking tendency of the standard linear triangle and tetrahedron, as well as an accurate

distribution of strain, stress and pressure fields.

The potential of the resulting image - to - FE model procedure is demonstrated in the last part

of this work, through patient-specific finite element analyses of actual biomechanical research

topics.
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Chapter 1

Goals and introduction of the research

1.1 Computational biomechanics

Biomechanics is broadly defined as the scientific discipline that investigates the effects

of forces acting on and within biological structures. Computational Biomechanics uses

mathematical modelling and computer simulation with the aim of

• providing a better understanding of human and animal bodies at all scales; important

research fields being the characterisation and modelling of Tissue properties [83] and

Bone properties [46], Injury Mechanics analysis [11, 72, 125] and Multi-scale modelling

[14, 65, 87, 174];

• providing the medical doctors with the possibility to simulate and plan a surgical

procedure pre-operatively [30, 44, 141, 166];

• enhancing visualisation techniques during surgery, mainly via Image-guided Surgery

techniques [77, 119, 176, 183];

• designing better implants and prostheses [70, 89, 90, 149, 171, 179].

Computational mechanics has led to technological developments in all traditional engi-

neering disciplines, as, for example, in the fields of aerospace, automotive, civil and struc-

tural engineering. The challenge for researchers in Computational Biomechanics is to extend

this success to biomedical sciences and medicine. The major issue certainly is that biological

structures are rather complex so that creating computer models, ideally based on medical

scans, defining material properties, applying initial and boundary conditions and validation

are often problematical.
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CHAPTER 1. GOALS AND INTRODUCTION OF THE RESEARCH

In an attempt to simplify the approach, many investigations in biomechanics employ

generic finite element meshes based on generic patient geometries. In most studies how-

ever, the variation in human anatomical structures in geometrical shape and tissue proper-

ties must be taken into account. Patient-specific modelling is the development of compu-

tational models of human patho-physiology that are individualized to patient-specific data.

Patient-specific modelling is gaining more and more attention over the years, as demon-

strated by the increasing numbers of submitted articles and funding, because of its potential

to improve clinical treatment and surgical outcomes. Thanks to patient-specific modelling,

the design of individualised implants and prostheses, surgical pre-operative planning and

simulation, and the computation of stresses and strains in a patient’s organ for diagnostic

purposes will become a reality in the future.

Popular research topics in patient-specific modelling are:

• The investigation of the effects of cardio-vascular devices, a stent for example, on

blood circulation as well as the prediction of outcomes of therapies for individual

patients [164]. In general, meshes based on medical images (MRI, CT or US) are

generated to create the needed computational fluid dynamics models.

• The prediction of the likelihood of vascular aneurysm by computing the stresses,

caused by blood circulation, in the vessel walls. [36, 37, 168]. These models fall

into the category of fluid-structure interaction modelling.

• The modelling of heart contraction mechanics and linked electrical activation using

coupled electrical and finite element models [127, 153]. A thermoelectric coupling

due to the presence of a pacemaker could also be included [43].

• The simulation of brain deformation due to craniotomy and surgery, with the goal of

improving image-guided visualisation tools [119, 176, 183], which can also be done

by finite element analysis.

• The estimation of the needed scoliosis deformity correction for a particular treatment

or surgery, using a finite element model of the patient’s spine [1, 76, 106].

The above examples illustrate the variety of research areas in patient-specific mod-

elling: variety in the structures that are considered (blood vessels, heart, brain, bones),

variety in the scale of interest (tissue-level, organ-level, system level), variety in the numer-

ical method used (computational fluid dynamics, fluid-structure interaction, finite element

method, coupled methods, ...).

The scope of this dissertation is patient-specific modelling of solid biological structures.

The finite element method will be used to solve the equations of continuum mechanics.

4
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Image - to - mesh pipeline FE simulation

(a) (b) (c) (d)

FIGURE 1.1: Patient-specific modelling pipeline. (a) Images are taken from the patient. (b)

The structures of interest are extracted from theses images. (c) A computer model is built.

(d) Advanced numerical methods are employed to calculate the behaviour of the structure

under specific loads and boundary conditions.

Instead of studying one part of the body in detail, this thesis investigates generic algorithms

that can be used to model any solid biological structure (bone, soft tissue, ...). The image-

to-mesh pipeline, considered as the bottleneck of patient-specific modelling, is examined in

detail and issues regarding the finite element modelling of incompressible media are solved.

These two topics constitute Part One and Part Two of this manuscript and are introduced in

the following two sections.

1.2 Image-to-mesh pipeline

In patient-specific modelling, images are taken from the patient, the structures of inter-

est are extracted from these images, a computer model is built and advanced numerical

methods are employed to calculate the behaviour of the structure under specific loads and

boundary conditions. The process of generating a computational mesh from a medical

image is called the image-to-mesh pipeline and is summarised in Figure 1.1.

The image-to-mesh pipeline requires many competences as it is located at the junction

of different research fields: image processing, geometry, surfacing, meshing and numerical

modelling. Too often researchers in these fields consider their problem as an independent

setting and not as part of a pipeline. Instead, it is the author’s belief that the image-to-

mesh pipeline should be considered as a whole and be designed to meet the final goals of

improving surgical outcomes by building patient-specific computer models. In this perspec-

tive robustness, computation time and automatisation are particularly important.

In addition to the variety of research topics, the variety of biomechanical applications,

makes it even more difficult for researchers to distinguish the nuances between the many

algorithms proposed in literature. It is an objective of this thesis to give a better insight into

5
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available methods, their usability within the image-to-mesh pipeline, their limitations and

their range of application.

Let us now review the different steps involved in the image-to-mesh pipeline, illus-

trated in Figure 1.1. Patient-specific mesh generation always starts with data acquisition.

Most often computed tomography (CT) or magnetic resonance imaging (MRI) is used to

obtain a three-dimensional image, that may be viewed as a set of cross-section slices (Fig-

ure 1.1,(a)). The value of each voxel1 is linked to the tissue in which it is located.

The second and often also manual step within the image-to-mesh pipeline is the ex-

traction of the structures of interests in the three-dimensional medical images. When no

a priori knowledge of the image is taken into account, this step consists either in segmen-

tation or in landmark detection. On the one hand, segmentation consists in dividing the

greyscale voxels into groups, each group corresponding either to a tissue or the background

(Figure 1.1, (b)). On the other hand, landmarks detection refers to the identification of spe-

cific reference points in the image. Unfortunately, both approaches involve manual steps.

These manual steps are the main raison why patient-specific modelling is still not a reality

in the hospital. In fact, these manual steps could be removed by studying a specific part of

the body and targeting a specific medical application. But, in all cases, there is trade-off

between the generality of the approach, the time needed to generate the computer models

and the geometric accuracy of these models. Chapter 2 explains how different applications

can lead to different choices in regard to the method that should be adopted.

The next step in the image-to-mesh pipeline is the building of a computational grid,

that is, in the framework of the finite element method, a mesh (Figure 1.1, (c)). This

mesh consists in a series of nodes connected together in a specific way so that the ob-

ject is subdivided in a series of elemental volumes. The latter usually are tetrahedrons or

hexahedrons, even though other topologies exist. The choice of the finite element type is

important. Tetrahedrons are easy to generate: any volume can be subdivided into tetrahe-

drons in an automated manner and they can approximate well curved objects boundaries.

This makes the tetrahedron the element of choice for complex geometries. Hexahedrons

are more popular in finite element simulations because they behave well (generally much

better than tetrahedrons) in numerical computation, while tetrahedrons may produce inac-

curate results under certain conditions. This makes the hexahedron the element of choice

for advanced finite element simulations. This trade-off will also be investigated in this

work: both patient-specific tetrahedral and hexahedral meshes will be generated and used

in finite element simulations, so that we will be able to compare both approaches knowingly

and draw conclusions.

1A voxel, volumetric pixel, is a volume element representing a value on a regular grid in three dimensional

space, i.e. in a 3D-image.

6
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1.3 The finite element method and volumetric locking

It is well-known that low-order finite elements exhibit an overstiff behaviour under near

incompressibility constraints. This spurious stiffness, called volumetric locking, is observed

during the finite element analysis of incompressible linear elastic and hyperelastic materi-

als, but also for J2 elasto-plastic materials.

The problem can easily be solved by using higher-order elements. But, due to their

simplicity and robustness, elements with linear shape functions are often preferred for non-

linear problems, particularly when these involve high strains, frictional contact or material

fracture.

Efficient unlocking solutions for the linear quadrilateral and hexahedron have been pro-

posed. But, because of the complexity of the geometries involved, tetrahedral meshes are

often more practical in computational biomechanics.

The quest for a low-order locking-free tetrahedral element is the object of Part 2 of this

dissertation. Ideally, the element should be suitable for both explicit and implicit analysis.

Also, it should not impose particular restrictions on the employed constitutive model. A

third requirement for this work is that it has to be easily implementable into the in-house

finite element software Metafor.

In Chapter 7, a new low-order non-locking tetrahedral element that meets the above

requirements is developed. Benchmarking numerical tests are performed in Chapter 8 in

order to compare its performance with other popular finite elements of the literature.

1.4 Biomechanical applications

The last part of this thesis demonstrate the applicability of this work to solve real-life

biomedical problems. All three applications are the result of collaborative projects that

could benefit from the meshing algorithms and/or the non-locking tetrahedral element de-

veloped in this thesis.

The first application is the finite element analysis of the compression of a deer antler

cancellous bone. Several types of meshing methods, hexahedral and tetrahedral, are stud-

ied and their influence on the results of the finite element simulation is assessed.

The second application is the finite element modelling of intra-operative brain shift

deformation, based on pre-operative and intra-operative scan-data. We use both our mesh-

7
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ing algorithm and our non-locking tetrahedral element to improve a previously proposed

biomechanical model of the brain [175].

The third application is the finite element study of dog humeral fractures. The devel-

opments of this thesis are used to create a patient-specific model of a dog elbow. The

influence of the skeletal development (young versus adult dog), the elbow configuration

(flexion-extension and exo-endoration angles) and the load direction on stress distribution

within the humerus is analysed; and possible fracture types are deduced.

The purpose of these applications is to illustrate the possibilities and application range

of the algorithms proposed in this work, and not, in the framework of this thesis, to solve

specific problems of biomechanics.

1.5 Contributions of this thesis

1.5.1 Major contributions

1. A patient-specific multi-material tetrahedral mesh generator

A new strategy to create the meshes required for finite element analysis from segmented

medical scans is presented. The originalities of the proposed mesh generator are detailed

below.

• It creates topologically correct multi-material meshes in an integrated manner.

• It removes the characteristic stair-case irregularities appearing in meshes created from

segmented scans, without jeopardising the fidelity of the model with respect to the

underlying image.

• It is associated with specific mesh decimation and mesh adaptation algorithms that

preserve the geometric accuracy and the multi-material nature of the model.

2. A robust, geometry-preserving, smoothing method for voxel-based meshes

A novel strategy to smooth hexahedral voxel-based meshes based on the use of a multi-

level partition of unity (MPU) surface reconstruction method is proposed. The resulting

hexahedral mesh generator has the following specificities.

• It generates patient-specific hexahedral meshes with relatively smooth boundaries.

8
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• The element distortion due to smoothing is limited by propagating the mesh defor-

mation through the volume.

• It is very well adapted for the generation of multi-material meshes. In that case, inner

and outer boundaries are smoothed.

• It is very robust and effective in generating hexahedral meshes of truss-like structures,

like foams or trabecular bone, for which most algorithms fail.

3. A new locking-free formulation for the low-order tetrahedron that is suitable for

the large strain analysis of nearly incompressible solids

A low-order finite element suitable for the large strain analysis of nearly incompressible

solids is proposed. The unlocking formulation is proposed for both the two-dimensional

triangle and the three-dimensional tetrahedron. Compared to other formulations, the main

advantages of the proposed formulation are:

• It is suitable for both explicit and implicit analysis.

• It preserves the displacement-based structure of the finite element equations.

• It can be used with any, strain-driven, constitutive model.

• The exact expression of the stiffness terms in the tangent stiffness matrix are pro-

posed. Therefore, the Newton-Raphson algorithm can be used to solve the global

equilibrium equations and quadratic convergence rates are ensured.

• It can be used for heterogeneous solids constituted of several materials.

The performance of the proposed element is thoroughly assessed by means of popular

2D and 3D benchmarking tests. Results indicate that the proposed element substantially

reduces both the volumetric and the shear locking of the standard linear tetrahedron. It

also allows a good evaluation of the deformed shapes as well as stress, strain and pressure

fields within the solid.

1.5.2 Other contributions and novelties

Other contributions of this work are:

9
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• on realistic biomedical applications, a demonstration of the whole process of patient-

specific finite element modelling: image processing, mesh generation, model defini-

tion, finite element analysis;

• the comparison of different meshing approaches on finite element results of cancel-

lous bone compression;

• the use of the proposed non-locking tetrahedra for the modelling of intra-operative

brain deformation;

• the finite element modelling of canine humeral fractures;

• the extension of the multi-level partition of unity implicit surface reconstruction method

for the representation of heterogeneous objects;

• the presentation of the mathematical developments for the calculation of the exact

stiffness terms of popular and proposed unlocking formulation, rarely provided in

literature;

• for the new researcher in the field: a global view of the image-to-mesh pipeline,

the popular meshing strategies and practical guidelines with respect to the targeted

application;

Finally, the image-to-mesh approach and the unlocking formulation for the linear tetra-

hedral element were implemented and are available in the large strains finite element code

Metafor, developed at the non-linear computational mechanics laboratory of the University

of Liege. Also, a graphical user interface was developed to simplify image visualisation and

pre-processing as well as mesh generation, visualisation and adaptation. Therefore this

thesis is a first but significant step in making the finite element software Metafor suitable

for patient-specific modelling.
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Mesh generation from medical datasets
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Chapter 2

Challenges and compromises of

patient-specific mesh generation

In this chapter, patient-specific mesh generation is broadly introduced. The discretisation

of the domain of interest, through the generation a mesh, is one of the first steps of finite

element modelling. In patient-specific biomechanical modelling, the finite element model

is generated on basis of the patient’s medical scans, we speak of an image-to-mesh proce-

dure. The wide range of possible biomechanical applications, and the variety of available

modelling software, results in numerous available image-to-mesh strategies in literature.

As a result, it is often difficult for the out-of-the-domain researcher to select the most ap-

propriate procedure for a particular application.

In Section 2.1, we present the challenges of patient-specific mesh generation. Sec-

tion 2.2 gives the key questions that a researcher should consider in order to define an

appropriate meshing strategy. Mesh generation actually consists in the transformation of

one type of data representation to another, more adapted to finite element analysis. Sec-

tion 2.3 reviews the different ways to represent geometries, from medical data, to analytic

functions and finite element meshes. From this prerequisite, Section 2.2 presents popu-

lar pathways to transform medical data into a finite element mesh. Taking account of the

objectives defined in Section 2.2, Section 2.5 gives practical recommendations on which

meshing procedure to take.

13
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2.1 Challenges

Despite numerous papers on mesh generation methods available in literature, extracting

finite element meshes from medical data is still a challenge. Main reasons for this are that,

in patient-specific mesh generation:

• The geometry is not described analytically but must be extracted from three-dimensional

medical images, as opposed to CAD geometries1 for example.

• Discerning the tissues in medical images is rarely straightforward.

• The geometry of medical tissues is usually far more complex than in traditional engi-

neering fields.

2.2 Defining objectives and outcomes

The possibilities of obtaining a finite element mesh from an image are numerous and the

path to be chosen will depend on the targeted application. In order to determine which

procedure to take, the researcher should answer and prioritize the following questions.

Which level of geometric accuracy is required? Patient-specificity is not always a neces-

sity; sometimes the mesh may be built from generic, averaged, geometries. When

the application requires a patient-specific mesh, it is useful to define what level of

accuracy is needed. The geometric accuracy of the mesh will generally be measured

by calculating the Hausdorff distance2 between the mesh and the initial dataset [88].

For the model to correspond to the real geometry, the medical datasets must also be

acquired with a sufficiently fine resolution. High geometric accuracy will generally re-

quire precise image segmentation, tetrahedral meshing and large numbers of degrees

of freedom.

What are the targeted simulations times? When real-time simulations are needed, the

method should produce as few elements as possible. An efficient solution to limit

the overall number of elements whilst still producing accurate results is to use adap-

tive meshes. In adaptive meshes, the mesh scale is allowed to vary spatially so that

small elements are generated along the region of interest while larger elements are

1Computer-aided design (CAD) is the use of computer systems to assist in the creation, modification,

analysis, or optimization of a design [126].
2The Hausdorff distance will be defined in Section 3.6.2.
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produced further away. However, in the field of patient-specific modelling, only a

few mesh generation procedures produce adaptive meshes and the latter are gener-

ally created via subsequent consecutive mesh decimation and adaptation algorithms

[67, 68].

Which type of finite elements should be generated? Quadrilateral and hexahedral ele-

ments are better than triangles and tetrahedrons for the convergence of the finite

element method. This is even more true in the biomechanical field because biological

tissues are often incompressible, leading to volumetric locking of the standard lin-

ear triangle and tetrahedron. However, generating hexahedral meshes from medical

data results in a trade-off between geometric accuracy and automaticity : no meshing

method exists that produces a three-dimensional hexahedral mesh of good geometric

accuracy and mesh quality without any user input.

Should the model include shell, spring or beam elements? Some tissues will be better

modelled as collections of shell elements, like the ribs, or with membrane elements,

like the cranial dura matter. Others will be better modelled by connectors or spring

elements, like the ligaments. Applying a volumetric mesh generation algorithm to

these structures will generate a needlessly large number of tetrahedra and hexahedra.

When volumetric and non-volumetric elements should be generated from the same

medical dataset two procedures may be taken. The most common solution is to use

a volumetric patient-specific mesh generation algorithm and add the 1D and 2D ele-

ments afterwards, manually. When the location of these elements should absolutely

be automatically extracted from the patient’s datasets, specific meshing approaches

may be required.

Which level of complexity should the model include? Should the model include several

structures, with different material properties, and are these tissues connected/attached

to each other? If yes, how should the interface between these material domains be

modelled? Distinct tissues composing the medical structure should correspond to

distinct material domains. When these tissues are allowed to move separately, or

slide along each other, distinct meshes should be generated and contact properties

should be defined. When, however, these tissues are intimately linked, the whole

structure should be modelled as one unique mesh, made of one outer boundary and

one or several inner boundaries: the outer boundary separates the structure with

the exterior and the inner boundaries separate two distinct tissues. Ideally, the inner

boundary meshes should then join the outer boundary mesh in a consistent way, that

is to say, without T-junctions nor gaps. This type of meshing will be referred to as

multi-material meshing in this work.
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What is the level of automation required ? Will the whole meshing procedure be repeated

for several patients ? Some mesh generation procedures may be time-consuming the

first time but almost automatic afterwards. Also, some meshing approaches may uti-

lize the first mesh to create the subsequent, not so different, meshes.

Finally, for the sake of rapid convergence of the non-linear finite element iterative solution

algorithm, the quality of the generated elements, hexahedral or tetrahedral, should always

be acceptable in the sense of the finite element method. And, needless to say, the gener-

ated meshes should be topologically valid, also in the sense of the finite element method,

meaning that connections should be node-on-node, edge-on-edge and face-on-face.

2.3 Different ways to represent medical data

Finite element model creation consists in transforming medical data into a form that is

better adapted to computer modelling. There exists indeed many ways to represent a ge-

ometry, and distinct data acquisition techniques and mesh generation methods will produce

and utilize one or the other form. This section reviews the different ways to represent a

three-dimensional object, from the acquisition of the dataset to the volume mesh used in

finite element simulation.

Data acquisition techniques will produce different outputs. Laser scanners, extensively

used in Computer Graphics, only acquire the outer surface of the object, and generate a

point set in the three-dimensional space (Figure 2.1, Left). On the other hand, Computed

Tomography (CT) and Magnetic Resonance Imaging (MRI), popularly used by physicians,

acquire the volume of an object. Computer Tomography is an imaging tool that combines

X-rays with computer technology to produce a series of, generally parallel, two dimen-

sional scans (Figure 2.1, Middle). Magnetic resonance imaging uses magnetic fields to

acquire the volume and produces a three-dimensional image, viewed as a regular, but usu-

ally anisotropic, grid of voxels (Figure 2.1, Right). In each case, the pixel value of the

two-dimensional cross-section or the voxel value of the three-dimensional image provide

information on the internal structure of the scanned object. It is important to note that the

set of two-dimensional scans may be seen as a three-dimensional image, if we stack all 2D

scans. Finally the voxels may be seen as a set of points in 3D with specific values, each

point being the centre of the hexahedral voxel in the image.

Medical images (2D or 3D) are not suited for computational analysis and must be pre-

processed. They contain too much information, and researchers will need to extract the

surface or the volume that they need to model, here-after called the object of interest. Seg-
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Set of points CT-scan MRI slice

FIGURE 2.1: Different ways to represent medical data. Classical outputs of data acquisition

techniques. Left: Point set produced by laser scanners [95]. Middle: Two-dimensional

scans of the brain produced by Computer Tomography imaging. Right: Slice of a three-

dimensional image of the brain produced by Magnetic Resonance Imaging [95].

mentation consists in colouring the pixels of the successive 2D image slices, or the voxels

of the 3D image, according to whether they are located inside (value 1) or outside (value

0) the object of interest; leading to binary 2D slices or a binary volume image respectively

(Figure 2.2, Left). More values may be used when multiple structures (e.g. containing

several materials) must be extracted, leading to multi-label images (Figure 2.2, Middle).

Some image-to-mesh procedures may require the application of 2D or 3D distances filters3

on these segmented datasets, in order to have an information on the distance to the bound-

ary of the object of interest (Figure 2.2, Right).

An alternative method to extract an object from a medical image is the identification

of anatomical landmarks, distinct geometrically recognizable features, or reference points,

in the medical data (Figure 2.3, Left). Interpolating lines and curved are then manually

defined in order to delineate the boundary of the object (Figure 2.3, Middle), which results

in a CAD model (Figure 2.3, Right).

An analytic representation of the image may also be employed to guide mesh genera-

tion: the surface of the object is represented by an implicit equation of the form f (x ) = c

(Figure 2.4). This function enables us to determine if a particular point of the three-

dimensional space is inside the object f (x ) > 0, on the object boundary f (x ) = 0 or

outside the object f (x) < 0. Approaches to obtain implicit surfaces form medical images

or from a set of points are reviewed in Chapter 3.

3Applied on a binary image, a distance filter will output a grey-scale image in which each pixel (2D image)

or voxel (3D image) is a measure of the distance to the segmented region in the input image.
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binary 3D image multi-label 3D image 3D Distance field

Distance [mm]
-60 0 60

FIGURE 2.2: Different ways to represent medical data. Outputs of image processing.

Left: Binary three-dimensional image produced by image segmentation. Middle: Multi-

label three-dimensional image produced by image segmentation or region labelling. Right:

Distance three-dimensional image produced by applying a distance filter to a binary image.

Anatomical Landmarks Analytical curve CAD model

FIGURE 2.3: Different ways to represent medical data. Feature points and CAD model. Left:

Anatomical landmarks or reference points, ordered in a pre-defined way as shown by the red

line. Middle: Analytical curves and lines. The closed analytical curve is oriented so that its

interior indicates the interior of the structure, as highlighted in red. Right: Computer-aided

design and drafting model built from the anatomical reference points, analytical curves and

surfaces. Source: Paediatric Spine Research Group, Queensland University of Technology

[107].
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Implicit function

f( )>x 0

f( )<x 0

f( )=x 0

FIGURE 2.4: Different ways to represent medical data. Implicit function. Interior: f (x ) >

0. Boundary surface: f (x ) = 0. Exterior: f (x )< 0.

surface mesh volume mesh

FIGURE 2.5: Different ways to represent medical data. Surface and volume meshes. Left:

Triangular surface mesh of the brain boundary. Right: Tetrahedral volume mesh of the

brain.

Numerical computation requires the data to be further simplified in the form of a mesh

(Figure 2.5). In a volume mesh, the volume of the object is represented as a set of elemen-

tary volumes connected together in a valid manner. Even though more complex meshes

may exist (hybrid, prism, ...), this dissertation focuses on meshes that are composed of

tetrahedra or hexahedra only. Whereas a hexahedral mesh is generally generated through-

out the volume directly, the creation of a tetrahedral mesh of a volume will often need the

intermediate creation of a triangular mesh of its boundary. The different ways to obtain a

polygonal mesh from medical images or point sets are reviewed here-after, in Section 2.4.
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Medical 3D Image

Set of Points in 3D Implicit Distance Function
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Volume Mesh
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FIGURE 2.6: Image-to-mesh pathways.

2.4 Image-to-mesh pathways

All the geometric representations described above may be a starting point to mesh genera-

tion techniques. Volume or surface meshes may be directly generated from segmented 2D

scans or from a segmented 3D image. The points in a 3D point set may be connected to

form a polygonisation. An implicit surface representation may also be extracted from the

3D point set in order to facilitate further surface mesh generation. A volume mesh may be

obtained from an implicit surface representation or from a surface mesh of the boundary.

The different paths to generate a volume mesh from medical datasets are illustrated in

Figure 2.6.

Path A Mesh generation procedures were originally developed in the Mechanical Engi-

neering community to generate meshes from digital models, created using Computer

Aided Design software.

Path B The creation of polygonal meshes from a set of points belonging to the exterior sur-

face of an object, acquired from laser scanners, has also been extensively investigated,

mainly for computer visualisation purposes.

More recently, with the advances in the medical field, researches are striving to gen-

erate finite element meshes from a three-dimensional image, or equivalently, from two-

dimensional scans. Two main approaches, with many variants, are taken.

On the one hand, in an attempt to extend path A (CAD model to Volume Mesh),

Path C-D-A a CAD model is constructed by first extracting relevant anatomical landmarks

from the medical image (C) and second joining these reference points, using CAD

software or in-house code, to create a digital model of the object’s surface (D). Usu-

ally, when commercial software is used, a stereolithography (STL) file will generally
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by generated. This STL file is a representation of the boundary surface of the object

in the form of a triangulation. Because STL files are mainly used for visualisation

purposed, the quality of the triangulation is far from satisfying the requirements for a

finite element mesh. Therefore specific techniques must be used in a subsequent step

to create a finite element surface and/or volume mesh [13].

On the other hand, segmentation techniques are used in a first pre-processing step

to delineate the object of interest in the 3D medical image (E). From a segmented image,

many options are possible:

path E-F a hexahedral volume mesh can be easily generated by turning each image voxel

into a hexahedral finite element, or,

path E-K-L-J a triangular surface mesh may be computed by using popular surface tri-

angulation techniques. Surface triangulation algorithms generally need to compute

the distance to the surface to be meshed, at a finite number of points in the three-

dimensional space. In general, this information is provided by applying a distance

filter to the segmented image (K); the surface mesh may then be obtained more eas-

ily (L).

path E-G-H-I-J The alternative path proposed in this dissertation is to first extract a set of

points belonging to the surface of the object (G), second define a continuous implicit

analytical function f (x) that gives, at every point of the three-dimensional space x ,

the distance to the object’s surface, that is to say to the set of points, (H), and then use

this continuously defined distance field in place of the discrete distance image to gen-

erate the surface mesh (I). A tetrahedral volume mesh from a surface triangulation is

then obtained using well-documented algorithms or available software (J).

2.5 Recommended image-to-mesh pathways

A striving force during these four years of doctoral studies has been to create a meshing

algorithm that would solve all issues of patient-specific mesh generation and this, without

restricting the algorithm to specific applications. However, the author also believes that,

when specific applications are targeted, this generality may not be needed and tailor-made

meshing algorithms may then be more efficient, for example by requiring less user input.

The next sections will give the researchers some practical recommendations on which

mesh generation procedure to use, in regard to the application targeted, and as a result of

his responses to the questions of Section 2.2. Let us recall that these questions were related
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to the desired level of geometric accuracy, the targeted simulation times, the type of finite

elements to be generated and the level of complexity required. There is indeed a trade-off

between these topics, which will lead to different meshing options. To solve the different

types of problems, we recommend to use one of the following three meshing options: a

general meshing strategy, a meshing method that is tailored to specific applications and

a third procedure that will be efficient when several patient-specific meshes of the same

structure must be generated.

2.5.1 Proposed general image-to-mesh solution

This first approach results form this thesis work and will be presented throughout Chapter 3

and Chapter 4. It has the advantage of being applicable for every biological structure, of

any shape and size. It will always produce a valid and visually appealing output that is

suitable for further finite element simulations, provided that the parameters of the method

are correctly set. The drawbacks of the approach is that it produces tetrahedral meshes

only and that it requires prior segmentation of the patient’s medical images.

The approach consists in taking path E-G-H-I-J in Figure 2.8, or, equivalently path (a)-

(b)-(c)-(d)-(e)-(f) in Figure 2.7. The input data comes from such sources as Magnetic

Resonance Imaging (MRI) or Computed Tomography (CT) of biological tissues and consists

in a usually anisotropic regular 3D lattice of voxels (Figure 2.7 (a)).

In a first segmentation step the desired structures are delineated in the medical image

(Figure 2.7 (b)). Single-material images are segmented into two regions by assigning a

zero-value v = 0 to background voxels, located outside the structure, and a positive value

v = 1 to foreground voxels, located in the tissue. On the other hand, biological structures

containing M > 1 tissues are segmented into M + 1 regions: each foreground voxel is

assigned a unique label v = 1, . . . , M according to the tissue in which it is located. As a

result, image segmentation provides a single-label or binary image in the single-material

case and a multi-label image in the multi-material case.

The points located on the boundary between two segmented regions are then extracted

and a local surface orientation is computed at each of these points (Figure 2.7 (c)). For

multi-label images the points are distributed into different sets of points according to the

material boundary from which they were extracted. These points are called boundary points

or extracted points and constitute a compact description of the segmented data. For the

remainder of the algorithm the segmented image is removed from memory and replaced

by the extracted points and their associated normals.
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(a)                             (b)                                  (c)

(d)                                         (e)                                 (f)

ventricles

tumour

cortex

FIGURE 2.7: Proposed general image-to-mesh solution. The medical scans (a) are first

segmented using a unique label for each tissue composing the structure. In (b), the brain

is segmented into healthy brain tissue, tumour and ventricles. For each material region,

boundary points and corresponding outward normals are extracted (c). An implicit model

is fit to each set of extracted points (d). A multi-material surface mesh is then generated

using a multi-material marching tetrahedra method followed by decimation and smoothing

algorithms (e). This multi-region surface mesh serves as input to classical volume mesh

generators (f).
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FIGURE 2.8: Proposed general image-to-mesh solution.
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From each set of extracted points the proposed surface reconstruction method defines an

implicit function f (x) that approximates the signed distance to the corresponding bound-

ary surface (Figure 2.7 (d)).

These surfaces are then polygonised using a multi-material marching tetrahedra algo-

rithm. The latter is an extension of the well-known marching tetrahedra algorithm to mul-

tiple materials. This means that the algorithm is capable of generating meshes that are

constituted of several inner regions, and that these regions join each other in a proper way

in the sense of the finite element method, that is to say node on node and edge on edge.

As for the traditional marching tetrahedra, our algorithm requires a sampling grid to be

defined. In the proposed algorithm however the resolution of this sampling grid may be

chosen independently of the original image resolution (Figure 2.7 (e)). The latter is an

important feature of our algorithm: the user may define the desired mesh size according to

the need of the targeted application rather than the resolution of the medical scans.

Finally, enhanced decimation and smoothing procedures are applied to optimise the

triangle count and their quality.

This procedure creates high-quality multi-region surface meshes from which tetrahe-

dral volume meshes may be obtained using Tetgen [158] or Gmsh [73] for example (Fig-

ure 2.7 (f)).

2.5.2 Recommended tailor-made image-to-mesh solution

With low quality medical datasets, for atypical patients or for particular tissues, segmen-

tation of the scans can be particularly difficult and time-consuming. In these cases, seg-

mentation may be circumvented by extracting only a set of anatomical reference points

from the input data. With the help of these reference points, the user may then build an

analytical model of the structure by defining analytical lines and curves and (interpolated)

surfaces to recreate the object’s boundaries. In the meantime, a way of subdividing the

volume into hexahedra may be defined. Truly, the user constructs the model by hand in

this procedure, but in the end, a patient-specific hexahedral mesh can be obtained without

image segmentation.

However, because only a few points of the model are really extracted from the patient’s

data, the obtained CAD model is only an approximation of the patient’s actual geometry.

The quality of the reconstruction is highly dependent on the user’s ability and efforts to

recreate an anatomically representative structure. Also, the procedure may lack repeatabil-

ity when the landmarks are not well defined.
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(a) (b) (c) (d)

FIGURE 2.9: Recommended tailor-made image-to-mesh solution. (a) Magnetic resonance

3D image of the spine. (b) Anatomical landmark selection in the medical dataset. (c)

Construction of the geometry and the finite elements, based on the landmarks. (d) Ob-

tained model. Procedure developed by, and images taken from, the Paediatric Spine Research

Group, Queensland University of Technology [107].

This approach may look far more complicated to implement than image segmentation.

Indeed, it is. But, as soon as the parametric CAD geometry has been defined, repeating the

procedure for other patient’s only requires the selection of the new anatomical landmarks.

Selecting landmarks will usually be less time-consuming than image segmentation, depend-

ing on the geometry, the quality and resolution of the medical scans and the software used.

Finally this approach may be preferred when different types of finite elements should

be used to model the geometry, shell or beam elements along with hexahedral elements

for example. Because the whole mesh is explicitly defined, adding 1D and 2D elements

requires less additional efforts.

This procedure was used successfully by the author within the Paediatric Spine Research

Group, Queensland University of Technology, Australia, to construct patient-specific models

of the spine. As illustrated in Figure 2.9, vertebrae are discretised using a hexahedral finite

elements and beam elements, shell elements are used to model the ribcage and ligaments

are modelled with axial connectors. An additional advantage of applying this image-to-

mesh technique to the spine is that the same parametric definition can used for all the

vertebrae composing the spine, so that the work to create the model is reduced, even for

the first model.
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2.5.3 Recommended model-based image-to-mesh solution, for repeti-

tive model creation

When the same anatomical structure will be modelled several times, for different patients

for example, I would recommend the reader to use mesh morphing techniques. The idea

is schematised in Figure 2.10. For the first patient, a reference model is constructed by

one or the other above procedures. When creating this reference mesh, a set of anatomical

reference points is defined and their position within the final mesh is recorded. For the

subsequent patients, these anatomical reference points must be, manually or automatically,

selected in the current patient’s dataset. A correspondence between the reference geometry

and the current, source, geometry may then be established and the reference mesh may be

translated, scaled and deformed in accordance.

The efficiency of this morphing strategy highly depends on the location of the landmarks

and their number. Good locations will ensure the repeatability of the approach. The number

of landmarks will determine its accuracy and efficiency. High numbers of landmarks require

more user inputs but will generate a more complex morphing deformation.

The author has implemented and used the algorithm presented by Lerios et al. [103]

with good results and would recommend using the same algorithm [59].

2.6 Conclusions

This chapter presented several meshing options, with their advantages and disadvantages,

and gave some practical recommendations on the meshing strategy to adopt in regard to

the targeted application.

The scope of this dissertation is the creation of patient-specific meshes from segmented

images. Therefore, it falls into the first of the three above recommended mesh genera-

tion strategies. Reasons for this is that patient-specific biomechanical modelling was non-

existent at the University of Liège before this thesis. Hence, it was more appropriate to

implement a general mesh generation procedure which will, and already has, motivate

future research possibilities and collaborations within and outside the University.
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FIGURE 2.10: Recommended model-based image-to-mesh solution, for repetitive model

creation. Morphing of an existing mesh to create multiple patient-specific meshes. Let us

consider that we have a first model of the desired structure and that we have extracted, for

this first patient, a set of anatomical landmarks. In order to obtain a finite element model

for the subsequent patients, only this set of anatomical reference points must be selected,

or automatically detected, in the patient’s medical scans. The transformation T that maps

this new set of anatomical points into the reference landmarks can be defined. Applying the

inverse transformation T−1 to the reference finite element model outputs a finite element for

the current patient.
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Chapter 3

From segmented 3D images to implicitly

defined analytical surfaces

The foundation of our approach to mesh generation from segmented medical images, and

its originality, is the addition of a surface reconstruction algorithm to the traditional image-

to-mesh pipeline. The advantages of this addition are detailed in Section 3.1. Literature

on surface reconstruction methods is reviewed in Section 3.2. From this literature review,

the multi-level partition of unity surface reconstruction method, detailed in Section 3.3,

was selected and adapted to patient-specific meshing, in Section 3.4, and to multi-material

meshing in Section 3.5. Section 3.6 introduces the Taubin and the Hausdorff distance,

needed to evaluate the fidelity of the reconstructed surface in relation to the initial dataset.

Finally, in Section 3.7, the proposed surface reconstruction method is applied on several

types of input datasets and the quality of the obtained analytic surfaces is assessed.

3.1 Motivation

The idea of this chapter is to construct a smooth representation of the object from the dis-

crete, jagged, segmented image and this, prior to mesh generation (surface triangulation).

The main advantages for this are (1) aliasing or staircase artefacts are alleviated, (2) the

result is more robust to segmentation noise, (3) the user may define the mesh resolution

freely, independently of the image resolution, (4) geometric accuracy is ensured to remain

unchanged during possible subsequent mesh adaptation steps. These four features are de-

tailed in the subsequent sections.

29



CHAPTER 3. FROM SEGMENTED 3D IMAGES TO IMPLICITLY DEFINED ANALYTICAL SURFACES

(a)                                                  (b)

f( )=0x

FIGURE 3.1: Circumventing aliasing artefacts. (a) Illustration of the staircase artefacts

appearing in meshes generated from segmented data. (b) In this dissertation, these artefacts

are avoided by constructing a smooth representation of the segmented volume in the form

of an implicit analytic distance function f (x) prior to mesh generation.

3.1.1 Circumventing aliasing artefacts

A common issue in mesh generation from segmented data is the appearance of aliasing

artefacts, also known as stair-stepped artefacts. These jagged edges, illustrated in Fig-

ure 3.1 (a), are caused by image voxelisation. They are visually unappealing and are un-

suited for finite element simulations. A more natural smoothness, qualifying the majority of

biological structures, may be recovered either by smoothing the extracted mesh or by filter-

ing the input image. However, mesh smoothing approaches that do not take into account

the underlying data cannot ensure an accurate representation of the original volume. Con-

sequently, approaches to smooth the meshes whilst restricting the mesh nodes to remain

near the boundary surface defined in the segmented data have been proposed [74, 133].

But, due to this latter constraint, the artefacts are not entirely removed. The second popular

strategy is to filter the segmented data typically with a low-pass filter [178]; yet, depending

on the used kernel, these methods are either inefficient or they blur away relevant details.

Obtaining a C1-smooth representation, illustrated in Figure 3.1 (b), of the segmented

data prior to mesh generation is our solution to stair-stepped artefacts.

3.1.2 Robustness to segmentation noise

Segmentation is never perfect and often entangled with noise, particularly when this seg-

mentation is done automatically. Of course, filters may be applied in order to smooth the
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segmentation and remove outliers, but, as these techniques rarely take into account the

underlying images, interesting features may be lost.

3.1.3 Free control of mesh resolution

The addition of an implicit surface extraction algorithm to the image-to-mesh pipeline

comes with the replacement of the segmented image with an analytical function f (x).

Contrarily to a segmented image, where the values of the image voxels can only computed

at discrete points, the implicit function f (x ) is continuously defined. Hence, the distance

to the surface to be meshed can be evaluated at each point of the three-dimensional space.

This means that the sampling grid used in surface triangulation algorithms can be de-

coupled from the image spacing. As a result, the user may choose the resolution and level

of details of the output model.

3.1.4 Volume-preserving mesh adaptation

Classical smoothing algorithms lead to volume shrinkage and mesh deformation [137]. Be-

cause, in our approach, the object’s boundary is defined by a continuously differentiable

function f (x ), that may be evaluated at every position in ℜ3, a Newton-Raphson iteration

scheme may be used at any moment to easily project the mesh nodes on the object’s bound-

ary. Thanks to this, a volume-preserving smoothing procedure may be obtained by first

applying traditional mesh smoothing algorithms, like the Laplacian smoothing, and second

projecting the mesh nodes back on f (x ) = 0 (Section 4.5).

3.2 Literature review

As introduced above, the topic investigated in this chapter is the addition of an effective sur-

face reconstruction algorithm in the classical image-to-mesh pipeline, after image segmen-

tation and prior to surface triangulation. Research on surface reconstruction approaches

originated with the appearance of 3D range scanners and the need to transform the large

sets of points generated by these scanners in a computer-friendly format. The latter may

consist of a polygonal, often triangular, surface mesh or in an implicit function. Surface re-

construction methods that directly create a surface mesh from the set of points are classified

as explicit, those that output an implicit function are classified as implicit.
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3.2.1 Explicit surface reconstruction

Explicit surface reconstruction methods from a set of points, sampled from a 3D surface,

output a polygonal mesh from this set of points. The resulting mesh is usually a triangular

mesh, representing the initial sampled, or scanned, surface. The two main approaches

to generate a polygonal mesh from a set of points are Delaunay triangulation and region-

growing algorithms.

On the one hand, Delaunay-based surface reconstruction constructs a Voronoi diagram,

or its dual Delaunay triangulation, from the initial cloud of points (Please refer to [20,

139, 146] for more information on Delaunay triangulation and Voronoi diagrams). This

produces a partition of the convex hull of the sample points, i.e. the volume of the object

of interest, into tetrahedra. A representation of the outer boundary may then be obtained

in the form of a triangular surface by identifying the nodes that belong to the surface. The

first Delaunay-based reconstruction method was proposed by Boissonnat [21]. Since then

many methods have been proposed and some of the most popular are the Power Crust of

Amenta et al. [4] and the Robust Cocone of Dey and Goswami [53].

On the other hand, region-growing algorithms start from an initial triangle and iterate by

attaching new triangles to the region boundary until all points have been processed. The

ball-pivoting algorithm of Bernardini et al. [16] is a popular example of region-growing

algorithms.

At first glance, these explicit surface reconstruction methods are the solution of choice as

they directly produce the triangular mesh we are looking for. However, the major drawback

of explicit methods is that they need a dense input set of points with little noise. Hence,

they are not adapted to the set of points extracted from images that were segmented using

threshold-based segmentation algorithms. Moreover, explicit methods are time-consuming

as each input point needs to be considered in turn.

3.2.2 Implicit surface reconstruction

Implicit surface reconstruction methods from a set of points are more and more used be-

cause of their robustness with respect to noise and their low computational cost. These

methods give a continuous representation of the surface in the form of an implicit func-

tion, which is defined as a function f (x ) that associates for each x ∈ ℜ3 its distance to the

surface. Obviously, the surface itself is defined by the zero-level of the function.
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3.2.2.1 Global or local ?

Implicit surface reconstruction methods may be classified as global or local. Global methods

aim to construct a single function that interpolates or approximates the set of points. In local

methods, the global function results from the blending of local shape functions, each one

of which interpolates or approximates a subset of the input set of points. Global methods

can, theoretically, better handle low quality data than local methods. Local methods can

generate accurate surface reconstructions in less time than global methods. Hence, there is

a trade-off between noise robustness and geometric accuracy. In general, local methods will

be preferred for large datasets and a global approach will be used for smaller and sparse

sets of points.

3.2.2.2 Interpolating or approximating ?

Implicit surface reconstruction methods may also be classified as interpolating or approxi-

mating, depending on whether the global or local function is constrained to pass through

the points, in this case we speak of interpolation, or only in the neighbourhood of the points,

in that case we speak of approximation. It is assumed that the geometric approximation

error will be less important for interpolating methods than for approximating methods,

assuming that the initial set of points is located precisely on the original surface. And, ap-

proximation methods should produce a smoother result and be more robust to noise in the

input set of points.

3.2.2.3 Popular approaches from literature

Finally, implicit surface reconstruction methods may be classified based on the approach

they originate from: approaches based on signed distance functions, approaches based

on moving least squares, approaches using Radial Basis Functions, approaches based on

the multi-level Partition of Unity and approaches based on deformable models. These five

classes of methods are described hereinafter.

Approaches based on signed distance functions One of the first implicit surface recon-

struction method has been proposed by Hoppe et al. [84]. Their idea is to locally esti-

mate the signed distance function to the surface by measuring the distance to the tangent

plane of the nearest input point. Later on, Curless and Levoy [48] introduced a volumet-

ric method to reconstruct the surface of scanned objects, by first computing the signed

distance function of each two-dimensional scan and second averaging the signed distance
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functions obtained from each 2D image. A third popular method based on the computation

of signed distance functions has been proposed by Boissonnat and Cazals [22]. The level

set method [140] is a popular method for calculating the signed distance function, often

used for modelling time-varying objects (leading to the approaches described in the last

paragraph of this section).

Approaches based on moving least squares The use of moving least squares to interpo-

late or approximate scattered data was first introduced by Lancaster and Salkauskas [100].

This method essentially consists of a least squares approximating method with local shape

control. The algorithm proposed by Shen et al. [154] has been proved to give a good ap-

proximation of the signed distance function to the surface [98]. An alternative approach is

the projection moving least squares of Levin [104]. The latter has been extensively used by

Alexa et al. [3] for point-based modelling and rendering.

Approaches based on Radial Basis Functions The third family of surface reconstruction

methods is based on Radial Basis Functions. Again, these Radial Basis functions may have

a global [34, 150, 169] or a local [180] support. However, globally supported Radial

Basis Functions lead to a dense linear system so that the method becomes prohibitive for

large datasets. The use of locally supported Radial Basis Functions within a Partition of

Unity framework, a popular method to patch together locally defined functions, has been

investigated by Tobor et al. [167] and Ohtake et al. [136]. The latter gives rise to the so

called multi-level Partition of Unity approach, explained hereafter.

Approaches based on the multi-level Partition of Unity In the Multi-level Partition of

Unity (MPU) approach, a local fit of the surface is obtained by using an octree-based subdi-

vision scheme and approximating the points in each subdivision cell using locally supported

quadratic functions [136, 138]. A global solution function is obtained by blending the local

solutions functions using smooth local weights that sum up to one everywhere on the do-

main (see Shepard’s blending method [155]). Advantages of the MPU approach are a fast

computation, the ability to handle large datasets and a user-controlled geometric approxi-

mation error. The main drawback of the method is noise-sensitivity.

Approaches based on deformable models In this last category, an initial surface is de-

fined around the object of interest, represented by the input set of points. This surface

is then iteratively deformed towards the set of points until a good approximation of the

set of points is obtained. The algorithm is driven by the minimization of an energy func-
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tional. Surface reconstruction approaches based on deformable models often use level-set

functions [140, 192].

3.2.3 Discussion

In all cases, in order to use one of the above surface reconstruction methods within our

image-to-mesh pipeline, a set of points belonging to the boundary of the segmented region

will have to be defined. An advantage of replacing the segmented image by a set of 3D

points is that the 3D image may then be removed from memory, releasing on average 90%

of the computer’s memory, depending on the image complexity.

Explicit surface triangulation has the advantage of producing the required result directly.

However, each input point will be considered in turn and the number of mesh nodes is

directly related to the size of the input set of points. Therefore, if the method used to

extract the boundary points from the segmented scan is such that one boundary voxel gives

one input point, the time needed for surface triangulation will be directly related to the

resolution of the image dataset. The mesh resolution should be determined according to

the object’s complexity rather than on the parameters of acquisition of the medical images.

Therefore points up- and under-sampling may often be required to increase or reduce the

density of the input dataset.

Implicit surface reconstruction methods do not feature the above problem: the mesh

resolution can be user-chosen. Implicit methods have the additional advantage of, usually,

being more robust to noise in the input set of points, and thus, to segmentation. More-

over, implicit surface reconstruction approaches, and local implicit surface reconstruction

in particular, is a lot more adapted to large datasets because it is less time- and memory-

consuming.

For these reasons, an implicit surface reconstruction method is used in our patient-

specific mesh generation algorithm. Amongst the implicit surface reconstruction approaches

presented above, the most suited for accurate reconstruction of large datasets is said to be

the multi-level Partition of Unity approach [136, 138]. This approach is detailed in the

following section.
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3.3 The multi-level Partition of Unity surface reconstruc-

tion method

In this section the multi-level Partition of Unity (MPU) approach as initially proposed by

Ohtake et al. [138] is described in detail. Our contributions to the approach are explained

in the next section.

The main idea of the multi-level Partition of Unity approach is, starting from a set of

points sampled from a surface, to construct an implicit function f (x ) that gives an ap-

proximated distance to this set of points. This function is constructed by using a recursive,

octree-based, subdivision of a cube containing the input points, and approximating the

points in each subdivision cell using local quadratic approximating functions. The use of a

Partition of Unity approach enables to combine the locally defined approximating functions,

using local weights, and obtain a global surface definition f (x ) = 0.

In other words, the multi-level Partition of Unity surface reconstruction algorithm may

be summarised by the following four key points:

1. The use of a Partition of Unity to combine locally defined approximating functions,

explained in Section 3.3.1.

2. A recursive octree-based subdivision of space, explained in Section 3.3.2.

3. The definition of smooth local weights, that sum up to one everywhere on the domain,

explained in Section 3.3.3.

4. A local approximation of the surface in each subdivision cell, explained in Section 3.3.4.

3.3.1 Partition of unity

Given a set of points P = {p1, p2, ..., pn} sampled from a surface and equipped with

unit normals N = {n1,n2, ...,nn}, the multi-level Partition of Unity surface reconstruction

method defines an implicit function f (x ), that is an approximation of the signed distance

from P. This function divides the space into the interior f (x )> 0 and the exterior f (x )< 0

of the object. The boundary surface thus corresponds to the zero-level of the distance func-

tion: f (x ) = 0.

Globally, a Partition of Unity function is composed of overlapping local approximation

functions Q i(x) that are blended together using non-negative compactly supported func-

tions φi(x ) that sum up to 1 everywhere on a bounded Euclidean domain Ω [9, 66, 156].

f (x ) =

N∑

i=1

φi(x )Q i(x) (3.1)
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where each φi(x ) is computed as:

φi(x ) =
wi(x)∑N

j=1
w j(x )

⇒
∑

i

φi(x ) = 1 ∀x ∈ Ω (3.2)

where wi(x) is an associated local weight, as will be further explained in Section 3.3.3.

3.3.2 Octree-based subdivision

An octree-based subdivision of space if obtained as follows. First a cube is defined around

the object of interest. This cube is then subdivided recursively in a series of eight cells, by

subdividing each edge into two, at mid-distance. This recursive subdivision ends locally

when a pre-defined criterion is met. In the case of the MPU implicit surface reconstruction

method, the subdivision process ends when a sufficiently good geometric approximation

of the points located in this subdivision cell has been found. If this approximation error is

noted ǫ, recursive subdivision stops when

ǫ ≤ ǫmax (3.3)

In the proposed algorithm, the maximum tolerated approximation error within a subdivi-

sion cell, denoted ǫmax, is user-defined.

3.3.3 Weight functions

In a Partition of Unity approach, the global implicit function f (x ) consists in a weighted

average of local approximating functions Q i(x ). Introducing (3.2) into (3.1), we have

f (x ) =

∑
i
wi(x )Q i(x )∑

i
wi(x )

(3.4)

which shows that the weight wi(x ) determines how much the local function Q i(x ) influ-

ences the global function f (x ).

In the original implementation of the multi-level Partition of Unity surface reconstruc-

tion algorithm, each weight function wi(x ) is a quadratic B-spline b
�

t i(x)
�

centred at c i

and having a spherical support, or approximation balls, of radius Ri
1.

wi(x) = b
�

t i(x )
�

where t i(x) =
3


x − c i




2Ri

(3.5)

1The notation ‖x‖ refers to the norm of vector x .
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FIGURE 3.2: The multi-level Partition of Unity surface reconstruction method. (a) The

quadratic B-spline b(t), defined by (3.6), used as weight function in the MPU method to

combine the local approximation functions. (b) Local approximation Q i(x) of a set of points

p j in a subdivision cell of radius Ri centred at c i.

where the quadratic B-spline b(t), drawn in two-dimensions in Figure 3.2 (a), is defined

by:

b(t) =





3

4
− |t |

2
for |t | ≤ 1

2
1

2

�
|t | − 3

2

�2
for 1

2
≤ |t | ≤ 3

2

0 for |t |> 3

2

(3.6)

3.3.4 Quadratic local approximation

The MPU approach uses an octree-based subdivision process to adapt to the local geome-

try. The algorithm starts by rescaling the point cloud P so that it fits into an axis-aligned

bounding cube with a main diagonal of unit length. Then, this bounding cube, or approxi-

mation cube, is iteratively divided into 2×2×2= 8 cells, using the octree-based subdivision

scheme explained in Section 3.3.2. Each generated cell i is characterised by its centre c i and

the length of its main diagonal di. Moreover, the support radius Ri of the weight function

wi (x ), defined in (3.5), is defined as a multiple of the diagonal di:

Ri = α di (3.7)

where α is user-defined, but comprised between 0.75 and 0.9, which permits an overlap-

ping of adjacent spherical supports (approximation balls) [138]. Figure 3.2(b) illustrates a

subdivision cell with its associated approximation ball.

38



CHAPTER 3. FROM SEGMENTED 3D IMAGES TO IMPLICITLY DEFINED ANALYTICAL SURFACES

The set of points located in the sphere of radius Ri and centred at c i:

Pi =
¦

p j : p j ∈ P,


p i − c i



< Ri

©
(3.8)

is used to define a local shape function Q i(x), which, in the original paper, is a quadratic

function [138]. The latter is built so as to approximate the set of points Pi in a least squares

sense. This process is illustrated in Figure 3.2(b).

The number of points enclosed in the approximation cube should be greater than the

number of coefficients of the quadratic function, which is 10 for a general three-dimensional

quadratic function (see Section 3.3.4.2). More points will produce a smoother result. In-

deed, when the quadratic function is defined to approximate a greater set of points, the

initial surface sampled with the set of input points is approximated, i.e. simplified, to a

greater extent, and thus smoother. In the algorithm, the minimum number of points re-

quired in a subdivision cell, denoted Nmin, is user-defined. When the approximation cube

does not contain enough points, the radius of corresponding approximation sphere is in-

creased until this minimum is obtained, and the cell will not be further subdivided.

Ohtake et al. [138] advise using one of the three following local approximation func-

tions, depending on the distribution of the points Pi in the subdivision cell:

1. a general three-dimensional quadric,

2. a bivariate quadric polynomial in local coordinates,

3. a piecewise quadric surface that fits an edge or a corner.

Given that we aim at representing biological structures, which do generally not present

sharp edges, only the general quadric and the bivariate quadric polynomials will be used in

our implementation, and presented here.

The choice between both functions is determined by the distribution of the point nor-

mals in the cell. The latter must be provided as an input of the algorithm: each input point

should be associated with a normal n j. An average normal n̄ i for the subdivision cell i is

first computed:

n̄ i =
1��Pi

��
∑

p j∈Pi

n j (3.9)

where
��Pi

�� denotes the size of the point set Pi, defined in (3.8).

When the maximum deviation of normals to the average normal direction in the cell n̄ i,

defined as the angle between the averaged normal n̄ i and the point normals n j, is more than

π/2, a general 3D quadric is used. Otherwise, a bivariate quadratic polynomial employed.

How to, from a set of input points, define these two types of quadratic functions, least

squares approximation of the input points, is presented below.
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3.3.4.1 Fitting of a bivariate quadric

Let us consider the following general expression of a bivariate quadric:

Q i(r, s, t) = t − (a1r2 + 2a2rs+ a3s2 + a4r + a5s+ a6) (3.10)

where (r, s, t) are the local coordinates of subdivision cell i centred at c i and such that

t is the direction indicated by the normal of the subdivision cell n̄ i. To facilitate further

developments we rewrite the bivariate quadric as:

Q i(r, s, t) = t −

K∑

k=1

akπk (3.11)

with K = 6 and where we have defined

• the vector of basis functions π = [r2, rs, s2, r, s, 1]

• the vector of coefficients a = [a1, a2, a3, a4, a5, a6]

Similarly to the global function f (x ), the local functions Q i(x ) give, at each point of

the three-dimensional space, an approximation to the input set of points. Indeed, Q i(x ) is

a distance function, that gives the distance to the local set of points Pi. In the specific case

where the approximation is exact we speak of interpolation and Q i evaluated at an input

point p j ∈ Pi is zero, i.e. Q i(p j) = 0. Therefore, the value of function Q i at the extracted

point, gives a measure of the approximation error. In a least squares fitting procedure, the

coefficients ak, in (3.10) and (3.11), are determined so as to minimise the weighted sum

of the squares of the errors Q i(p j) at the points p j . Putting this in equation, the following

objective function must be minimized2:

fobj,i =
∑

p j∈Pi

wi(p j)Q i(p j)
2

(3.12)

where the indice i corresponds to the i-th subdivision cell, Pi is the set of points located in

subdivision cell i, the weights wi are defined by (3.5) and Q i is given by (3.11).

The minimum of the objective function in local coordinates is found by setting the cor-

responding gradient to zero.
∂ fobj,i

∂ ak

= 0, k = 1, . . . K (3.13)

This minimisation results in K linear equations to determine the K parameters ak:

2
∑

p j∈Pi

wi(p j) Q i(p j)
∂Q i

∂ ak

(p j) = 0, k = 1, . . . K (3.14)

2Please distinguish the notation fobj referring to an objective function and the MPU implicit function f (x)

defined in Equation (3.1).
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or, replacing Q i(p j) by its expression (3.11) and since ∂Q i/∂ ak = πk(p j),

∑

p j∈Pi

wi(p j)

 
t(p j)−

K∑

l

alπl(p j)

!
πk(p j) = 0, k = 1, . . . K (3.15)

∑

p j∈Pi

wi(p j)

 
K∑

l

alπl(p j)

!
πk(p j) =

∑

p j∈Pi

wi(p j)t(p j)πk(p j), k = 1, . . . K (3.16)

with K = 6 for a bivariate quadric.

Writing this in matrix form, we have

��
w iΠ

�T
Π

�
a =

�
w iΠ

�T
t (3.17)

where

• t =
¦

t(p j)
©

is the vector containing the t-coordinate of the input points in local

coordinates;

• Π =
¦
π jk

©
with π jk = πk(p j), k = 1, . . . K , K = 6 and p j ∈ Pi contains the value of

the basis functions evaluated at each point;

• w i = wi(p j) is the vector containing the weights (3.12) of the weighted minimization

procedure at each point .

Finally, the unknowns a are found by solving the following system of equations

a =
��

w iΠ
�T
Π

�−1 �
w iΠ

�T
t (3.18)

3.3.4.2 Fitting of a general quadric

A general quadratic function in the three-dimensional space can be expressed as

Q i(x , y, z) = a1 x2+ a2 y2 + a3z2+ a4 x y + a5 xz + a6 yz + a7 x + a8 y + a9z + a10 (3.19)

Similarly to the above procedure, this equation may be rewritten in the form:

Q i(x , y, z) =

K∑

k=1

akπk (3.20)

where we have defined

• the vector of basis functions π = [x2, y2, z2, x y, xz, yz, x , y, z, 1]
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• the vector of unknowns coefficients a = [a1, a2, a3, a4, a5, a6, a7, a8, a9, a10]

Ohtake et al. [138] suggest to use a set of auxiliary points
�
q l

	
to help orient the

local function. With this aim in mind, reliable estimates are selected amongst the points

q l located on the corners and at the centre of the subdivision cell. First, the six nearest

neighbours pm of q l in Pi are taken. Then, the six scalar products between the vector

connecting pm and q l and the normal nm at pm are computed:

sm

�
q l

�
= nm ·

�
pm− q l

�
, m = 1, . . . , 6 (3.21)

The point q l is added to the set of reliable estimates
�
q l

	
if and only if all its six scalar

products sm

�
q l

�
have the same sign, meaning that all six neighbours pm have a normal nm

that points towards the direction of q l . If the latter is not satisfied the auxiliary point q l is

not used.

The objective function (3.12) becomes:

fobj,i =
1∑

p j∈Pi
wi(p j)

∑

p j∈Pi

wi(p j)Q i(p j)
2
+

1

L

L∑

q l∈{q l}

�
Q i(q l)− dl

�
q l

��
(3.22)

where L ≤ 9 is the size of the set of reliable auxiliary points
�
q l

	
and dl

�
q l

�
is the average

of the computed scalar products between the auxiliary point l and its six neighbours:

dl

�
q l

�
=

1

6

6∑

m=1

sm

�
q l

�
(3.23)

As above, the unknown parameters a in (3.19) and (3.20) are determined by setting the

objective function fobj,i with respect to the K unknowns ak to zero, which gives the K = 10

gradient equations:
∂ fobj,i

∂ ak

= 0, k = 1, . . . K (3.24)

3.3.5 Parameters

In the original implementation of MPU surface reconstruction three parameters are user-

defined:

1. the minimum number of points required in a subdivision cell Nmin,

2. the approximation error tolerance ǫmax,

3. the ratio of approximation ball radius to subdivision cell diagonal α.
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TABLE 3.1: Multi-level Partition of Unity approach. Bounds of the lion-dog statue dataset.

x min x max ymin ymax zmin zmax

-9.18104 mm 9.24407 mm -9.97299 mm 9.96796 mm 1.48438 mm 18.5167 mm

The influence of these parameters on the obtained surface are illustrated on a set of

99977 points sampled from a lion-dog statue (Figures 3.3 and Figure 3.4). The point cloud

is courtesy of Dr. A. Belyaev of the Max-Planck-Institut für Informatik in Germany [189],

but the reconstructions were done with our implementation of the algorithm. The dimen-

sions of the lion-dog statue are indicated in Table 3.1.

Parameter ǫmax gives the acceptable distance between the reconstruction surface and

the sampled boundary points (Section 3.6). In the algorithm, a subdivision cell is divided

until the local shape function Q i(x) approximates the local boundary points better than

the defined tolerance: ǫ < ǫmax . Figure 3.3 shows the computed results for ǫmax = 0.8

mm and ǫmax = 8 mm, and with Nmin = 30 and α = 0.75. These values should be viewed

in regard of the datasets dimensions (Table 3.1) and the number of input points (99977).

The illustrations show that increasing this error tolerance relaxes the surface shape, but

increases the approximation error.

Parameter Nmin is the minimum number of points required in a subdivision cell. Fig-

ure 3.4 presents the obtained results for three values of Nmin and for ǫmax = 0.08 and

α = 0.75. As illustrated, increasing Nmin has the effect of smoothing the surface represen-

tation.

Finally, parameter α ∈ [0.75, 0.9] defines how much adjacent approximation balls are

overlapping each other (see Equation (3.7) and Figure 3.2(b)). Increasing this parameter

increases the computation times and gives a smoother result. This parameter will always

be fixed to 0.75 in our algorithm.

3.4 Our contributions to the multi-level Partition of Unity

surface reconstruction method

Our original contributions to the Partition of Unity approach for implicit surface reconstruc-

tion are fourfold. First, an efficient way to extract the input sets of points and normals from

segmented medical data is presented. Second, weight function are analysed and the pos-
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emax= 0.8 emax= 8set of points
with associated normals (coloured)

z

x

FIGURE 3.3: Multi-level Partition of Unity surface reconstruction of the lion-dog statue.

Influence of parameter ǫmax, with Nmin = 30 and α = 0.75.

N =15min N =100min N =150min

FIGURE 3.4: Multi-level Partition of Unity surface reconstruction of the lion-dog statue.

Influence of parameter Nmin, with ǫmax = 0.08 and α = 0.75.

sibility to interpolate rather than approximate the points is added. Third, linear instead of

quadratic local approximating functions are used to increase the robustness of the method

to noise. Finally, we propose an efficient strategy to represent objects containing multiple

domains with a set of implicit functions.

3.4.1 Extraction of boundary points and normals from segmented data

The multi-level Partition of Unity approach requires a set of points P = {p1, p2, ..., pn} sam-

pled from a surface in 3D and corresponding normals N = {n1,n2, ...,nn} to be defined. The

method was initially developed in the field of Computer Graphics, where the set of points

P is obtained by laser scanners, mechanical touch probes and computer vision techniques

such as depth from stereo [138]. In our case, the input data is a segmented 3D volume

and a procedure for automatically extracting the boundary points and normals from this
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FIGURE 3.5: Extraction of boundary points and normals from segmented data. The

segmented material region is represented in grey, whereas the background is white. (a)

Points are created on the dual grid, represented with dashed lines, at the centre of the grid

cells that are located in both foreground and background. A surface orientation vector is

computed for each point. (b) Normals are subsequently smoothed to increase the quality

of the reconstructed surface. (c) Based on these boundary points and normals, an MPU

implicit function f (x ) is defined.

image must be developed [29]. The adopted strategy is first explained in the case of a

single-material image. The general case of a multi-label image is considered in Section 3.5.

A smoother result is obtained by considering the dual grid rather than the image voxel

grid to extract the required boundary points [75]. As illustrated by the dotted lines in

Figure 3.5, this dual grid is obtained by shifting the image hexahedral grid by half a voxel

spacing in each direction. The grid is processed by taking each grid cell in turn. If the

eight voxel values evaluated at the dual cell corners are identical, the cell is declared to

be located inside or outside the object. However, if one or more values are different from

their neighbours, the cell crosses the object’s boundary. In that case, a boundary point is

created at the centre of the dual grid cell, indicating that the object surface lies near this

point (Figure 3.5 (a)). The associated boundary orientation is evaluated as the sum of the

directions to the background voxels (detected as voxels with an associated value of 0) in

the cell.

n i0, j0,k0
=

i0+1∑

i=i0

j0+1∑

j= j0

k0+1∑

k=k0




i − i0 − 0.5

j− j0− 0.5

k− k0 − 0.5




vi, j,k=0

(3.25)

As medical images are generally anisotropic, this normal must be divided by the voxel

width in each direction (∆x ,∆y,∆z). The latter is then normalised because we are only
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interested in its orientation.

n =




nx/∆x

ny/∆y

nz/∆z


 , n̄ =

n

‖n‖
(3.26)

Finally, the normals are iteratively smoothed to augment the quality of the reconstructed

surface (Figure 3.5 (b)).

n i,k+1 = n̄ i,k+
1

N

N∑

j

|p j−p i|<r

(n̄ j,k − n̄ i,k) ; n̄k+1 =
nk+1

nk+1



 (3.27)

The new normal orientation n̄k+1 is related to the present normal orientation n̄k and

an average orientation of adjacent normals. We take r = 1.1 ∆z so that the nearest points

of the upper and the lower slice are taken into account even for highly anisotropic grids3.

In practice, one iteration is sufficient to obtain good results for the surface reconstruction

algorithm.

3.4.2 Interpolating weight functions

The weight function proposed by Ohtake et al. [138] is the quadratic b-spline, centred at

the centre of the subdivision cell c i and having a spherical support Ri. As already presented

in Section 3.3.3, the weight functions are computed by

wi (x) =





3

4
−

����
3‖x−ci‖

2Ri

����
2

for


x − c i



≤ Ri

3

1

2

�����
3‖x−ci‖

2Ri

����−
3

2

�2

for
Ri

3
<


x − c i



≤ Ri

0 for


x − c i



> Ri

(3.28)

Other options are possible for the weight functions wi. The choice between these options

is important, as it determines the quality and the smoothness of the global function. And,

by choosing adequate weight functions, the global implicit function may either behave as an

interpolating function or as an approximating function. An interpolation of the input data

points may be obtained by replacing the above weight functions (3.28) with the inverse-

distance singular weights proposed by Franke and Nielson [66]:

wi (x) =





�
Ri−‖x−c i‖
Ri‖x−c i‖

�2

for


x − c i



≤ Ri

0 for


x − c i



> Ri

(3.29)

3The z-direction is defined as the scanning direction.
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The effects of using interpolating weight functions rather than approximating ones will

be illustrated at the end of this chapter, Section 3.7. It is assumed that interpolating weight

functions will give a geometrically more accurate result than approximating weights, at

least for small sets of points Pi.

3.4.3 Linear local approximation

The pioneers of the MPU approach, Ohtake et al. [138], propose to approximate the local

set of points with quadratic functions. But, the main criticism of their approach is its sen-

sitivity to noise. In response to this observation, we investigated whether noise robustness

could be achieved using linear instead of quadratic local approximating functions:

L(x , y, z) = a1 x + a2 y + a3z+ a4 (3.30)

The idea is the following. The linear shape function4 L(x )should be a good approx-

imation of the Euclidean distance field D(x ) near the input points P = {p1, p2, ..., pn}.

Remembering that these input points are equipped with normals N = {n1,n2, ...,nn}, the

distance field near a sample point p j may be approximated by:

Dp j
(x) = (x − p j)

T · np j
(3.31)

Using a least squares error metric, the error between the linear shape function L(x ) and

the distance field D(x ) is expressed as:

ELS =
∑

p j∈P

�
L(x )− Dp j

(x )
�2

(3.32)

In the weighted least squares approach, weights w(p j) are added to the error measure-

ment (3.32) to give a greater importance is given to the points located near the evaluation

point x : ∑

p j∈P

ELS =
�

L(x )− Dp j
(x )
�2

w(p j) (3.33)

where the weights w(p j)will still be computed by (3.5) and (3.6) or, equivalently by (3.28),

if approximating is desired and by (3.29) if interpolation of the data is the goal.

An expression for the coefficients of a general linear function (3.30) is found by first

considering:

L(x ) = c0 (3.34)

4The index i referring to the current subdivision cell is omitted in this section to simplify the notations.

Therefore one should read Li(x) for the linear function as well as wi(p j) for the local weights.
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Introducing (3.34) into (3.33), we obtain the following minimization problem:

min
∑

p j∈P

�
c0 − Dp j

(x )
�2

w(p j) (3.35)

This problem is solved by setting the gradient of the objective function with respect to

c0 to zero:

2
∑

p j∈P

�
c0− Dp j

(x)
�

w(p j) = 0

c0

∑

p j∈P

w(p j)−
∑

p j∈P

Dp j
(x )w(p j) = 0 (3.36)

Re-arranging the terms and taking account of (3.34), we obtain the following expression

for the local shape function

L(x ) = c0 =

∑
p j∈P

Dp j
(x )w(p j)∑

p j∈P
w(p j)

(3.37)

replacing function Dp j
(x ), that gives the Euclidean distance from a sample point p j, by its

expression (3.31), we have:

L(x ) =

∑
p j∈P
(x − p j)

T · np j
w(p j)∑

p j∈P
w(p j)

(3.38)

which may be rewritten in the polynomial form:

L(x , y, z) = a1 x + a2 y + a3z+ a4 (3.39)

with the following expression for the coefficients:

a1 =

∑
p j∈P

w(p j)nx , j
∑

p j∈P
w(p j)

(3.40)

a2 =

∑
p j∈P

w(p j)ny, j
∑

p j∈P
w(p j)

(3.41)

a3 =

∑
p j∈P

w(p j)nz, j
∑

p j∈P
w(p j)

(3.42)

a4 = −

∑
p j∈P

w(p j) p j · n j
∑

p j∈P
w(p j)

(3.43)

Therefore, compared to the quadratic functions proposed in the initial MPU implemen-

tation (Section 3.3.4), there is no need for solving a linear system of the type A x = b. This
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FIGURE 3.6: Implicit representation of multi-label datasets. (a) and (e) Segmented images.

Regions 1 and 2 are disjoint in (a) whereas a material junction J0,1,2 exists in (e). (b) and

(f) Result obtained when a closed distance function is defined separately for each tissue.

This approach is not adequate for images containing junction-lines. Indeed boundary B2,1

is defined twice in (f), which may create inconsistent meshes. (c) and (g) In this work each

tissue boundary is represented by the zero level of a unique distance function f (x ). (d) and

(h) This requires the definition of closed and open surfaces.

leads to a gain in computer time as compared to the use of quadratic functions. Also, as will

be illustrated in Section 3.7, the resulting approach will be more robust and less sensitive

to noise than the original algorithm. For these reasons, linear functions will be preferred

for large noisy input datasets.

3.5 Implicit representation of multi-label datasets

The above procedure cannot be easily extended to the multi-material case. Indeed, when

the labelled dataset contains more than two distinct labels, i.e. more than one foreground

label, a single implicit function f (x ) is not sufficient to describe the whole multi-region

system.

When the tissues labelled in the segmented dataset have separate boundaries, like in

Figure 3.6 (a), the extension to the multi-material case is straightforward: the surface

extraction scheme is simply repeated for each new material domain [177]. In this way,
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a first implicit function f1(x ) is created to represent the material 1. This function takes

positive values in the region with label 1 and negative values outside. A second function

f2(x ) is then defined to represent the second material region, labelled 2. As a result, the

boundaries B1,0 and B2,1 are represented by the zero-levels of the MPU functions f1(x ) = 0

and f2(x ) = 0 respectively. The classical single-material marching tetrahedra algorithm is

extended to be able to triangulate both boundary surfaces at once: both implicit functions

are evaluated at each grid vertex and a triangulation is built when one of the functions

changes sign.

The above procedure is not adequate to obtain an analytical description of more general

multi-material structures in which three or more tissues join each other. For the example

shown in Figure 3.6 (e) two functions will be created with the classical procedure [177]:

g1(x) represents material 1 and g2(x ) represents material 2. As illustrated in Figure 3.6 (f),

the inner boundary B2,1 separating regions 2 and 1 is defined twice, by both g1(x ) = 0 and

g2(x) = 0. These two functions will most likely not coincide exactly, thus creating voids

and overlays. Although this procedure is sufficient for surface rendering and visualisation,

it is not adequate to create valid contiguous finite element meshes. This example leads us to

deduce that each material boundary B1,0, B2,0 and B2,1 composing the multi-region system

should be defined by the zero-level of a unique implicit function. Moreover, the junctions

J0,1,2 between these boundaries should be well defined.

We solve this problem by describing a junction-line J as the intersection between an

open and closed surface. In Figure 3.6 (e), the inner boundary S2,open = B2,1 is attached

to the exterior boundary S1,closed = B1,0 ∪ B2,0. Therefore, the inner boundary S2,open, sep-

arating regions 1 and 2, is considered as open with respect to the closed outer boundary

S1,closed in our algorithm. During the image processing step, points located on the outer

boundary S1,closed = B1,0∪B2,0 and corresponding normals are extracted as in the single ma-

terial case. These sets of extracted points and normals form the input sets P1 and N1. The

MPU function created from these sets f1(x ) take positive values inside the heterogeneous

object, negative values outside and f1(x ) = 0 corresponds to S1. Points located on the

inner boundary S2,open = B1,2 are extracted and added to a second point set P2. A second

MPU function f2(x ) is created to approximate the points in P2. Near the extracted points

the MPU surface approximates the inner boundary S2,open accurately. Away from the ex-

tracted points the function extends the surface, in a direction perpendicular to the normals

of the boundary points located at the limit of the point set (Figure 3.6 (g)). Thanks to

this important property of MPU functions, the junction between the bounding surfaces is

defined as the intersection between the two functions f1(x ) = 0 and f2(x ) = 0. Hence, the

junction-lines between three different regions are well defined whatever the relative angle

and position between the boundary surfaces.
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FIGURE 3.7: Definition of a junction between three materials using implicit functions. A

junction between three materials 0, 1 and 2 can be defined in three ways, according to the

region that is considered as dominant. The junction is always defined as the intersection

between an open S2,open and a closed S1,closed surface. From an image containing several

segmented regions (a), our algorithm ensures that the closed surface is extracted as a smooth

triangular mesh. (b) Region 0 is dominant, S1,closed = B1,0 ∪ B2,0 and S2,open = B2,1. (c)

Material 1 is dominant, S1,closed = B1,0 ∪ B2,1 and S2,open = B2,0. (d) Material 2 is dominant,

S1,closed = B2,0 ∪ B2,1 and S2,open = B1,0.

An open surface is always defined respectively to a closed surface, and may either be

located inside or outside this surface. During the subsequent polygonisation process, a

triangulation is built on the zero-level of the distance functions. When the considered

function is classified as open, the sign of its corresponding closed surface is evaluated to

check the domain of validity of the function. In Figure 3.6 a change of sign in f2(x ) yields

to a triangulation only when f1(x) > 0.

Figure 3.7 shows that the same segmented image may be defined in several ways ac-

cording to the label that is considered as dominant. Hence, the user of the mesher must

define the function S1,closed and S2,open according to the desired result. Indeed, in our al-

gorithm an overall smoothness is always assigned to the closed surface S1,closed, bounding

the region that is considered as dominant, and an open surface S2,open always joins a closed

surface S1,closed with a sharp edge.

3.6 Geometric approximation accuracy evaluation

3.6.1 Taubin distance

Parameter ǫmax gives the acceptable distance between the reconstructed surface and the

input boundary points. In the algorithm, a subdivision cell is divided until the local shape

function Q i(x) approximates the local boundary points within the defined tolerance: ǫ <
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ǫmax. Therefore, the distance from a point to the reconstructed surface must be computed

throughout the algorithm. Determining the Euclidean distance from a point p ∈ ℜ3 to the

surface defined by f (x ) = 0, is equivalent to finding the minimum distance of point p to

the points located on the zero-level set of f :

δEuclidean(p, f (x ) = 0) =min
�

p − q



 ,q : f (q) = 0
�

q , p ∈ ℜ3 (3.44)

Let p be a point that is not located on the surface, i.e. p : f (p) 6= 0 and compute the

first order Taylor expansion of f (q),

f (q) = 0= f (p) +∇ f (p)(q − p) +O(


p − q



) (3.45)

Dropping the higher order terms gives,

f (q) = 0 ≈ f (p) +∇ f (p)(q − p) (3.46)

which is equivalent to:

�� f (q)
��= 0≈

�� f (p) +∇ f (p)(q − p)
�� (3.47)

Applying the triangular inequality,

�� f (q)
��= 0≥

�� f (p)
��+
��∇ f (p)(q − p)

�� (3.48)

and then Cauchy–Schwarz inequality, we obtain

�� f (q)
��= 0≥

�� f (p)
��+


∇ f (p)



 

(q − p)


 (3.49)

In the end, the first order approximation of the Euclidean distance from a point q :

f (q) = 0 to a point p : f (p) 6= 0 is given by



(q − p)


≈

�� f (q)
��−
�� f (p)

��


∇ f (p)



 = −

�� f (p)
��



∇ f (p)


 (3.50)

which is called the Taubin’s distance [163].

δTaubin =

�� f (q)
��−
�� f (p)

��


∇ f (p)



 = −

�� f (p)
��



∇ f (p)


 (3.51)

Therefore, in the MPU algorithm, the geometric accuracy ǫ of the local quadratic func-

tion Q i(x ) approximating the set of points Pi in subdivision cell i is evaluated by computing

the Taubin’s distance of the subdivision cell:

ǫ =max
p j∈Pi



Q i(p j)






∇Q i(p j)


 (3.52)
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3.6.2 Hausdorff distance

The Taubin distance presented above is used within the MPU algorithm to guide the octree-

based subdivision of cells. It is a measure of the distance between a point and a surface.

However, to present our results at the end of this chapter, we need to introduce the Haus-

dorff distance [79]. The Hausdorff distance is extensively used in literature to compute

distance between two sets of points.

Let p be a point of the three-dimensional space ℜ3 and S be a two-dimensional surface

embedded in ℜ3. The distance δ from p to S has already been defined in (3.44) as:

δ(p,S) =min
�

p − q



 ,q ∈ S
�

(3.53)

Let now S1 and S2 be two two-dimensional surfaces embedded in ℜ3, and p1 a point of

ℜ3 belonging to S1, the distance between S1 and S2 can be defined by extending the idea

of (3.53),

∆(S1,S2) =min
�
δ(p1,S2), p1 ∈ S1

	
(3.54)

The distance (3.54) is set to be relative because it is not symmetrical ∆(S1,S2) 6=

∆(S2,S1). In response to this remark, the Hausdorff distance d between two surfaces S1

and S2 is defined as the maximum of these two relative distances:

d(S1,S2) =max
�
∆(S1,S2),∆(S1,S2)

	
(3.55)

3.7 Applications and results

The multi-level Partition of Unity surface reconstruction method presented in Section 3.3,

its extensions to binary three-dimensional images presented in Section 3.4 and to multi-

domain three-dimensional images presented in Section 3.5 was successfully implemented

and integrated in the finite element software Metafor. It is now actively used to re-construct

geometries from medical images in view of finite element modelling. Results obtained from

three types of input datasets are presented here: (1) a set of points in ℜ3, (2) a binary

segmented dataset and (3) a multi-label segmented dataset.

3.7.1 Surface reconstruction from a set points

The set of points sampled from a lion-dog statue, already illustrated in Figures 3.3 and 3.4 is

used here to illustrate the influence of the newly proposed parameters on the reconstructed

geometries, as compared to the original MPU surface reconstruction method.
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Figure 3.8 illustrates the results obtained using five different sets of parameters in our

reconstruction algorithm. The first model on the left was obtained by using the method

proposed by Hoppe et al. [84], which is: the distance to a set of points is the distance to the

nearest surface point, computed along the normal associated to this point. Hoppe et al. [84]

use the normal to the local tangent plane to compute this distance. However, in the present

case, we use the normal associated with the input point, because this normal is available in

the input dataset. The remaining four models, on the right of Figure 3.8, were computed

using a multi-level Partition of Unity approach. Parameter Nmin, the minimum number of

points in a subdivision cell, is set to Nmin = 60, which is to be compared with the size of the

point cloud of 99977 points. Parameter α, giving the overlapping ratio between subdivision

cells, is defined as α = 0.75, which is the value proposed in the original algorithm and the

default value in our implementation. The geometric error-tolerance parameter ǫmax was set

to one hundredth of the model cross sectional size, taking account of the dataset dimensions

reported in Table 3.1, ǫmax = 0.01∆x = 0.018mm.

The upper models of Figure 3.8 illustrate the smoothness of the reconstructed surfaces.

The implicit distance definition of Hoppe et al. [84] certainly reconstructs the most geo-

metric details. Most details are also reconstructed with quadratic interpolating and approx-

imating functions. Linear functions, with identical Nmin,α and ǫmax parameters, output a

smoother result.

The lower models illustrate the obtained geometric approximation error, measured by

constructing fine meshes on the reconstructed surfaces and, for each node, computing its

distance with the set of input points. The distance indicated under the models are the

computed Hausdorff distances, defined in Section 3.6.2, between the reconstructed surface

and the input set of points (Section 3.6.2). First, looking at the distance fields, quadratic

functions and Hoppe et al. [84] give more distributed results with more points located near

the extrema of the color scale. This is a direct result of the smoothness of the reconstructed

models. Now looking at the computed Hausdorff distances, the best overall geometric ap-

proximation is given by the linear interpolating function. In both linear and quadratic, the

use of interpolating weight functions gives a lower Hausdorff distance between input points

and reconstructed surface which is in accordance with our predictions of Section 3.4.3. The

model of Hoppe et al. [84] extracts the fine details of the geometry but also generates many

outliers, resulting in a high Hausdorff distance.

Table 3.2 summarises the computed Hausdorff distances between input point set and

reconstructed surface for the five models presented in Figure 3.8 and an additional two

models, computed with quadratic interpolating and approximating functions with a higher

value for parameter Nmin, meaning that the subdivision procedure will stop earlier. Results

54



CHAPTER 3. FROM SEGMENTED 3D IMAGES TO IMPLICITLY DEFINED ANALYTICAL SURFACES

Hoppe Approximation
Linear

Approximation
Quadratic

Interpolation
Linear

Interpolation
Quadratic

d = 5.55 d=2.40 d=2.60 d=2.47d=2.70

0 0.1distance mm

FIGURE 3.8: Evaluation of several reconstruction approaches on the set of points sam-

pled from a lion-dog statue. The first model on the left was reconstructed using our im-

plementation of the method proposed by [84]. The remaining four models were computed

using a multi-level Partition of Unity approach with parameters Nmin = 60 and α = 60

and ǫmax = 0.18 mm. The upper models illustrate the smoothness of the reconstructed sur-

faces. The lower models illustrate the obtained geometric approximation error, measured

by constructing fine meshes on the reconstructed surfaces and, for each node, computing

its distance with the set of input points. The distance indicated under the models are the

computed Hausdorff distances.

indicate that with higher numbers of Nmin (100 instead of 60) the geometric fidelity is not

improved by using interpolating rather than approximating weight functions.

3.7.2 Surface reconstruction from a binary image

The first dataset that is considered to evaluate our extension of the MPU approach to seg-

mented datasets is a three-dimensional binary image obtained by sampling a sphere of

diameter 40 mm with a spacing of 2 mm. Extracting the boundary points from this input

image, using the procedure of Section 3.4.1, resulted into a set of 1904 input points with

associated normals. This set was then used as input of our MPU surface reconstruction algo-

rithm with ǫmax = 1 voxel, α = 0.75 and various values of Nmin. Again linear and quadratic,

interpolating and approximating functions are considered.
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TABLE 3.2: Evaluation of several reconstruction approaches on the set of points sampled

from a lion-dog statue. The parameters used for MPU reconstructions are α = 60 and

ǫmax = 0.18 mm.

Surface reconstruction method and parameters Hausdorff distance

Hoppe et al. [84] 5.55

Linear function, Approximating weights, Nmin = 60 2.70

Linear function, Interpolating weights, Nmin = 60 2.40

Quadratic function, Approximating weights, Nmin = 60 2.60

Quadratic function, Interpolating weights, Nmin = 60 2.47

Quadratic function, Approximating weights, Nmin = 100 2.61

Quadratic function, Interpolating weights, Nmin = 100 2.74

Figure 3.9 presents the obtained implicit surfaces f (x ) = 0. Quadratic functions with

a low value of Nmin outputs an irregular surface, showing the discretisation of the initial

image. In a view of removing the stair-stepped artefacts of patient-specific meshes using

a MPU-based surface reconstruction method, this is exactly the result we would like to

avoid. Smoother results are obtained for higher values of Nmin in all cases. In both interpo-

lating and approximating approaches, the use of linear functions seems to output a more

robust result with respect to the Nmin parameter. As it is not clear how to define Nmin, this

robustness surely is an advantage.

The graph drawn in Figure 3.10 shows the effect of parameter Nmin on the computed

Hausdorff distance. The best match between the input points and the reconstructed model

is obtained for quadratic functions with a finely tuned Nmin parameter. Low values of Nmin

produce jagged surfaces with outliers, which should absolutely be avoided when these

implicit functions are used for further mesh generation, as this will produce topologically

incorrect meshes. High values of Nmin give less accurate results. Another option is to use

linear (approximation or interpolating) functions, with a low value of Nmin. Even though

the result may be slightly less close to the input points, the approximation is still acceptable

as the maximum distances between the model and the segmented boundaries is less than

the image spacing. With linear functions, a smooth result will be generated in all cases with

no risk of irregular jagged reconstruction.

The second dataset that is investigated here consists of a segmented scan of an alu-

minium foam, which was imaged at ETH Zürich [129]. Figure 3.11, upper, illustrates the
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d = 2.228
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d = 1.821
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d = 2.115
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Linear Quadratic
Interpolation

Linear Quadratic

FIGURE 3.9: Surface reconstruction from a binary image. Sphere. Illustration of the

reconstructed models for several input parameters. d denotes the Hausdorff distance.

TABLE 3.3: Characteristics of the aluminium foam and the mandible datasets.

dimensions [voxels] spacing [mm] points

aluminium foam (146,146,157) (0.060,0.060,0.062) 171201

mandible (306, 283, 166) (0.36,0.36,0.5) 998532
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FIGURE 3.10: Surface reconstruction from a binary image. Sphere. Obtained Hausdorff

distances for several values of Nmin.

complexity of the input image and gives an idea of the sampling resolution. The character-

istics of the input dataset are reported in Table 3.3.

Figure 3.11 shows that higher values of Nmin may help to extract all the trabeculae of a

truss-like structure, which were lost by discretisation during µCT-scanning. In these cases,

quadratic functions will therefore be recommended. Hausdorff distances are indicated be-

low the figures. Again, the best match between reconstructed model and input points is

obtained for a quadratic function, with a finely tuned Nmin parameter.

3.7.3 Surface reconstruction from a multi-label image

Figure 3.12 illustrates how our strategy to define multi-material volumes with a set of

implicit functions, explained in Section 3.5, is applied for the reconstruction of the lower

mandible. The characteristics of the input dataset are also summarised in Table 3.3.

The patient’s mandible comprises 13 teeth, each of which were segmented using a dif-

ferent label, resulting in a multi-label image (Figure 3.12, Upper Left). 14 sets of points

and associated sets of normals were extracted for each of the resulting 14 regions. These

are illustrated in Figure 3.6, Upper Right, where the normals have been coloured according

to their orientation. Taking the vocabulary of Section 3.5, the mandible is considered as

an open surface, intersected by the teeth boundaries (Figure 3.12, Lower Left). This means

that, when reconstructing the total multi-region system, the surface of the mandible will

form the outer boundary of the structure but stops at its intersection with the teeth. Each
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d = 0.168 mmd = 0.294 mm d = 0.355 mm

Linear, N =min 60 Quadratic, N =min 120 Quadratic, N =min 200

slice 75 slice 76 slice 77 slice 78 slice 79 slice 80

FIGURE 3.11: Surface reconstruction from a binary image. Aluminium foam. The red

circle indicates a loss of connection of the trabeculae whereas the green circles indicate that

these connections are preserved.

tooth is bounded by one closed surface. The definition of this heterogeneous object will

enable us to generate a consistent triangular mesh of the inner and outer boundaries in the

next section, therefore, the generated volume mesh will be suitable for finite element analy-

sis. The information of the material regions labelled in the segmented dataset is transferred

throughout the process, so that in the end, the mandible and the teeth can be distinguished

in the finite element analysis, and different material properties assigned, even though they

form one unique object.
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multi-label 3D image several sets of points: mandible and teeth

multi-material structure,
with several inner regions

S
open

S
closed

S
open

S
closed

Mandible: Open surface, intersected by the
Teeth: Closed surfaces.

FIGURE 3.12: Surface reconstruction from a multi-label image. Upper Left: 2D slice from

a multi-label segmented 3D CT-scan of the lower jaw. Upper Right: Sets of points, and

associated normals, extracted from the multi-label image. One set of points corresponds to

one coloured region in the multi-label image. Lower Left: Multi-material object description

using the concept of open and closed surfaces introduced in Section 3.3. Lower Right: Multi-

material implicitly defined mandible.
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3.8 Conclusions

In this section, a procedure to extract the geometries from scanned objects has been pre-

sented. The main advantage of this surface reconstruction algorithm is that it enables

smooth interpolation of the scanned datasets, thus avoiding the jagged edges of the ma-

jority of mesh generation methods. Our algorithm, is based on the multi-level Partition of

Unity approach for surface reconstruction from a cloud of points [136, 138].

Our major contributions to the approach is its extension to reconstruct geometries from

segmented datasets, in the view of patient-specific meshing. First a strategy to define a set

of points and associated normals from segmented uni-label and multi-label images has been

presented (Sections 3.4.1 and 3.5 respectively). Second, interpolation weight functions

rather than approximating ones have been proposed (Section 3.4.2). Third, the use of linear

instead of quadratic local functions has been investigated (Section 3.4.3). And, last but

not least, an efficient strategy to represent multi-material structures with a set of distance

functions has been defined (Section 3.5). The latter enables generalization of the procedure

to the creation of biological structures having several inner boundary surfaces, defining

several material regions within the structure.

The algorithm has been implemented in the finite element software Metafor and is suc-

cessfully being used to generate patient-specific finite element meshes as attested by several

peer reviewed journal and conference papers [49, 56–58, 60, 116, 135] and illustrated in

the next chapters of this dissertation.

Results indicate the wide range of application of our algorithm. It has been used to gen-

erate three-dimensional implicit models from a set of points (Section 3.7.1), from binary

segmented images (Section 3.7.2) and from multi-label images (Section 3.7.3). The use of

interpolating functions rather than approximating functions, within a multi-level Partition

of Unity surface reconstruction approach, has shown no tremendous improvement of the

generated models in regard to their geometric accuracy, as some results do show lower

Hausdorff distances (Table 3.2) and other do not (Figure 3.10). However, the use of linear

instead of quadratic functions adds rapidity and robustness. It enables fast surface recon-

struction from, possibly noisy, sets of points. The decrease in reconstruction time is mainly

due to the fact that no system must be solved to compute the linear function coefficiants

as was needed for a quadratic function (Section 3.4.3). The robustness has been observed

for all input datasets. Results have shown that a better match between input data and

output model may be obtained with quadratic functions, if the parameter Nmin, defining

the minimum set of points per subdivision cell, is finely tuned. However, low values of

this parameter create surfaces with irregularities and low geometric accuracy. Linear func-

tions have the great advantage of generating valid results for all values of this parameter,
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valid meaning that the geometric approximation is still within the defined limits of one

voxel width and with no spurious parts so that direct application of a surface triangula-

tion algorithm will generate topologically correct meshes, suitable for further volume mesh

generation and finite element analysis.

62



Chapter 4

Multi-domain tetrahedral mesh

generation and adaptation

The approach described in the previous chapter provides one distance function f (x ) for

a single-material tissue and a set of distance functions fi(x) for multi-domain structures.

These functions approximate the point sets extracted from the tissue boundaries in the seg-

mented image. In this chapter, a strategy to generate a surface mesh of the tissue bound-

aries is proposed. The main particularity of the approach is that it is capable of generating

valid meshes even in the case of multiple interconnected tissues. The term valid meaning,

valid in the sense of the finite element method, that is to say, with no gaps nor overlays

at the material interfaces, and, with node-to-node and edge-to-edge connections only. The

generated surface mesh is a triangular mesh and is used as basis for further tetrahedral

volume mesh generation.

4.1 Literature review

4.1.1 Mesh generation strategies

Mesh generation approaches may be classified into three categories: spatial decomposition

methods, advancing front methods and Delaunay refinement methods.
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4.1.1.1 Spatial decomposition methods

Spatial decomposition methods generate meshes based on a subdivision of space based on

grids, quadtrees in 2D or octrees in 3D. These methods originated in the eighties [10, 188]

and many variants have been proposed since then. The simplest approach that may be

classified into this category is voxel-based meshing: a grid comprising the object is defined

and each grid cell, or image voxel, is turned into a hexahedron if located inside the object.

Obviously no good surface representation will be generated with this method. A better

boundary approximation is obtained by further subdividing each cube into tetrahedra, as

illustrated by the Red Green tetrahedral meshing technique of Molino et al. [120], or by

successively deforming the boundary elements [190].

The most popular approaches to extract a surface mesh of the object’s boundaries are

based on the marching cubes, proposed by Lorensen and Cline [110], [6, 8, 80, 97, 187].

In the marching cubes, a bounding box enclosing the data is defined and sampled into a

regular 3D Cartesian grid, thus forming a series of cubic cells. Each possible intersection

case of this cube with the object is tabularised and leads to creating of one or two triangles.

A popular extension of the marching cubes is the marching tetrahedra [134]. In the latter,

each grid cells are further subdivided into 5 or 6 tetrahedra, and the triangulation problem

is therefore reduced to the triangulation of a tetrahedron.

4.1.1.2 Advancing front methods

Advancing front methods or moving front approaches. These methods extend a mesh of

the object’s boundaries, called initial front, to the third dimension by incrementally filling

the object’s volume with tetrahedra that are made up of a triangle from the front connected

to an existing vertex of the mesh or to an inserted vertex in the inner area bounded by the

front. The quality of the resulting volume mesh highly depends on the quality of the initial

boundary triangular mesh. Advancing front mesh generation methods were first developed

by Lo [109], and have been extensively studied since then [39, 186].

4.1.1.3 Delaunay refinement mesh generation

. In Delaunay refinement mesh generation methods Delaunay triangulation is used to gen-

erate an initial triangular surface mesh. This produces a coarse mesh that is then refined

by iteratively adding mesh nodes. A popular implementation of this approach is available

through the software Gmsh, proposed by Geuzaine and Remacle [73].
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4.1.2 Multi-material mesh generation

The traditional meshing algorithms are not suited for the creation of valid or consistent

multi-tissue meshes. In general, when a heterogeneous object needs to be reconstructed,

the user applies the meshing algorithms iteratively, for each material domain. Therefore, if

the researcher needs to model the lower jaw and attribute distinct properties to the teeth

and the mandible (see the dataset presented in the previous Chapter, Figure 3.12), he will

will first generate a mesh of the mandible without the teeth, and then re-apply the meshing

algorithm several times to generate meshes for the teeth. A significant effort will then

be required to merge the nodes and elements on the interface between the teeth and the

mandible. Inevitable, there will be voids and mismatched nodes at the interface between

these two materials. The result will be visually appealing but totally in-adaptable for finite

element simulations.

The first generalisation of the marching cubes algorithm to segmented images contain-

ing several segmented regions, also called multi-label images, has been proposed by Hege

et al. [80]. In the latter, up to three materials may meet at each grid cell. Wu and Sullivan Jr

[187] extended this number to up to eight different labels per cell. A multiple-material

version of the marching tetrahedra algorithm has been proposed by Müller [124]. Other

approaches to multi-tissue mesh generation are based on dual contouring [17, 18, 148],

volume subdivision [108, 191] and Delaunay refinement algorithms [23, 118, 144].

Our mesh generation approach is based on the marching tetrahedra for its simplicity and

because it does not suffer from the ambiguity problems of the marching cubes. Solutions

to these ambiguities, which are inherent to data sampling, have been proposed in [38,

121, 128, 170]. The use of the marching tetrahedra algorithm is also an efficient way to

circumvent the problem.

The classical marching tetrahedra algorithm is presented in the next section. In Sec-

tion 4.3, we generalise the marching tetrahedra algorithm to the triangulation of implicitly-

defined multi-material structures.

4.2 Classical marching tetrahedra algorithm

The basic ideas of the marching cubes and the marching tetrahedra are similar. A bound-

ing box enclosing the data is defined and sampled into a regular 3D Cartesian grid. This

grid defines a series of cubic cells obtained by taking eight grid vertices at a time. In the

marching cubes the global triangulation problem is reduced to the triangulation of these

cubic cells [110]. In the marching tetrahedra the grid cells are further subdivided into 5
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or 6 tetrahedra. The triangulation problem is therefore reduced to the triangulation of a

tetrahedron. The subdivision scheme used in this article splits the initial cubic cell into six

identical tetrahedra [134].

A tetrahedron has four vertices, let us name them from A to D. On each vertex the

value of the distance function is computed. A vertex with a positive value is located inside

the surface and a negative value corresponds to the outside of the surface. Hence, the

surface crosses the tetrahedron when the vertices values change sign on the tetrahedron.

In that case, the cell is called an active cell and a triangulation of the intersecting surface

in the tetrahedron is computed. In order to automatically determine this triangulation,

a binary index is constructed by processing the tetrahedral vertices in the predetermined

order ABCD. Each bit of the index is 0 when the corresponding vertex value is negative and

1 otherwise. This index permits the differentiation of the 24 = 16 cases of intersection. All

these cases are tabulated so that, from a given index, the triangles to be created are rapidly

obtained. The 16 possible cases are reduced to 3 by symmetry, leading to no triangulation

(Figure 4.1 (a)), the creation of one triangle (Figure 4.1 (b)) or the creation of two triangles

(Figure 4.1 (c)). In this single-material marching tetrahedra algorithm mesh nodes are

created on tetrahedron edges only. Linear interpolation of the tetrahedron vertices values

is used to position the newly created nodes. As each tetrahedron face is shared by another

cell, the obtained triangulated surface is continuous across adjacent cells.

4.3 Multi-material marching tetrahedra algorithm

The traditional marching tetrahedra approach is a binary decision routine: each tetrahe-

dral vertex is either located inside or outside the structure. In the multi-material case, we

use several distance functions to describe the material boundaries composing the structure

(Section 3.5). Consequently, a tetrahedron may be crossed by the zero level of several dis-

tance functions. Therefore, new triangulations patterns must be defined to generalise the

marching tetrahedra algorithm. In order to define these new patterns, two rules need to be

kept in mind. First, to ensure continuity each triangular face shared by adjacent tetrahedra

must have the same splitting pattern. Second, each material domain must be separated

from the other material domains by a surface mesh.

Based on the distance functions, a material label is assigned to each tetrahedral vertex.

These labels correspond to the sign of the distance function in the classical marching tetra-

hedra approach. Depending on the number of different material labels on the tetrahedron,

four cases are defined:
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FIGURE 4.1: Marching tetrahedra algorithm. (a,b,c) In the single material case, three gen-

eral triangulation patterns are seen, according to the sign of the distance function evaluated

at the tetrahedron vertices: (a) no triangulation, (b) the creation of one triangle and (c)

the creation of two triangles. (d,e) In the multi-material case, two triangulation patterns

are added to manage the cases in which the tetrahedron falls into three (d) and four (e)

distinct material domains. The distinct regions in which the tetrahedron vertices may fall

are indicated above each triangulation pattern. The indexes indicated below the triangula-

tion cases are used to define the triangles that must be created for a particular intersection

of the surface in the tetrahedron.

1. All material labels are identical: no surface crosses the tetrahedron and no triangula-

tion is created (Figure 4.1 (a)).

2. Two different material labels: the tetrahedron is crossed by the zero level of a unique

distance function and the triangulation defined in the classical marching tetrahedra

algorithm is used (Figure 4.1 (b,c)).

3. Three different material labels: the tetrahedron is located at the interface between

three materials (Figure 4.1 (d)).

4. Four different material labels: the tetrahedron is located at the interface between four

materials (Figure 4.1 (e)).

The two first cases correspond to the classical marching tetrahedra algorithm. The

triangulations used in the two last cases are described below.
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(a) center of tetrahedron

Sclosed

Sopen

(b) center of closed surface

FIGURE 4.2: Multi-material marching tetrahedra algorithm. Positioning of a mesh node

on an intersected tetrahedral face. (a) Placing the node at the centre of the tetrahedron leads

to visually unappealing material junctions. (b) In our algorithm the node is positioned on

the closed surface crossing the tetrahedron which leads to a smoother interface.

Figure 4.1 (d) illustrates the triangulation pattern used in case 3 when the tetrahedron

vertices are located in three distinct materials. The definition of the distance functions

presented in Section 3.5 leads us to deduce that this case corresponds to the crossing of

two functions: a closed surface and an open surface. In order to delimit the three material

regions, five of the six tetrahedron edges are inevitably located in two different materials.

New nodes are created on these five edges. Their position is determined by linear inter-

polation of the appropriate distance function evaluated at the edge vertices. Moreover,

two tetrahedral faces have vertices located in two different materials domains, whereas

the two other faces have three distinct labels on their vertices. In the latter case, a face

node must be created in order to respect the requirement stating that separating surfaces

must be created between each material domain. As the tetrahedral face is crossed by both

distance functions, the question on the location of this new face node must be addressed.

The simplest solution would be to place this node at the centre of the three nodes created

on the edges of the tetrahedral face. However, as illustrated in Figure 4.2 (a), this strategy

produces a small depression in the surface near the interface. A better solution is obtained

by noticing that, out of the three edge nodes, two nodes are located on the same closed

surface (Figure 4.3). Placing the face node at middle-distance of these two edge nodes

gives a smoother interface representation of this closed surface (Figure 4.2 (b)).

The same methodology was used to determine the last triangulation case encountered

when the four tetrahedron nodes are located in four distinct materials. Even though this
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FIGURE 4.3: Multi-material marching tetrahedra algorithm. The new node is created at

middle-distance of the two nodes located on the edges of the tetrahedron that are crossed by

the closed surface.

case rarely happens, its definition allows us to obtain a truly general algorithm capable of

processing any labelled volume. The triangulation used in this latter case is illustrated in

Figure 4.1 (e). As seen in the figure, six edge nodes, four face nodes, and a node located at

the centre of the tetrahedron are created to form the five triangles needed to represent the

intersection of the surfaces in this tetrahedron.

4.4 Decimation of multi-material surface meshes

Thanks to the implicit surface reconstruction the sampling grid of the marching tetrahedra

may be adjusted according to the minimum feature size that should be preserved. The

resolution of this sampling grid must be high enough in order to capture all image details.

However, increasing the grid resolution rapidly leads to inconvenient mesh sizes. The goal

of mesh decimation is to reduce the total number of mesh nodes while retaining the main

features.

Our mesh decimation algorithm consists in a vertex decimation scheme. Multiple passes

are made over the mesh nodes. During an iteration each node is tested for deletion. If the

decimation criterion is met, the node is deleted and the resulting hole in the mesh is re-

triangulated. Different criteria and triangulation schemes are used according to the node

type. Indeed, in a multi-material surface mesh, nodes are of three types: surface nodes,

edge nodes or corner nodes (Figure 4.4). Surface nodes are surrounded by a complete cycle

of triangles and each edge connected to this node has only two adjacent triangles. Edge

nodes are located on a junction-line; they have two neighbouring edges that are used by

three triangles and two neighbouring edge nodes. Corner nodes are located on a junction

between four triangular meshes. Practically, referring to Figure 4.4, surface nodes corre-

spond to the nodes created on tetrahedron edges during the triangulation process, edge
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FIGURE 4.4: Decimation of multi-material surface meshes. The mesh nodes are classified

as surface node, edge node or corner node.
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FIGURE 4.5: Decimation of multi-material surface meshes. Retriangulation scheme used in

our algorithm. (a) A mesh node that satisfies the decimation criterion is deleted. (b) This

creates a hole that is re-triangulated using an iterative procedure. (c) The loop is divided

in two by connecting two opposite nodes. (d) Each new loop is subdivided until only three

nodes remain, thus forming a mesh triangle.

nodes correspond to nodes created on faces of a tetrahedron, and corner nodes correspond

to nodes created in the centre of the tetrahedron.

A specific decimation criterion is used for each node type. A surface node is deleted if

its shortest neighbouring edge size is below a threshold and if the local gradient, evaluated

as the maximum angle formed by the normals of the neighbouring triangles, is lower than a
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threshold. An edge node is deleted if one of its two neighbouring junction edges is shorter

than threshold. Corner nodes are not tested for deletion.

Deleting a node and the adjacent triangles creates a hole that needs to be re-triangulated

(Figure 4.5). For surface nodes this hole may be seen as loop. This loop is triangulated using

a recursive loop-splitting procedure: it is divided into two halves and both the resulting

loops are divided again until only three vertices remain [152] (Figure 4.5). For edge nodes

an edge that joins the two remaining edge nodes is first created. This new junction edge

divides the hole into three loops; each of which are then triangulated like above.

Vertex decimation is included in the triangulation process: a newly created node is

tested for removal as soon as its neighbourhood is formed. By combining the marching

tetrahedra and the mesh simplification methods we are able to drastically reduce the num-

bers of nodes and triangles stored in memory.

4.5 Mesh adaptation

The objective of this last step is to improve the quality of the generated surface mesh while

preserving its geometric accuracy.

A simple, yet effective, way for improving the quality of the triangles composing the sur-

face mesh is Laplacian smoothing. The simplest Laplacian filters move each vertex located

at position x i
0

to a new position x i+1
0

that is the average of its adjacent vertices:

x i+1
0
=

1

n

n∑

j=1

x i
j

(4.1)

where x i
j
are the coordinates of the nodes connected to the current vertex x i

0
.

Our mesh quality enhancement approach is based on a Laplacian smoothing, but two

main improvements are proposed. First, mesh deformation is avoided by constraining the

mesh nodes on their original surface. Indeed, Laplacian smoothing has the undesirable

effect of rounding over the corners and reduces the volume of convex regions. In the pro-

posed algorithm the distance functions to the material boundaries are known. Hence, the

mesh nodes may easily be projected back on their surface at each step of the smoothing

procedure. Second, particular care is taken to keep the junction-lines between three ma-

terials as smooth as possible. In section 4.3 we defined the junction-line between three

materials as the intersection of a closed surface and an open surface. The nodes located at

the junction-line, called edge nodes, were positioned on the closed surface so as to avoid

surface irregularities. For the same motivations edge nodes are kept on the closed surface
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during the smoothing process. Thus, for edge nodes, Equation 4.1 is applied on the subset

of the boundary nodes located on the closed surface.

4.6 Applications and results

The proposed procedure for smooth multi-material mesh generation was tested on CT scans

of a femur, a lumbar spine, a mandible, a thorax as well as a µCT-scan of an aluminium

foam. The geometric approximation error and the quality of the obtained meshes are anal-

ysed in this section.

4.6.1 Datasets

The CT-scans of a femur, a lumbar spine, and a mandible were obtained form the OsiriX

medical imaging repository1. The CT-scan of the thorax was provided by the Department of

Weapon Systems and Ballistics, Royal Military Academy, Brussels, Belgium. The µCT-scan of

the aluminium foam was provided by ETH-Zürich [129]. The dimensions of the regions of

interest and image spacing are indicated in Table 4.1. All five datasets are anisotropic: their

in-plane resolution (x,y direction) is different from their slicing resolution (z direction).

The grey-level medical images were segmented semi-automatically using 3D Slicer [142].

The aluminium foam dataset provided was already segmented. For each labelled image the

points located on the boundaries of the material regions were extracted and their respec-

tive normals were computed (Section 3.4.1). The sizes of the extracted point clouds are

indicated in Table 4.1.

The image of the femur was segmented into four regions corresponding to cortical bone,

dense trabecular bone at the bone extremities, and low density spongious bone in the shaft

of the femur (Figure 4.6 (a)). An implicit definition of this multi-label image was obtained

using a combination of four multi-level Partition of Unity functions, two closed functions

corresponding to the exterior and interior boundaries of the cortical bone, and two open

surfaces delimiting the high and low density regions of trabecular bone (see Section 3.5 for

more details on how we proposed to defined multi-material structures with a set of implicit

functions).

The dataset called lumbar spine actually consists of three vertebrae of the lumbar spine.

Each vertebra was segmented into cortical and spongious bone. The resulting 6 material

regions are described implicitly using 6 closed MPU functions, illustrated in Figure 4.7 (b).

1ht tp : //pubimage.hcuge.ch : 8080/
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TABLE 4.1: Characteristics of the input datasets. dimensions, spacing, number of material

regions and number of points in the extracted point cloud.

dimensions spacing [mm] regions point cloud

femur (179, 196, 546) (0.74, 0.74, 1.0 ) 4 847129

lumbar spine (176,181,261) (0.59, 0.59, 0.5) 6 677042

mandible (306, 283, 166) (0.36,0.36,0.5) 18 998532

thorax (511, 511, 436) (0.71,0.71,1.50) 10

aluminium (146,146,157) (0.060,0.060,0.062) 1 171201

(a)

(b)

z

FIGURE 4.6: Multi-tissue mesh obtained from CT-scans of a human femur. The femur

was segmented into four regions: cortical bone, high-density spongious bone at the bone

extremities and low-density spongious bone in the body of the femur. (a) Multi-material

surface mesh where the outer boundary is semi-opaque to show the inner surface meshes.

(b) Cut through the volume mesh the femur obtained from the above surface mesh.
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z

(a) (b) (c)

FIGURE 4.7: Our meshing procedure performed on a CT-scan of lumbar spine. (a) Each

vertebra is segmented into cortical and spongious bone. (b) Multi-material mesh obtained

from the segmented data with our algorithm. (c) Cut through the volume mesh the lumbar

spine generated from the surface mesh with TetGen [158].

The lower jaw was segmented into 14 distinct regions using one label for the mandible

and 13 labels for the 13 teeth (Figure 3.12). The teeth were extracted as closed surfaces and

the mandible as an open surface, as already explained in Section 3.7. This definition yields

smooth surfaces of the teeth at the junction with the mandible, i.e. the depression seen

in the meshes which are created with other multi-domain meshing algorithms is avoided

(Figure 4.8).

The CT-scan of the thorax was segmented using 10 labels: left and right lungs, other

internal organs, left and right shoulder blade as well as four connected regions for the

thoracic wall: spine and connected ribs, left and right cartilage and sternum. Figure 4.9(b)

shows this labelling in an axial slice of the initial dataset. The first six regions (lungs,

other organs and shoulder blades) have single closed boundaries, so that our meshing

algorithm will generate a single closed triangular surfaces for these parts. The thoracic

wall is composed of 4 distinct regions, the sternum, cartilaginous plates on each side of the

sternum and the spine with attached ribs. Therefore heart, aorta oesophagus, trachea and

stomach were considered as a whole, as well as the vertebrae, the inter-vertebral discs and

the ribs. We believe that this simplification should have no impact on the finite element

results for the targeted application, which is the study of non-lethal weapons [135]. The

result provided by the surface mesher implemented in this thesis work can be seen as the

union of several closed triangular surfaces and a multi-material surface mesh. It is displayed

in Figure 4.9(c), where the skin is also shown.
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z

(a) (b)

(c)

FIGURE 4.8: Multi-region surface mesh of the mandible obtained from segmented med-

ical scans with our algorithm. (a) Surface mesh of the mandible, the teeth are visible

behind the translucent mesh of the mandible. (b) An enlargement of the mandible-tooth

junction shows that the surface meshes join each other consistently. (c) Surfaces of the teeth

are smooth, even at material junctions.
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(a) CT-scan (b) Segmentation

(c) Multi-material surface mesh (d) Multi-material volume mesh

FIGURE 4.9: Multi-region surface mesh of the thorax obtained from segmented medical

scans with our algorithm. (a) Axial slice extracted from the provided three-dimensional

CT-scan. (b) Segmentation of (a) performed with 3D Slicer [142]. (c) Multi-material

surface mesh obtained from (b) via our meshing algorithm. (d) Volume mesh obtained

from the surface mesh (c) via TetGen [158]. Project in collaboration with the Royal Military

Academy, Brussels [135].
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156 647 ddls 117 559 ddls 89 490 ddls 70 580 ddls

FIGURE 4.10: Adaptive meshes of an aluminium foam. Successive application of mesh

decimation and adaptation results in adaptive meshes, for which element sizes are adapted

to the local curvature.

TABLE 4.2: Multi-domain tetrahedral mesh generation and adaptation. Input parame-

ters.

Nmin ǫmax ∆xs q

femur 50 7∆x 4∆x 87%

lumbar spine 75 2∆x 3.3∆x 0%

mandible 50 3∆x 2.5∆x 83%

thorax (organes) 200 5∆x 2∆x 60%

thorax (cage) 100 2∆x 2∆x 0%

aluminium 120 1∆x 1∆x 63%

The dataset of the aluminium foam was provided as a binary image by ETH-Zürich

so that no segmentation was needed and it could be utilised as such. This dataset was

presented in Chapter 3.7 and is illustrated in Figure 3.11 therein.

4.6.2 Parameters setting

The whole meshing process requires the determination of four parameters: Nmin and ǫmax

control the smoothness of the reconstructed geometry, ∆xs defines the spacing of the sam-

pling grid of the triangulation algorithm, and q specifies the required level of decimation.
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The values of Nmin and ǫmax, indicated in Table 4.2, were obtained as follows. First, the

error tolerance ǫmax was adjusted according to the geometric approximation required for

the application. This parameter defines the acceptable distance error to the extracted point

cloud. It guides the recursive octree-based subdivision process: a cell is divided until the

local approximation error is below ǫmax. Therefore, it is usually defined as a multiple of the

image spacing. A minimum value for ǫmax certainly is half a voxel spacing, so as to avoid

stair-stepped artefacts in the reconstruction geometries, but one voxel width gives better

results in practice. When a lower resolution is used for the triangulation grid, then ǫmax

should be relaxed in accordance.

The minimum number of points required in a subdivision cell, Nmin, is also indicated

in Table 4.2. As explained and illustrated in Section 3.7, this parameter is more tricky to

adjust. Nmin must be low enough so that the subdivision process may reach the level that

gives an approximation error lower than ǫmax. However, there is a minimum number of

points required in order to accurately evaluate the local approximation functions, particu-

larly when quadratic local functions are used to approximate or interpolate the set of points

in a subdivision cell. We recommend a value of Nmin above 50 for quadratic functions. Any

values above 2 can be used for linear functions.

For the thorax, we used different values for the parameters of the surface reconstruction

algorithm, Nmin and ǫmax, in order to obtain a smoother but less precise result for the inner

organs and a geometrically more accurate (with respect to the segmentation) result for the

thoracic wall. Our algorithm enables this differentiation easily, however, the same sampling

grid has to be used in the triangulation algorithm. Variation of the mesh density from tissue

to tissue may however be obtained by our mesh adaptation techniques. In the case of the

thorax, the inner organs were decimated, as opposed to the spine and ribs.

Then one has to choose between linear or quadratic, approximating or interpolating

functions. Default parameters are linear interpolating functions as these have been proved

to give a fast and accurate surface reconstruction for all datasets, noisy or not and for all

values of Nmin. Quadratic approximating functions may be used with caution when the input

segmentation is clean and when the object’s curvatures are low with respect to the image

resolution. In that case, a higher geometric accuracy may be achieved, for appropriate

values of Nmin, as has been illustrated in Section 3.7.

During the triangulation process a sampling grid enclosing the object of interest is de-

fined. The spacing of this grid, called ∆xs, is user-defined. The value is adjusted according

to the minimum feature size that must be preserved. When all details of the image are

significant, ∆xs is taken equal to the original image spacing ∆x . When, however, a high
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TABLE 4.3: Multi-domain tetrahedral mesh generation and adaptation. Mesh statistics.

surface mesh volume mesh

nodes cells nodes cells

femur 7956 16114 14052 70600

lumbar spine 52896 105772 90218 419309

mandible 52183 106666 119788 597439

thorax 484203 337451 834111 3227903

aluminium 57865 116338 65941 200482

level of detail is not required, greater values reduce triangle count and mesh generation

time.

The last parameter q gives the required level of decimation. As indicated in Table 4.2,

we reduced the number of mesh nodes by more than 80% for both the femur and the

mandible and by 60% for the aluminium foam.

The obtained surface meshes are illustrated in Figure 4.6 (a), Figure 4.7 (b), Figure 4.8

(a), Figure 4.9 (c) Figure 4.10, for the femur, the lumbar spine, the mandible, the thorax

and the aluminium foam respectively. The sizes of these meshes are indicated in Table 4.3.

From these multi-material surface meshes multi-region volume meshes were generated

using TetGen [158]. Figure 4.6 (b), Figure 4.9 (d) and Figure 4.7 (c) represent a cut

through the volume mesh of the femur, the thorax and the vertebrae. As seen in the figures,

the interfaces between different material regions are compatible in the sense of the finite

element method. In other words, no gaps nor overlays exist on the material boundaries

and the connections between the elements are node-on-node, edge-on-edge, and triangle-

on-triangle. The numbers of nodes and tetrahedra composing the volume meshes are also

indicated in Table 4.3.

4.6.3 Geometric accuracy

The geometric accuracy of the surface meshes is evaluated by taking each boundary point

extracted from the segmented image in turn and measuring its distance to the mesh. This

error represents the distance between the original segmented data and the final surface

mesh. It includes the geometric error introduced by implicit surface reconstruction and

the error resulting from subsequent triangulation and mesh adaptation. It is clear that an
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FIGURE 4.11: Geometric accuracy. Histogram of the geometric approximation errors, calcu-

lated as the distance between the extracted points and the mesh. (a) Femur. (b) Lumbar

spine. (c) Mandible.
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FIGURE 4.12: Mesh quality. Histogram of the aspect ratios of the mesh triangles. (a) Femur.

(b) Lumbar spine. (c) Mandible.

error smaller than half a voxel width means that the mesh is in perfect agreement with the

segmented data due to the discretisation of the image. By computing this distance for the

meshes illustrated in Figures 4.6 (a), Figure 4.7 (b), and Figure 4.8 (a), 36% (femur), 39%

(lumbar spine), 48% (mandible) and 28% (aluminium foam) of the extracted points are

located less than half a voxel away from the mesh. Moreover, 64% (femur), 66% (lumbar

spine), 78% (mandible) and 59% (aluminium foam) of the extracted points are located less

than one voxel away from the mesh. A histogram of the obtained geometric errors is drawn

for each dataset in Figure 4.11. Even though the meshes do not represent the segmented

data exactly, we think that the obtained geometric accuracy is acceptable considering that

the segmentation has been performed semi-automatically without applying any subsequent

image filtering methods.

4.6.4 Mesh quality

Obtaining surface meshes of high quality is of primal importance as it determines the quality

of the volume mesh and the convergence rate of the time integration of the resulting finite

element model.

We evaluate the triangular mesh quality by computing the triangle aspect ratios which

is defined as the ratio of the longest edge over the shortest one. A histogram of these

values is drawn for the femur, the lumbar spine and the mandible in Figure 4.12. In Fig-

ure 4.13, histograms of the aspect ratios the several sub-meshes (lungs, shoulder blades,

organs and thoracic wall) comprising the multi-material mesh of the thorax are drawn. The

obtained meshes are of excellent quality, the maximum aspect ratio being below 3 for all

three datasets. This quality is sufficient for further volume mesh generation and accurate

finite element computation.
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FIGURE 4.13: Mesh quality evaluation for the thorax. Histograms of the triangles aspect

ratios.
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Triangle Aspect Ratio1 3

FIGURE 4.14: Mesh quality evaluation for the thorax. The surface mesh triangles are

coloured with respect to their aspect ratio.
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FIGURE 4.15: Mesh quality evaluation for the an aluminium foam.

83



CHAPTER 4. MULTI-DOMAIN TETRAHEDRAL MESH GENERATION AND ADAPTATION

In Figure 4.14 the surface mesh triangles are coloured with respect to their aspect ratio.

The mesh of the thoracic wall was separated from the other surfaces meshes to allow a

better visualisation of the quality fields.

Figure 4.15 gives the mesh quality for the aluminium foam. In addition to triangle

area and triangle aspect ratio histograms, these properties are also illustrated on the actual

mesh.

4.7 Conclusions

This chapter, on mesh generation, along with the previous chapter, on surface reconstruc-

tion, present a mesh generation strategy capable of producing triangle surface meshes from

multi-tissue segmented medical datasets. The proposed method solves the two main issues

of patient-specific mesh generation. First, the typical staircase artefacts resulting from im-

age discretisation are avoided by computing a smooth description of the tissue boundaries

prior to triangulation (Chapter 3). Second, multi-tissue mesh generation is enabled by us-

ing a multi-material version of the marching tetrahedra method (Chapter 4). The main

contributions of this chapter are (1) an efficient implementation of a multi-material march-

ing tetrahedra algorithm, based on a novel description of multi-material structures, (2) a

strategy to accurately position interface nodes during mesh generation, which greatly im-

proves the quality of the meshes along material junctions, (3) a multi-material decimation

scheme that may be used during and/or after mesh generation and (4) a volume-preserving

mesh adaptation filter.

The efficiency of our meshing procedure was illustrated on five datasets: a femur, a

set of three lumbar vertebrae, a mandible with its teeth, a thorax and an aluminium foam.

Multi-material meshes of respectively 4, 6, 18 and 10 material regions and a single material

mesh were created from the segmented volumes. In each case topologically consistent

meshes were obtained with no gaps or overlays at the material junctions. The results also

show a very small geometric approximation error and satisfactory triangle aspect ratios.
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Chapter 5

Multi-domain hexahedral mesh

generation and adaptation

5.1 Motivation

In the previous chapter (Chapter 4), an efficient strategy to create tetrahedral meshes from

multi-material biological structures was proposed. A key strength of the proposed algo-

rithm is that it reconstructs the geometries of anatomical tissues very accurately. Indeed

the use of the surface reconstruction algorithm presented in Chapter 3 enables recovery

of the natural smoothness of biological structures, lost by discretisation during the scan-

ning process, whilst keeping the surface boundaries within the limits imposed by the voxel

values in the medical image. This surface reconstruction algorithm is used prior to mesh

generation as well as in a post-processing step. In the latter, the quality of the generated

mesh is improved by repositioning the surface mesh nodes but constraining them to remain

on the implicitly defined surface of the surface reconstruction algorithm.

The idea investigated in this chapter is to use our surface reconstruction algorithm to

smooth the jagged edges produced by a voxel conversion algorithm.

This resulting meshing strategy outputs hexahedral meshes and therefore avoids prob-

lems arising from using the standard linear tetrahedral element in finite element simula-

tions of incompressible materials. Moreover, it outputs meshes with smooth surface bound-

aries, so that the stress concentration and contact problems arising with voxel-based meshes

are also solved. This novel meshing algorithm is also extremely time-efficient as voxel

conversion is straightforward and because our surface reconstruction algorithm uses an

octree-based subdivision scheme so that its computation time depends on the complexity

of the structure rather than the image size. Finally, the approach is well adapted for the
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FIGURE 5.1: Laplacian smoothing and mesh shrinkage. Illustration of the mesh shrinkage

occurring during Laplacian smoothing a voxel-based mesh.

generation of structures composed of several material domains and, also, allows to assign

heterogeneous material properties based on the image greyscale values1 [47].

The major drawback in smoothing a voxel-based hexahedral mesh is that it generates

distorted elements along the objects’ boundaries. Finite element simulations will be per-

formed at the end of this dissertation to study the effect of this distortion on simulations re-

sults. A strategy to control and limit element deterioration during the meshing procedure is

also proposed. As opposed to our tetrahedral mesh generation procedure (Chapter 4), voxel

based meshing also has the disadvantage that the mesh resolution is not user-controlled: it

is fixed by the image resolution.

Finally a key motivation for the implementation of this new meshing algorithm is to

be able to present a comparison of different meshing strategies and their effect on finite

element simulations. Researchers tend to stay in their specific field, mesh generation or

finite element simulation, so that these comparisons are relatively rare.

5.2 Literature Review

Voxel-based meshing enables fast and automatic generation of hexahedral meshes from

scanned data. It has extensively been used for micro-FE simulations of trabecular bone

[28, 69, 82, 172]. Because of its simplicity voxel-conversion has also been perfomed for

macroscopic studies of the femur [42], the distal radius [143] and the vertebral body [47,

94].

1This is an alternative option to multi-domain mesh generation, that will be investigated in future studies.
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Nevertheless, the basic conversion of one voxel into a brick element produces jagged

edges. These jagged edges have been proven detrimental to the accuracy of finite element

results [173]. Non-smooth surface boundaries also jeopardises contact modelling and sim-

ulation [33, 78]. Subsequent smoothing of these boundaries improves the accuracy of the

finite element results [28].

Several smoothing approaches have been proposed [12, 28, 33, 78]. The two major

problems faced by these researchers are (1) element distortion (2) mesh shrinkage. El-

ement distortion inevitably occurs when smoothing the boundary of a voxel-based brick

mesh. An efficient remedy is to split the distorted elements into prisms [12], thus creating

hybrid prism-hexahedral meshes. Unfortunately, not all finite element software include the

possibility of finite element simulations from hybrid meshes. The second challenge, mesh

shrinkage, comes from the iterative smoothing of volumes using classical smoothing algo-

rithms. Because the underlying image is not taken into account during node repositioning,

the resulting mesh is no longer a good representation of the scanned object after smooth-

ing. Controlling mesh shrinkage is particularly important for the modelling of trabecular

bone where mesh shrinkage may lead to the collapsing of trabecular connections and where

simulations results highly depend on the volume of the trabeculae.

5.3 Proposed approach

The proposed approach is summarised in Figure 5.2. The input of the hexahedral mesh

generator is a three-dimensional, usually segmented, image, or equivalently, a set of two-

dimensional parallel scans (Figure 5.2 (a)). Either binary images or grey-scale images

are accepted by our algorithm. In all cases, voxels with zero value will be considered as

background.

Voxels with non-zero values are turned into brick elements in the first step of our algo-

rithm (Figure 5.2 (b)). Each generated element is associated with its voxel value, provided

by the input image.

In a second step, the set of points and associated normals, needed for surface recon-

struction (Section 3.3) is computed (Figure 5.2 (c)). The procedure is similar to the one

presented in Section 3.4.1, but this time, the points are extracted from the voxel mesh and

not from the segmented image. The resulting input points and normals sets are identical

to the ones obtained directly from the segmented dataset. However extracting these sets

directly from the mesh allows us to keep in the computer memory only one representa-

tion of the geometry at a time. To extract these sets from the voxel mesh, the method

of Section 3.4.1 is extended as follows. The mesh nodes belonging to the surface of the
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voxel mesh are first identified as those having less than eight cell-neighbours. For each

of these generated boundary points, a normal is computed by averaging the face-normals

of the neighbouring elements. These normals are then iteratively smoothed using Equa-

tion (3.27), in order to improve the quality of the reconstructed surface (see Section 3.4.1

for more details).

From these sets of input points and normals, an implicit function approximating the

distance to this set of points, and henceforth the distance to the object’s boundaries, is

constructed by the multi-level partition of unity surface reconstruction method detailed in

Section 3.3 (Figure 5.2 (d)).

The last step consists in iteratively deforming the brick mesh towards the zero-level of

the defined C1 distance function. However, we use an alternate version of the mesh adap-

tation algorithm defined for our patient-specific tetrahedral mesh generation method (Sec-

tion 4.5). Indeed, in the case of a hexahedral mesh, a better result is achieved by slowing

down the node projection algorithm. This allows us to add a criterion on a maximum-

allowed element distortion, so that the mesh nodes are projected towards f (x ) = 0 only to

the point where the maximum allowed distortion is achieved. The resulting mesh adapta-

tion algorithm can be summarised as follows:

Until a criterion is met, perform those two steps successively:

1. Loop over the nodes belonging to the boundary mesh and projects these nodes to-

wards the target surface. For each mesh node belonging to the surface of the voxel-

based mesh, i.e. for each node having less than eight cell-neighbours:

(a) Compute the node neighbourhood defined as its closest node-neighbours, i.e.

the nodes connected to the current node via an edge (three to five nodes).

(b) Reposition the node at the centre of its neighbourhood, x 0.

(c) Compute the node’s target position x t on the implicit surface surface f (x ) = 0,

using a Newton-Raphson procedure.

(d) Reposition the current node at 0.5x 0 + 0.5x t , that is to say, at mid-distance

towards the target surface.

2. Equilibrate the mesh in volume. For each mesh node located inside the voxel-based

mesh:

(a) Compute the node neighbourhood defined as its closest node neighbours, i.e.

the six nodes connected to the current node via an edge.

(b) Reposition the current node at the centre of its neighbourhood.
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(a) (b) (c) (d) (e)

f( )=0x

FIGURE 5.2: Proposed patient-specific hexahedral mesh generation procedure. (a) Set of

segmented image slices, obtained from the scanning of a sphere. (b) Brick mesh obtained

by voxel conversion. (c) Set of points and associated normals extracted from the boundary

surface mesh of the generated voxel mesh. (d) Representation of the surface boundary by

a smooth implicit function thanks to our surface reconstruction algorithm. (e) Iterative

smoothing and projection of the mesh boundary nodes towards the zero-level of the implicit

distance function f (x ) = 0.

The criterion used to terminate the projection algorithm result in a trade-off between

surface smoothness and element deformation.

Maximum surface smoothness is achieved when the boundary nodes are located on

f (x ) = 0. Therefore, in our algorithm, a measure of the surface smoothness is computed

as the maximum distance of the surface nodes to the target smooth surface, which is given

by the value of the implicit function at this mesh node f (x n).

The distortion of a hexahedral element is measured by [162]

dh =
8 minξk

�
Jξk

�

Vh

(5.1)

where minξk
(Jξk
) is the minimum determinant of Jacobian matrix evaluated at each Gauss

point ξk and Vh is the volume of the hexahedron. This quality measure gives a result

between 0 (very distorted element) and 1 (cubic element).

In the case of hexahedral mesh generation from a segmented image containing a set

of different material regions, labelled with different voxel values, the user may choose to

smooth the inner boundaries along with the outer boundary. The procedure presented

in Section 3.5 is then used to create a representation of the multi-material object with a

set of implicit distance functions. During the initial voxel-conversion algorithm, boundary

nodes are labelled according to the boundary, inner or outer, they belong to. These nodes

are then iteratively projected towards their corresponding target implicit surface using the

mesh adaptation algorithm presented in this chapter.
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5.4 Applications and results

5.4.1 Hexahedral mesh generation of truss-like structures

Advances in microfocus 3D computer tomography and magnetic resonance imaging have

made it possible to perform numerical simulations on microstructures such as metal foams

and trabecular bones. The most commonly used technique to perform these simulations is

finite element simulation, called µ-finite element simulation within this framework. The

main challenge faced by µFE analysis is the building of a finite element mesh. Indeed,

due to the limited image resolution and the complexity of the involved structures, classical

meshing techniques fail to accurately and robustly reconstruct the architecture.

The meshing procedures proposed in literature may be classified as model-based or

model-free. Model-based approaches rely on model assumptions (e.g. periodicity, open-cell

or closed-cell) combined with statistical data extracted from the images and use specific

methods to reconstruct the microstructure. Model-free approaches take the segmented im-

age as input and reconstruct the geometry as smoothly and accurately as possible. Unlike

model-based approaches, they are applicable to any kind of structures and offer a geometric

accuracy that cannot be achieved with model assumptions.

The idea of this section is to investigate different types of model-free approaches for the

modelling of microstructures:

1. voxel-conversion

2. our proposed mpu-smoothed voxel-based meshing strategy, presented in this chapter

3. our proposed tetrahedral mesh generation strategy (Chapter 4)

The first dataset that is considered is the Aluminum foam of Figure 5.3, already pre-

sented in Sections 3.7 and 4.6. The aluminium foam resembles the complex architecture of

trabecular bone, which is typically the type of dataset for which voxel-conversion is used in

literature. Figure 5.3 illustrates the meshes obtained by means of voxel-conversion (Left),

the proposed hexahedral mesh generation strategy (Middle) and the proposed tetrahedral

mesh generation approach (Right). Five projection iterations were performed during our

mpu-based hexahedral mesh generation, which allowed the mesh nodes belonging to the

boundary surface to be totally projected on the implicitly defined surface. The objective in

this case was more to illustrate that smooth surfaces may be achieved with our algorithm

rather than creating a good quality finite element mesh. Element distortion controlled mesh

adaptation is illustrated for the next dataset.

The second dataset that is considered is a µ-CT scan of the cancellous tissue of a deer

(Cervus Elaphus) antler, prepared at the Department of Clinical Sciences, Faculty of Vet-
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FIGURE 5.3: Voxel-based, hexahedral and tetrahedral meshes of an aluminium foam.

Meshes of the aluminium foam described in Figure 3.11. Left: voxel-conversion. Middle:

proposed hexaheral hexahedral mesh generation strategy. Right: proposed tetrahedral mesh

generation approach.

erinary Medicine, University of Liège [102]. Figure 5.4 illustrates the meshes obtained by

(1) voxel-conversion, (2) our hexahedral mesh generation procedure with one projection

iteration, (3) our hexahedral mesh generation procedure with two projection iterations,

(4) our tetrahedral mesh generation procedure (Chapter 4). Visually the smoothness of

the generated structure is improved by successive projection of the boundary surface nodes

on the multi-level partition of unity implicit surface. Nevertheless, the boundary surfaces

are not as smooth as for the tetrahedral mesh. The reason for this obviously is that during

our voxel-based mesh smoothing, boundary nodes are moved towards the implicitly de-

fined surface; but, their movement is restricted in order to avoid too large distortions of the

hexahedral elements.

Figure 5.5 illustrate the same four meshes, but the elements are coloured according to

their quality. For hexahedral elements the quality measure used is the element distortion

(5.1), for tetrahedral elements, the triangle ratio is used.
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FIGURE 5.4: Voxel-based, hexahedral and tetrahedral meshes generated of a deer-antler.

Mesh generation from a µ-CT scan of the cancellous tissue of a deer antler [102].
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FIGURE 5.5: Voxel-based, hexahedral and tetrahedral meshes generated of a deer-antler.

Evaluation of the mesh qualities.

5.4.2 Hexahedral mesh generation of multi-material structures

Figure 5.6 illustrates our hexahedral mesh generation approach in the case of non-binary

segmented datasets. A magnetic resonance, three-dimensional, image of the brain, of di-

mensions 256×256×60 and spacing 0.9375×0.9375×2.5 mm was segmented into three

material domains: healthy brain, ventricles and tumour (Figure 5.6, Left). In a first pre-

processing step, a nearest-neighbour reslice filter was applied on the dataset in order (1)

achieve an isotropic spacing and (2) down-sample the data by a factor three. An isotropic

spacing is required for the generation of cubic, as opposed to elongated, brick elements. The

down-sampling was used to limit the number of hexahedral elements generated during the

voxel conversion algorithm. The produced image had an isotropic spacing of 2.8×2.8×2.8

mm and 86 × 86× 53 voxels. The first step of our algorithm consists in turning each of

these voxels into hexahedra. The resulting voxel mesh is shown in Figure 5.6, Middle. As

illustrated with colours, the voxel values of the initial image are kept in memory during

voxel conversion. Outer and inner surface boundaries are then iteratively smoothed using

the distortion controlled mesh adaptation method presented above. This algorithm also

includes a procedure to propagate this smoothing towards the interior of the material vol-

ume regions. The latter is more noticeable in Figure 5.7, where the hexahedral mesh of the

healthy brain part has been cut along the three planes of the coordinate system.
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Segmented dataset voxel mesh mpu-smoothed mesh

FIGURE 5.6: Hexahedral mesh generation of multi-material structures. Illustration of our

hexahedral mesh generation procedure on a multi-label dataset of the brain.

z-cutx-cut y-cut

FIGURE 5.7: Multi-material hexahedral mesh of the brain obtained by the proposed

hexahedral mesh generation procedure. The part of the mesh corresponding to healthy

brain and labelled as such in the initial segmented scans has been cut along the three planes

of the coordinate system.

5.5 Conclusions

The hexahedral mesh generation procedure presented in this chapter is a good alternative

to tetrahedral mesh generation, when a tetrahedral mesh is not desired; for example under

incompressibility conditions when the finite element software used does not include a non-

locking tetrahedral finite element.

The algorithm produces fairly smooth mesh boundaries which is important for the ac-

curacy of the results computed by finite element analysis.

The main drawback of the proposed approach is that distorted elements are generated

along the surface boundaries. This is an inevitable result of the smoothing of voxel meshes.

However this mesh distortion is user-controlled: the user may define a maximum-allowed

hexahedral element distortion. Moreover, as opposed to recent approaches proposed in

literature [12], our surface smoothing and mesh adaptation algorithm includes a strategy
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FIGURE 5.8: Multi-material hexahedral mesh of the brain obtained by the proposed hex-

ahedral mesh generation procedure. Quality analysis. Left: Element distortion field and

histogram obtained for a completely smoothed hexahedral mesh. Right: Element distor-

tion field and histogram obtained when the mesh adaptation algorithm is stopped after one

iteration in order to avoid large element distortion.

to propagate the surface smoothing within the volume; which limits element distortion. To

solve this problem distorted hexahedral elements along the boundaries could be subdivided

into prism or tetrahedral elements in the future.

Finite element simulations will be performed at the end of this dissertation to evaluate

the efficiency of this approach as compared to our tetrahedral mesh generation approach.
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Part II

Unlocking the linear tetrahedron
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Notations

General Rules

a , A , α : italic character, scalar

a , A , α : bold italic character, vector

(except the Cauchy stress tensor σ and its deviator s)

A : bold upright in upper case, matrix or second order tensor

x , x : lower case, variable in the current (spatial) configuration

X , X : upper case, variable in the reference (material) configuration

0 , as in B0 : superscript or subscript, reference (material) configuration

e , as in Ve : lower case, superscript or subscript, element contribution

I , as in VI : upper case, superscript or subscript, nodal value

δi j : Kronecker symbol δi j = 1 if i = j and 0 otherwise

∇0· : gradient with respect to the reference configuration ∇0·=
∂ ·

∂ X

∇· : gradient with respect to the current configuration ∇·= ∂ ·

∂ x

· , as in a · b : contraction of inner indices;

: a · b = ai bi, A · b = Ai j b j, A · B = Ai jB jk = Ai jBk j = ABT

: , as in A : B : double contraction of inner indices; A : B= Ai jBi j, C : D= Ci jkl Dkl

,̇ as in u̇ : superscript, first order time derivative (total derivative)

,̈ as in ü : superscript, second order time derivative (total derivative)

General Remarks

• Coordinate system indices are denoted i, j, . . . in the current configuration and A, B, . . .

in the reference configuration.

• The Einstein summation convention is used. Therefore, when an index occurs more

than once in the same expression, the expression is implicitly summed over all possi-

ble values for that index.
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• In the finite element method, the global system of equations, governing the behaviour

of the domain Ω, consists in the assembly of local equations, governing the behaviour

in the sub-domains Ωe. Apart from the assembly operator, governing equations are

similar. Therefore, the subscript or superscript e will often be dropped in this disser-

tation in order to simplify the notations.
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Variables

b : body force

B : left Cauchy-Green deformation tensor

C : right Cauchy-Green deformation tensor

d : nodal displacements stored in Voigt form

D : rate-of-deformation tensor

E : Green-Lagrange strain tensor

Ė : material strain rate tensor

fint , f int
I

, f int
iI

: internal nodal forces

fext , f ext
I

, f ext
iI

: external nodal forces

F , Fi j : deformation gradient; Fi j = ∂ x i/∂ X j

G0 , G0
I i

: discrete material gradient operator; G0
I i
= ∂ NI/∂ X i =∇0 NI

G , GI i : discrete spatial gradient operator; GI i = ∂ NI/∂ x i =∇NI

J : determinant of Jacobian matrix between spatial and material coordinates

Jξ : determinant of Jacobian matrix between spatial and element coordinates

J0
ξ

: determinant of Jacobian matrix between material and element coordinates

K : linear stiffness matrix

Kint , Kext : tangent stiffness matrix for internal and external forces

Kmat , Kgeo : material and geometric tangent stiffness matrices

n0 , n : normal vector to the initial and current boundary of the domain

P : first Piola-Kirchhoff or nominal stress tensor

p : pressure

s : deviator of Cauchy stress tensor

S : second Piola-Kirchhoff stress tensor

t : traction force

u , ui : displacement field (non discretised)

u , uiI : matrix of nodal displacements

U : space of kinematically admissible displacements

v , vi : velocity field

V , υ : volume in the reference and current configuration

W int,Wext,Wkin : internal, external and kinetic work

x , x : spatial (Eulerian) coordinates

X , X : material (Lagrangian) coordinates

Γ , Γ0 : boundary of the body in the current and initial configuration

Γu : displacement boundary: part of boundary where displacement is prescribed

Γt : traction boundary: part of boundary where traction is prescribed
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Π : energy potential

ρ , ρ0 : mass density

σ : Cauchy stress tensor

Ω , Ω0 : domain of current and initial configuration
hΩ , hΩ0 : reference to the meshed domain

� : element’s parent domain
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Chapter 6

Background

6.1 The Finite Element Method

The finite element (FE) method is a powerful tool to evaluate stresses and strains in solids

with geometric or material non-linearities. In many cases and especially in Biomechanics,

the equilibrium equations and constitutive laws are highly non-linear so that an analytical

solution cannot be found. In that situation, the finite element method is a good alternative

to evaluate the strains and stresses in response to the solid’s loading history.

The reader is supposed to be familiar with the basics of the FE method, and is referred

to reference manuals otherwise [86, 194]. The first step in finite element modelling is the

subdivision of the initial domain into non-overlapping elements, connected to each other

at their nodes and on their edges. This procedure, called meshing, has been the purpose of

the first part of this dissertation. The displacement field is then evaluated at the mesh nodes

by expressing the equilibrium equations at each node. The overall field is evaluated within

an element by interpolating its nodal values using shape functions. Strains and stresses are

evaluated at quadrature points using strain-displacements relations and constitutive laws

respectively. The formulation of an adequate tetrahedral finite element is the purpose of

the present chapter.

This chapter is organised as follows. In Section 6.2, we introduce some elements of

continuum mechanics. This will enable the reader to get familiar with the notations used in

this thesis. Section 6.3 introduces the principle of virtual work and the principle of virtual

power. In Section 6.4, an expression for the internal tangent stiffness matrix is obtained by

successive linearisation and discretisation of the principle of virtual work equation. Finally,

implicit and explicit time integration are introduced in Section 6.5. All together, these Sec-
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FIGURE 6.1: Continuum mechanics. Description of the motion of a deformable body and

introduction of the notations used in this chapter.

tions will give the reader the basis to understand Chapter 7 on finite element formulations

that solve the locking problems of the standard linear tetrahedron.

6.2 Continuum mechanics

6.2.1 Notations

Figure 6.1 introduces the notations used in this work. The body Ω0 is imagined as being

an assemblage of material particles P that are labelled by the coordinates X at time t = 0.

This configuration is called the initial or reference configuration. We use upper case letters

and the sup or superscript 0 to refer to the initial configuration. At time t , the particles p,

part of the deformed body Ω, are located by the coordinates x . We use lower case letters

for variables in the current configuration.

The boundary of the volume is denoted Γ0 in the reference configuration and Γ in the

current configuration. This boundary is split into the part of the boundary where displace-

ment boundary conditions are applied Γ0
ū

and Γū and the part where traction boundary

104



CHAPTER 6. BACKGROUND

conditions are prescribed Γ0
t̄

and Γt̄ , such that Γ0 = Γ0
ū
∪ Γ0

t̄
and Γ0

ū
∩ Γ0

t̄
= 0, and equiva-

lently, in the current configuration: Γ = Γū ∪ Γt̄ and Γū ∩ Γt̄ = 0. Moreover, the body may

be subjected to body forces, noted ρ0 b̄ in the reference configuration and ρ b̄ in the current

configuration.

6.2.2 Motion

As introduced above, the position of a material point P is noted X in the reference config-

uration and x in the current configuration. There is a one to one mapping between the

current and the reference configuration given by x = φ (X , t) and X = φ (x , t)
−1

.

We also define the displacement in the reference configuration:

u(X , t) = x (X , t)− X (6.1)

and in the current configuration:

u(x , t) = x (t)− X(x ) (6.2)

The velocity of a particle is given by

v = ẋ =
dx

d t
=
∂ x

∂ t
(6.3)

and its acceleration by

ai(x , t) = v̇i =
d

d t
vi =

∂ vi(xk, t)

∂ t
+
∂ vi

∂ xk

∂ xk

∂ t
(6.4)

6.2.3 Deformation gradient

6.2.3.1 Jacobian matrix or deformation gradient

Let us consider two neighbouring material points in the initial configuration, X and X =

X + dX , and follow their movement. After time t , their respective spatial positions are

x and x = x + dx . The deformation gradient, also called the Jacobian matrix, gives us

information on how the infinitesimal vector dX deforms into dx

dx = F dX , d x i = FiA dXA (6.5)

Therefore the deformation gradient between the current and the reference configuration

is defined by

F=
∂ x

∂ X
, FiA=

∂ x i

∂ XA

(6.6)
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6.2.3.2 Jacobian or volume change ratio

The determinant of F, called the Jacobian and noted J , measures the change in volume

between the current and reference configuration, around the considered material point. To

underline this key property, the Jacobian is also called the volume change ratio.

dυ = det (F) dV = J dV (6.7)

or,

det (F) = J =
dυ

dV
(6.8)

where V and υ are the volume in the reference and the current configuration respec-

tively.

6.2.3.3 Volumetric-isochoric split of the deformation gradient

When dealing with incompressible or nearly incompressible materials it is often necessary

to separate the volumetric from the isochoric (volume preserving, distortional) components

of the deformation. The volumetric-isochoric split of the deformation gradient has been

introduced by Flory [64]:

F= Fiso Fvol (6.9)

where the isochoric component of deformation gradient Fiso is defined by

Fiso = (det(F))
− 1

3 F= J−
1

3 F (6.10)

and the volumetric component of the deformation gradient Fvol is defined by

Fvol = (det(F))
1

3 I= J
1

3 I (6.11)

so that, by construction,

det
�

Fiso
�
= 1

det
�

Fvol
�
= J = det (F) (6.12)

One may verify that determinant of the isochoric deformation gradient Fiso equals one,

meaning that, taking account of (6.8), the associated deformation is indeed volume pre-

serving. The dilational part of the deformation is actually defined by the volumetric defor-

mation gradient Fvol, the determinant of which is the volume change ratio of the overall

deformation.
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6.2.4 Strain tensors

Several strain tensors are used in literature to measure the deformation of a body. The most

common are introduced here.

The right Cauchy-Green deformation tensor C is given in terms of the deformation gradi-

ent F as

C= FT F , CAB = F T
iA

FiB (6.13)

The left Cauchy-Green deformation tensor or Finger tensor B is given by

B = FFT , Bi j = FiA F T
jA

(6.14)

The Lagrangian or Green strain tensor or Green-Lagrange strain tensor is defined as

E=
1

2
(C− I) , EAB =

1

2

�
CAB −δAB

�
(6.15)

where δAB is the Kronecker symbol.

The time derivative of the Green-Lagrange stain tensor (6.15) is called the material

strain rate tensor:

Ė=
1

2
C=

1

2

�
ḞT F+ FT Ḟ

�
, ĖAB =

1

2
CAB =

1

2

�
Ḟ T

iA
FiB + F T

iA
ḞiB

�
(6.16)

The spatial counterpart of the material strain rate tensor is the rate of deformation strain

tensor:

D= F−T Ė F−1 , Di j = F−T
iA

ĖAB F−1
jB

(6.17)

6.2.5 Stress tensors

The Cauchy stress tensor at point p of the body Ω is denoted σ. The Cauchy stress tensor is

symmetric, σi j = σ ji, as this is the condition for the rotational equilibrium of the body.

Some alternative stress representations are used in this dissertation.

The first Piola-Kirchhoff stress tensor P, also called the nominal stress, the Piola stress

tensor, the Piola-Kirchhoff 1 (PK1) stress tensor, the Boussinesq stress tensor or the La-

grange stress tensor, is defined as

P= J σ F−T , PiA = J σi j F−T
jA

(6.18)

The first Piola-Kirchhoff stress tensor P is generally non-symmetric as F is non-symmetric

and σ is symmetric. It is a two-point tensor as it is related to the material and the current
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configuration. The Piola stress tensor is work conjugate to the rate of the deformation

gradient Ḟ, so that the internal work may be written as

δW int =

∫

Ω0

P : δḞ dΩ0 =

∫

Ω0

PiAδ ḞiA dΩ0 (6.19)

The second Piola-Kirchhoff stress tensor S is defined as

S= F−1 P , SAB = F−1
Ai

PiB

S = JF−1
σ F−T , SAB = J F−1

iB
σi j F−T

jA
(6.20)

As opposed to the first Piola-Kirchhoff stress tensor (PK1), the second Piola-Kirchhoff stress

(PK2) tensor is symmetric and completely related to the material configuration. It is work

conjugate to the material strain rate tensor Ė (6.16),

δW int =

∫

Ω0

S : δĖ dΩ0 =

∫

Ω0

SABδĖAB dΩ0 (6.21)

The nominal stress or first Piola-Kirchhoff tensor P is an unsymmetric two-point tensor

and as such is not completely related to the material configuration. Therefore, the second

Piola-Kirchhoff tensor S is often preferred. The PK2 stress tensor is related to the nominal

stress tensor P and the Cauchy stress tensor σ as follows

6.2.6 Volumetric-isochoric split of the stress

Some unlocking formulations of the next chapter separate the volumetric and the isochoric

components of the stress tensor.

The volumetric-isochoric split of the Cauchy stress tensor is written as

σ = σiso+ pI , p =
1

3
trσ (6.22)

where p may be viewed as the hydrostatic pressure.

From (6.18), the volumetric-deviatoric of the first Piola-Kirchhoff stress tensor reads

P= Piso+ p J F−T , Piso = J σiso F−T (6.23)

And, taking account of (6.20), we obtain for second Piola-Kirchhoff stress tensor

S = Siso+ p J C−1 , Siso = J F−1
σ

iso F−T (6.24)
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6.3 Total and updated Lagrangian formulations

The meshes presented in this work are Lagrangian meshes, that is they move together with

the material. Hence, boundaries remain coincident with element edges, as opposed to

Eulerian or ALE meshes [24]. Also, quadrature points move with the material so that the

constitutive laws are always evaluated at the same material points, which greatly simplifies

the approach.

Two approaches are commonly used for the development of Lagrangian finite elements:

• Total Lagrangian Formulation: derivatives and integrals are taken with respect to the

Lagrangian (material) coordinates X .

• Updated Lagrangian Formulation: derivatives and integrals are taken with respect to

the Eulerian (spatial) coordinates x .

In the following sections, we recall the key equations of both formulations. However,

even though different stress and strain tensors are typically used in these two formulations,

the expressions may be transformed from one formulation to the other. This is obvious

since the underlying mechanics of the two formulations are identical.

6.3.1 Total Lagrangian Formulation

In the total Lagrangian formulation, integrals are taken over the initial configuration, which

plays the role of the reference configuration, and derivatives are taken with respect to

material coordinates. Moreover, stresses are expressed in terms of the first Piola-Kirchhoff

tensor P (6.18) and the deformation gradient F (6.9) is used as a strain measure.

6.3.1.1 Principle of Virtual Work

We define U , the space of kinematically admissible displacements, that is, that satisfy the

displacement constraints of the continuous problem. U0 is the space of kinematically ad-

missible displacements with the functions vanishing where they are prescribed. Also, Ω0

and Ω represent the initial (reference) and current domain occupied by the body and Γ0

and Γ represent the boundary of the body in the reference and current configuration.

The principle of virtual work is stated as follows:
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If u ∈ U , then if

δW = δW int−δWext+δWkin = 0 ∀δu ∈ U0 (6.25)

then linear and angular momentum balance (Equations (6.26) and (6.27) hereunder), trac-

tion boundary conditions (6.28) and internal continuity equations (6.29) are satisfied1:

∇0 · P+ρ0 b̄ = ρ0v̇,
∂ PiA

∂ XA

+ρ0 b̄i = ρ0 v̇i in Ω0 (6.26)

PFT = FPT , PiA FAj = FiA PAj in Ω0 (6.27)

P · n0 = t̄
0
, PiA n0

A
= t̄0

i
on Γ0

t̄i
(6.28)

¹P · n0º = 0, ¹PiA n0
A
º = 0 on Γ0

int
(6.29)

In Equation (6.25), internal, external and kinetic virtual work are defined by

δW int =

∫

Ω0

P : δF dΩ0 =

∫

Ω0

PiAδFiA dΩ0 (6.30)

δWext =

∫

Ω0

ρ0δu · b̄ dΩ0 +

∫

Γ0
t̄

δu · t̄
0

dΓ0 =

∫

Ω0

ρ0δui b̄i dΩ0 +

∫

Γ0
t̄

δui t̄
0
i

dΓ0 (6.31)

δWkin =

∫

Ω0

ρ0 δu · v̇ dΩ0 =

∫

Ω0

ρ0 δui v̇i dΩ0 (6.32)

6.3.1.2 Discrete equations

In this section, the finite element equations for the Total Lagrangian formulation are pre-

sented. These are obtained from the principle of virtual work by subdividing the initial

domain Ω0 into elements Ωe
0
. In this work, the nodes of the resulting mesh are denoted X I

with I = 1 to nN . The finite element method approximates the motion by

x (X , t) = x (t) N I (X) , x i (X , t) = x I i (t) NI (X) (6.33)

the velocity by

vi (X , t) = ẋ i (X , t) = ẋ I i (t) NI (X) (6.34)

and the acceleration by

ai (X , t) = v̇i (X , t) = ẍ I i (t) NI (X) (6.35)

1¹ f º designates the jump in f (X ), ¹ f (X )º= f (X + ε)− f (X − ε) for ε→ 0
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We choose to interpolate the virtual displacement field δu, appearing in (6.31) and

(6.32), and the virtual velocity δv (used in the principle of virtual power hereafter) in the

same way

δu (X , t) = δu I (t)NI (X) , δui (X , t) = δuI i (t)NI (X) (6.36)

and

δv (X , t) = δv I (t)NI (X) , δvi (X , t) = δvI i (t)NI (X) (6.37)

Remarks

• In the above, the interpolation functions NI (X) depend on the material coordinates

only whereas the nodal coordinates x I i(t) and the virtual displacements δu I(t) are

functions of time only.

• The finite elements considered in this dissertation are isoparametric: position, dis-

placements, velocities and accelerations are all interpolated in the same way. There-

fore NI (X) will be alternately called interpolation function or shape function.

• The nodal unknowns are considered functions of time even in static, equilibrium

problems. Indeed this parameter is needed in non-linear problems to be able to fol-

low the evolution of the load. In many cases, t is simply a monotonically increasing

parameter.

Replacing (6.33), (6.35) and (6.36) in the virtual work equation (6.25), taking account

of (6.30),(6.31) and, (6.32), noting that FiA=
∂ xi

∂ XA
and finally remembering that the virtual

virtual work equation must be true for all kinematically admissible virtual displacements

δu, we obtain the discretised equations of motion:

Mi j I J ẍJ j + f int
I i
= f ext

I i
(6.38)

with, the internal nodal forces:

f int
I i
=

∫

Ω0

PiA

∂ NI

∂ XA

dΩ0 =

∫

Ω0

PiA G0
IA

dΩ0 =

∫

�

PiA G0
IA

J0
ξ
d� (6.39)

the external nodal forces:

f ext
I i
=

∫

Ω0

NIρ0 b̄idΩ0 +

∫

Γ0
ti

NI t̄
0
i
dΓ0 =

∫

�

NIρ0 b̄i J0
ξ
d� (6.40)
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and the mass matrix:

Mi j I J = δi j

∫

Ω0

ρ0NI NJ dΩ0 = δi j

∫

�

ρ0NI NJ J0
ξ
d� (6.41)

In (6.39), we have defined the G0-matrix that contains the derivatives of the shape

functions with respect to the material coordinates G0
IA
= ∂ NI/∂ XA. The corresponding

matrix in the current configuration, often called the B-matrix in literature, is designated by

G and given by GI i = ∂ NI/∂ x i.

Also, in above equations, integrals over the initial domain Ω0 are transformed into inte-

grals over the element’s parent domain � by scaling the integrand with the determinant of

the Jacobian of the transformation between the initial and the parent domain J0
ξ
.

6.3.2 Updated Lagrangian Formulation

The Cauchy stress Lagrangian formulation is most efficient for many applications. This for-

mulation is equivalent to the Total Lagrangian formulation, but expressed in terms of the

spatial coordinates, that is to say, with respect to the current configuration. In recent liter-

ature, the Cauchy stress Lagrangian formulation is called Updated Lagrangian formulation,

even though originally the Updated Lagrangian formulation referred to a formulation in

which the last known equilibrium configuration was taken as reference. In the Updated

Lagrangian formulation, stresses are generally expressed in terms of the Cauchy stresses σ

and the rate-of-deformation D is used as a measure of strain rate.

6.3.2.1 Principle of Virtual Power

In the framework of the Updated Lagrangian formulation, the weak form of the momentum

equation, the traction boundary condition and the interior stress continuity condition is

called the principle of virtual power.

The principle of virtual power is stated as:

If σi j is a smooth function of the displacements and the velocities and vi ∈ V , then if

δP = δP int−δPext +δPkin = 0 ∀δvi ∈ V0 (6.42)

then momentum equation, traction boundary equations and jump condition are satisfied:

∇ ·σ+ρ b̄ = ρ v̇ ,
∂ σ ji

∂ x j

+ρ b̄i = ρ v̇i in Ω (6.43)
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n ·σ = t̄ i , n jσ ji = t̄ i on Γti
(6.44)

¹n ·σº= 0 , ¹n jσ jiº = 0 on Γint (6.45)

In Equation (6.42), the internal, external and kinetic virtual power are defined by

δP int =

∫

Ω

σ : δD dΩ =

∫

Ω

σi jδDi j dΩ =

∫

Ω

σi j

∂
�
δvi

�

∂ x j

dΩ (6.46)

δPext =

∫

Ω

δv ·ρb̄ dΩ+

∫

Γt̄

�
δv · e j

� �
t̄ · e j

�
dΓ =

∫

Ω

δviρ b̄i dΩ+

∫

Γt j

δv j t̄ j dΓ (6.47)

δPkin =

∫

Ω

δv ·ρv̇ dΩ =

∫

Ω

δviρ v̇i dΩ (6.48)

6.3.2.2 Discrete equations

Finite element discretisation of the principle of virtual power (6.42), with the help of (6.34)

and (6.37), yields the discrete equations of motion:

Mi j I J v̇int
J j
+ f int

I i
= f ext

I i
for (I , i) /∈ Γvi

(6.49)

with the internal nodal forces:

f int
I i
=

∫

Ω

∂ NI

∂ x j

σ jidΩ =

∫

Ω

GI jσ jidΩ (6.50)

the external nodal forces:

f ext
I i
=

∫

Ω

NIρ b̄idΩ+

∫

Γti

NI t̄ idΓ (6.51)

and the mass matrix:

Mi j I J = δi j

∫

Ω0

ρ0NI NJ dΩ0 = δi j

∫

�

ρ0NI NJ J0
ξ
d� (6.52)

6.4 Consistent Linearisation and Tangent Stiffness Matrix

The principle of virtual work has been previously expressed in the Total Lagrangian formu-

lation as (6.25):

δW = δW int− δWext+δWkin = 0 (6.53)
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In non-linear finite element analysis the above equation is non-linear, both the internal

and the external works being non-linear. A linearised model of the virtual work equation

(6.53) around a state k defined by the nodal positions x k, here-under called current or

trial solution, is obtained by computing the Taylor expansion of the virtual work and drop-

ping the higher order terms. The virtual work equation is linearised in the direction of an

increment η as,

δW
�

x k+1,δu
�
≈ δWLIN

�
x k+1,δu

�
= δW

�
x k,δu

�
+DδW

�
x k,δu

��
η
�
= 0 (6.54)

The second term of (6.54), DδW
�

x k,δu
�

, represents the directional derivative of

the virtual work. The directional derivative of δW at x k in the direction η is computed

by introducing a parameter ε and computing the first-order Taylor series expansion of

δW
�

x k + εη,δu
�

around ε = 0 (please refer to Appendix B.1 for more details on di-

rectional derivatives):

DδW
�

x k,δu
��
η
�
=

d

dε

����
ε=0

δW
�

x k + εη,δu
�

(6.55)

Let us try to understand this equation. The principle of virtual work (6.25) and (6.53)

is constructed by associating an arbitrary kinematically admissible virtual displacement δu

to each particle of the domain. At a trial solution position x k, the virtual work δW will

have some value, probably not equal to zero as required for equilibrium. The directional

derivative of the virtual work DδW
�
η
�

is simply the change in δW due to x k changing to

x k+1 = x k +η. Note that the virtual displacement δu is not allowed to change during this

incremental change. The directional derivative will help us to adjust the current configura-

tion, defined by x k, in order to bring the internal forces into equilibrium with the external

forces, via (6.54) and using a Newton–Raphson procedure. In other words, the directional

derivative of the virtual work equation will be the source of the tangent matrix KT .

In order to simplify the notations, the expression for KT will be derived in the quasi-

static case. In this case, the kinematic energy term vanishes from the virtual work equation

δWkin = 0 (6.56)

Let us also assume for simplicity that the loading is independent of the deformation, i.e.

that the forces are conservative, so that the linearisation of Wext vanishes. This is generally

the case for the loading due to body forces but not for the surface forces as they depend

on the normal to the current boundary surface. But, because we are interested in the

expression of the internal tangent stiffness matrix Kint
T

only, this hypothesis of conservative

loading will not influence our results, that is to say, the expression found for Kint
T

will be
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valid even for non-conservative loads.

dδWext

dε

����
ε=0

= 0 (6.57)

With the two hypothesis (6.56) and (6.57), linearisation of the virtual work (6.54) gives

the following equilibrium condition

δWLIN
�

x k+1,δu
�
= δW

�
x k,δu

�
+DδW int

�
x k,δu

��
η
�
= 0 (6.58)

with δW still being given by the principle of virtual work (6.25) and (6.53):

δW = δW int+δWext+δWkin (6.59)

In the next sections, we derive the expression for the internal tangent stiffness matrix

Kint
T

, by first performing a Newton-Raphson linearisation of the internal work equation (Sec-

tion 6.4.1), discretising the obtained linearised equations (Section 6.4.2) and then identi-

fying the tangent stiffness Kint (Section 6.4.3). The latter is used in the Newton-Raphson

iteration algorithm to update the nodal displacements in order to enforce equilibrium of

the structure.

6.4.1 Linearisation of the Virtual Work

6.4.1.1 Virtual work expressed in terms of the first Piola-Kirchhoff stress

In the neighbourhood of the current point x k, the internal virtual work expressed in terms

of the nominal stress is (6.30):

δW int
�

x k + εη,δu
�
=

∫

Ω0

P (F(ε)) : δF dΩ0 =

∫

Ω0

PiA (F(ε)) δFiA dΩ0 (6.60)

The virtual deformation gradient δF is, by definition, the directional derivative of the

deformation gradient in the direction of a virtual displacement δu (which is assumed to

be constant during a Newton-Raphson iteration x k → x k+1, see Section (6.53)). Also, the

directional derivative of the deformation gradient DF [δu] is computed in Appendix (B.4).

Hence, taking account of (B.11), we obtain

δF= DF [δu] =∇0δu (6.61)

Consequently, (6.60) becomes

δW int
�

x k+ εη,δu
�
=

∫

Ω0

P (F(ε)) :∇0δu dΩ0 =

∫

Ω0

PiA (F(ε))
∂ δui

∂ XA

dΩ0 (6.62)
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Taking the directional derivative, given by (B.3), of the virtual internal work (6.62)

gives:

DδW int
�
η
�
=

dδW int

dε

�����
ε=0

=

∫

Ω0

�
dP

dF

����
F(x k)

:
dF(ε)

dε

����
ε=0

�
:∇0δu dΩ0

=

∫

Ω0

dPiA

dF jB

�����
F(x k)

dF jB(ε)

dε

����
ε=0

∂ δui

∂ XA

dΩ0 (6.63)

We define the tangent modulus

A=
dP

dF

����
F⋆

, AiAjB =
∂ PiA

∂ F jB

(6.64)

Also, as detailed in Appendix B.4, the linearisation of the deformation gradient DF[η]

gives

DF[η] =
dF(ε)

dε

����
ε=0

=∇0η , DFiA[η] =
dFiA(ε)

dε

����
ε=0

=
∂ ηi

∂ XA

(6.65)

Inserting (6.64) and (6.65) into (6.63),

DδW int
�
η
�
=

∫

Ω0

�
A :∇0η

�
:∇0δu dΩ0 =

∫

Ω0

AiAjB

∂ η j

∂ XB

∂ δui

∂ XA

dΩ0 (6.66)

Finally the linearised virtual work equation in the reference configuration (6.58) be-

comes
∫

Ω0

�
A :∇0η

�
:∇0δu dΩ0 = −

∫

Ω0

P :∇0δu dΩ0 +ρ0

∫

Ω0

b̄ · δu dΩ0 +

∫

Γ0
t̄

t̄
0
· δu dΓ0

∫

Ω0

AiAjB

∂ η j

∂ XB

∂ δui

∂ XA

dΩ0 = −

∫

Ω0

PiA

∂ δui

∂ XA

dΩ0 +ρ0

∫

Ω0

b̄i δui dΩ0 +

∫

Γ0
t̄i

t̄0
i
δui dΓ0

(6.67)

6.4.1.2 Virtual work expressed in terms of the PK2 stresses

Recall from (6.20) that the internal virtual work can be expressed in a Lagrangian form as,

δW int
�

x k + εη,δu
�
=

∫

Ω0

S : δE dΩ0 =

∫

Ω0

SAB δEAB dΩ0 (6.68)
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Taking the directional derivative of this expression, at x k and in the direction of η, and

using the product rule for directional derivatives gives

DδW int
�
η
�
=

dδW int

dε

�����
ε=0

=

∫

Ω0

d

dε
(S : δE)|ε=0 dΩ0

=

∫

Ω0

dS

dε

����
ε=0

: δE+
dδE

dε

����
ε=0

: S dΩ0

=

∫

Ω0

�
dS

dE
:

dE

dε

����
ε=0

�
: δE+

dδE

dε

����
ε=0

: S dΩ0

=

∫

Ω0

�
C : DE

�
η
��

: δE+ DδE
�
η
�

: S dΩ0

(6.69)

where we have defined the material elasticity tensor C

C=
dS

dE
, CABC D =

dSAB

dEGL
C D

(6.70)

It is important to distinguish the Green Lagrange strain E and the virtual Green Lagrange

strain δE in (6.69):

E=
1

2

�
FT F− I

�
(6.71)

δE=
1

2

�
FTδF+δFTF

�
with δF=

∂ δu

∂ X
=∇0δu (6.72)

Taking account of (6.72) and (B.11), the directional derivative of the virtual Green

Lagrange strain gives

DδE
�
η
�
=

1

2

��
DF
�
η
��T
∇0δu +

�
∇0δu

�T
DF
�
η
��

=
1

2

��
∇0η

�T
∇0δu +

�
∇0δu

�T
∇0η

�
(6.73)

Substituting (6.73) into (6.69) and noting the symmetry of S gives the linearised prin-

ciple of virtual work in the reference configuration as,

DδW int
�
η
�
=

∫

Ω0

�
C : DE

�
η
��

: δE+
��
∇0δu

�T
∇0η

�
: S dΩ0

=

∫

Ω0

CABC D DEGL
C D

�
η
�
δEGL

AB
+
∂ δui

∂ XA

∂ ηi

∂ XB

SAB dΩ0 (6.74)
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6.4.1.3 Virtual work expressed in terms of the Cauchy stresses

To derive the spatial version of the linearised virtual work equation, we will start from the

previous result of the linear virtual work in terms of the nominal stress (6.66) and recall

that material and spatial virtual work functionals are equivalent. Hence the spatial form is

obtained using the standard relations

∇q =∇0q F−1 and

∫

Ω

q(x )dΩ =

∫

Ω0

J(X)q(X)dΩ0 (6.75)

With these relations, the linearised internal virtual (6.66) work becomes,

DδW int
�
η
�
=

∫

Ω0

�
A :∇0η

�
:∇0δu dΩ0

=

∫

Ω0

AiAjB

∂ η j

∂ XB

∂ δui

∂ XA

dΩ0

=

∫

Ω

1

J
AiAjB

�
∂ η j

∂ x l

FlB

� �
∂ δui

∂ xk

FkA

�
dΩ

=

∫

Ω

∂ η j

∂ x l

�
1

J
FlBAiAjB FkA

�
∂ δui

∂ xk

dΩ

=

∫

Ω

∂ η j

∂ x l

ai jkl

∂ δui

∂ xk

dΩ

=

∫

Ω

�
a :∇η

�
:∇δu dΩ (6.76)

where we have defined the spatial tangent modulus

ai jkl =
1

J
FkBAiAjB FlA (6.77)

In the end, the linearised principle of virtual work in the spatial configuration reads

∫

Ω

∂ η j

∂ x l

ai jkl

∂ δui

∂ xk

dΩ = −

∫

Ω

∂ δui

∂ x j

σi j dΩ+

∫

Ω

ρ b̄iδui dΩ+

∫

Γti

t̄ i δui dΓ (6.78)

6.4.2 Discretisation of the linearised equations

Linearised expressions for the internal work were obtained in the previous sections. Here,

we discretise the obtained expressions using finite element discretisation. This will help us

to find an expression for the internal stiffness matrix in the next chapter, Chapter 6.4.3.
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6.4.2.1 Virtual work expressed in terms of the first Piola-Kirchhoff stress

Recall the linearised principle of virtual work in the reference configuration (6.67):

∫

Ω0

AiAjB

∂ η j

∂ XB

∂ δui

∂ XA

dΩ0 = −

∫

Ω0

PiA

∂ δui

∂ XA

dΩ0+ρ0

∫

Ω0

b̄i δui dΩ0 +

∫

Γ0
t̄i

t̄0
i
δui dΓ0 (6.79)

Finite element semi-discretisation2 of this equation is performed by discretising the do-

main and its boundary into elements Ω0 →
h Ω0,Γ0

t
→h Γ0

t
and interpolating the displace-

ment fields using shape functions ηJ (X , t) = ηJ j (t)NJ (X) and δui (X , t) = δuI i (t)NI (X)

(6.36):

∫

hΩ0

AiAjB

∂ NJ

∂ XB

ηJ j

∂ NI

∂ XA

δuI i dΩ0

= −

∫

hΩ0

PiA

∂ NI

∂ XA

δuI i dΩ0 +ρ0

∫

hΩ0

b̄iδuI iNI dΩ0 +

∫

hΓ0
t̄

t̄0
i
δuI iNI dΓ0 (6.80)

re-arranging the terms,

(∫

hΩ0

∂ NI

∂ XA

AiAjB

∂ NJ

∂ XB

dΩ0

)
ηJ jδuI i

=−

(∫

hΩ0

PiA

∂ NI

∂ XA

dΩ0

)
δuI i +

(
ρ0

∫

hΩ0

b̄iNI dΩ0

)
δuI i +





∫

hΓ0
t̄

t̄0
i
NI dΓ0



δuI i (6.81)

Because this equation must be true for all δuI i it simplifies into

(∫

hΩ0

∂ NI

∂ XA

AiAjB

∂ NJ

∂ XB

dΩ0

)
ηJ j = −

∫

hΩ0

PiA

∂ NI

∂ XA

dΩ0 +ρ0

∫

hΩ0

b̄iNI dΩ0 +

∫

hΓ0
t̄

t̄0
i
NI dΓ0

(6.82)

In matrix notation, this gives

(∫

hΩ0

GT
0

AG0 dΩ0

)
η =−

∫

hΩ0

GT
0

P dΩ0 −ρ0

∫

hΩ0

NT b̄ dΩ0 −

∫

hΓ0
t̄

NT t̄
0

dΓ0 (6.83)

In the end, the linearised virtual work equation (6.58) and (6.83) is satisfied if and only

if (6.83) is satisfied.

2The term semi-discretisation is used because the equation is discretised in space but not in time
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6.4.2.2 Virtual work expressed in terms of the Cauchy stresses

In the current configuration, discretisation of the linearised principle of virtual work (6.78)

using the same methodology gives

¨∫

hΩ

∂ NI

∂ x j

ai jkl

∂ NJ

∂ x l

dΩ

«
ηJk =

∫

Ω

GI j σ ji dΩ+

∫

Ω

NI ρ b̄i dΩ+

∫

Γti

NI t̄ i dΓ (6.84)

and, in matrix notation,

¨∫

hΩ

GT aG dΩ

«
η =

∫

Ω

GT
σ dΩ+ρ

∫

Ω

NT b̄ dΩ+

∫

Γt

NT t̄ dΓ (6.85)

6.4.3 Tangent Stiffness matrix and Newton-Raphson solution proce-

dure

Equations (6.83) and (6.85) may be expressed in the form

Kint
T
η =−r (6.86)

where we have defined global tangent stiffness matrix or system Jacobian matrix in the

reference configuration

Kint
T
=

∫

hΩ0

GT
0

AG0 dΩ0 (6.87)

and in the current configuration

Kint
T
=

∫

hΩ

GT aG dΩ0 (6.88)

as well as the residual or out of balance force vector in the reference configuration

r =

∫

hΩ0

GT
0

P dΩ0

︸ ︷︷ ︸
f int

−ρ0

∫

hΩ0

NT b̄ dΩ0 −

∫

hΓ0
t̄

NT t̄
0

dΓ0

︸ ︷︷ ︸
f ext

(6.89)

and in the current configuration

r =

∫

hΩ

GT
σ dΩ

︸ ︷︷ ︸
f int

−ρ

∫

hΩ

NT b̄ dΩ−

∫

hΓt̄

NT t̄
0

dΓ

︸ ︷︷ ︸
f ext

(6.90)

The tangent stiffness matrix KT represents the change in the internal forces due to a change

in the nodal positions from x k to x k+1 = x k+η. In other words, the tangent stiffness matrix
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KT gives the modification η = ∆x (k+1) = x k+1 − x k that needs to be applied to the nodal

positions in order to achieve equilibrium. This Newton-Raphson iterative procedure can be

expressed as

KT∆x k+1 = −r k with ∆x k+1 = x k+1− x k (6.91)

Most often, in order to facilitate convergence of the solution, the external load is applied

to the system in a series of increments.

f =

N∑

n=1

∆ f n with ∆ f n = f n− f n−1 and f n = f int

n
− f ext

n
(6.92)

The Newton-Raphson solution procedure (6.91) is then applied at each time step n. The

more the number of increments, the easier it is to find a converted solution r (k) = 0 for a

particular time step n.

In the context of the finite element method, this global matrix (6.87) is obtained by

assembly of the element stiffness matrices:

KT =A
nelem

e=1
Ke

T
(6.93)

where the element stiffness matrices are defined by

Ke
T
=

∫

hΩe

(Ge)
T

aGe dΩ or Ke
T
=

∫

hΩe
0

�
Ge

0

�T
AeGe

0
dΩ0 (6.94)

6.5 Time integration

In the previous sections, an expression for the internal tangent stiffness was found in both

reference and current configurations. A quasi-static problem was considered to simplify the

notations, with no restrictions to the validity of the final expressions obtained for Kint (6.87)

and (6.88). In this section, explicit and implicit time integration procedures are reviewed.

Obviously, kinematic terms will now be taken into account and added in the equations.

6.5.1 Explicit time integration

The semi-discretised equations of motion (discretised in space but not yet in time) are

M an = f n = f ext(x n, tn)− f int(x n, tn) (6.95)

subject to displacement boundary conditions

gI(xn) = 0, I = 1, . . . , nc (6.96)
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The central difference method is typically used to discretise (6.95) in time

v n+1/2 = v n−1/2 +∆tnM
−1an (6.97)

= v n−1/2 +∆tnM
−1
�

f ext(x n, tn)− f int(x n, tn)
�

(6.98)

x n+1 = x n+∆tn+1/2v n+1/2 (6.99)

This update of the nodal velocities and displacements can be performed without solving

any equations provided that the mass matrix M is diagonal. For this reason the lumped

mass matrix is almost always used in explicit time integration. In that case, the equations

of motions (6.95) may be written at each node I

mI a I = f I = f ext

I
− f int

I
(6.100)

where the mass mI represents the assembled lumped mass at node I which is typically

formed by adding the contributions of the elements e = 1, ..., ne,I surrounding node I

mI =

nI∑

e=1

me
I

(6.101)

Each elemental contribution of the nodal mass is obtained by integrating the shape function

corresponding to node I , NI over the mass of the element.

me
I
=

∫

V e

ρ0 NI dV (6.102)

6.5.2 Implicit time integration

The semi-discrete momentum equations, at a state defined by the nodal positions x n+1, are

expressed as (6.95):

M an+1 + f int
�
x n+1

�
− f ext

�
x n+1

�
= 0 (6.103)

Discretising this equation using Chung-Hulbert generalised-α time integration method

[41], we obtain a set of non-linear algebraic equations in the nodal positions

�
1−αM

�
Mẍ n+1 +αMMẍ n+

�
1−αF

��
f int

n+1
− f ext

n+1

�
+αF

�
f int

n
− f ext

n

�
= 0 (6.104)

For particular choices of the parameters αM and αF , other well-knowm time integration

procedures are recovered:

• αM = αF = 0 leads to Newmark time integration procedure [131]

• αM = 0 gives Hilber-Hughes-Taylor time integration procedure [81]
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• αF = 0 gives Wood-Bossak-Zienkiewicz time integration procedure [185]

This set of non-linear equations is usually solved using the Newton-Raphson method.

The out-of-balance forces at time integration step (k) and configuration n+ 1 are defined

by

r(x
(k)

n+1) =
�
1−αM

�
Mẍ

(k)

n+1+αMMẍ n+
�
1−αF

��
f

int,(k)

n+1 − f
ext,(k)

n+1

�
+αF

�
f int

n
− f ext

n

�
= 0

(6.105)

From the nodal position vector x (k), defined at iteration k, the Newton correction to the

nodal positions δx is obtained by (6.91)

KT∆x (k) = −r (k−1) with ∆x (k) =
�

x (k)− x (k−1)
�

(6.106)

with the tangent stiffness matrix or system Jacobian matrix defined by

KT =
∂
¦�

1−αM

�
Mẍ n+1 +

�
1−αF

��
f int

n+1
− f ext

n+1

�©

∂ xn+1

(6.107)

6.6 The standard linear tetrahedron

In this section we introduce the relations for the standard linear tetrahedron that will be

needed to present non-locking formulations in the next chapter. A volumetric/isochoric

split of the internal work is introduced (Section 6.6.1). This split is then performed for

the first Piola-Kirchhoff stress tensor (Section 6.6.2). Finally, expressions for the volumetric

and isochoric contributions to the nodal internal forces are obtained (Section 6.6.3).

6.6.1 Strain energy function

The internal work is expressed in the reference configuration by (6.30),

W
int =

∫

Ω0

P : F dΩ0 (6.108)

Even though the final equations are valid for all materials, we assume for simplicity that

the material is hyperelastic and characterized by the existence of a strain energy function

wint,

W
int =

∫

Ω0

wint(F)dΩ0 (6.109)
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As explained in Section 6.2.3.3, the deformation gradient may be split into a volumetric

Fvol and an isochoric contribution Fiso,

Fiso = (det(F))
− 1

3 F= J−
1

3 F

Fvol = (det(F))
1

3 I= J
1

3 I (6.110)

For an incompressible material, J = 1 so that the volumetric component of the deformation

gradient is unity, Fvol = I. Let us call the distortional strain energy function, noted wiso,

the isochoric contribution to the strain energy function, i.e. the energy generated from the

volume preserving part of a deformation. Hence, by definition,

wint,iso(F) = wint(Fiso) (6.111)

For example, in the simple case of a neo-Hookean material, the isochoric strain energy

wint,iso is expressed in terms of Fiso as

wint,iso(F) = µ
�
(detF)

− 2

3 F : F− 3
�

= µ
�

Fiso : Fiso− 3
�

(6.112)

where µ is the shear modulus.

A nice way to enforce the incompressibility condition is to add a volumetric energy

component wint, vol to the distortional component wint,iso, so that the total strain energy

density function is given by the sum

wint(F) = wint,iso(F) +wint, vol(J) (6.113)

and the total strain energy or internal work is given by (6.109)

W int(F) =

∫

Ω0

wint,iso(F) dΩ0 +

∫

Ω0

wint, vol(J) dΩ0

=W int,iso(F) +W int, vol(J) (6.114)

Typically, the volumetric contribution wint, vol(J) is defined as

wint, vol(J) =
1

2
κ(J − 1)2 (6.115)

where κ can be viewed as a penalty number so that incompressibility is enforces for large

values of κ, typically κ/µ > 103. However, for compressible materials that happen to

have a hyperelastic strain energy function in the form (6.109), κ represents a true material

property, namely the bulk modulus.
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6.6.2 First Piola Kirchhoff stress tensor

The first Piola Kirchhoff stress tensor, also called the nominal stress, is obtained from

(6.109) and taking account of (6.113) and (6.115),

P =
∂ wint

∂ F

=
∂ wint,iso

∂ F
+
∂ wint,vol

∂ F

=
∂ wint,iso

∂ F
+

dwint,vol

dJ

∂ J

∂ F

=
∂ wint,iso

∂ F
+

dwint,vol

dJ

∂ J

∂ F

=
∂ wint,iso

∂ F
+ κ(J − 1)

∂ J

∂ F

= Piso+ Pvol (6.116)

A similarity may be found by recalling the volumetric-deviatoric split of the first Piola-

Kirchhoff stress tensor in Section 6.2.6, Equation (6.23):

P= Piso+ p J F−T , Piso = J σiso F−T (6.117)

Let us now demonstrate that
∂ J

∂ F
= JF−T (6.118)

so that, from (6.116), the hydrostatic pressure is given by

p =
dwint,vol

dJ
= κ(J − 1) (6.119)

As detailed in Appendix B, the directional derivative of the determinant of a matrix is

given by

D det (A) [U] = det (A)
�

A−T : U
�

(6.120)

Hence for A = U = F

DJ [F] = J
�

F−T : F
�

(6.121)

Also from Appendix B, the directional derivative and the partial derivative are related by

DG [∆U] =

3∑

I ,J=1

∂ G

∂ UI J

∆UI J =
∂ G

∂U
:∆U (6.122)

Hence, for G = det F= J and ∆U= F

DJ [F] =
∂ J

∂ F
: F (6.123)
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Comparing (6.121) and (6.123) gives

∂ J

∂ F
= JF−T (6.124)

so that the volumetric component of the first Piola-Kircchoff stress tensor is (6.116),

Pvol = p J F−T , with p = κ(J − 1) (6.125)

An expression for isochoric component of the first Piola-Kircchoff stress tensor Piso may

be found in the particular case of a neo-Hookean model. For neo-Hookean materials, the

isochoric component of the total strain energy function is given by

wint,iso =
1

2
µ
�
(detF)

− 2

3 (F : F)− 3
�

=
1

2
µ
��

Fiso : Fiso
�
− 3
�

(6.126)

Derivation of the above gives the isochoric component of the first Piola-Kirchhoff tensor, for

the standard linear tetrahedron and in the case of a neo-Hookean material:

Piso =
∂ wint,iso

∂ F
= µ (det F)−

2

3

�
F−

1

3
(F : F)F−T

�
(6.127)

6.6.3 Nodal internal forces

In this section, an expression for the nodal internal forces f int

I
of the standard linear tetrahe-

dron is obtained, through the linearisation of the of the virtual internal work W
int. Because

we introduced a split of this internal strain energy (6.115), the computed nodal forces will

also be split into volumetric and isochoric componenents.

Let us first consider that the domain is meshed with linear tetrahedrons. The integral

over the domain (6.109) may thus be evaluated by adding the ne elemental contributions,

W
int =

ne∑

e

W
int,e (6.128)

Taking account of (6.113), we have, for one element,

W
int,e =

∫

hΩ0,e

wint,iso(Fiso,e)dΩ0,e +

∫

hΩ0,e

wint,vol(Je)dΩ0,e

= wint,iso(Fiso,e)Ve︸ ︷︷ ︸
W int,iso,e

+wint,vol(Je)Ve︸ ︷︷ ︸
W int,vol,e

(6.129)
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with Je = υe/Ve. For the whole meshed domain, we have, from (6.128),

W
int =

ne∑

e=1

wint,iso(Fiso,e)Ve +

ne∑

e=1

wint,vol(Je)Ve

=W
int,iso(Fiso) +W

int,vol(J) (6.130)

By definition, the virtual work is computed by taking the directional derivative of the

work in the direction of a virtual displacement δu:

δW int = δW int,iso+δW int,vol

= DW
int,iso [δu] + DW

int,vol [δu] (6.131)

6.6.3.1 Volumetric nodal internal forces

The volumetric nodal internal forces are obtained by considering the volumetric part of

(6.131)

δW int,vol = DW
int,vol(J) [δu] (6.132)

At the element level, this gives,

δW int,vol,e = DW
int,vol,e(Je) [δu] (6.133)

Developing this equation and using (6.129), we obtain

δW int,vol,e =
dwint,vol

dJe

Ve DJe [δu] (6.134)

As has been done in (6.116) and from (6.115), we define the element pressure by

pe =
dwint,vol,e

dJe

(6.135)

Moreover, the directional derivative of Je has been computed in Appendix B.5, (B.14),

DJe [δu] = Je div (δu) = Je

∂ δui

∂ x i

(6.136)

Using finite element interpolation of the displacement field over the element (6.36), we

have

DJe [δu] = Je

∂ N e
I

∂ x i

δuiI = Je ∇N e
I
· δu I (6.137)
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with an implicit sum over the nodal indices I = 1, . . . 4 for the linear tetrahedron.

Replacing (6.135) and (6.137) into (6.133),

δW int,vol,e = peVeJe ∇N e
I
· δu I

= peυe ∇N e
I
· δu I (6.138)

Summing the element contributions (6.128), we obtain the global volumetric internal

virtual work :

δW int,vol =

ne∑

e=1

peυe∇N e
I
· δu I (6.139)

Finally, we identify the volumetric component of the nodal internal force at node I for

the standard linear tetrahedron as

f int
vol,I
=

ne∑

e=1

peυe∇N e
I

(6.140)

6.6.3.2 Isochoric nodal internal forces

Let us now consider the isochoric part of (6.131), and obtain an expression for the isochoric

nodal internal forces. The directional derivative of the isochoric strain energy gives

DW
int,iso[δu] =

ne∑

e=1

VeDwint,iso[δu]

=

ne∑

e=1

Ve

∂ wint,iso

∂ Fe

: DFe[δu] (6.141)

First, we have from (6.116), for the isochoric component of the first Piola-Kirchhoff

stress tensor:

Piso =
∂ wint,iso

∂ F
(6.142)

Second, the directional derivative of the deformation gradient gives, from Appendix B.4,

DF[δu] =∇0δu (6.143)

Introducing (6.142) and (6.143) into (6.141) gives

DW
int,iso[δu] =

ne∑

e=1

VeP
iso :∇0δu (6.144)
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Discretising the virtual displacement field in the linear tetrahedron using finite element

semi-discretisation (6.36) we obtain,

=

ne∑

e=1

VeP iso
iA

∂ N e
I

∂ XA

δuI i

=

ne∑

e=1

VeP
iso∇0N e

I
· δu I (6.145)

= f int
iso,I
· δu I (6.146)

Finally, we identify the isochoric component of the nodal internal force at node I for the

standard linear tetrahedron as

f int
iso,I
=

ne∑

e=1

VeP
iso∇0N e

I
(6.147)

So that in the end the nodal internal force for the standard linear tetrahedron may be

computed as the sum of its isochoric (6.146) and volumetric (6.140) contributions

f int

I
= f int

iso,I
+ f int

vol,I

=

ne∑

e=1

Ve Piso∇0N e
I
+

ne∑

e=1

peυe∇N e
I

(6.148)

6.7 Conclusions

This chapter introduced the basic equations of finite element analysis that will be needed to

present locking-free formulations for the tetrahedra in the next chapter. The deformation

gradient or Jacobian matrix F was presented and we have seen that its determinant gives

the volume change between the current and the reference configuration. The principle

of virtual work and the principle of virtual power were introduced and the discretised

equations of motion were obtained by finite element discretisation. Linearisation of the

virtual work equation was performed, and an expression for the tangent stiffness matrix

was obtained by subsequent finite element discretisation. A volumetric-isochoric split was

performed on the deformation gradient and on the Cauchy stress tensor. This split was

also performed on the internal work and the PK1 stress tensor and expressions for the

volumetric and the isochoric contributions of the internal forces were obtained.
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Towards a locking-free formulation for

the linear tetrahedron

It is well-known that the performance of low-order finite elements becomes extremely poor

as the incompressible limit is approached. Problems where incompressibility is encountered

include the analysis of rubbery solids, which are typically modelled as nearly incompress-

ible1 hyperelastic materials, as well as the analysis of J2 elasto-plastic metals, for which

an isochoric plastic flow is generally assumed (von Mises plasticity). In these situations an

overstiff behaviour, called volumetric locking, is observed as a consequence of the inability

of low-order interpolation polynomials to adequately represent general volume-preserving

deformation fields.

Volumetric locking can be eliminated by employing higher-order finite elements. How-

ever, due to their simplicity and robustness, low-order elements are often preferred in large-

scale computations. In the case of hexahedral meshes, an effective and popular unlocking

solution is to use the hexahedron with reduced or selective reduced integration [15, 63],

sometimes with hourglassing stabilization. Unfortunately, as seen in the previous chapters,

it is not always possible to mesh complex geometries, automatically and without jeopardiz-

ing the geometric representation, with hexahedrons so that tetrahedral meshes are more

practical in Computational Biomechanics. Hence, there is a need for low-order tetrahedral

elements that behave properly without volumetric locking.

To tackle the problem two main classes of approaches have been proposed: approaches

based on a split of the governing equations and approaches that do not rely on a split of

the equations.

1In this work we often call nearly incompressible materials as incompressible materials in order to simplify

the prose.
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The first category of non-locking low order triangular or tetrahedral finite element for-

mulations are based on a split of the governing equations. This decomposition technique

has first been introduced in the framework of fluid mechanics by Chorin [40]. On this

basis, Schneider et al. [151] introduced a split of the pressure and the velocity field with

equal order interpolation of both fields to solve problems in fluid mechanics (other types

of interpolation are possible). Later, Zienkiewicz et al. [193] introduced a split of the

displacement and the pressure field for problems in solid mechanics where explicit time

integration is used. In fact, the Stokes problem in fluid mechanics (expressed in terms of

velocity and pressure fields) is equivalent to the incompressible linear elasticity problem

(expressed in terms of displacement and pressure fields) so that many formulations devel-

oped in the framework of fluid mechanics have inspired the solid mechanics community.

The same year, in 1998, the now very popular Average Nodal Pressure (ANP) approach has

been introduced by Bonet and Burton [25]. Here, pressure and displacement are still con-

sidered as independent fields, but the pressure is averaged on the triangle or tetrahedral

nodes. Because the number of nodes in a tetrahedral mesh is lower than the number of

elements, the number of constraints is reduced and volumetric locking is obviated. Other

nodal based formulations derived from the ANP have then been proposed. Dohrmann et al.

[55], then followed by Bonet et al. [27], proposed to average the full strain tensor at each

node in order to alleviate the possible additional shear locking. Unfortunately, the pro-

posed formulation becomes sensitive to the hourglassing effect. A tentative approach to

stabilize this hourglassing effect has been proposed in an implicit framework by Puso and

Solberg [147]. In the field of Biomechanics, the Average Nodal Pressure tetrahedron has

been used by Joldes et al. [91] to model brain deformations during neurosurgery. Joldes

et al. [91] also extended the ANP formulation to tetrahedral meshes containing multiple

material domains.

The second category of approaches do not rely on a split of the equations. An early

formulation to solve the Stokes equation is the MINI element proposed by Arnold et al. [7].

In this formulation, the pressure and the velocity fields are approximated by C0 continuous

linear interpolations and the velocity is augmented by a cubic bubble function to satisfy

the Babuska-Brezzi condition. In solid mechanics, volume bubble functions have been em-

ployed within a mixed formulation to create non-locking tetrahedral finite elements for

small and finite elastic strains [165]. The MINI element has successfully been used to simu-

late metal forming processes [45]. Another solution to solve the Stokes problem with equal

order interpolation of pressure and velocity, proposed by Hughes et al. [85], is to employ

a Petrov-Galerkin method augmented by Galerkin least squares stabilization terms. A third

solution is the method of incompatible modes, which consist of a decomposition of the dis-

placement field into a compatible and an incompatible part [182]. A similar approach to

the method of incompatible modes is the method of enhanced assumed strains proposed
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by Simo and Rifai [160]. In this fourth approach, the strain is introduced as an additional

field and constructed in order to pass the patch test, instead of being derived from the sym-

metric gradient of an incompatible displacement field. As showed in Mahnken et al. [113],

the mixed method of incompatible modes and the mixed method of enhanced strains may

both be derived from a five field weak formulation involving compatible displacements,

incompatible displacements, pressure, enhanced strains and stresses.

In parallel to the nodal based formulations and the mixed formulations presented above,

the F-bar-Patch methodology has been proposed by de Souza Neto et al. [52]. The idea

is to apply the volumetric constraints on non-overlapping patches of finite elements. Even

though this method does not exactly fulfil the Babuska-Brezzi conditions, it has shown to be

quite effective in removing volumetric locking. However, the definition of non-overlapping

patches of element is quite tedious in 3D, so that the authors end up in subdividing each

tetrahedron into six smaller ones in order to be able to apply their method.

In the following sections, we first present the formulations that are relevant to our

work. Section 7.1 reviews nodal based formulations, which are suitable for applications

with explicit time integration. Section 7.2 presents the F-bar methodology for hexahedrons

and the F-bar-patched method for tetrahedrons. In Sections 7.3 and 7.4 we present two

successive ideas to remove the spurious stiffness of the standard tetrahedron. The first idea

will give what we call the face or node-neighbourhood patch volume change ratio linear

tetrahedron, and is based on an attempt to solve the problem of tedious patch definition

in the F-bar-patch methodology [52]. The second proposed element formulation will be

called the Average Elemental Jacobian (AEJ) tetrahedral element and was inspired from

both nodally integrated tetrahedral formulations and the F-bar methodology.

7.1 Nodal-based formulations

In this section, nodal-based formulations for incompressible or nearly incompressible ap-

plications are reviewed chronologically. These formulations all have in common that new

nodal volumes are defined so that the incompressibility constraints are imposed on these

nodal volumes instead of on each element, thus reducing the number of constraints im-

posed. As will be seen in this section, nodal-based formulations were developed in the

context of explicit dynamic finite element simulations, and, the new nodal quantities are

obtained by using the same averaging process as for the nodal masses in the lumped mass

matrix.
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m ,V ,v ,I I I JI

FIGURE 7.1: The Average Nodal Pressure Linear Tetrahedron, ANP, proposed by Bonet and

Burton [25].

7.1.1 The Average Nodal Pressure Linear Tetrahedron

The standard formulation for the linear tetrahedron leads to volumetric locking because

the volume of the ne elements is required to be constant. Hence, the motion of a mesh is

controlled by 3nn degrees of freedom and ne constraints. In a tetrahedral mesh, the ratio

between the number of elements ne and the number of nodes nn is typically of more than

5 to 1; so we typically have 5nn constraints for 3nn degrees of freedom. As a consequence,

the motion of the mesh is too constrained and locking occurs.

The solution proposed by Bonet and Burton [25] to overcome the locking of the linear

tetrahedron is to enforce the volumetric constraint over the volume attached to a node

instead than over the volume of an element. Going back to the remark made in the previous

paragraph, we may deduce that this solution typically reduces the number of imposed

constraints by 5.

In practice, the average nodal pressure tetrahedron is proposed in an explicit time inte-

gration framework and the formulation consists in a re-definition of the volumetric compo-

nent of the nodal internal forces f int
vol,I

, the development of which has been detailed in the

case of the standard linear tetrahedron in Section 6.6.3.1.
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7.1.1.1 Nodal volumes and average nodal volumetric strain

Bonet and Burton [25] define nodal volumes VI using the same procedure than for the

nodal masses in the lumped mass matrix (Equations (6.101) and (6.102))

VI =

ne,I∑

e=1

VI ,e with VI ,e =

∫

Ω0,e

NI dΩ0 =
1

4
Ve (7.1)

and, in the current configuration,

υI =

ne,I∑

e=1

υI ,e with υI ,e =

∫

Ωe

NI dΩ =
1

4
υe (7.2)

A current-to-initial nodal volume ratio, or average nodal volumetric strain, is then de-

fined as

JI =
υI

VI

=

∑ne,I

e=1
υe∑ne,I

e=1
Ve

(7.3)

with ne,I the number of elements connected to node I .

The above relationship may also be rewritten in the form:

JI =
1

VI

∫

Ω0

JNI dΩ0 (7.4)

which may be compared to the lumped mass at node I:

mI =

∫

Ω0

ρ0NI dΩ0 (7.5)

7.1.1.2 Volumetric strain energy

Let us assume that the strain energy density function can be decomposed into a volumetric

and an isochoric component as already presented for the linear tetrahedron in (6.113):

W int(F) =

∫

Ω0

wint,iso(F) dΩ0 +

∫

Ω0

wint, vol(J) dΩ0 (7.6)

The volumetric strain density function wint, vol(J) is approximated by assuming that the

volume ratio J remains constant over the volume attached to each node. Therefore the

volumetric internal work is computed by summing up the individual nodal contributions

(as compared to element contributions for the standard linear tetrahedron (6.129)),

W
int,vol =

∫

Ω0

wint,vol(J)dΩ0

≈

n∑

I=1

wint,vol(JI)VI (7.7)
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where n denotes the number of nodes in the mesh.

7.1.1.3 Volumetric internal forces

Taking the directional derivative of the volumetric internal work in the direction of a virtual

displacement δu gives the volumetric virtual work. Taking account of (7.7),

δW int,vol = DW
int,vol [δu]

=

n∑

I=1

VI Dwint,vol [δu]

=

n∑

I=1

VI

dwint,vol

dJ

�����
J=JI

DJI [δu] (7.8)

In a similar way to (6.116), we define the average nodal pressure

pI =
dwint,vol

dJ

�����
J=JI

= κ
�
JI − 1

�
= κ

�
υI − VI

VI

�
(7.9)

The directional derivative of the average nodal volumetric strain appearing in (7.8) is

computed with the help of equations (7.2), (7.3) and (6.136):

DJI [δu] =
1

VI

DυI [δu]

=
1

VI

ne,I∑

e=1

1

4
Dυe [δu]

=
1

VI

ne,I∑

e=1

1

4
Ve DJe [δu]

=
1

VI

ne,I∑

e=1

1

4
Ve Je

∂ δue
i

∂ x i

(7.10)

Using finite element interpolation of the displacement field over the element (6.36), the

expression becomes

DJI [δu] =
1

VI

ne,I∑

e=1

1

4
Ve Je

∂ N e
J

∂ x i

δuiJ

=
1

VI

ne,I∑

e=1

1

4
υe ∇N J · δu J (7.11)
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Replacing (7.9) and (7.11) into the equation of the virtual volumetric work (7.8) gives

δW int,vol =

n∑

I=1

ne,I∑

e=1

1

4
pIυe ∇N J · δu J

=

ne,I∑

e=1

 
4∑

I=1

1

4
pI

!
υe ∇N J ·δu J

=

ne,I∑

e=1

p̄eυe ∇N J · δu J (7.12)

where we have defined the average element pressure:

p̄e =
1

4

4∑

I=1

pI (7.13)

The latter would correspond to the pressure computed at the centroid of the tetrahedral

element by linear interpolation of the nodal values.

The volumetric component of the internal nodal force at node I is identified from (7.12)

as

fint
vol,I
=

ne,I∑

e=1

p̄eυe∇N I (7.14)

Compared to the standard element (6.140), the expression is similar except for the

element pressure that is now computed as an average of the nodal pressures: pe in (6.140)

becomes p̄e in (7.14).

7.1.2 Extension to domains with multiple materials

Joldes et al. [91] have extended the Average Nodal Pressure (ANP) element, proposed by

Bonet and Burton [25] and presented above, for a better handling of material interfaces.

Indeed, in the case of multiple interfaces, the element pressure can no longer be computed

by (7.9) as it is not clear which bulk modulus should be used for the nodal pressure com-

putation.

The solution proposed by Joldes et al. [91] consists in defining a different nodal volume

for each material type α converging at node I :

υ
(α)
I =

∑

e=1

n
(α)
I

1

4
υe (7.15)

where n
(α)
I represents the number of elements of material type α sharing node I . Different

nodal Jacobians J
(α)
I are then computed from these material volumes, J

(α)
I = υ

(α)
I /V

(α)
I .
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m ,V ,v ,J ,I I I I FI

FIGURE 7.2: The Average Nodal Strain Linear Tetrahedron. proposed by Dohrmann et al.

[55]

Eventually, these material Jacobians are used along with the material bulk modulus to

define a nodal pressure for each material α as

p
(α)
I = κ

(α)
�

J
(α)
I − 1

�
(7.16)

This solution is very straightforward. It may however cause implementation problems

as several pressures must be stored at each node.

7.1.3 The Average Nodal Strain Linear Tetrahedron

The average nodal pressure element proposed by Bonet and Burton [25] presented in Sec-

tion 7.1.1 successfully removes the volumetric locking but spurious shear locking may still

exist. To overcome this problem, Dohrmann et al. [55] proposed to apply the nodal averag-

ing process (7.4) on the whole strain tensor rather on the on the volumetric part uniquely.

The resulting formulation, which was presented for small strain elasticity, has subsequently

been extended to the large strain elasto-plastic regime by Bonet et al. [27], still in the

framework of explicit time integration.

7.1.3.1 Nodal deformation gradient

The definition of nodal volumes VI and nodal Jacobians JI are identical to the average nodal

pressure approach [25] presented in Section 7.1.1. The major difference in the average

nodal strain formulation is that a nodal deformation gradient FI is now defined, using the
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same averaging process than for VI and JI . This nodal deformation gradient FI replaces the

standard element deformation gradient Fe =
∂ xe

∂ Xe
as the main kinematics variable to define

the deformation of the solid.

The nodal deformation gradient FI is defined as

FI =
1

VI

∫

Ω0

F NI dΩ0 =
1

VI

1

4

ne,I∑

e=1

Ve Fe =

1

4

∑ne,I

e=1
Ve Fe

1

4

∑ne,I

e=1
Ve

=

∑ne,I

e=1
Ve Fe∑ne,I

e=1
Ve

(7.17)

where the second relation results from the fact that the element shape functions are linear

so that the point-wise deformation gradient is constant within an element. These equations

should be compared with the relations for the nodal Jacobian obtained for the average

nodal pressure element (7.3) and (7.4).

For materials in which the volumetric and isochoric responses are uncoupled, for exam-

ple in the case of Von-Mises plasticity, a modified averaged nodal deformation gradient is

defined as

F̄I =

�
JI

detFI

� 1

3

FI (7.18)

so that the determinant of F̄I is given by the average nodal Jacobian JI , defined by (7.3)

or equivalently by (7.4) . This modification has its importance as the current mesh vol-

umes are correctly evaluated in (7.4) whereas the determinant of the nodal deformation

gradient (7.17) is only an asymptotic approximation.

Decomposing this the modified averaged nodal deformation gradient F̄I into its volu-

metric and volume preserving components using the standard relations for the volumet-

ric/isochoric split of the deformation gradient presented in Section 6.2.3.3 gives, by con-

struction,

F̄iso
I
= Fiso

I

F̄vol
I
= J

1

3

I I (7.19)

7.1.3.2 Total strain energy

Because the kinematics is now defined via the nodal deformation gradient, the internal

work is written as a sum of nodal strain energies. And, supposing that the strain energy is

constant over at the nodes of the linear tetrahedrons,

W
int(F) =

∫

Ω0

wint(F) dΩ0 =

n∑

I=1

VI w
int(F) (7.20)
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Let us assume as previously that the strain energy density function can be decomposed

into a volumetric and an isochoric components as presented in Equation (6.113), (7.20)

becomes

W
int(F) =

n∑

I=1

VI wint,iso(FI) +

n∑

I=1

wint, vol(JI) (7.21)

7.1.3.3 Internal forces

The nodal internal force vector is obtained as usual by differentiating the total strain energy

in the direction of a virtual displacement δu

δW int = DW
int [δu] = DW

int,vol [δu] + DW
int,iso [δu] (7.22)

The volumetric term of this equation is, by construction, the same as for the average nodal

pressure tetrahedron 7.1.1. Therefore, only the isochoric component of the nodal internal

forces is obtained here.

The directional derivative of the isochoric strain energy gives

DW
int,iso [δu] =

n∑

I=1

VI Dwint,iso(FI) [δu]

=

n∑

I=1

VI

∂ wint,iso

∂ FI

: DFI [δu]

=

n∑

I=1

VI Piso
I

: DFI [δu]

=

n∑

I=1

VI P iso
I ,iA

DFI ,iA[δu] (7.23)

where the volume preserving component of the first Piola-Kirchhoff stress tensor Piso has

been introduced in Sections 6.2.6 and 6.6.2 but is here computed using the nodal deforma-

tion gradient Piso
I
= Piso(FI).

Let us now compute the directional derivative of the nodal deformation gradient given

by (7.17)

DFI [δu] =
1

VI

1

4

ne,I∑

e=1

Ve DFe [δu]

=
1

VI

1

4

ne,I∑

e=1

Ve

�
∇0δu

�

DFI ,iA [δu] =
1

VI

1

4

ne,I∑

e=1

Ve

∂ δui

∂ XA

(7.24)
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where the second relation comes from Equation (B.11).

Using the finite element shape function to interpolate the displacement field within the

elements from its nodal displacements gives

DFI ,iA [δu] =
1

VI

1

4

ne,I∑

e=1

Ve

∂ NJ

∂ XA

δuiJ (7.25)

where the implicit summing convention is assumed on index J.

Substituting this result in (7.23) and re-arranging the terms, we have

DW
int,iso [δu] =

n∑

I=1

P iso
I ,iA

1

4

ne,I∑

e=1

Ve

∂ NJ

∂ XA

δuiJ

=

ne∑

e=1

Ve

 
4∑

I=1

1

4
P iso

I ,iA

!
∂ NJ

∂ XA

δuiJ

=

ne∑

e=1

Ve P̄ iso
e,iA

∂ NJ

∂ XA

δuiJ

=

ne∑

e=1

Ve P̄iso
e
∇0N J ·δuJ

= f int,iso
I
·δuI (7.26)

where the element isochoric component of the nominal stress P̄iso
e

represents the average of

the nodal stress tensors Piso
I

obtained at the four nodes of the linear tetrahedral element

P̄iso
e
=

1

4

4∑

I=1

Piso
I

(7.27)

In the end, we identify the volume preserving part of the nodal internal forces

f int,iso

I
=

ne,I∑

e=1

Ve P̄iso
e
∇0NI (7.28)

The main difference with previous formulations is that the element stresses are now

computed as an average of nodal stresses, which are obtained by evaluating the constitutive

equations with the nodal deformation gradient FI , which, in turn, has been defined as an

weighted average of the deformation gradients of the neighbouring elements.

Recalling the previous result for the volumetric part of the forces (7.14), we have, for

the total nodal internal forces

f int
I
= f int,vol

I
+ f int,iso

I
=

ne,I∑

e=1

p̄eυe∇N I +

ne,I∑

e=1

Ve P̄iso
e
∇0NI (7.29)

which should be compared with the expression obtained for the standard linear tetrahe-

dron (6.148).
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F
vol

centroid

F= F F
iso vol

centroid

F
iso.xi

x0

F
vol

centroid

x0

F
iso.xi

F= F F
iso vol

centroid

FIGURE 7.3: F-bar quadrilateral and hexahedral elements. The modified deformation

gradient F̄ of the F-bar method is defined as the composition of the isochoric component of

F with the volumetric component of Fcentroid

7.1.3.4 Conclusions

In the average nodal pressure element, the volumetric locking was removed by averaging

the element Jacobians (volumetric deformation) at the mesh nodes. The aim of the present

formulation is to also remove the locking in bending by using a similar averaging approach

for the isochoric part of the deformation gradient (volume preserving deformation).

Unfortunately, spurious low energy modes appear in the average nodal strain approach

and stabilization of the tetrahedron is needed [55]. An efficient procedure to stabilize the

average nodal strain element has been proposed by Puso and Solberg [147].

7.2 F-bar and F-bar-patched methods

The F-bar methodology for hexahedral elements and its extension to tetrahedral elements

have been proposed by de Souza Neto et al. [51, 52]. The idea is to define a modified

deformation gradient, called F-bar and denoted F̄. This modified deformation gradient is

then used to compute the stresses.

7.2.1 Quadrilateral and Hexahedral F-bar Elements

This section is dedicated to the presentation of the F-bar method to overcome locking effects

in low order quadrilateral and hexahedral elements.
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7.2.1.1 Definition of a Modified Deformation Gradient F̄

First, the volumetric/isochoric split (6.9) is applied to the deformation gradient F at the

Gauss point of interest as well as to the deformation gradient Fcentroid computed at the

centroid of the element (Figure 7.3):

F= Fiso Fvol

Fcentroid = Fiso
centroid

Fvol
centroid

(7.30)

with

Fiso = (det(F))−
1

3 F= J−
1

3 F and Fiso
centroid

=
�
det(Fcentroid)

�− 1

3 Fcentroid

Fvol = (det(F))
1

3 I= J
1

3 I and Fvol
centroid

=
�
det(Fcentroid)

� 1

3 I (7.31)

The modified deformation gradient F̄ of the F-bar method is defined as the composition

of the isochoric component of F with the volumetric component of Fcentroid,

F̄= Fiso Fvol
centroid

=

�
det(Fcentroid)

det(F)

� 1

3

F (7.32)

This formulation leads to the following two important properties for the isochoric and

volumetric deformation gradient. First, the isochoric part of the modified deformation

gradient at a Gauss point F̄iso equals the isochoric part of the original deformation gradient

at the Gauss point Fiso. Second, the volumetric part of the modified deformation gradient

at a Gauss point F̄vol equals the volumetric part the deformation gradient evaluated at the

centre of the element Fvol
centroid

. Indeed,

F̄iso =
�

det(F̄)
�− 1

3 F̄= det(Fcentroid)
− 1

3

�
det(Fcentroid)

det(F)

� 1

3

F= (det(F))
− 1

3 F= Fiso

F̄vol =
�
det(Fcentroid)

� 1

3 I= Fvol
centroid

(7.33)

This formulation implies that, for materials for which the isochoric and volumetric constitu-

tive responses are uncoupled, the pressure is constant over the quadrangular or hexahedral

element.

During the finite element simulation, the standard deformation gradient F is replaced

by the modified deformation gradient F̄ for the computation of the stresses at the Gauss

points. It is important to note that the classical Cauchy stress is used here to compute the

stresses so that the formulation is adequate for all material laws.

σ = σ (αn,B) (7.34)
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where αn denotes the set of internal variables of the model at time tn and B = F FT is the

Cauchy-Green tensor. In order to simplify the notations and because we are only interested

in the dependence of σ on F we will use the notation

σ = σ (F) (7.35)

instead of (7.34) in this dissertation.

The element internal force is computed in the same way than for the standard element

(6.50):

f int,e
I
=

∫

Ωe

∇NT
I
σ

�
F̄
�

dΩe =

∫

Ωe

GT
I
σ

�
F̄
�

dΩe

f
int,e

I i =

∫

Ωe

∂ NI

∂ x j

σ ji

�
F̄
�

dΩe =

∫

Ωe

GI j σ ji

�
F̄
�

dΩe (7.36)

In the above, the standard G-matrix is used to compute the nodal internal forces. This

is thanks to the fact that, in contrast with other methods [27, 123, 161], the assumed

deformation gradient has been introduced in the stress constitutive functional rather than

in the corresponding strain energy functional. Hence, this approach is easier to implement

in existing displacement-based element routines.

Equivalently, in the Total Lagrangian formulation, the first Piola Kirchhoff stress is com-

puted using the F-bar deformation gradient in the constitutive equations

P = P
�

F̄
�

(7.37)

and the element internal forces are given by

f int,e
I
=

∫

Ωe

P
�

F̄
�
∇0NI dΩe =

∫

Ωe

P
�

F̄
�

G0
IA

dΩe

f
int,e

I i =

∫

Ωe

PiA

�
F̄
� ∂ NI

∂ XA

dΩe =

∫

Ωe

PiA

�
F̄
�

G0
IA

dΩe (7.38)

7.2.1.2 Consistent Linearization and Tangent Stiffness Matrix

In the following, we derive the expression for the consistent tangent stiffness matrix Kint
T

of the F-bar hexahedral element. The procedure is identical to the one presented in Sec-

tion 6.4, but, because the stresses now depend on the modified deformation gradient, lin-

earisation of the constitutive equation dP

dF
in (6.63) must be performed with respect to the

modified deformation gradient F̄, given by (7.32):

F̄=

�
det
�
Fcentroid

�

det (F)

� 1

3

F=

�
Jcentroid

J

� 1

3

F=

�
J̄

J

� 1

3

F (7.39)
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The directional derivative of the virtual internal work (6.63) becomes

DδW int
�
η
�
=

∫

Ω0

DP
�

F̄
��
η
�

:∇0δu dΩ0 (7.40)

The first Piola-Kirchhoff stress P is expressed in terms of the Cauchy stress σ as follows:

P (F) = det (F)σ
�

F̄
�

F−T =

�
det
�
Fcentroid

�

det (F)

�− 2

3

P̄
�

F̄
�
=

�
J̄

J

�− 2

3

P̄
�

F̄
�

(7.41)

where we have defined

P̄
�

F̄
�
= det

�
F̄
�
σ

�
F̄
�

F̄−T = J̄σ
�

F̄
�

F̄−T (7.42)

Computation of the directional of P, appearing in (7.40) requires the computation of

dP̄/dF̄, DF
�
η
�

, DJ
�
η
�

and DJ̄
�
η
�

. These developments are detailed in Appendix C.1.

Let us define the two-point tangent modulus computed from the F-bar deformation

gradient

A
�

F̄
�
=

dP̄

dF̄
AiAjB

�
F̄
�
=

d P̄iA

d F̄ jB

(7.43)

The linearisation of the deformation gradient DF
�
η
�

is given in Appendix B.4 and lineari-

sation of the DJ
�
η
�

is given in Appendix B.5. Using a similar approach, we compute the

linearisation of the F-bar Jacobian2:

DJ̄
�
η
�
= J̄

�
F−T :∇0,centroidη

�
(7.44)

Substituting (7.43) and (7.44) into (C.6) and (C.6) into (7.40), taking account of the re-

lations for the directional derivative of F (B.11) and J (B.14) as well as the properties of the

tensor product (A.4), discretising the resulting expression using finite element approxima-

tion and re-arranging the terms, we obtain the directional derivative of the virtual internal

work of a finite element (Please refer to Appendix C.1 for more details and intermediate

equations):

DδW int,e
�
η
�
= δu ·

∫

Ωe

GT a(F̄) G dΩe ·η

+ δu ·

∫

Ωe

GT q(F̄)
�
Gcentroid −G

�
dΩe ·η

(7.45)

2∇0,centroid denotes the gradient with respect to the reference configuration computed at the centroid the

element as opposed to ∇0 which is computed at a Gauss point
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pre-defined patches

Patches are formed
by triangle subdivision

Fe

Fe patch patch e=(v /V )1/3
F

Fe

FIGURE 7.4: F̄-patch formulation.

with

ai jkl

�
F̄
�
=

1

J̄
F̄kB ĀiAjB

�
F̄
�

F̄lA (7.46)

and having defined

q(F̄) =
1

3
a(F̄) : (I⊗ I)−

2

3

�
σ̄(F̄)⊗ I

�
(7.47)

We identify the tangent stiffness matrix for element e:

Kint,e =

∫

ϕΩe

GT a(F̄)GdΩe +

∫

ϕΩe

GT q(F̄)
�
Gcentroid −G

�
dΩe (7.48)

In this expression, Gcentroid is the discrete spatial gradient operator in the current configura-

tion evaluated at the centroid of the element.

The first term of (7.48) is identical to the tangent stiffness of the standard element

(6.88). The second term requires little additional computation effort, as the computation

of discrete gradient at the element centroid Gcentroid and the matrix q are quite simple and

straightforward.

7.2.2 Triangular and Tetrahedral F-bar-patched Elements

The formulation presented in the previous section cannot easily be extended to low-order

simplex elements because these elements produce a uniform strain, so that the deformation

gradient is constant over the element and Fcentroid = F. de Souza Neto et al. [52] overcome
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this issue by applying the F-bar methodology on patches of triangular or tetrahedral ele-

ments. The resulting element is called the F-bar-patched linear tetrahedral element.

7.2.2.1 Definition of a Modified Deformation Gradient F̄

In the F-bar-patched methodology, the incompressibility constraints are enforced over a

patch of simplex3 elements, rather than over separate individual elements.

The mesh is first subdivided into a set of non-overlapping patches of elements P . A

unique deformation gradient is then defined for each patch P :

F̄e =

�
υpatch

Vpatch

� 1

3

Fe , ∀e ∈ P (7.49)

The initial and current volumes of the patch are computed by adding the volumes of the

individual elements composing the patch:

υpatch =
∑

q∈P

υq =
∑

q∈P

Vq det(Fq)

Vpatch =
∑

q∈P

Vq (7.50)

where υq and Vq denote the volume of the element in the current and reference configura-

tion respectively.

The determinant of the modified deformation gradient, also called the F-bar or modified

Jacobian, is the ratio of the current to the initial volume of the patch:

J̄e = detF̄e =
υpatch

Vpatch

(7.51)

From this equation, we understand that using the F-bar-patched deformation gradient

(7.49) under incompressibility constraints results in enforcing a constant volume over pre-

defined patches of elements. The individual elements from a patch may suffer volume

change during deformation.

Similarly to the F-bar methodology for hexahedral elements (Section 7.2.1), the only

difference with the conventional finite element method is that the Cauchy stresses are now

computed with this modified deformation gradient:

σ = σ
�
α

n, F̄ F̄T
�

(7.52)

where αn denotes the set of internal variables of the model at time tn and B̄ = F̄ F̄T is the

Cauchy-Green tensor computed with the F-bar deformation gradient. The notation σ
�

F̄
�

is again used here-after to simplify the notations.

3triangles in the two-dimensional space and tetrahedra in the three-dimensional space.
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7.2.2.2 Consistent Linearization and Tangent Stiffness Matrix

In contrast to the F-bar methodology for quadrilaterals and hexahedrons, the nodal inter-

nal forces now depend on the degrees of freedom of all elements composing the patch.

Indeed, a change of volume of one element of the patch results in a modification of the

deformation gradient F̄ of all elements of the patch. Therefore, stresses computed with the

bar-patched deformation gradient are altered even for the elements for which the volume

did not change. This results in several non-diagonal terms appearing in the global tangent

stiffness matrix.

The internal tangent stiffness matrices for an element e are obtained by linearisation of

the virtual work equation (6.63)

DδW int
�
η
�
=

∫

Ω0

DP
�

F̄
��
η
�

:∇0δu dΩ0 (7.53)

where the nominal stress P depends on the F-bar-patched deformation gradient F̄ given by

(7.49).

The procedure is similar to the one performed for the F-bar-hexahedral element. More

specifically, P and P̄ are still related by (7.41) and (7.42) so that the directional derivative

of P appearing in (7.53) should be computed via (C.6) and thus requires the computation

of dP̄/dF̄e, DFe

�
η
�

, DJe

�
η
�

and DJ̄e

�
η
�

. The first three expressions are still given by

(7.43), (B.11) and (B.14) respectively. The latter however, the directional derivative of the

determinant of the modified deformation gradient DJ̄e

�
η
�

, is now given by

DJ̄e

�
η
�
=

1

Vpatch

∑

q∈P

υq

�
F−T

q
:∇0ηq

�
(7.54)

Introducing this into the equation for the directional derivative of P (Appendix C.1)

and then into the equation for the directional derivative of the virtual internal work (7.53)

gives, after a lengthy but straightforward calculation:

DδW int,e
�
η
�
= δu ·

∫

hΩe

GT
e

a(F̄) Ge dΩe ·η

+δu ·

�
υe

υpatch

− 1

�∫

hΩe

GT
e

q(F̄) Ge dΩe ·η

+δu ·
1

υpatch

∑

q∈P ,q 6=e

υq

∫

hΩe

GT
e

q(F̄) Gq dΩe ·η (7.55)

with a
�

F̄
�

and q
�

F̄
�

given by (7.46) and (7.47) respectively.
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Consequently, consistent linearisation of the virtual work equation gives rise to the fol-

lowing elemental tangent stiffness matrices4:

Kint
ee
=

∫

hΩe

GT
e

a(F̄) Ge dΩ+

�
υe

υpatch

− 1

�∫

hΩe

GT
e

q(F̄) Ge dΩ

Kint
eq
=
υq

υpatch

∫

hΩe

GT
e

q(F̄) Gq dΩ (7.56)

Matrix Kee has a similar form than for the F-bar element. Its rows and columns are asso-

ciated with the degrees of freedom of element e only. The matrices Keq give the influence of

the nodal displacements of element q ∈ P ; q 6= e on the internal force components of ele-

ment e. Its rows are associated with element e and its columns are associated with element

q. Both matrices are generally unsymmetric, regardless the material model adopted.

7.2.3 Discussion

The size of the patches to be defined dictates the efficiency of the approach. The more

elements in the patch, the greater the constraint relaxation. However, allowing too many

elements in a patch leads to an excessive relaxation of the incompressibility constraint

and spurious zero-energy modes. On the other hand, too few elements in a patch leads

to insufficient constraint relaxation and locking. de Souza Neto et al. [52] recommend

patches of three triangular elements in a two-dimensional analysis and patches of eight

tetrahedra in a three-dimensional analysis.

The major drawback of the method is that it requires the subdivision of the initial mesh

into a set of non-overlapping element patches. In a two-dimensional or axisymmetric prob-

lem, the splitting of triangular mesh can be done without too much problems. However,

the definition of the patches in 3D is a tedious task. The authors end up by first creating

an initial tetrahedral mesh and then splitting each tetrahedral element into 8 tetrahedrons

so that each tetrahedron may be labelled according to its parent tetrahedron. Of course,

this spoils the whole methodology as the total number of degrees of freedom is greatly

increased and can become prohibitive for real-life biomedical applications.

4Subscript T has been removed from the tangent stiffness matrix to clarify the notations: Kint
ee

should be

understood as Kint
T,ee
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face-neighbourhood element patch node-neighbourhood element patch

Fe

Fq

Fe

Fq

Fe e=(v /V 1/3
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)

FIGURE 7.5: Proposed face- and node-neighbourhood patch volume change ratio tetra-

hedral elements formulations.

7.3 Contribution 1: a face- or node-neighbourhood patch

volume change ratio linear tetrahedron

In this section we present a face or node-neighbourhood patch volume change ratio linear

tetrahedron, which constitute a first attempt of this thesis work to solve the problem of

tedious patch definition in the F-bar-patch methodology (see above discussion).

7.3.1 Modified Deformation Gradient

The major drawback of the F-bar-patch tetrahedra formulation is that it requires the pre-

definition of non-overlapping patches (Section 7.2). The idea proposed in this section and

investigated through numerical tests in the following chapter is to enforce, for each ele-

ment, the incompressibility constraint over the element and its neighbours. In other words,

patches elements are defined around each element in order to calculate a modified de-

formation gradient over this patch. However, the patches are overlapping each other so

that no predefinition of the patches is required. Two types of patches will be investigated,

formed either the element itself and its face-neighbours, or by the element itself and its

node-neighbours. These two types of patches are presented in Figure 7.5.

The proposed modified deformation gradient is given by

F̄e =

�
J̄e

Je

� 1

3

Fe (7.57)
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with

J̄e =
υpatche

Vpatche

=

∑
q∈Pe
υq∑

q∈Pe
Vq

=

∑
q∈Pe

VqdetFq∑
q∈Pe

Vq

(7.58)

so that a new patch is computed for every element in the mesh. We therefore use the

notation υpatche
and Vpatche

, as compared to υpatch and Vpatch used for the F-bar-patch element

in 7.49.

7.3.2 Consistent element tangent stiffness matrix

The internal tangent stiffness matrices for an element e are obtained by linearisation of the

virtual work equation (6.63)

DδW int
�
η
�
=

∫

Ω0

DP
�

F̄
��
η
�

:∇0δu dΩ0 (7.59)

where the nominal stress now P depends on the F-bar-patched deformation gradient F̄ given

by (7.49).

The procedure is similar to the one performed for the previous F-bar and F-bar-patch

formulations 7.2.1 and 7.2.2. More specifically, P and P̄ are still related by (7.41) and

(7.42) so that the directional derivative of P appearing in (7.59) should be computed via

(C.6) and thus requires the computation of dP̄/dF̄e, DFe

�
η
�

, DJe

�
η
�

and DJ̄e

�
η
�

. The

first three expressions are still given by (7.43), (B.11) and (B.14) respectively. The latter

however, the directional derivative of the determinant of the modified deformation gradient

DJ̄e

�
η
�

, is now given by

DJ̄e

�
η
�
=

1

Vpatche

∑

q∈P

Vq Jq

�
F−T

q
:∇0ηq

�
(7.60)

where the only difference with (7.54) is that the patch is now defined over each element

(Vpatche
instead of Vpatch).

Introducing this into the equation for the directional derivative of P (C.6) and then into

the equation for the directional derivative of the virtual internal work (7.59) gives, after

calculation:

DδW int,e
�
η
�
= δu ·

∫

hΩe

GT
e

a(F̄) Ge dΩe ·η

+δu ·

�
υe

υpatche

− 1

�∫

hΩe

GT
e

q(F̄) Ge dΩe ·η

+δu ·
1

υpatche

∑

q∈P ,q 6=e

υq

∫

hΩe

GT
e

q(F̄) Gq dΩe ·η (7.61)
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with a
�

F̄
�

and q
�

F̄
�

given by (7.46) and (7.47) respectively.

Consequently, consistent linearisation of the virtual work equation gives the following

elemental tangent stiffness matrices:

Kint
ee
=

∫

hΩe

GT
e

a(F̄) Ge dΩ+

�
υe

υpatche

− 1

�∫

hΩe

GT
e

q(F̄) Ge dΩ

Kint
eq
=
υq

υpatche

∫

hΩe

GT
e

q(F̄) Gq dΩ (7.62)

Again, comparing these stiffness terms with those obtained for the F-bar-patch tetrahe-

dron (7.56), we notice that the only difference lies in the definition of the patches.

7.3.3 Two-dimensional case

For a plain strain problem, the deformation gradient is modified as follows:

F̄e =


 F̄e,plane 0 0

0 0 1


 (7.63)

with

F̄e,plane =

�
J̄e

Je

� 1

2

Fe,plane (7.64)

and J̄e stiff being given by (7.58):

J̄e =
υpatche

Vpatche

=

∑
q∈Pe
υq∑

q∈Pe
Vq

=

∑
q∈Pe

VqdetFq∑
q∈Pe

Vq

(7.65)

The stiffness terms for the plane-strain case are still given by (7.62) but, the q of (7.62)

is now computed by:

q(F̄) =
1

2
a(F̄) : (I⊗ I)−

1

2

�
σ̄(F̄)⊗ I

�
(7.66)

7.3.4 Border elements and multi-material meshes

A special treatment is adopted for the elements lying on the border of the domain. In our

algorithm, these elements are detected by computing the number of face neighbours ne of

the tetrahedron. An element lies on the border of the domain if this number is less than 4,

ne < 4, whereas interior elements have four direct neighbours, ne = 4.
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Similarly, for meshes that are constituted of several material regions, the nodes that are

located on the interface of material regions are considered as border elements.

On border elements, the modified Jacobian is defined as

J̄e = α
υpatche

Vpatche

+ (1−α) Je (7.67)

with α = ne/4. For interior elements, α = 1, this equation is equivalent to (7.58). For an

isolated element, α = 0, and the traditional formulation is recovered.

Applying the same linearisation procedure as above, we obtain following element con-

tributions to the consistent tangent stiffness matrix:

Kee =

∫

hΩe

GT a(F̄e)G dΩ+

��
α

υpatche

+
1−α

J̄eVe

�
υe − 1

�∫

hΩe

GT q(F̄e)G dΩ

Keq = α
υq

υpatche

∫

hΩe

GT q(F̄e)Gq dΩ (7.68)

which is equivalent to (7.62) for interior elements characterised by α = 1.

7.3.5 Discussion

The definition of the element patches in the proposed formulation is much simpler than

in the F-bar-patched formulation (Section 7.2). Indeed, in our formulation, patches are

simply formed by an elements and its face-neighbours. Numerical applications in Chapter 8

will investigate whether or not this formulation is effective in removing the locking of the

standard linear tetrahedron, observed under incompressibility constraints.

7.4 Contribution 2: an Average Elemental Jacobian (AEJ)

tetrahedral element

Andrade Pires et al. [5] have proposed an implicit version of the average nodal pressure

(ANP) triangular element initially proposed by Bonet and Burton [25] and presented in

Section 7.1.1. To obtain the expression of the consistent tangent stiffness matrix needed,

the authors re-cast the original concept the average nodal pressure element in terms of

an average volume change ratio within the framework of the F-bar method (Section 7.2).

The idea is to average nodally defined Jacobians over the element to obtain a modified

elemental Jacobian. In this way, Andrade Pires et al. [5] obtained a linear triangle for
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Je e, F
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Je I= J1
4 SI=1
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F

Overlapping element patches

FIGURE 7.6: Proposed Average Elemental Jacobian (AEJ) tetrahedral element formula-

tion.

implicit plane strain and axisymmetric analysis of nearly incompressible solids under finite

strains. In this section, we extend the concept to the third dimension and obtain a three-

dimensional implicit version of average nodal pressure tetrahedral element. We call it the

Average Elemental Jacobian (AEJ) tetrahedral element.

7.4.1 Definition of a modified deformation gradient F̄

As proposed by Bonet and Burton [25], we define nodal volumes at each mesh node by

summing the contributions of the tetrahedral elements sharing node I (Equations (7.1)

and (7.2)):

VI =
∑

q∈PI

1

4
Vq

υI =
∑

q∈PI

1

4
υq =

∑

q∈PI

1

4
Vq detFq (7.69)

where PI is the patch of elements attached to node I .
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The nodal volume ratio is then defined as (7.3):

JI =
υI

VI

=

∑
q∈PI
υq∑

q∈PI
Vq

=

∑
q∈PI

Vq detFq∑
q∈PI

Vq

(7.70)

Let us now define an average element volume ratio J̄e for the tetrahedron by averaging

the four nodal volume ratios JI of the tetrahedron:

J̄e =
1

4

4∑

I=1

JI (7.71)

where the sum
∑4

I
represents the sum over the four nodes of the tetrahedral element e.

The idea is to enforce the incompressibility constraint by imposing this average volume

ratio J̄e to remain constant. To achieve this, a modified deformation gradient F̄e is defined

by scaling the true deformation gradient Fe so that its determinant becomes equal to J̄e, as

has been done in the previous F-bar approaches (Sections 7.2.1,7.2.2 and 7.3):

F̄e =

�
J̄e

Je

� 1

3

Fe (7.72)

During the finite element simulation, the standard deformation gradient F is replaced

by the modified deformation gradient F̄ for the computation of the stresses at the Gauss

points5.

σ = σ
�
α

n, F̄ F̄T
�

(7.73)

where αn denotes the set of internal variables of the model at time tn and B̄ = F̄ F̄T is the

Cauchy-Green tensor computed with the F-bar deformation gradient.

7.4.1.1 Consistent linearisation and tangent stiffness matrices

In the following, we derive the element contributions to the global consistent tangent stiff-

ness matrix KT by performing the Newton-Raphson linearisation of the virtual work equa-

tion. This linearisation procedure has been detailed in Section 6.4 for the conventional

finite element formulation and in Sections 7.2.1.2 and 7.2.2.2 for the F-bar hexahedral

element and the F-bar-patched tetrahedral element respectively.

Linearisation of the strain energy gives, for one element,

DδW int,e
�
η
�
=

∫

Ω0

DP
�

F̄
��
η
�

:∇0δu dΩ0 (7.74)

5The notation σ
�

F̄
�

here-after to simplify the notations
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where the nominal stresses P depend on the F-bar-patched deformation gradient F̄ given by

(7.72).

Hence, linearisation of the element virtual internal work requires computation of the

directional derivative of P, (7.41)

DP
�

F̄
��
η
�
= D





�
J̄

J

�− 2

3

P̄
�

F̄
�



�
η
�

(7.75)

with P̄ given by (7.42)

P̄
�

F̄
�
= det

�
F̄
�
σ

�
F̄
�

F̄−T = J̄σ
�

F̄
�

F̄−T (7.76)

We obtain (C.6)

DP
�

F̄
��
η
�
=−

2

3

�
J̄

J

�− 5

3 1

J2

�
J DJ̄

�
η
�
− J̄ DJ

�
η
��

P̄

+

�
J̄

J

�− 2

3 dP̄

dF̄
:




1

3

�
J̄

J

�− 2

3 1

J2

�
J DJ̄

�
η
�
− J̄ DJ

�
η
��

F+

�
J̄

J

� 1

3

DF
�
η
�



(7.77)

The latter requires the computation of dP̄/dF̄e, DFe

�
η
�

, DJe

�
η
�

and DJ̄e

�
η
�

. The first

three expressions are identical to the previous F-bar approaches and are therefore given by

(7.43), (B.11) and (B.14) respectively. The directional derivative of the determinant of

the modified deformation gradient DJ̄e

�
η
�

must be computed for the current formulation

(7.71). With the help of (B.14), we obtain

DJ̄e

�
η
�
=

1

4

4∑

I

(
1∑

q∈PI
Vq

∑

q∈PI

VqJq

�
F−T

q
:∇0ηq

� )
(7.78)

Following steps are similar to the previous explained F-bar formulations. The directional

derivative of the element Jacobian (7.78) and the other three derivatives (7.43), (B.11) and

(B.14) are inserted into the linearised nominal stress (7.77) and the result DP
�

F̄
��
η
�

is

then substituted into the linearised virtual strain energy (7.74). The obtained expression is
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eventually transformed to the spatial configuration. After calculations this gives,

DδW int,e
�
η
�
=

∫

Ωe

�
a(F̄) :∇ηe

�
:∇δu e dΩe

−

∫

Ωe

�
q(F̄) :∇ηe

�
:∇δu e dΩe

+

∫

Ωe


q(F̄) :

 
1

4 J̄e

4∑

I=1

1

4VI

∑

q∈PI

υq∇ηq

!
 :∇δu e dΩe (7.79)

Discretising this expression using the finite element method and isolating q = e in the third

term we obtain,

DδW int,e
�
η
�
= δu e ·

∫

hΩe

GT
e

a(F̄) Ge dΩe ·ηe

+δu e ·

 
1

4 J̄e

4∑

I=1

υe

4 VI

− 1

!∫

hΩe

GT
e

q(F̄) Ge dΩe ·ηe

+δu e ·

 
1

4 J̄e

4∑

I=1, q∈PI

υq

4 VI

!∫

hΩe

GT
e

q(F̄) Gq dΩe ·ηq (7.80)

We identify the following tangent stiffness matrices

Kint
ee
=

∫

hΩe

GT
e

a(F̄) Ge dΩ+

 
1

4 J̄e

4∑

I=1

υe

4 VI

− 1

!∫

hΩe

GT
e

q(F̄) Ge dΩ

Kint
eq
=

 
1

4 J̄e

4∑

I=1, q∈PI

υq

4 VI

!∫

hΩe

GT
e

q(F̄) Gq dΩ (7.81)

with

q(F̄) =
1

3
a(F̄) : (I⊗ I)−

2

3

�
σ̄(F̄)⊗ I

�
(7.82)

7.4.2 Two-dimensional case

In two-dimensions, the formula gives:

Kint
ee
=

∫

hΩe

GT
e

a(F̄) Ge dΩ+

 
1

3 J̄e

3∑

I=1

υe

3 VI

− 1

!∫

hΩe

GT
e

q(F̄) Ge dΩ

Kint
eq
=

 
1

3 J̄e

3∑

I=1, q∈PI

υq

3 VI

!∫

hΩe

GT
e

q(F̄) Gq dΩ (7.83)

which is different than the stiffness terms of the original 2D formulation proposed by

Andrade Pires et al. [5] on which this section was based.
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7.4.3 Border elements and multi-material meshes

It is not clear how the nodal volume ratio JI (7.70) and henceforth, the average element

volume ratio J̄e (7.71) for nodes lying on the border of the meshed domain, or at the

interface between several material regions. It is however extremely important to take these

border elements into account in our formulation as significant differences in the results of

the finite element simulations may be observed depending on the modified deformation

gradient defined for these border elements (results from 1 to 2 have been observed on

classic benchmarks). No details on the best treatment to be adopted for border elements

have been proposed in the original, 2D only, implementation of the average nodal volume

change ratio triangle, and our stiffness terms being different anyway, this section results

from extensive use and testing of the present formulation.

In the end, the formulation that has been proven to give the best results for our Average

Elemental Jacobian tetrahedral element is:

First compute the nodal volume change ratio for the nodes for which the whole neigh-

bourhood is formed. When all four tetrahedron nodes are located on a border, the standard

formulation is used. Otherwise, compute the average volume change ratio as

J̄e =
∑

I=1,I /∈δΩ

JI (7.84)

where the sum is over the tetrahedron nodes that are not located on the border of the

meshed domain.

To compute the terms of the stiffness matrix, the sum in (7.82) is also taken over the

nI ≤ 4 element’s interior nodes only. Resulting in the following expressions for Kint
ee

and Kint
eq

:

Kint
ee
=

∫

hΩe

GT
e

a(F̄) Ge dΩ+


 1

nI J̄e

nI∑

I=1,I /∈δΩ

υe

nI VI

− 1



∫

hΩe

GT
e

q(F̄) Ge dΩ

Kint
eq
=


 1

nI J̄e

nI∑

I=1,I /∈δΩ, q∈PI

υq

nI VI



∫

hΩe

GT
e

q(F̄) Gq dΩ (7.85)

7.5 Conclusions

In this chapter, unlocking solutions for the linear tetrahedron were presented.

In Section 7.1 popular nodal-based formulations were reviewed: the average nodal pres-

sure (ANP) linear tetrahedron proposed by Bonet and Burton [25] and the average nodal

strain linear tetrahedron proposed by Dohrmann et al. [55]. In nodal-based formulations,
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the incompressibility constraints are enforced on newly defined nodal volumes instead of

on each element. These formulations are proposed in the context of explicit finite element

simulations were a lumped mass matrix is used.

In Section 7.2 the F-bar methodology for quadrilateral and hexahedral elements, and its

extensions to triangular and tetrahedral elements, the F-bar-patched method, are presented.

The idea is to define a modified deformation gradient F̄ over the element, which is used to

compute the stresses in the traditional way. These methods are suitable for implicit finite

element analysis and an expression for the stiffness terms of the tangent stiffness matrix

is proposed. Even though the idea is interesting, the F-bar-patch tetrahedron proposed

by de Souza Neto et al. [52] is useless in practice because it requires the definition of

non-overlapping patches of tetrahedral elements, for which no automatic algorithm is yet

available.

In Section 7.3 and Section 7.4 two successive ideas to remove the locking of the standard

linear tetrahedron, valid for explicit and implicit finite element analysis, are presented. The

first proposal is a F-bar-patch tetrahedron in which, for each element, the incompressibility

constraints are enforced over the element itself and its neighbours. Both the element’s node

and the face-neighbourhood are investigated. In the second proposal, a nodal Jacobian

is defined at the element’s node as the ratio between current and initial nodal volumes;

the definition of nodal volumes being identical to nodal-based formulations. A modified

element Jacobian is then defined by averaging the nodal Jacobians. This modified Jacobian

is used to define the modified deformation gradient of the F-bar methodologies. The terms

of the internal tangent stiffness matrix are obtained by linearisation of the internal virtual

work equation, followed by finite element discretisation. The two-dimensional and the

multi-material case were also investigated.

Both formulations were implemented in the finite element code Metafor. In the next

chapter, finite element simulations will be performed using these new elements, in order to

determine their efficiency in removing the incompressibility and shear locking which occurs

with the standard linear tetrahedron.
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Chapter 8

Numerical applications

This chapter investigates the unlocking performance of the two proposed element formu-

lations, the face- and node- neighbourhood patch volume change ratio linear tetrahedral

elements, called f-patchJ tet and n-patchJ tet, as well as, the Average Elemental Jacobian

(AEJ) tetrahedron, AEJ . Even though these elements have been constructed to remove

volumetric locking only, their capability to remove shear locking will also be investigated.

A major advantage of the proposed formulations is that they can be used for any ma-

terial laws without additional implementation efforts. This is illustrated in this chapter

through the use of several constitutive equations: compressible and incompressible linear

elasticity, neo-Hookean (large deformation) and elasto-plastic with Von Mises plasticity.

Also, the elements can be used in explicit and implicit problems, as will also be shown

hereafter.

The numerical applications considered in this chapter are classical benchmark tests from

the literature so that the performance of our new finite element formulations will be tested

against the most popular unlocking solutions in literature. Table 8.1 presents all the ele-

ment formulations that will be investigated in this chapter.

8.1 Cook’s membrane

The Cook’s membrane is frequently used to assess the convergence properties of finite ele-

ments near the incompressibility limit, under combined shear and bending strains [35, 51,

52, 112, 159]. Both the two-dimensional plane-strain and the three-dimensional Cook’s

membrane are investigated in this work. The geometry of the membrane is given in Fig-

ure 8.1. The left vertical edge is clamped and a distributed shearing load is applied to
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TABLE 8.1: Finite elements used in this chapter. The proposed elements are indicated in

bold.

2D triangular elements Reference

T1 standard, linear

T2 standard, quadratic

f-patchJ tri face-neighbours-patch volume change ratio, linear Section 7.3.3

n-patchJ tri node-neighbours-patch volume change ratio, linear Section 7.3.3

AEJ tet Average Elemental Jacobian , linear Section 7.4.2

F-bar-patch tri modified deformation gradient or F-bar, linear [52]

AndradePires2004 average nodal volume formulation, linear [5]

3D tetrahedral elements

T1 standard, linear

T2 standard, quadratic

f-patchJ tet face-neighbours-patch volume change ratio, linear Section 7.3

n-patchJ tet node-neighbours-patch volume change ratio, linear Section 7.4

AEJ tet Average Elemental Jacobian , linear Section 7.4

Puso stabilised nodally integrated, linear [147]

Dohrmann nodal-based uniform strain, linear [55]

Klaas linear u, linear p, stabilised mixed [96]

T1P1ES3ST linear u, linear p, area bubble, enhanced strains with stab. [112, 113]

T1P1ES12ST linear u, linear p, volume bubble, enhanced strains with stab. [112, 113]

2D quadrilateral elements

STD quad standard, linear

SRI quad selective reduced integration, linear Metafor [111]

F-bar quad modified deformation gradient or F-bar, linear [51]

CP4R reduced integration and hourglass control, linear [114]

3D hexahedral elements

STD hex standard, linear

SRI hex selective reduced integration, linear Metafor [111]

EAS hex enhanced assumed strains, linear Metafor [111]
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FIGURE 8.1: 2D Cook’s membrane. Geometry and Loading.

the opposite edge. The latter is applied in the plane of the element facets and follows the

orientation of the facets throughout the deformation. Several material properties, element

formulations and mesh sizes will be investigated hereinafter.

8.1.1 Two-dimensional case

The plane-strain Cook’s membrane example has been used as benchmark to assess the

convergence properties of enhanced element formulations [5, 51, 52, 99, 159], including

by Simo and Armero [159] for their enhanced assumed strain element, de Souza Neto et al.

[51] for their modified deformation gradient F̄ quadrilateral element and by de Souza Neto

et al. [52] for their F̄-based triangle.

As has been done in the literature, a regularized neo-Hookean material with shear mod-

ulus µ = 80.1938 MPa and bulk modulus k = 40.0942 x 104 MPa is adopted. Corre-

sponding values for the Young’s modulus and Poisson’s ratio are E = 240.5654 MPa and

ν = 0.4999. Note that near incompressibility is achieved for this value of the Poisson’s

ratio. A distributed shearing load of t̄ = 6.25 N/mm is applied on the right vertical edge of

the specimen, which makes a total resultant shearing force of f = 100 MPa/mm. This load

is applied incrementally within an implicit time integration scheme.

Also, several mesh sizes are considered. These meshes were obtained by first construct-

ing quadrilateral meshes of 2×2, 3×3, 5×5, 8×8, 16×16 and 32×32 elements and then

subdividing each quadrilateral into two.
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FIGURE 8.2: Plane-strain Cook’s membrane. Convergence of the solution with mesh refine-

ment. (a) Comparison of the results obtained with the proposed elements, AEJ and patchJ

tri with other 2D elements of Metafor. (b) popular elements from literature [5, 52]. (c)

popular Abaqus elements. (d) 3D elements of Metafor, using a 2D-equivalent model of the

Cook’s membrane.
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TABLE 8.2: Plane strain Cook’s membrane. Vertical displacement at point C obtained for

various finite element formulations and for the finer mesh: 32 elements per side, giving

32× 32 quadrilateral elements and 32× 32× 2 triangular elements and 33× 33 nodes.

Element type Source u y [mm]

classical 2D triangular elements

T1 Metafor 2D 4.5329

T1 de Souza Neto et al. [52] 4.38168

T1 (CPE3) Abaqus 5.00295

T2 Metafor 2D 4.0725

unlocking 2D triangular elements

F-bar-patch tri de Souza Neto et al. [52] 6.8670

AndradePires2004 Andrade Pires et al. [5] 6.8292

f-patchJ tri Metafor 2D 7.9624

AEJ Metafor 2D 8.1276

2D quadrilateral elements

F-bar-quad de Souza Neto et al. [52] 6.8915

SRI quad Metafor 8.0144

CP4R Abaqus 8.14209

3D elements

T1 Metafor 3D, 2D-equivalent test 3.23223

SRI hex Metafor 3D, 2D-equivalent test 8.01448

EAS hex Metafor 3D, 2D-equivalent test, equivalent linear elastic law 8.03002
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Figure 8.2 shows the final vertical displacement obtained at the upper right corner of

the panel (point C in Figure 8.1) for several discretisations.

Figure 8.2 (a) shows the convergence of the two proposed elements, f-patchJ tri and AEJ

tri implemented in the finite element software Metafor [111]. Two other finite elements of

Metafor are represented for comparison: the standard linear triangle, T1, and the selective

reduced integrated quadrilateral, called SRI quad in this work.

Figure 8.2 (b) is a copy of the results presented by de Souza Neto et al. [52] for the

standard linear triangle, the F-bar-patch triangle and the F-bar quadrilateral.

Comparing Figure 8.2 (a) and (b), we verify that similar displacement values are ob-

tained for the standard linear tetrahedron (T1), meaning that results produced by our

in-house code Metafor are similar to those obtained by de Souza Neto et al. [52] when

using the same finite element. This guarantees that our model is identical to the one used

by de Souza Neto et al. [52].

Interestingly, the obtained tip displacements are higher for the proposed formulations

AEJ tri and f-patch tri than for the F-bar-patch tri and F-bar quad. This means that our

formulations remove the locking behaviour of T1 better than these F-bar formulations, at

least in the two-dimensional case. The obtained curves are close to those obtained for the

selective reduced integrated quadrilateral, quad SRI, which has been proven to be effective

in removing the volumetric locking [145] and has been extensively used in Metafor [111].

Furthermore, our Average Elemental Jacobian triangular element give results that are

significantly better than the algorithm it was inspired from, i.e. the AEJ in Figure 8.2, Upper

Right, converges towards a limit of 8.13 mm whereas the curve of Andrade Pires et al. [5],

represented in Figure 8.2 (b) tends towards the lower value of 6.83 mm.

The lower graphs of Figure 8.2 permits a second check of the good behaviour of the

proposed finite elements. The graph on the left represents the convergence of two common

2D elements of Abaqus1, the 3-node linear triangle CPE3 and the 4-node linear quadrilateral

with reduced integration and hourglass control (CP4R). The convergence of standard linear

triangle has already been presented for two other implementations of the element: Metafor

(upper left graph) and literature (upper right graph). In all three cases the standard linear

triangle exhibits volumetric and shear locking. The default plane-strain quadrilateral of

Abaqus, CP4R, presents however a very good behaviour under incompressibility constraints

with a flexibility of the membrane that is similar to the one obtained with the SRI quad of

Metafor and our new AEJ triangular formulation (see upper left graph).

1To build the equivalent model in Abaqus, the constants C10 = µ/2 = 40.0969 MPa and D1 = 2/k =

4.98825 MPa−1of the Neo-Hookean law were defined.
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The last graph, Figure 8.2 (d) depicts results obtained using a 3D model of the Cook’s

membrane, but restricting the membrane to deform in its plane, so that the 3D problem

is equivalent to the 2D case presented above. Figure 8.5 depicts the boundary conditions

used. This dodge allows us to compare the proposed 2D unlocking formulations against the

well-established 3D non-locking hexahedral elements of Metafor: with selective reduced

integration and with the hexahedron with enhanced assumed strain. The SRI hexahedron

has been proven to be effective in removing volumetric locking and the enhanced assumed

strain hexahedron, EAS hex, is designed to remove both volumetric and shearing locking

[32]. The latter was not designed to work with hyperelastic material laws. Consequently,

the equivalent linear elastic material law was used in that case. The graph of Figure 8.2 (d)

indicates that both hexahedral elements converge towards the same limit of approximately

8 mm for fine meshes, with a faster convergence rate for the EAS hexahedron. The third

curve on the graph refers to the convergence of the vertical displacement at point C for the

Cook’s membrane meshed with the standard linear tetrahedron. As expected, we observe a

very stiff behaviour in that case.

Table 8.2 gives the final displacement values obtained for the various elements pre-

sented above. The numerical values correspond to the vertical displacement at point C

obtained for the finer mesh of 32 elements per side (33× 33 nodes). These values indicate

that the CP4R hexahedral element of Abaqus is the most flexible, closely followed by the

proposed Average Elemental Jacobian (AEJ) triangle.

Figure 8.3 depicts the stress field obtained for the proposed formulations as well as for

the standard linear triangle and the selective reduced integrated quadrilateral of Metafor.

Minimum and maximum values of the Von Mises stress are indicated on the corresponding

location on the membrane. Because these extrema are larger for the Average Elemental

Jacobian (AEJ) tetrahedron than for the face-neighbourhood-patch nodal volume ratio, f-

patchJ tri, we may deduce that the second formulation has a smoothing effect on the stress

field.

Figure 8.4 compares the pressure field obtained for the proposed AEJ element and the

pressure field obtained by [5] for their F-bar-based average nodal volume change ratio

element. Even though the proposed AEJ formulation is based on Andrade Pires et al. [5],

different pressure fields are observed. Whereas [5] observed a checkerboard pattern, our

AEJ formulation provides a realistic pressure distribution.

167



CHAPTER 8. NUMERICAL APPLICATIONS

0 21

7.05 mm 7.86 mm

Von Mises stress [MPa]

(a) AEJ tri (b) f-patchJ tri

2.19

20.2

1.46

20.6

7.59 mm

(c) SRI quad

0

24.1

3.60 mm

(d) T1

3.56

27.4

(

FIGURE 8.3: Plane strain Cook’s membrane. Von Mises stress fields for (a) AEJ , (b) f-patchJ

tri, (c) SRI quad, (d) T1. The displacement and stress values indicated on the picture were

obtained with the depicted mesh resolution (8 elements per side).
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-20 10Pressure [MPa]

(a) AEJ tri (b) AndradePires2004

FIGURE 8.4: Plane strain Cook’s membrane. Pressure fields. (a) Average Elemental Jacobian

(AEJ) linear triangle. (b) F-bar-based average nodal volume change ratio triangle proposed

by Andrade Pires et al. [5]. This picture has been extracted from the original article [5].

8.1.2 Three-dimensional case

The Cook’s membrane is also a classical benchmark to assess the performance of hexahedral

and tetrahedral finite elements [31, 35, 71, 96, 101, 112, 132, 147, 181]. Dimensions of

the specimen are identical to the two-dimensional case, represented in Figure 8.1, with an

additional thickness of 5 mm (Figure 8.5).

Four different material behaviours will be evaluated:

An incompressible Neo-Hookean hyperelastic material with shear modulus µ = 0.8 MPa

and bulk modulus k = 8000 MPa, associated with an applied shearing force t̄ =

0.0625 MPa. The Neo-Hookean Cook’s membrane has been studied, with similar pa-

rameter values, by Klaas et al. [96] and, with other values for the shear and bulk mod-

ulus, by Widany et al. [181] and Gee et al. [71]. The value of the ratio k/µ = 10000

demonstrates the incompressibility of the material.
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FIGURE 8.5: 3D Cook’s membrane. Geometry and Loading. Left: 2D-equivalent model used

in our 2D study. Right: 3D model used to assess the performance of the proposed tetrahedral

formulations.

A nearly incompressible linear elastic material with Poisson’s ratio ν = 0.4999 and Young’s

modulus E = 1000 MPa, associated with an applied shearing force of t̄ = 10 MPa.

Again, the obtained results may be compared with Caylak et al. [35], Mahnken and

Caylak [112] and Laschet et al. [101].

A compressible linear elastic material with Poisson’s ratio ν = 0.33 and Young’s mod-

ulus E = 1000 MPa, associated with an applied shearing force t̄ = 10 MPa. Re-

sults obtained may be compared with the group Caylak et al. [35], Laschet et al.

[101], Mahnken and Caylak [112], as they have used similar material properties.

An elasto-plastic material with Poisson’s ratio ν = 0.333, Young’s modulus E = 70 MPa,

Yield stress σy = 0.243 MPa and tangent modulus ET = 1 MPa, associated with an

applied shearing force t̄ = 0.1125 MPa. The elasto-plastic Cook’s membrane has been

studied by Caylak et al. [35], Laschet et al. [101], Mahnken and Caylak [112] as well

as Puso and Solberg [147].
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FIGURE 8.6: Neo-Hookean Cook’s membrane in 3D. Left: Vertical tip displacement at C,

convergence versus mesh refinement. Right: Stress σx x along the clamped edge A− B.

8.1.2.1 Incompressible Neo-Hookean hyperelastic material law

The left graph of Figure 8.6 gives the top corner vertical displacement, u y at point C in

Figure 8.5 for different element formulations and mesh sizes. For the finest mesh, the dis-

placement at C was calculated to be u y(f-patchJ tet) = 7.914 for the face-neighbours-patch

volume change ratio linear tetrahedron and u y(AEJ ) = 8.287 for the Average Elemen-

tal Jacobian linear tetrahedron. These results are both close to the quadratic tetrahedral

element: u y(T2) = 8.595 and the SRI hexahedral element: u y(T2) = 8.384, compared

the standard linear tetrahedral who appears to be very stiff: u y(T1) = 5.733. Moreover,

both our elements seem to be more efficient in removing the combined shear and volume

locking than the stabilised mixed linear displacement- linear pressure tetrahedral element:

u y(Klaas) = 7.17 proposed by Klaas et al. [96]. These displacement values have been re-

ported in Figures 8.7 and 8.8. Finally, the left graph of Figure 8.6 indicates that our AEJ tet

element converges faster than our f-patchJ tet element.

Figure 8.6, Right, shows the stress distributions σx x along the clamped edge (edge A-

B in Figure 8.5) for the five element formulations drawn in Figure 8.6. The σx x stress

field distribution is also depicted on the Cook’s membrane in Figure 8.7. However, the

graph of Figure 8.6 presents the stresses computed at the tetrahedron Gauss Point but

extrapolated to the element’s nodes, and recorded for the nodes located at central-thickness

of the clamped side of the 3D Cook’s membrane; whereas Figure 8.7 shows the stress
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FIGURE 8.7: Neo-Hookean Cook’s membrane in 3D. σx x stress distribution for the standard

linear tetrahedron T1, the quadratic tetrahedron T2, our face-neighbours-patch volume

change ratio tetrahedron f-patchJ tet and our Average Elemental Jacobian tetrahedron,

AEJ, .

distribution on the front side of the membrane. If we consider the curve corresponding to

SRI hex as the reference solution, the results may be ordered as how well they approach

this reference curve: first the second order tetrahedral element T2, second our AEJ linear

tetrahedral element and third our f-patchJ tetrahedral element. The curves for these three

formulations present the same trend than that of the SRI hex but they are shifted towards

the higher stress values; meaning that all three formulations exhibit a spurious stiffness.

T1 gives a less smoother stress distribution so that this formulation may be classified far

behind the other four elements.

Figure 8.8 shows the Von Mises stress distribution for the two standard formulations T1

and T2 as well as for our two proposed elements f-patchJ tet and AEJ on Cook’s membranes

of mesh resolution 17 degrees of freedom per side (8 elements per side for the quadratic

tetrahedron and 16 for the linear formulations). Clearly, our AEJ tet shows a very close

result to the quadratic tetrahedron. The Von Mises stress field is smoother for our f-patchJ

tet element, and even more for the standard linear tetrahedron T1.

8.1.2.2 Nearly incompressible linear elastic material law

Figure 8.9 presents the convergence of the solution with mesh refinement for different

element formulations in the incompressible case. The graph on the left shows the final

vertical tip displacement at point C for the T1, T2, Quad SRI and Quad STD elements, as
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FIGURE 8.8: Neo-Hookean Cook’s membrane in 3D. Von Mises stress distribution for the

standard linear tetrahedron T1, the quadratic tetrahedron T2, our face-neighbours-patch

volume change ratio tetrahedron f-patchJ tet and our Average Elemental Jacobian tetrahe-
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FIGURE 8.9: Nearly incompressible linear elastic Cook’s membrane in 3D. Vertical tip

displacement u y at C, convergence of with mesh refinement. Left: Results computed with

Metafor. Right: Results extracted from the presentation of Caylak et al. [35], which were

published in Mahnken and Caylak [112].
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FIGURE 8.10: Nearly incompressible linear elastic Cook’s membrane in 3D. Stress σx x

along the clamped edge A− B (see Figure 8.2). Upper Left: Results computed with Metafor.

Upper Right: Results extracted from the presentation of Caylak et al. [35], which were pub-

lished in Mahnken and Caylak [112]. Lower: zoom of the upper graphs, for the proposed

formulations and the best elements of Mahnken and Caylak [112].
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well as for the two proposed elements f-patchJ tet and AEJ tet , all of which were com-

puted with Metafor. The graph on the right presents literature results. T1P1ES3ST and

T1P1ES12ST are two mixed displacement-pressure tetrahedral elements, respectively with

area and volume bubble functions, presented in Mahnken and Caylak [112]. The stabilised

nodally integrated of Puso and Solberg [147] and the nodal-based uniform strain element

of Dohrmann et al. [55] are two very popular unlocking solutions from literature. All curves

were extracted from the presentation of Caylak et al. [35]. Please notice the difference in

the scale of the horizontal axes.

Looking at Figure 8.9 Left, we observe a good performance of our AEJ tet element. For

the finest mesh, the vertical displacement is u y(AEJ tet) = 3.55 mm, which is close to

the value obtained for the SRI hex of Metafor u y(SRIhex) = 3.64 mm, taken as reference

solution in this study. The corresponding vertical tip displacement for the standard linear

tetrahedron is u y(SRIhex) = 2.4 mm. The second order tetrahedron, T2, behaves well

for coarse meshes but diverges from the ideal solution when the number of degrees of

freedom increases; thus making our AEJ tet a better option for fine meshes. Our f-patchJ

tet formulation is not powerful enough to remove the totality of the locking of the standard

tetrahedron: the convergence is slow and the computed tip displacements are only slightly

higher than those obtained with T1. The standard hexahedron is very stiff, much stiffer

than the standard tetrahedron.

Comparing Metafor results, Figure 8.9, Left, with literature Figure 8.9, Right, we ob-

serve an overall under-estimation of the vertical displacement at point C, for all Metafor

elements. This difference is observed even for the standard elements T1 and T2, even

though the same model with the same incompressible material properties than Mahnken

and Caylak [112] have been used. The origin of this difference could not yet be found. Fu-

ture investigations will include a comparison with Abaqus [114] elements as well as with

other literature results.

Figure 8.10 shows the stress σx x along the clamped edge A− B for the same elements

(see Figure 8.2). Again, the graph on the left shows the result computed with Metafor, and

the graph on the right refers to the results of Mahnken and Caylak [112]. The stress curves

were obtained in similar manner than for the neo-Hookean material, Section 8.1.2.1, i.e.

by extrapolating the stress values, computed at the Gauss point(s) of the element, to the

nodes. Apart from the irregularities observed along the clamped edge, which are due to

this extrapolation, we do not observe the high irregularities in stress distribution along the

clamped edge as do Puso and Dorhmann [112]. Results for the standard hexahedron are

not indicated as they fall out of the graph due to the high locking of this element.
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FIGURE 8.11: Compressible linear elastic Cook’s membrane in 3D. Left: Results computed

with Metafor. Right: Results extracted from the presentation of Caylak et al. [35], which

were published in Mahnken and Caylak [112].

8.1.2.3 Compressible linear elastic material law

Figure 8.11 presents the convergence results for the compressible Cook’s membrane in

three-dimensions. Again, the results that we obtained with Metafor (Figure 8.11, Left)

are plotted against the results of Mahnken and Caylak [112] (Figure 8.11, Right). As for

the incompressible case, the standard and the quadratic tetrahedron of Metafor do not

quite give the same results than in Mahnken and Caylak [112]. Results obtained with the

selective reduced integration hexahedral element of Metafor does however converge to the

same limit of u y = 4 than the formulations presented in Mahnken and Caylak [112]. Apart

from this observation, results for the two proposed formulations AEJ tet and f-patchJ tet

are identical to those of the standard linear tetrahedron T1 in the compressible case, which

is reassuring. As already observed for the incompressible Cook’s membrane the quadratic

tetrahedron diverges from the reference solution when finer meshes are used.

8.1.2.4 Elasto-plastic material law

Figures 8.12 and 8.13 present the convergence of the vertical tip displacement at point C

and the stress distribution σx x along the clamped edge respectively for the elasto-plastic

three-dimensional Cook’s membrane. The final tip displacement for this element, for a
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FIGURE 8.12: Elasto-plastic Cook’s membrane in 3D. Vertical tip displacement u y at C,

convergence of with mesh refinement. Left: Results computed with Metafor. Right: Results

extracted from the presentation of Caylak et al. [35].
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FIGURE 8.14: Elasto-plastic Cook’s membrane in 3D. Equivalent plastic strain along the

upper edge A− C (see Figure 8.2). Left: Results computed with Metafor. Right: Results

extracted from the presentation of Caylak et al. [35].

mesh size of 5000 ddls, is u y(AEJ ) = 2.673. This value is lower, meaning that our element

is stiffer, than the one obtained for both stabilised enhanced assumed strain elements of

Mahnken and Caylak [112] with area and bubble functions, u y(T1P1ES12ST) = 3.122 and

u y(T1P1ES3ST) = 3.08 2.

Figure 8.14 presents the distribution of the equivalent plastic strain along the upper

edge of the Cook’s membrane. Results indicate that when no unlocking formulation is

used, i.e. for the standard linear tetrahedron and hexahedron, the plastic flow is highly

under-estimated. Higher values of the equivalent plastic strain are predicted by both our

unlocking proposals AEJ tet and f-patchJ tet. Results obtained with our AEJ tet lie in between

the linear displacement/linear pressure enhanced strain formulation with stabilisation and

volume-or-area bubble function proposed by Mahnken and Caylak [112] and the stabilised

nodally integrated tetrahedron of Puso and Solberg [147].

2These results for the elasto-plastic Cook’s membrane were not presented in the article [112] itself but in

the associated conference presentation [35].
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FIGURE 8.15: Cylinder under internal pressure. Geometry, loading and initial structured

and unstructured meshes.

8.2 Thick-walled cylinder under internal pressure

The second example is a the finite element simulation of a thick-walled3 cylinder under

internal pressure. The numerical investigation is done in the three-dimensional space, but

plane strain conditions are assumed. The initial geometry and mesh of the problem are

represented in Figure 8.15. Using symmetry conditions only a quarter of a cylinder is

considered, the surfaces Sτ1
and Sτ2

are constrained along their normal direction. The front

and back surfaces Sz1
and Sz2

are also constrained along their normal direction in order to

enforce the plane strain condition. A pressure p is applied on the internal surface Sr1
.

The exact elastic solution for the thick-walled cylinder under internal pressure, in the

case of small strains, can be obtained by expressing the equilibrium equations in polar

coordinates, the strain-displacements equations and Hooke’s law and then assuming that

the cylinder is long enough to ensure that plane sections remain plane [130]. The radial

displacement depends on the elastic properties of the cylinder, its inner and outer radii and

the applied internal pressure:

u(r) =
(1+ ν)pr2

1

E(r2
2 − r2

1)

�
r2

2

r
+ (1− 2ν)r

�
(8.1)

3A thick-walled cylinder or tube is one where the thickness of the wall r2 − r1 is greater than one-tenth of

the radius r2: r2 − r1 > 0.1r2.
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FIGURE 8.16: Cylinder under internal pressure. Unstructured mesh. Radial displacement.

Left: ν = 0.33. Right: ν ≈ 0.5.

The radial and tangential or circumferential stresses within the tube depend on the inner

pressure and the inner and outer radii:

σr(r) =
pr2

1
− p

r2
1 r2

2

r2

r2
2 − r2

1

(8.2)

στ(r) =
pr2

1
+ p

r2
1 r2

2

r2

r2
2 − r2

1

(8.3)

Among these stresses, the tangential stress is the highest.

For comparison purposes, we take the same material and geometrical properties than

Mahnken and Caylak [112]. The inner and outer radii of the cylinder are set to r1 = 5

mm and r2 = 30 mm and an internal pressure of p = 1000 MPa is imposed (Figure 8.15).

Two materials are investigated: a compressible linear elastic material with Young’s modulus

E = 210 GPa and Poisson’s ratio ν = 0.33 and a nearly incompressible linear elastic mate-

rial with the same Young’s modulus but associated with a Poisson’s ratio of ν = 0.49995. A

quasi-static integration scheme is used and the tangent stiffness matrix is computed analyt-

ically.

Also, two meshes are considered: a structured mesh, obtained by constructing a hexa-

hedral mesh of 13×13×6 elements and then subdividing each hexahedron in 6, leading to

1372 nodes, and an unstructured mesh of 2180 nodes. This gives problem sizes of 4116 and

6540 degrees of freedom, respectively. The six elements on the thickness of the cylinder are
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FIGURE 8.17: Cylinder under internal pressure. Unstructured mesh, ν ≈ 0.5. Left: Radial

displacement uy along Sτ1
. Right: Radial displacement ux along Sτ2
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ν = 0.33. Right: ν ≈ 0.5.
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FIGURE 8.20: Cylinder under internal pressure. Unstructured mesh. ν ≈ 0.5. Stress field

σy y . Left: standard linear tetrahedron. Centre: patch volume ratio linear tetrahedron.

Right: Average Elemental Jacobian (AEJ) tetrahedron.
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FIGURE 8.21: Cylinder under internal pressure. Unstructured mesh. ν ≈ 0.5. Von Mises

Stress field σV M .
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FIGURE 8.22: Cylinder under internal pressure. Unstructured mesh. ν ≈ 0.5. Pressure

field.
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needed to assess the performance of the proposed unlocking formulations because the lat-

ter require information from the element’s neighbours to compute its modified deformation

gradient.

In Figure 8.16 we compare the radial displacement, computed as the displacement along

the x -coordinate on facet Sτ2
(Figure 8.15), for the two proposed unlocking formulations

AEJ tet and patchJ tet, the standard linear tetrahedron, T1, and the standard and SRI hex-

ahedral elements, STD hex and SRI hex. The analytical solution (8.1) is also represented.

For the compressible case (Figure 8.15, Left), the deviations are almost negligible, even

though a small deviation to the analytical curve can be noticed for the tetrahedral ele-

ments. For ν ≈ 0.5 (Figure 8.15, Right), the standard linear tetrahedron and the standard

linear hexahedron show very large deviations from the analytical solution, due to locking.

The face-neighbourhood-based patch volume ratio tetrahedron f-patchJ tet also shows to

be very stiff. The curve obtained for the Average Elemental Jacobian tetrahedron, AEJ, is,

however, very satisfactory: the deviation observed with the analytical curve is similar to

the compressible case, so that we hypothesis that this deviation is inherent to the use of

tetrahedra instead of hexahedrons.

Figure 8.17 and 8.18 show the radial displacement u(r) for the the unstructured and

structured mesh respectively. The graphs on the left represent the radial displacement on

the facets Sτ1
and the graphs on the right represent the radial displacement on the facets

Sτ2
(see Figure 8.15 for the location of these facets). For the structured mesh, the radial

displacement of facets Sτ1
and Sτ2

are not similar. Also, comparing both figures (structured

and unstructured mesh), we observe that the structured mesh introduces an additional

stiffness to the problem, both AEJ curves, on facets Sτ1
and Sτ2

, being under the analytical

solution.

In Figure 8.19 the tangential stress στ, taken as σy y on Sτ2
, is depicted for the different

element formulations. The analytical solution (8.3) is also shown. The unstructured mesh

was used to compute these graphs, results obtained with the structured mesh are similar.

Again, for the compressible material (Figure 8.19, Left), all curves are close the analyti-

cal solution. Results obtained for ν = 0.444495 are again more heterogeneous. To help

understanding these curves, we represented the stress fields obtained for the standard lin-

ear tetrahedron, the f-patch volume ratio tetrahedron and the Average Elemental Jacobian

tetrahedron in Figure 8.20. Clearly an oscillatory behaviour is observed for the standard

linear tetrahedron and, even more, for the f-patch volume ratio tetrahedron. The Average

Elemental Jacobian element provides a smooth field and the corresponding curve in Figure

8.19, Right, lies very close to the analytical solution.
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TABLE 8.3: Elasto-plastic Taylor bar impact. Results for several finite element formulations,

including the proposed f-patchJ tet and AEJ tet elements.

Element type dof CPU time steps Final Radius R f Final Height h f

[mm] [mm]

T1 1836 1min 14s 1408 4.19 21.2

f-patchJ tet 1836 2min 40s 1604 4.90 20.9

n-patchJ tet 1836 4min 57s 1621 4.92 21

AEJ tet 1836 22min 33s 3061 6.52 21.2

STD hex 1836 58s 1023 4.64 20.3

SRI hex 1836 1min 59s 4374 7.05 21.5

AEJ tet 19802 17h 25min 55s 10734 6.862 20.8

SRI hex 19802 53min 53s 11857 7.129 21.4
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FIGURE 8.23: Elasto-plastic Taylor bar impact. Radius increase versus time.

8.3 Taylor bar impact

The Taylor bar impact, the impact of a cylindrical rod at high speed, is a classic benchmark

to study plasticity. It has been studied in the particular case of unlocking formulations

for the linear tetrahedron by Puso and Solberg [147] to assess the performance of their
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FIGURE 8.24: Elasto-plastic Taylor bar impact. Convergence of the solution with mesh

refinement.

stabilised nodally integrated linear tetrahedron. The latter is a nodal-based formulation

and thus specially suited for explicit time integration. The unlocking formulations pro-

posed in this dissertation were developed in an implicit framework. And, the previous

sections showed that the proposed Average Elemental Jacobian (AEJ) linear tetrahedron

in particular was well-suited for implicit finite element analysis. This section will assess

the performance of the proposed elements for high speed dynamics finite element analysis

using an explicit time integration scheme.

The Taylor bar problem studies the impact with a rigid surface of a cylindrical rod

moving with high speed. The bar is modelled as an elasto-plastic material with a Young’s

modulus of E = 117 GPa, a Poisson’s ratio of ν = 0.35, an initial yield stress of 0.4 GPa

and a hardening modulus of H = 0.1 GPa. The initial length of the bar is 32.4 mm and the

initial radius is Ri = 3.2 mm. A solution is obtained for an initial velocity of 227 m/s. The

interval of 80 µs has been analysed.

An three-dimensional representation of the bar is studied. However, thanks to symmetry

constraints, only a quarter of the cylinder is modelled. The bar is discretised by generating

an initial hexahedral mesh of 5× 5× 30 elements and then subdividing each hexahedron

into 6 tetrahedra for the tetrahedral meshes. This gives models of size 1836 degrees of

freedom. With the aim of studying the convergence of the solution with mesh refinement,
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A
B

C

SRI hexT1 AEJ tet

FIGURE 8.25: Elasto-plastic Taylor bar impact. Illustration of the studied tetrahedral and

hexahedral models. The pictures are the final deformed shapes of the Taylor bar modelled

with three different finite elements. The corresponding front views are indicated in Fig-

ure 8.26.
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T1 f-patchJ tet AEJ tetSRI hex STD hex

0 3Equivalent Plastic Strain

FIGURE 8.26: Elasto-plastic Taylor bar impact. Upper: Final deformed shapes obtained for

several finite element formulations, including the proposed f-patchJ tet and AEJ tet elements.

Lower: Equivalent plastic strain distribution for the same finite element formulations.
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discretisations of 3× 3× 15, 6× 6× 45 and 12× 12× 50 hexahedral elements were also

generated.

Table 8.3 presents the obtained results, in terms of computer time, number of steps, final

radius (distance A-B) and final height (distance B-C) for the standard linear tetrahedron,

the proposed elements f-patchJ tet, f-patchJ tet and AEJ tet , the standard linear hexahedron

and the hexahedron with selective reduced integration (The points A, B and C are indicated

in Figure 8.25). Comparing the results obtained for our face and node-neighbourhood patch

elements, both formulations output similar results, with the node-neighbourhood patch

element being slightly less stiff but at the cost of an increase in computer time and memory.

Also, simulation times for our AEJ tet , approximately 22 minutes, may appear quite high

as compared to simulation times for the other elements, which is below 5 minutes. This is

due to our implementation of this element in which we do not keep any additional nodal

quantity in memory, neither the volumes VI and υI , nor the Jacobian JI , so that these values

are recomputed for each element and at each step. Keeping these three nodal quantities in

memory will lead to a drastic decrease in computation time in the future.

The radius increase of the cylindrical bar during the impact is presented in Figure 8.23.

This graphs clearly illustrates the superiority of our AEJ tet as compared to our f-patchJ tet.

But, our AEJ tet element is still stiffer than the SRI hex, which means that a certain amount

of locking is still present. Possible explanation for this is that the AEJ tet element has not

yet converged for the illustrated mesh resolution, whereas the SRI hex has. In an attempt

to answer this question, the convergence of the solution with mesh refinement is proposed

in Figure 8.24.

In Figure 8.24 the x-axis indicates the mesh resolution, evaluated as the number of

elements on edge A-B (see Figure 8.25); and the y-axis gives the radius increase obtained

using either our AEJ tet or the SRI quad. This graph indicates that much finer meshes are

needed to obtain a converged solution with AEJ tet element than is the case with the SRI

hex. Simulations results for the finest mesh are reported in Table 8.3.

The final deformed shapes obtained using different formulations are shown in Fig-

ure 8.26 to help the reader to assess the differences in final lengths and radii visually

(the pictures are the front views of the 3D quarter of the cylindrical bars). As presented in

Table 8.3, the final length of the bar is identical for the standard tetrahedron T1 and our

Average Elemental Jacobian tetrahedron, AEJ, but the final radii are significantly differ-

ent. The explanation for this is illustrated in Figure 8.26, where we observe that the upper

extremity of the cylindrical rod is skewed in the T1 case.

Figure 8.26, Lower, presents the equivalent plastic strain distribution for the five finite

element formulations considered. Clearly all formulations predict a lower plastic flow than

189



CHAPTER 8. NUMERICAL APPLICATIONS

the SRI hexahedron. In decreasing order we have

ε̄p(SRI hex) = 3.123,

ε̄p(AEJ tet) = 2.122,

ε̄p(n-patchJ tet) = 1.269,

ε̄p(f-patchJ tet) = 1.242,

ε̄p(STD tet) = 0.924, and

ε̄p(STD hex) = 0.777

8.4 Concluding Remarks

The goal of this chapter was to assess the efficiency of the two un-locking ideas presented in

the previous chapter and implemented in Metafor [111]. Both two-dimensional and three-

dimensional applications were considered. Several materials were investigated, including

compressible and incompressible linear elastic, neo-Hookean and elasto-plastic. Also, quasi-

static implicit and dynamic explicit tests were performed. Finally, all three applications

were popular benchmarks taken from literature so that our element could be compared

with the most popular formulations of the literature.

Clearly, the proposed face- or node- neighbourhood patch volume change ratio lin-

ear simplex element is not satisfactory: only a part of the locking behaviour of the stan-

dard tetrahedron is removed, the stress field obtained in the case of Cook’s membrane is

smoothed so that the extrema are under-estimated (Figure 8.3), the stress distribution ob-

tained in the case of the cylinder under internal pressure is highly sporadic (Figure 8.20),

and the equivalent plastic strain in the Taylor bar is also under-estimated (Figure 8.26).

Our Average Elemental Jacobian tetrahedron, proposed for the two-dimensional case by

Andrade Pires et al. [5] but corrected and extended to third dimension in this dissertation

(Section 7.4), appears to be very efficient in removing both shear and volumetric locking.

Results for the plane-strain Cook’s membrane are better than in the original article of

Andrade Pires et al. [5] (Figure 8.2), which may be due to our corrections applied to the

stiffness terms of the tangent stiffness matrix (see Section 7.4.2). Obtained vertical tip dis-

placements for the 2D Cook’s membrane are also higher, meaning that the membrane is less

stiff, and closer to the results obtained with the selective reduced integrated quadrilateral

than the displacements obtained by de Souza Neto et al. [52] for the F-bar-patch triangle

and F-bar quadrilateral. Also, in contrast to the original element of Andrade Pires et al. [5],

a smooth distribution of the hydrostatic pressure over the membrane is observed.
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In three-dimensions, the proposed Average Elemental Jacobian (AEJ) tetrahedron is

also very satisfactory. The neo-Hookean Cook’s membrane test shows a good convergence

of the element with mesh refinement and a correct stress distribution over the membrane.

For the nearly incompressible linear elastic material law, the obtained results are also very

close to those obtained with the selective reduced integrated hexahedral element, which

has been proved to remove volumetric locking effectively. In the compressible case, i.e.

when there is no locking, the proposed AEJ element outputs identical results to the stan-

dard linear tetrahedron, which is reassuring. Finally, the elasto-plastic Cook’s membrane

showed slightly under-estimated displacement values as compared to the curves presented

in Mahnken and Caylak [112]. However, both the stress and the equivalent plastic strain

distributions are correctly evaluated.

The performance of the proposed low-order tetrahedral element has also been assessed

against the analytical solution of the thick-walled cylinder under internal pressure. Devia-

tions observed for our Average Elemental Jacobian are small, especially when an unstruc-

tured mesh is used. Moreover the stress and pressure distribution over the cylinder do not

exhibit the classical checkerboard pattern observed when locking occurs.

Finally, the benchmark of the Taylor bar shows that the proposed element substantially

reduces the locking of the linear tetrahedron in high-speed explicit analyses. However final

radii and height of the bar are not identical to the solution obtained for the hexahedral

element with selective reduced integration. The convergence of the proposed element with

mesh refinement is also slower than the one observed with the selective reduced integrated

hexahedral element.
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Chapter 9

Introduction

In Part 1, we developed procedures to generate patient-specific finite element meshes from

segmented images. These procedures can be employed whatever the number of tissues and

the geometries in the segmented dataset. In Part 2, we proposed a locking-free tetrahedral

element that can be used for finite element simulations with incompressibility or Von Mises

plasticity. Here, we illustrate the suitability of the above developments to solve actual

biomechanical problems.

The first application is the finite element analysis of the compression of a deer antler

cancellous bone. Several types of meshing methods, hexahedral and tetrahedral, are stud-

ied and their influence on the results of the finite element simulation is assessed.

The second application is the finite element modelling of intra-operative brain shift

deformation, based on pre-operative and intra-operative scan-data. We use both our mesh-

ing algorithm and our non-locking tetrahedral element to improve a previously proposed

biomechanical model of the brain [175].

The third application is the finite element study of dog humeral fractures. The devel-

opments of this thesis were used to create a multi-material model of a dog humerus. The

influence of the skeletal development (young versus adult dog), the elbow configuration

(flexion-extension and exo-endoration angles) and the load direction on stress distribution

within the humerus is analysed; and possible fracture types are deduced.

All three applications are the result of collaborative projects that could benefit from the

meshing algorithms and/or the non-locking tetrahedral element developed in this thesis.

However, the purpose of this chapter is more to illustrate the possibilities and application

range of our image - to - FE model approach, than to bring solutions to actual problems of

biomechanics.
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Chapter 10

Influence of meshing strategy on finite

element analysis of cellular structures

The goal of this chapter is to compare the different meshing strategies presented in Part 1

and analyse their influence on the results of a micro-finite element compression test of a

cellular structure.

10.1 Building of the finite element model

10.1.1 Image acquisition and preparation

Figure 10.1 (a), shows the initial dataset. It is a µ−CT scan of the central core of a deer

antler1. This 3D image was acquired with a X-Ray micro-tomography imaging system at the

Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège. This

dataset was introduced in [102] and has already been used in previous studies [49, 50,

117].

The size of the acquired 3D image is 1835× 1843× 350 voxels (i.e. approximately 1.2

billion voxels). For this study, in order to capture the geometry of the trabeculae accurately,

the out-of-plane resolution2 was set to be equal to the in-plane resolution, i.e. 8.64 µm.

Therefore, the size of bone sample was 15.9×15.9×3.02 mm3. The sample is characterised

by an apparent volume density of 18.7%.

1The antlers of cervids are constituted of bone tissue: a central core of cancellous bone, surrounded by a

thick layer of compact bone
2The out-of-plane resolution, z-resolution in this work, is the resolution that is perpendicular to the scan-

ning direction. It is usually less than the in-plane resolution, x y-resolution in this work.
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( ma) initial -CT scan of a deer antler cancellous bone

(b) sample of (a) used for finite element analysis

FIGURE 10.1: Finite element study of deer antler cancellous bone. Initial and re-sampled

dataset.

Only a subset of this image was used for micro-finite element modelling. Indeed, the

whole dataset would lead to prohibitive mesh sizes and simulation times. Moreover, we

are interested in comparing the influence of several mesh strategies on simulation results,

and not, in the scope of this thesis, in the validation of the micro-finite element model

in comparison with experimental tests. Hence, for the present study, modelling the whole

specimen was not necessary. Therefore a cubic sample of dimensions 245×245×245 voxels

(i.e. approximately 14.7 million voxels) was selected within the initial dataset, outputting

a cubic specimen of 2.11 × 2.11 × 2.11 mm3. The resulting 3D image is represented in

Figure 10.1 (b).

10.1.2 Mesh generation

Four different meshes were created from the binary 3D image of Figure 10.1 (b). These are

represented in Figure 10.2. Mesh (a) was generated by the very simple voxel-conversion

technique (see Chapter 5). The 38581 hexahedrons in the mesh correspond to the num-
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ber of foreground voxels in the input data, and therefore to the cancellous bone micro-

structure. Mesh (b) was obtained by smoothing mesh (a) with the algorithm proposed in

Section 5.3 and specially developed to avoid mesh distortion and shrinkage. In contrast,

classical smoothing algorithms would require many efforts and manual steps to avoid the

collapsing of the trabeculae in the mesh. The proposed hexahedral meshing algorithm how-

ever generates a valid mesh automatically, without user-interaction. Mesh (c) is similar to

mesh (b) but with a higher smoothing level. Mesh (d) is a tetrahedral volume mesh gener-

ated via the tetrahedral image-based meshing algorithm presented in this work (Chapter 4).

It comprises 66013 nodes, and 232859 tetrahedra, which is slightly more than the 65144

nodes of the hexahedral meshes (a) (b) and (c). A more rigorous analysis of the obtained

meshes is presented in Section 5.4.1. Let us just recall that the volumes of the different

models are approximately identical.

10.1.3 Boundary conditions

During the finite element simulation, the bottom of the sample is rigidly fixed in all direc-

tions while the top of the specimen is forced to move downwards. The nodes located at

the top of the specimen are forced to move downwards, until 10% of compression of the

specimen’s height is obtained; their displacement in the other directions is not constrained.

10.1.4 Material Properties

Material properties were obtained through the experimental testing of the sample repre-

sented in Figure 10.1 which was performed within the Laboratory of Chemical Engineering,

Department of Applied Chemistry of the University of Liege [50]. From this compression

test an apparent Young’s modulus for the whole specimen was obtained: Eapp = 61.21 MPa.

From this apparent modulus of elasticity, the actual Young’s modulus of the trabeculae was

calculated using mathematical relations developed for the analysis of open cell pore topolo-

gies. The latter take into account the cell’s relative density, which is 8.87 % for this sample.

Using this approach, a Young’s modulus of 7.8 GPa was found for the trabeculae. This value

is in accordance with values reported in litterature. Indeed, Akhtar et al. [2] obtained a

Young’s modulus of 8.1 GPa. Furthermore, we used a Poisson’s ration of ν = 0.3, which is

classical for bone trabeculae. Finally, a simple linear elastic material law was used in this

study, mainly because no literature could be found on the non elastic behaviour of deer

cancellous bone.
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0 Hex element distorsion 1 0 Tet element quality 1

(a) voxel-based (d) proposed tetrahedral mesh

(b) proposed hexahedral mesh - 1 (c) proposed hexahedral mesh - 2

FIGURE 10.2: Finite element study of deer antler cancellous bone. Finite element meshes.
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10.2 Finite element simulations

Finite element simulations were performed using Metafor [111]. The use of a finite de-

formations code (geometrically and materially non-linear) was essential because the com-

pressed samples showed evidence of localised large strains and large rotations.

Figure 10.3 shows the Von Mises stress fields, rendered on the final deformed meshes

at 10% of compression. Observing the stress fields, we do not notice significant differences

between the three hexahedral meshes. The stress distribution is however slightly different

for the tetraheral mesh, with maximal Von Mises stresses located on different trabeculae.

Figure 10.4 present the deformed models for the voxel-based and the tetrahedral mesh. The

figure enables to visually compare the geometric difference obtained. Some local bucklings

do occur in opposite directions in the two models. A comparison with experimental data

should be made in order to determine which model better represents the real compressive

behaviour of the sample.

The graph in Figure 10.5 presents the force-versus-displacement curves for the four

micro-FE models. First, we obtain the interesting observation that smoothing of voxel-

based meshes, by means of the specifically designed algorithm of Chapter 5, has the effect of

lowering the apparent Young’s modulus. Indeed, the slope of the force-displacement curves

is lower for the smoothed hexahedral meshes than for the voxel based mesh. Computing

the apparent Young’s modulus at 2% of global compression for the four models we obtain:

Eapp = 134.7 MPa for the voxel-based mesh, Eapp = 126 MPa for the hexahedral mesh with

one level of smoothing, Eapp = 108.8 MPa for the for the hexahedral mesh with two level of

smoothing, and Eapp = 123.6 MPa for the tetrahedral mesh. Therefore, the value obtained

for the tetrahedral mesh lies in between the values of the hexahedral meshes, which is the

case for small strains. For larger strains, from 3% of compression as reported on the graph,

the tetrahedral model appears to be stiffer than the hexahedral models.

10.3 Conclusions

This example demonstrates that mesh generation is a crucial step in finite element mod-

elling because it has a real influence on simulation results. From the same three-dimensional

image, we generated four different meshes and analysed their influence on a compression

test. For small deformations, at 2% of global compression, all models gave similar results.

However, when deformations were increased, the tetrahedral model became stiffer than the

hexahedral ones. Also, smoothing a voxel-based mesh decreased its global stiffness and the

computed apparent Young’s modulus of the model. Finite element models of other struc-
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0 3000Von Mises stress [MPa]

(a) voxel-based (d) proposed tetrahedral mesh

(b) proposed hexahedral mesh - 1 (c) proposed hexahedral mesh - 2

sVM=4146 MPa sVM=5982 MPa

sVM=5100 MPa sVM=5385 MPa

FIGURE 10.3: Finite element study of deer antler cancellous bone. Von Mises stress fields

for the four different finite element models considered.
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voxel-based proposed tetrahedral mesh

FIGURE 10.4: Finite element study of deer antler cancellous bone. Deformed models at

10% of compression.
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FIGURE 10.5: Finite element study of deer antler cancellous bone. Computed force dis-

placement curves for the four meshes considered.
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tures should be created, and simulations performed, in order to determine whether this

conclusion is always valid. From the finite element simulations, we deduced an apparent

stiffness of the sample comprised between 123.6 and 134.7 MPa, depending on the model

used. This is higher than the experimental value of 61.21 MPa obtained for the larger sam-

ple. Therefore, the studied sample is probably no sufficiently representative of the larger

sample. In the future, finite element simulations will be performed on a larger and more

representative sub-sample. We will then be able to validate our results and determine the

best meshing strategy for the micro-FE modelling of cellular tissues.
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Chapter 11

Finite element modelling of brain shift

deformation during image-guided

neurosurgery

This chapter illustrates how image-guided neurosurgery may benefit from the present work.

Indeed, a biomechanical model of the brain is able to provide the displacement field needed

to improve the accuracy of image-guided neurosurgery systems. The idea originates from

a previous work at the University of Liege [175]. Here, we improve the procedure by

providing a new meshing approach and non-locking tetrahedral finite elements.

11.1 Context

Image-guided neurosurgery systems relate the 3D pre-operative images of the patient to

the 3D patient’s coordinates (Figure 11.1). This system enables the surgeon to position

its instruments in the patient’s brain by looking at the screen, where the current position

of his surgical instrument is superposed on the patient’s preoperative scans. However, the

accuracy of this system is jeopardised by the fact that the brain deforms during the surgery,

so that the preoperative scans displayed on the screen do not reflect the patient’s current

reality. The fall in accuracy begins when the surgeon opens the skull, which results in a

leakage of cerebrospinal fluid and an equalisation of the pressures in and out the skull.

This deformation, called brain shift, can be relatively important with displacements of the

cortex of several millimetres. Because the brain deforms during the operation, first due to

the skull opening and then due to surgical acts such as cuts, retractions and resections, the

preoperative images become less and less representative.
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FIGURE 11.1: Image-guided neurosurgery systems. This technique relates the 3D pre-

operative images of the patient to the 3D patient’s coordinates.(CHU of Liège, Belgium).

The idea developed at the University of Liege several years ago was to use a finite

element model of the patient’s brain in order to compute the intra-operative deformations

[176]. The preoperative 3D scans can then be deformed accordingly. Obviously recording

all forces and displacements imposed by the surgeon during the surgical intervention was

unthinkable in a first step so that the registration technique was based on new images, taken

intra-operatively. The latter reflect the actual brain, at a particular time of the operation.

However the quality of these intra-operative images if far less than the high-quality of the

pre-operative images. Furthermore, not all medical imaging modalities can be taken intra-

operatively. Therefore, being able to calculate the deformation of the brain and successively

deform the preoperative images to match the patient’s actual reality is substantial.

Finite element computation of the intra-operative brain deformation is performed as

follows. From the intra-operative images and with the help of the initial preoperative im-

age, the current boundary conditions of the finite element model are deduced. Practically,

the correspondence between several anatomical landmarks in the images is established and

the displacement of these landmarks between both images is computed. These displace-

ments are then applied to the finite element model of the patient’s brain. The role of the

finite element simulation is to calculate, from a sparse set of imposed displacements, the

displacement throughout the brain. With the computed full displacement field, the preop-

erative images can be deformed.
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The model of Vigneron [175] lacked an automatic meshing procedure to build the fi-

nite element model from the patient’s segmented preoperative scans. Also, locking of the

standard tetrahedron was observed during the finite element simulations, so that an elastic

compressible material law had to be used. In this work, we use our original tetrahedral

meshing procedure, presented in Part 1 of this thesis, to generate a tetrahedral mesh from

the patient’s 3D images. Moreover, volumetric locking is avoided by using the newly devel-

oped tetrahedral element from Part 2 of this work.

11.2 Building of patient-specific biomechanical model

A finite element model of the brain was obtained by segmenting the pre-operative images,

generating the finite element mesh, assigning material properties, defining boundary con-

ditions and choosing an appropriate tetrahedral element formulation. Each of these steps

are detailed in the following paragraphs.

Segmentation of the 3D medical image of the brain was performed semi-automatically

using 3D Slicer [142]. The 3D image used is in fact an intra-operative Magnetic Resonance

Image (iMRI) acquired with the 0.5 T intra-operative GE Signa scanner of the Brigham and

Women’s Hospital, Boston, USA (Figure 11.2 (a)). The iMRI image size is 256× 256× 60

voxels and the voxel size is 0.9375×0.9375×2.5 mm. The image was segmented into one

region only, so that the result was a binary image. The result is shown in Figure 11.2 (b).

Mesh generation was performed using the algorithm illustrated in Figure 2.7, Sec-

tion 2.5.1 and presented in details in Chapters 3 and 4. From the segmented image, our

mesher outputs a tetrahedral mesh of the volume without further user interaction; even

though the meshing algorithm consists of three specific steps: (1) geometry extraction in

the form of an analytic function, (2) triangulation of the brain cortex, (3) creation of a

tetrahedral mesh of the volume from the triangular surface mesh of the closed surface ob-

tained in step 2. The resulting mesh, shown in Figure 11.2 (d), comprises 4759 nodes and

24585 tetrahedrons.

An appropriate finite element formulation is used for the tetrahedral finite element.

The formulation developed in Chapter 7.4 solves the problems of excessive stiffness of the

model under quasi-incompressibility constraints. For comparison purposes, both the stan-

dard tetrahedron and our new formulation will be used in the finite element simulations

here-after.

Linear elastic material properties are assigned to the model. In the initial work, Vi-

gneron [175] used a compressible material with ν = 0.45 to model brain tissue, even
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(a)                        (b)                         (c)                         (d)

FIGURE 11.2: Tetrahedral mesh generation of a brain MRI. (a) Initial 3D iMRI image.

(b) Segmented 3D image. (c) Volume mesh obtained by application of the meshing method

developed in this thesis work in the segmented 3D image.

though the incompressibility of brain media is widely adopted and recently demonstrated

(see e.g. [105] and references therein). Thanks to the non-locking tetrahedral element

developed and implemented in this work, a quasi-incompressible material law with ν =

0.49995 may now be used. It is believed that this modification will improve the accuracy

of the obtained deformation field and henceforth, the reliability of non-rigid registration

method.

The boundary conditions are applied identically to Vigneron [175], i.e. through an

imposed displacement of the cortex. The latter was obtained by recording the displacement

of the brain surface into two successive intra-operative images: one taken just before skull

opening and the other taken after the opening of the skull, i.e. after brain-shift. Details

on how to obtain this displacement field may be found in [62, 175]. It is important to

realise that these boundary conditions are not very realistic. The brain-shift deformation,

occurring at the opening of the skull, is far more complex than the imposed displacement

of a surface. It is a combination of cerebrospinal fluid leakage and drainage, and, in the

case of a tumour, brain pressure release. However, imposing cortex displacements is still,

at the current state of research, the most popular solution for the finite element modelling

of brain-shift [184].

11.3 Finite element simulations and results

Four finite element simulations were performed:

• with a compressible linear elastic material law ν = 0.45 and E = 3 MPa; and the

standard tetrahedral element formulation

• with a compressible linear elastic material law ν = 0.45 and E = 3 MPa; and the

proposed non-locking tetrahedral element formulation
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-2.03 3.62y-displacement [mm]

z

x

y

FIGURE 11.3: FEM-based modelling of brain shift deformation in Image-Guided Neuro-

surgery. Applied displacement field.

• with a quasi-incompressible linear elastic material law ν = 0.49995 and E = 3 MPa;

and the standard tetrahedral element formulation

• with a quasi-incompressible linear elastic material law ν = 0.499905 and E = 3 MPa;

and the proposed non-locking tetrahedral element formulation

In each case, the displacement field resulting from a previous work [175] was applied

to the mesh nodes belonging to the brain exterior surface. A displacement vector is applied

to all the boundary nodes, but varies in direction and magnitude from node to node. It was

deduced by taking MRI images taken before and after opening of the skull and computing

the displacement of the cortex between both images. The applied displacement field is

shown in Figure 11.3. The displacement field is mainly applied along the y-direction,

which is the direction shown on the figure. We may deduce that in the considered surgical

intervention there was a brain-shift of approximately 3.62 mm.

Figure 11.4 shows the pressure fields obtained for the four finite element simulations

performed. Let us remind that in this thesis, the pressure is defined as negative one third

of the trace of the stress tensor

p =
tr
�
σ11 +σ22 +σ33

�

3
(11.1)

Therefore, the pressure is negative in compression and positive in extension.

The top figures of Figure 11.4 were obtained for a compressible brain material. In that

case, the standard linear tetrahedron behaves well and there is no interest in using our

non-locking tetrahedron as both formulations give solution. For a quasi-incompressible
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material law however, we obtain a sporadic pressure field when using the classic, standard,

tetrahedral element formulation, as shown in Figure 11.4, Lower Left. Using the proposed

non-locking tetrahedron allows us to recover a realistic pressure distribution (Figure 11.4,

Lower Right).

The pressure values computed in the quasi-incompressible case, ν = 0.49995, lower

figures, are much higher than those obtained in the compressible case, ν = 0.45, upper

figures. The reason for this is that the whole boundary, the brain cortex, is constrained via

imposed displacements. In future simulations, compressible ventricles could be added to

the model in order to model a release of cerebrospinal fluid. This would also lead in a drop

in the observed extremal pressure values.

Figure 11.5 shows, for a specific slice, the displacement field obtained throughout the

brain’s volume. When the objective of the simulation is the non-rigid registration of brain

intra-operative images, these volume displacements are the sole requested output of the

simulation. The obtained maximal displacement values are indicated on the corresponding

locations on the charts. As expected taking the incompressibility of the brain into account

has an influence on the obtained displacement results. Results indicate that the displace-

ment values were under-estimated by 1.3% in the model of [175]. Furthermore, using

an approprate tethrahedral element for the quasi-incompressible model is of equal impor-

tance. Indeed, the two charts on the right indicate that with the standard linear tetrahedron

results are over-estimated by 1.6%.

11.4 Conclusions

In this chapter, we created a patient-specific finite element model of the brain and used the

model to simulate the brain shift deformation occurring after skull opening during a surgi-

cal intervention. The overall objective is to improve the accuracy of current image-guided

neurosurgery systems. Practically, intra-operative brain deformation was modelled using a

similar approach as Vigneron [175], but, two significant improvements were made. First,

the required finite element mesh was generated by the tetrahedral mesh generator imple-

mented in this work, thus removing the many manual steps of the previous approach. The

resulting gain in automaticity will be even more relevant in a future work when multiple

anatomical structures will be taken into account in the model. Second, the brain tissue was

modelled using a quasi-incompressible material law, more realistic than the compressible

one, previously used.

210



CHAPTER 11. FINITE ELEMENT MODELLING OF BRAIN SHIFT DEFORMATION

-0.676 0.364Pressure [Pa]

n=0.45

standard tet non-locking tet
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FIGURE 11.4: FEM-based modelling of brain shift deformation in Image-Guided Neu-

rosurgery. Obtained pressure fields for the four models considered: with a compressible

and incompressible linear elastic material law, and with the standard or our non-locking

tetrahedral element formulation.
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-2.02 3.62y-displacement [mm]

standard tet
n=0.45

non-locking tet
n=0.45

standard tet
n=0.49995

non-locking tet
n=0.49995

3.62 3.62 3.73 3.67

FIGURE 11.5: FEM-based modelling of brain shift deformation in Image-Guided Neuro-

surgery. Volume displacement fields drawn in a brain xy-slice selected at z = 65 mm for

the four models considered: with a compressible and incompressible linear elastic material

law, and with the standard or our non-locking tetrahedral element formulation.
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Chapter 12

Modelling of canine humeral condylar

fractures

Condylar fractures are among the most frequent humeral fractures seen in dogs after a

fall [19]. Different types of fractures (lateral, medial, bicondylar) may occur, depending on

the age of the dog and the position of the elbow during the impact. The goal of this work is

to understand the effects of bone positioning and skeletal development on canine humeral

fractures by means of the finite element method, using the developments of the previous

chapters.

Lateral and Medial condylar fracture Bi-condylar "Y" and "T" fractures

FIGURE 12.1: Classification of humeral condylar fractures. Source: Moores [122].
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12.1 Context

Humeral condylar fractures are common in dogs and are often associated with minor

trauma such as fall. Lateral condylar fractures are most common, while medial and bi-

condylar ("Y" or "T") fractures occur less frequently [19]. These three types of humeral

fracture occurring in dogs are illustrated in Figure 12.1. Moreover, lateral fractures are

most prevalent in young dogs, before the ossification of the humeral condyle [115]. On the

other hand, bicondylar fractures are typically seen in skeletally mature dogs. It is believed

that lateral condylar fractures are due to an excessive force carried by the radius, which

articulates with the lateral part of the humerus.

The objective of this study is to verify the pathogenesis of condylar fractures and to

determine the influence of bone positioning as well as skeletal development on the fracture

type; by means of the finite element method.

12.2 Dataset preparation

12.2.1 Image acquisition

A computed tomographic scan of the right forelimb of a four months old beagle was taken

at the Veterinary School of the University of Liège. The elbow was scanned in a physi-

ological position, with a flexion-extension angle of 150◦. Three bones were represented

in the image, the humerus, the ulna and the radius. However, only the extremities of

these three bones were scanned (approximately one third). The input data is illustrated in

Figure 12.2, Left. It has dimensions of 512 × 512 × 88 voxels with anisotropic voxels of

0.115234× 0.115234× 0.699951 mm3. Acquiring high resolution scans was important for

this application in order to capture the elbow joint. With a higher out-of-plane spacing, the

three bones would appear fused in the scans, which would jeopardize the accuracy of the

segmentation and the accuracy of the simulation.

12.2.2 Segmentation

Segmentation of the dataset was performed with 3D Slicer [142] using the following pro-

cedure. This three-dimensional image was segmented in order to delineate the three bones

composing the elbow: humerus, radius and ulna. The humerus was further subdivided

into cortical bone, trabecular bone, medullary cavity and cartilaginous plate. Because no
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Initial dataset Segmentation

FIGURE 12.2: Modelling of a dog elbow fracture. Left: Initial dataset. Right: Segmentation

of the dataset, the humerus cortical bone is represented in green, the humerus cancellous

bone in dark blue, the growth plate in yellow, the radius in white and the ulna in light blue.

scans were available for adult dogs, the adult dog model was created from the young dog

model by replacing the cartilaginous growth plate in the multi-valued segmented image by

epiphyseal trabecular bone.

12.3 Finite element study of the influence of elbow config-

uration on fracture type

In a first study, the effects of flexion/extension, radioulnar exo/endo-rotation (rotation of

radius and ulna around the longitudinal axis of the humerus) as well as abduction/adduction

(angle between the direction of loading and the longitudinal axis of the humerus) on the

fracture type have been studied in order to determine the conditions under which lat-

eral, medial and bicondylar humeral fractures occur. These angles are represented in Fig-

ure 12.3. Because of the number of cases involved (three different angles and three possible

values for each angle) we only consider the skeletally mature dog for this study. Also, no

failure criterion is yet taken into account. The comparison of adult and young dog, as well

as the inclusion of a failure criterion, will be performed on a smaller set of possible elbow

configurations, in Section 12.4.
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Flexion-

Extension

Endo-Exorotation

Abduction - Adduction
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lateral
epicondyle

medial
epicondyle

supracondylar foramen

humerus

ulna
radius

FIGURE 12.3: finite element study of the influence of elbow configuration on frac-

ture type. Left: Definition of flexion/extension, radioulnar exo/endo-rotation and abduc-

tion/adduction angles. Right: Anatomy of the dog elbow.

trabecularcortical

FIGURE 12.4: Finite element study of the influence of elbow configuration on fracture

type. Finite element mesh obtained from the CT-data. The humerus is subdivided into two

material regions, cortical bone and trabecular bone. The medullary cavity was left empty in

this model. In middle and right pictures, we performed a cut through the volume mesh of

humerus in order to show its inner structures.
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TABLE 12.1: finite element study of the influence of elbow configuration on fracture type.

Mesh sizes.

nodes cells

Humerus 53239 nodes 293307 tetrahedra

- Cortical 26397 nodes 192615 tetrahedra

- Trabecular 26841 nodes 100692 tetrahedra

Radius 1336 nodes 2668 triangles

Ulna 1657 nodes 3310 triangles

12.3.1 Mesh generation

The multi-material tetrahedral mesher presented in Chapter 4 of this work was applied on

the segmented image of the dog elbow in extension. For the humerus, a multi-material

mesh was created. For this first study, we decided to represent the cortical and epiphyseal

trabecular bone only and leave the medullary cavity empty because the sparse medullary

trabecular bone does not really participate in the load transfer. For the radius and the ulna,

only a surface mesh of the boundaries of the bones was created. These surface meshes

are needed in the simulations to define the radiohumeral and the humeroulnar contacts.

The obtained model is represented in Figure 12.4, and the corresponding mesh sizes are

reported in Table 12.1.

12.3.2 Finite element modelling

To model different elbow configurations, the meshes of the ulna and the radius were ro-

tated relative to each other, and the axis of the applied load was changed. The axes of

rotation were defined through the localisation of anatomical landmarks in the model and

with the help of veterinary surgeons. In further studies, these different configurations will

be obtained through comparison with 3D scans of the elbow in the desired configuration,

in order to ensure a physiological positioning of the elbow.

Finite element simulations at 60, 130 and 150 degrees of flexion-extension, -10, 0 and

10 degrees of exo-endorotation angle and -20,0 and 20 degrees of adduction-abduction

angle were performed.
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TABLE 12.2: finite element study of the influence of elbow configuration on fracture type.

Material parameters used in the first study.

Young’s Poisson’s Yield Hardening

modulus ratio stress Parameter

(MPa) (MPa) (MPa)

Cortical bone 2660 0.3 100 266

Epipyseal trabecular bone 2110 0.3 19.1 105

After correct bone positioning, a vertical displacement was applied on the radius and

ulna at a speed of 140 mm/min. This speed is too slow to model an impact, but it is

the maximum speed allowed by the experimental testing facility that will be used at the

University of Liège to validate these results.

The radius and the ulna are considered as rigid body, to simplify the model and because

we are only interested in the stresses and strains within the humerus. Their surface meshes,

extracted from the CT images, enable us to define their contact with the humerus.

A frictionless contact is defined between the humerus and the ulna as well as between

the humerus and the radius. The contact is modelled using the penalty method, which

allows to soften the contact between the bones and therefore implicitly take the articular

cartilage into account.

A dynamic implicit Chung-Hulbert time integration scheme is used.

Material parameters were taken from literature [92] and are reported in Table 12.2.

Both cortical and trabecular bone are modelled by elasto-plastic material laws.

12.3.3 Results and discussion

Simulations were performed until the failure Von Mises stress of cortical bone in compres-

sion was reached in an element. For all configurations, we reported the bone entering first

into contact with the humerus (radius or ulna or both), and we tried to deduce the most

probable fracture pattern from the observation of the Von Mises stress fields. Both informa-

tions are reported in Table 12.3. As already noticed, no failure criterion is implemented for

this preliminary study.
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TABLE 12.3: Finite element study of the influence of elbow configuration. For various

configurations of the dog elbow, deduction of the most probable fracture pattern from the

observation of the Von Mises stress field within the humerus, computed by finite element

simulations.

Flexion Endorotation(+) Abduction(+) Bone Fracture

Extension Exorotation(-) Adduction(-) Contact Type

60◦ 0◦ 0◦ Ulna Lateral

60◦ 0◦ -20◦ Ulna Lateral

60◦ 0◦ 20◦ Ulna Medial

60◦ 10◦ 0◦ Ulna Y

60◦ 10◦ -20◦ Ulna Y or Lateral

60◦ 10◦ 20◦ Ulna Medial

60◦ -10◦ 0◦ Ulna Lateral

60◦ -10◦ -20◦ Ulna Lateral

60◦ -10◦ 20◦ Ulna Lateral

130◦ 0◦ 0◦ Ulna Medial

130◦ 0◦ -20◦ Radius and Ulna Lateral

130◦ 0◦ 20◦ Ulna Medial or Y

130◦ 10◦ 0◦ Radius Lateral

130◦ 10◦ -20◦ Radius Lateral

130◦ 10◦ 20◦ Radius and Ulna Y or Medial

130◦ -10◦ 0◦ Radius Lateral

130◦ -10◦ -20◦ Radius Lateral

130◦ -10◦ 20◦ Radius Lateral

150◦ 0◦ 0◦ Radius and Ulna Medial

150◦ 0◦ -20◦ Ulna Lateral

150◦ 0◦ 20◦ Ulna Medial

150◦ 10◦ 0◦ Ulna Lateral

150◦ 10◦ -20◦ Ulna Lateral

150◦ 10◦ 20◦ Ulna Y

150◦ -10◦ 0◦ Radius Lateral

150◦ -10◦ -20◦ Radius Lateral

150◦ -10◦ 20◦ Radius Lateral
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The results reported in Table 12.3 confirm the clinical observation that lateral condylar

fractures occur most frequently. Medial and Y fractures do occur for some configurations,

and are always caused by the interaction of the ulna with the humerus. These results may

be explained as follows. The radius articulates with the lateral part of the humerus and thus

causes lateral fractures in all cases; the ulna however articulates with the central part of the

distal humerus and may cause either lateral, medial or more complex fractures. Moreover,

the lateral condyle of the humerus is more fragile, as its cross-section, measured as the

distance between the supracondylar foramen and the surface of the lateral epicondyle (see

Figure 12.4), is thinner; which is the reason why lateral condylar fracures are predominant,

even in flexion where the ulna is the only bone impacting the humerus.

Figure 12.5 illustrate the obtained Von Mises stress fields in six of the considered cases.

Even though some elbow configurations lead to stress fields that clearly indicate a higher

solicitation of the lateral, or the medial, condyle; it is not always easy to determine the

fracture type from the observation of the Von Mises stress field. Also, we do not observe high

stresses between the articular surface and the supracondylar foramen, where the fracture

is suppose to initiate. This is due to the limitations of our model. First, the model that

was considered here is an adult dog model for which the bone is fully formed. However,

condylar fractures are most often observed in young dogs for which the bone is not fully

formed in this location. Second, the Von Mises stress is not the right variable to assess

failure: the difference of bone strength in tension and in compression should be taken into

account. These two limitations are solved in the next section.

12.4 Finite element simulation of a condylar fractures

12.4.1 Introduction

Do humeral condylar fractures occur in flexion or in extension of the elbow ?

In this second study, we have performed four finite element simulations, in two config-

urations: in extension (150◦) and in flexion (60◦) and for skeletally mature and skeletally

immature bones. Through the implementation of a failure criterion, we simulate the frac-

ture of the bone. The failure load, the pattern of the fracture, its initiation point and

propagation were recorded.
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Flexion angle: 60°

Loading angle: 20° Loading angle: 0° Loading angle: -20°

Medial Lateral Lateral

Flexion angle: 130°

Medial

Lateral

Medial or Y

FIGURE 12.5: Finite element study of the influence of elbow configuration. Results of the

finite element simulations with an exo-endorotation angle of 0 degrees.
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Cortical bone

Epiphyseal trabecular bone

Diaphyseal trabecular bone

Cartilage

FIGURE 12.6: Modelling of a dog elbow fracture. Finite element mesh obtained from the CT-

data. The humerus is subdivided into four material regions, corresponding to cortical bone

(semi-transparent), trabecular bone (blue), medullary cavity (red) and cartilage (green).

12.4.2 Mesh generation

Finite element meshes were generated from the segmented multi-label 3D images presented

in Section 12.2 using the multi-material tetrahedral mesher proposed in this work. Two

different meshes of the humerus, young and adult, were generated:

The skeletally immature humerus model (young dog) comprises four distinct regions,

with different material properties: cortical bone, epiphyseal trabecular bone, dia-

physial trabecular bone and cartilage.

The skeletally mature humerus model is constituted by three distinct regions, with dif-

ferent material properties: cortical bone, epiphyseal trabecular bone and diaphysial

trabecular bone.

Figure 12.6 illustrates the mesh obtained for the skeletally immature humerus. In the

skeletally mature one, the cartilaginous growth plate is replaced by epiphyseal trabecular

bone.

12.4.3 Finite element modelling

Separating the mesh in different regions enables us to apply distinct material properties to

cortical bone, trabecular bone and cartilage. The cortical bone is modelled as a elastoplastic
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transversely isotropic material, having a lower Young’s modulus in the transverse direction

than along the longitudinal axis [54, 92]. Epiphyseal and diaphysial trabecular bone are

both modelled as an elastoplastic isotropic materials, but lower Young’s modulus, yield

stress and hardening parameter are used for the diaphyseal bone [92]. For both cortical

and trabecular bone, a Von Mises Plasticity criterion is used with an isotropic linear hard-

ening. The cartilage is modelled as a linear elastic material. Table 12.4 gives the material

parameters used in our finite element simulations.

The modified Mohr-Coulomb failure criterion is used to assess the failure pattern of the

humerus. This failure criterion enables us to apply a lower failure stress in tension than in

compression. Indeed, experimental results have shown that the Von Mises failure criterion,

because it assumes equal strength in tension and in compression, was not able to clinically

reproduce the observed failure patterns [61].

The Mohr-Coulomb criterion, commonly used for materials with different behaviour in

tension and compression, is written as

σ1

σt

−
σ3

σc

= 1 (12.1)

with σ1,σ2,σ3 (σ3 ≤ σ2 ≤ σ1) the principal stresses, σc, the failure stress in compression

and σt , the failure stress in tension. This failure criterion is traditionally used for non-

cohesive materials such as soils. Keyak and Rossi [93] first used this criterion for bone

tissue and obtained a good agreement with experimental results. For materials for which

the ultimate strength in tension is less than half its strength in compression, σt ≤ 0.5σc,

Keyak and Rossi [93] obtained, for the specific case of the modelling of bone fracture caused

by fall, better results using the modified Mohr-Coulomb failure criterion [157]:

(
σt

σ1
= 1 when

σ1

σ3
≤−1

σc−σt

σcσt
·σ1−

σ3

σc
= 1 otherwise

(12.2)

A extended review of bone failure criteria can be found in Doblaré et al. [54].

Boundary conditions, contact, loading and time integration are identical to the first

study. These are detailed in Section 12.3.2 and illustrated in Figure 12.7, Left.

12.4.4 Results and discussion

Lateral humeral fractures were observed for both the skeletally mature and skeletally im-

mature dog elbow in extension, see Figure 12.7. These fractures occurred at an applied

load of 2.49 kN for the young dog, and 2.61 kN for the adult dog. The radius impacted
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TABLE 12.4: Finite element modelling of a dog elbow. Material parameters used in the

finite element simulations .

Young’s Poisson’s Yield Hardening Failure

modulus ratio stress Parameter stress

(MPa) (MPa) (MPa) (MPa)

Cortical bone long.: 2660 long.: 0.3 100 266 compression: 186

trans.: 1596 trans.: 0.3 tension: 93

shear: 570

Epipyseal 2110 0.3 19.1 105 compression: 21

trabecular bone tension: 10.5

Diaphyseal 1055 0.3 9.6 52 compression: 10.5

trabecular bone tension: 5.2

Cartilage 1 0.45 - - 0.015

the humerus first and was then followed by the ulna. The cracks initiated on the articular

surface, between the lateral and medial condyles and then extended towards the supra-

condylar foramen. A second crack then appeared on the lateral part of the supratrochlear

foramen and propagated through the lateral epicondyle (the anatomy of the dog humerus

is recalled in Figure 12.3).

The typical fracture patterns described in Section 12.1 were not obtained for the models

in flexion. Indeed, in these cases, two cracks initiated on the lateral and medial parts of

the supratrochlear foramen and then propagated through lateral and medial epicondyles

simultaneously. No elements were fractured on the articular surface. Obtained failure loads

are also higher compared to the simulations in extension: 3.6 kN for the adult humerus

and 3.5 kN for the immature humerus. A possible explanation for this is that canine elbow

fractures occur in extension of the elbow, and not in flexion.

12.5 Conclusions and future work

In this chapter we investigated an actual question of veterinary surgeons through finite

element modelling. The methods developed for this thesis work associated with an efficient

collaboration with the veterinary school of the university of Liège have made it possible

to solve the whole process of problem well-posedness, image acquisition, segmentation,
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0

1

Failure

Criterion

140 mm/min

Fixed nodes

Finite element model Finite element simulation

FIGURE 12.7: Finite element modelling of a dog elbow. Left: Applied boundary conditions.

Right: Lateral condylar fracture obtained as a result of the finite element simulation.

mesh generation and model creation, finite element simulations and analysis of the results.

However, this study is only a preliminary study, and reliable results will only be obtained

after the consideration of the following:

• A correct modelling of the bone orthotropy. The bone is a composite material consti-

tuted by collagen fibres in a mineral matrix. Therefore, the Young’s modulus in the

direction of the fibres is higher than in the transverse direction. In the above second

study, this anisotropy was taken into account. However, all fibres were assumed to

lie in the same direction: along the longitudinal axis of the humerus. Instead, this di-

rection should be extracted from imaging data and should be allowed to vary locally

through the humerus.

• The literature on elasticity and strength properties of canine bone is quite poor. Me-

chanical tests should be performed in order to determine adequate material parame-

ters for our model. Also, distinct elasticity and strength properties should be used for

the young and adult dog models.
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• In this preliminary work we used the modified Mohr Coulomb failure criterion to

model bone failure. With the advances in bone failure research, other failure criteria

could be investigated.

• What really determines the stress-strain distribution within the humerus is its contact

with the radius and the ulna at the elbow joint. Therefore, it is very important to

model this joint accurately. Our meshing algorithm is well adapted for this problem,

because it allows this accurate representation of the geometries. However, in the

above study the three bones were rotated in the computer along manually defined

axis; even though this bone positioning was verified by veterinary surgeons, it does

introduce geometric inaccuracies in the representation of the joint capsule. Instead,

distinct CT scans should be used for the different configurations of the elbow.
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Chapter 13

Conclusions

13.1 General conclusions

From image acquisition to finite element simulations, the entire biomechanical modelling

pipeline was investigated in this work. Researchers usually concentrate on one particular

problem of this pipeline: image processing, geometric representation, mesh generation or

numerical modelling; and consider their problem as an independent setting. Instead, we

studied the pipeline as a whole and designed it to meet the final goals of understanding

the human body and improving patients’ health. Therefore special attention was given to

robustness and automatisation. With this aim in mind, all developments were integrated

in the finite element code Metafor: a segmented 3D image may now be loaded in the

software and, after definition of the required meshing and simulation parameters, finite

element results may be obtained without further user interaction. Also, when designing

this pipeline, we tried not to restrict it to specific biomechanical applications. Therefore

our algorithms can be employed to model most tissues of the living body, provided they are

solid. Applications in this thesis include the modelling of heterogeneous (multi-material)

structures, complex 3D geometries like cellular structures and incompressible tissues.

Notwithstanding the overall generality and wide application range of the proposed im-

age - to - FE model pipeline, this dissertation presents a detailed analysis and novel contri-

butions to two major issues of biomechanical modelling: patient-specific mesh generation

and the removal of the locking behaviour of the linear tetrahedron under near incompress-

ibility constraints. These two topics form the substance of Part 1 and Part 2 of this work. In

Part 3 the developments of Part 1 and Part 2 are used to perform finite element analyses of

actual problems of biomechanics, in a view of illustrating the possible applications of this

work.
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13.2 Patient-specific finite element mesh generation

In the first part of this work, finite element meshes are obtained from patient-specific data.

Chapter 2 gives an extensive review of patient-specific meshing strategies. Numerous

image-to-mesh algorithms, with different specificities and application range, are suggested

in the literature and it is often very difficult for a young researcher to understand the nu-

ances between them. The chapter presents several meshing options, with their advantages

and disadvantages, and gives some practical recommendations on the meshing strategy to

adopt in regard to the targeted application. Indeed, in some cases, when image segmen-

tation must be avoided or automatised or when several types of finite elements must be

generated, it is better to design the meshing strategy specifically for the tissue of interest.

Also, when the same tissue will be modelled several times, e.g. for successive patients, spe-

cific algorithms are available to deform a mesh in a way that it fits an other patient’s data.

The meshing strategy proposed in this thesis is more suited for isolated studies. it gener-

ates tetrahedral finite element meshes from three-dimensional segmented images. There

is no restriction on the number or type of tissues represented in the input data. Particular

emphasis was placed on the elimination of segmentation noise from the model’s bound-

aries and on the ability to create heterogeneous models. In response to these two require-

ments, the proposed meshing strategy comprises two steps: first, the extraction of smooth

boundaries from the discrete segmented input dataset; second, the generation of consistent

multi-material finite element meshes. These two steps were presented in Chapter 3 and

Chapter 4.

In Chapter 3 a smooth representation of the object is constructed from the discrete,

jagged, segmented image, and this, prior to mesh generation. The main advantages for this

are (1) aliasing or staircase artefacts are alleviated, (2) the result is more robust to segmen-

tation noise, (3) the user may define the mesh resolution freely, independently of the image

resolution, (4) geometric accuracy is ensured to remain unchanged during possible subse-

quent mesh adaptation steps. The surface reconstruction algorithm was taken from litera-

ture, but its use for the generation of multi-domain, or multi-material, tetrahedral meshes

is an original contribution of this work. Initially developed for surface reconstruction from

a cloud of points, the multi-level Partition of Unity (MPU) implicit surface reconstruction

approach was extended to reconstruct geometries from segmented datasets, in the view of

patient-specific meshing:

• A strategy to define a set of points and associated normals from segmented uni-label

and multi-label images has been presented.
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• Interpolation weight functions rather than the original approximating ones have been

proposed. However, results computed on several datasets showed no significant im-

provement of the generated models in regard to their geometric accuracy, as some

results do show lower Hausdorff distances and others do not.

• The use of linear instead of quadratic local functions has been investigated. Results

indicate that using linear functions adds rapidity and robustness. It enables fast sur-

face reconstruction from, possibly noisy, sets of points. The decrease in reconstruction

time is mainly due to the fact that no system must be solved to compute the coeffi-

cients of the linear function as was needed for the quadratic function. The robustness

has been observed for all the input datasets considered. Results have shown that a

better match between input and output model may be obtained with quadratic func-

tions, if the parameter Nmin, defining the minimum set of points per subdivision cell of

the MPU method, is finely tuned. However, low values of this parameter creates sur-

faces with irregularities and low geometric accuracy. Instead, linear functions have

the great advantage to generate valid results for all values of this parameter, valid

meaning that the geometric approximation is still within the defined limits of one

voxel width and with no spurious parts so that direct application of a surface tri-

angulation algorithm will generate topologically correct meshes, suitable for further

volume mesh generation and finite element analysis.

• An efficient strategy to represent multi-material structures with a set of distance func-

tions has been defined. This allowed us to generalise the MPU surface reconstruction

procedure to the implicit representation of biological structures having several inner

boundary surfaces, defining several material regions within the structure.

The surface reconstruction algorithm defines a distance function f (x) for a single-

material tissue and a set of distance functions fi(x ) for multi-domain structures. These

functions give an approximation of the distance to the tissue boundaries in the initial seg-

mented 3D dataset.

In Chapter 4, a strategy to generate a surface mesh of the tissue boundaries is proposed.

The main particularity of the approach is that it is capable of generating valid meshes even

in the case of multiple interconnected tissues. The term valid meaning, valid in the sense

of the finite element method, that is to say, with no gaps nor overlays at the material inter-

faces, and, with node-to-node and edge-to-edge connections only. The generated surface

meshes are triangular meshes and may be used as input to classical tetrahedral volume

mesh generators. The novelties of our meshing strategy are:
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• an efficient implementation of a multi-material marching tetrahedra algorithm, based

on a novel description of multi-material structures;

• a strategy to accurately position interface nodes during mesh generation, which greatly

improves the quality of the meshes along material junctions;

• a multi-material decimation scheme that may be used during and/or after mesh gen-

eration;

• a multi-material mesh adaptation filter that uses the proposed surface reconstruction

algorithm to keep the fidelity with respect to the initial segmented data.

The resulting image-to-mesh approach is efficient in generating patient-specific finite

element meshes as attested by the examples presented at the end of Chapter 4 and in the

third part of this dissertation as well as the several peer-reviewed and conference papers

[49, 56–58, 60, 116, 135] published.

In Chapter 5, patient-specific hexahedral meshes are created by combining the proposed

surface reconstruction algorithm (Chapter 3) with a classical voxel-conversion algorithm.

This resulting, novel, meshing strategy has the following advantages:

• It outputs hexahedral meshes and therefore avoids problems arising from using the

standard linear tetrahedral element in finite element simulations of incompressible

and nearly incompressible materials.

• It outputs meshes with smooth surface boundaries, so that the stress concentration

and contact problems arising with voxel-based meshes are solved.

• It is extremely time-efficient as voxel conversion is straightforward and because our

surface reconstruction algorithm uses an octree-based subdivision scheme so that its

computation time depends on the complexity of the structure rather than the image

size.

• It is well adapted for the generation of structures composed of several material do-

mains, as illustrated at the end of the chapter.

• It allows to assign heterogeneous material properties based on the image greyscale

values easily.

The major drawback in smoothing a voxel-based hexahedral mesh is that it generates dis-

torted elements along the objects’ boundaries. Therefore, a strategy to control and limit

element deterioration during the meshing procedure was proposed. In comparison to our
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tetrahedral mesh generation procedure, this hexahedral mesher also has the disadvantage

that the mesh resolution is not user-controlled: it is fixed by the image resolution.

13.3 Locking-free formulations for the linear tetrahedron

In the second part of this work, unlocking formulations for the low-order tetrahedral el-

ement were investigated. Indeed, because of the complexity of the geometries involved,

tetrahedral meshes are often more practical in computational biomechanics. However, the

behaviour of the standard linear tetrahedron becomes extremely poor as the incompress-

ible limit is approached and an overstiff behaviour, called locking, is observed. Problems

where incompressibility is encountered include the analysis of rubbery solids, which are

typically modelled as incompressible hyperelastic materials, as well as the analysis of J2

elasto-plastic metals, for which an isochoric plastic flow is generally assumed (von Mises

plasticity). Volumetric locking can be eliminated by employing higher-order finite elements.

But, due to their simplicity and robustness, low-order elements are often preferred in large-

scale non-linear computations.

In Chapter 7 popular non-locking formulations from literature were presented and two

novel formulations were proposed. First, popular nodal-based formulations were reviewed:

the average nodal pressure (ANP) linear tetrahedron proposed by Bonet and Burton [25]

and the average nodal strain linear tetrahedron proposed by Dohrmann et al. [55]. In

nodal-based formulations, the incompressibility constraints are enforced on newly defined

nodal volumes instead of at each Gauss point. These formulations are well suited for explicit

dynamics analysis where a lumped mass matrix is used. Second, the F-bar methodology

for quadrilateral and hexahedral elements, and its extensions to triangular and tetrahedral

elements, the F-bar-patched method, were presented. The idea of F-bar methods is to define

a modified deformation gradient, denoted by F̄, over the element, which is used to compute

the stresses in the traditional way. These methods are suitable for implicit finite element

analysis and an expression for the stiffness terms of the tangent stiffness matrix is proposed.

Even though the idea is interesting, the F-bar-patch tetrahedron proposed by de Souza Neto

et al. [52] is not very useful in practice because it requires the definition of non-overlapping

patches of tetrahedral elements, for which no automatic algorithm is yet available. In

Sections 7.3 and 7.4 two successive ideas to remove the locking of the standard linear

tetrahedron were presented.

The first proposal is a F-bar-patch tetrahedron in which, for each element, the incom-

pressibility constraints are enforced over the element itself and its neighbours. Both the

element’s node and the face-neighbourhood were investigated through a set of 2D and 3D
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benchmarking numerical tests in Chapter 8. Finite element results obtained with this for-

mulation were not very satisfactory: only a part of the locking behaviour of the standard

tetrahedron was removed, the stress field obtained in the case of Cook’s membrane ap-

peared to be smoothed, and the extremal values of the stresses were under-estimated. In

the case of the cylinder under internal pressure, the observed stress field was highly spo-

radic. And, in the third benchmark, the Taylor bar impact, the equivalent plastic strain was,

also, under-estimated.

In the second proposal, a nodal Jacobian is defined at the element’s node as the ratio

between current and initial nodal volumes; the definition of nodal volumes being identical

to nodal-based formulations. A modified element Jacobian is then defined by averaging

the nodal Jacobians. This average elemental Jacobian (AEJ) is used to define the modified

deformation gradient of the F-bar methodologies. This formulation was proposed for the

two-dimensional case only by Andrade Pires et al. [5]. However, we obtained a different

expression for the stiffness terms of the internal tangent stiffness matrix, by successive

linearisation and finite element discretisation of the internal virtual work equation. The

formulation was then extended to 3D explicit and implicit cases; the resulting locking-free

linear tetrahedron is an original contribution of this thesis. To summarise, the proposed

Average Elemental Jacobian (AEJ) formulation:

• is suitable for both explicit and implicit analysis, as illustrated by the numerical ex-

amples of Chapter 8;

• preserves the displacement-based structure of the finite element equations, as op-

posed to mixed finite element methods for the unlocking of the linear tetrahedron; it

is therefore easier to implement in existing FE software;

• can be used with any, strain-driven, constitutive model; the only difference with the

traditional finite element resolution is that the stresses are computed with a modified

deformation gradient;

• for implicit analyses, allows the use of the full Newton-Raphson algorithm to solve

the global equilibrium equations and quadratic convergence rates are ensured; in-

deed, the exact expression of the stiffness terms in the tangent stiffness matrix are

presented;

• can be used for heterogeneous solids constituted of several materials. A special treat-

ment is applied to the elements lying on the border of the mesh or at material inter-

faces.

The performance of this element has been assessed using three classical benchmarking

tests from literature: the 2D and 3D Cook’s membrane, the thick-walled cylinder under
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internal pressure and the Taylor bar impact. Implicit quasi-static and explicit dynamics

simulations were performed, using various constitutive models. Results indicate that the

proposed element considerably removes both the volumetric and the shear locking of the

standard tetrahedron with linear shape functions. Also, a correct distribution of pressure,

Von Mises stress and equivalent plastic strain was observed in all cases.

Some dissimilarities with literature results, observed for all Metafor tetrahedral ele-

ments in the case of the compressible linear elastic Cook’s membrane, will be investigated

in the future. Also, in the case of the elasto-plastic Taylor bar impact, a convergence study

mesh refinement indicated that the proposed AEJ element converges slower than locking-

free hexahedral elements. More studies will be performed in the future in order to confirm

this observation. Finally, the minimum number of elements required on the thickness of the

Cook’s membrane, or equivalently, on the thickness of the thick-walled cylinder, to obtain a

locking-free solution will also be determined in the future.

In future studies, the implementation of the proposed Average Elemental Jacobian lin-

ear tetrahedron in Metafor will be improved. Indeed, in the current implementation the

nodal volume change ratios are re-computed, which involves a loop over the neighbour-

ing elements, for each new element. Instead these nodal quantities should be stored in

memory. This should substantially reduce the computation times.

13.4 Applications of this work and Perspectives

Part 3 of this dissertation allowed us to integrate the developments of Part 1 and Part 2

and illustrate possible applications of this work. The proposed meshing techniques and

tetrahedral element formulation were used to perform patient-specific finite element anal-

yses for three different studies: the compression of cellular structures, the simulation of

intra-operative brain deformation and the analysis of canine humeral fractures.

The first illustration allowed the comparison of the different image-based meshing

strategies proposed in this thesis, through the micro-FE analysis of a deer antler cancellous

bone. A voxel-based mesh was generated using the simple voxel-conversion procedure. Two

hexahedral meshes, one with acceptable element quality but irregular boundaries and the

other with distorted elements but smooth boundaries, were generated using the hexahedral

mesher presented in Chapter 5. A tetrahedral mesh with approximately the same number

of nodes and volume was generated using the tetrahedral mesher proposed in Chapter 4.

The results of the finite element simulations, presented in Chapter 10, show a fairly simi-

lar behaviour of the different models. But, we observed a decrease in the overall stiffness

of voxel-based meshes after smoothing. Also, depending on the level of compression, the
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tetrahedral model is, globally, as stiff or stiffer than the hexahedral models. In future stud-

ies a comparison with experimental data will be done in order to determine which model

better reproduces the mechanical behaviour of the sample.

In a second study, both our multi-material tetrahedral mesher and our locking-free tetra-

hedral element were employed to compute the intra-operative brain deformations resulting

from skull opening. the proposed biomechanical model is more accurate in predicting

the displacement field of the brain volume than previous models. Within the framework

of image-guided neurosurgery, this model could help to deform the patient’s preoperative

images during surgery in order to follow the brain deformation. In future studies, the

modelling of surgical acts such as retraction and resections will be studied; as well as the

inclusion of other structures like the ventricles; and the definition of adequate boundary

conditions.

In the last study, multi-material finite element models of the dog elbow were created

to investigate under which conditions condylar fractures of the humerus occur. Despite

the complexity of the model (several material regions with distinct material properties,

orthotropic and elasto-plastic material laws, bone contact and bone failure) preliminary

results could be obtained.

The above biomechanical applications indicate that the approach developed in this the-

sis for patient-specific finite element modelling is promising.
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Appendix A

Tensor Analysis

A.1 Tensor Product

The tensor product, also called dyadic product, of two vectors u and v , denoted

u ⊗ v (A.1)

is the tensor that maps each vector w into the vector u (v · w ),

(u ⊗ v) · w = u (v · w ) (A.2)

The tensor product of two matrices A and B, denoted

A⊗B (A.3)

is the tensor that maps each second order tensor W into the second order tensor A (B : W),

(A⊗B) : W = A (B : W) (A.4)
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Appendix B

Directional derivatives

In Finite Element Analysis, the nonlinear equilibrium equations are generally solved via

a Newton-Raphson iteration procedure. The latter requires a linearisation of the equilib-

rium equations which requires an understanding of the directional derivative. Directional

derivatives are thoroughly explained in Bonet and Wood [26]: A directional derivative is a

generalization of a derivative in that it provides the change in an item due to a small change

in something upon which the item depends.

B.1 Directional derivative of a function

Consider a function G at a state defined by the positions x , G(x ), and its value due to

an increment in position x + η, G(x + η). The directional derivative of G at x in the

direction η, noted DG(x)[η], represents the gradient of G in the direction η: it gives a

linear approximation of the increment of G due to the increment in position η,

DG(x )
�
η
�
= G(x +η)− G(x ) (B.1)

In order to evaluate this derivative, we introduce a parameter ε, used to scale the dis-

placements η. This enables us to evaluate function G at x + η using a first-order Taylor

series expansion around ε = 0,

G
�
x + εη

�
≈ G (x ) + ε

d

dε

����
ε=0

G
�
x + εη

�
(B.2)

Taking ε = 1 in (B.2) and comparing it to (B.1) gives a useful equation to evaluate the

directional derivative:

DG(x )[η] =
d

dε

����
ε=0

G
�
x + εη

�
(B.3)
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Using the concept of the directional derivative, a function G
�
x +η

�
can now be lin-

earised as

G
�
x +η

�
≈ GLIN

�
x +η

�
= G (x ) + DG(x )[η] (B.4)

B.2 Directional derivative and partial derivatives

The directional derivative of a function G with respect to an increment tensor ∆U is given

by

DG [∆B] =

3∑

I ,J=1

∂ G

∂ BI J

∆BI J =
∂ G

∂ B
:∆B (B.5)

B.3 Directional derivative of the determinant of a matrix

The concept of the directional derivative is more general than the above. For example, the

linearisation of the determinant of a matrix A in the direction of the change in a matrix B

can be computed using the concept of the directional derivative. From (B.4),

det (A+B) ≈ det (A) + D det (A) [B] (B.6)

Computing the directional derivative by application of Equation (B.3) gives

D det (A) [B] =
d

dε

����
ε=0

det (A+ εB)

=
d

dε

����
ε=0

det
�

A
�

I+ εA−1B
��

= det (A)
d

dε

����
ε=0

det
�

I+ εA−1B
�

(B.7)

Now, let us remember that the characteristic equation of a matrix B with eigenvalues

λB
1
,λB

2
,λB

3
is given by

det
�
B−µI

�
=
�
λB

1
−µ
��
λB

2
−µ
��
λB

3
−µ
�

(B.8)

Replacing B by εA−1B and taking µ =−1 gives

det
�
εA−1B+ I

�
=
�
ελA−1B

1
+ 1
��
ελA−1B

2
+ 1
��
ελA−1B

3
+ 1
�

(B.9)
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so that (B.7) becomes,

D det (A) [B] = det (A)
d

dε

����
ε=0

�
ελA−1B

1
+ 1
��
ελA−1B

2
+ 1
��
ελA−1B

3
+ 1
�

= det (A)
�
λA−1B

1
+λA−1B

2
+λA−1B

3

�

= det (A) tr
�

A−1B
�

= det (A)
�

A−T : B
�

(B.10)

B.4 Linearisation of the deformation gradient

The deformation gradient F can be linearised around the current point x = φ(X , t) in the

direction of a small displacement in the current configuration u(x) by taking its directional

derivative:

DF [u] =
d

dε

����
ε=0

F
�
φ(X , t) + εu

�

=
d

dε

����
ε=0

∂
�
φ(X , t) + εu

�

∂ X

=
d

dε

����
ε=0

�
∂ φ(X , t)

∂ X
+ ε
∂ u

∂ X

�

=
∂ u

∂ X

=∇0u

= (∇u) ·
∂ x

∂ X

= (∇u) · F (B.11)

where ∇0 represents the gradient with respect to the initial configuration and ∇, the gra-

dient with respect to the current configuration .

B.5 Linearisation of the Jacobian

The directional derivative of the Jacobian J with respect to an increment u(x ) in the spatial

configuration is

DJ [u] = DJ(F) [u] (B.12)
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The chain rule may be applied as the directional derivative satisfy the usual properties of

the derivative:

DJ [u] = DJ(F)DF [u] (B.13)

Taking account of previous results on the linearisation of the determinant of a matrix (B.10)

and the linearisation of the deformation gradient (B.11), we have

DJ [u] = J
�

F−T :∇0u
�

= J tr

�
F−1
∂ u

∂ X

�

= J tr

�
∂ u

∂ x

�

= J tr (∇u)

= J div (u) (B.14)
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F-bar methodology

C.1 Virtual internal work linearisation for the F-bar Hexa-

hedron

The directional derivative of the virtual internal work for the F-bar Hexahedron is (7.40)

DδW int
�
η
�
=

∫

Ω0

DP
�

F̄
��
η
�

:∇0δu dΩ0 (C.1)

and, for one element

DδW int,e
�
η
�
=

∫

Ω0,e

DP
�

F̄
��
η
�

:∇0δu dΩ0,e (C.2)

Taking account of (7.41), the directional derivative of P appearing in (C.1) is given by

DP
�

F̄
��
η
�
= D





�
J̄

J

�− 2

3

P̄(F̄)




�
η
�

= D





�
J̄

J

�− 2

3




�
η
�

P̄(F̄) +

�
J̄

J

�− 2

3

D
¦
P̄(F̄)

©�
η
�

(C.3)

with

D





�
J̄

J

�− 2

3




�
η
�
=−

2

3

�
J̄

J

�− 5

3 1

J2

�
J DJ̄

�
η
�
− J̄ DJ

�
η
��

(C.4)
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and

D
¦
P̄(F̄)

©�
η
�
=

dP̄

dF̄
DF̄
�
η
�

(C.5)

Developing the directional derivative of F̄ = (J̄/J)1/3 F and then replacing (C.4) and (C.5)

in (C.3) gives

DP
�

F̄
��
η
�
=−

2

3

�
J̄

J

�− 5

3 1

J2

�
J DJ̄

�
η
�
− J̄ DJ

�
η
��

P̄

+

�
J̄

J

�− 2

3 dP̄

dF̄
:




1

3

�
J̄

J

�− 2

3 1

J2

�
J DJ̄

�
η
�
− J̄ DJ

�
η
��

F+

�
J̄

J

� 1

3

DF
�
η
�



(C.6)

Substituting the two-point tangent modulus (7.43), the directional derivative of F (B.11),

the directional derivative of J (B.14) and the directional derivative of J̄ (7.44) into (C.3)

gives

DP
�

F̄
��
η
�
=

�
J̄

J

�− 1

3

A(F̄) :∇0η

−
2

3

�
J̄

J

�− 2

3 �
F−T :

�
∇0,centroidη−∇0η

��
P̄(F̄)

+
1

3

�
J̄

J

�− 1

3

A(F̄) :
��

F−T :
�
∇0,centroidη−∇0η

��
F
�

(C.7)

Property (A.4) for the tensor product of matrices gives

�
F−T :∇0δu

�
M =

�
I :∇0δu F−1

�
M

= (I :∇δu)M

= (M ⊗ I) :∇δu (C.8)

so that (C.7) becomes

DP
�

F̄
��
η
�
=

�
J̄

J

�− 1

3

A(F̄) :∇0η

−
2

3

�
J̄

J

�− 2

3 �
P̄(F̄)⊗ I

�
:
�
∇centroidη−∇η

�

+
1

3

�
J̄

J

�− 1

3

A(F̄) :
�
(F⊗ I) :

�
∇centroidη−∇η

��
(C.9)
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Substituting this result into the equation of the directional derivative of the internal

virtual work (C.2) gives

DδW int,e
�
η
�
=

�
J̄

J

�− 1

3
∫

Ωe

�
A(F̄) :∇0η

�
:∇0δu dΩe

−
2

3

�
J̄

J

�− 2

3
∫

Ωe

��
P̄(F̄)⊗ I

�
:
�
∇centroidη−∇η

��
:∇0δu dΩe

+
1

3

�
J̄

J

�− 1

3
∫

Ωe

�
A(F̄) :

�
(F⊗ I) :

�
∇centroidη−∇η

���
:∇0δu dΩe (C.10)

Transforming this to the spatial domain using relations (6.75) gives

DδW int,e
�
η
�
=

∫

Ωe

�
a(F̄) :∇η

�
:∇δu dΩe

+

∫

Ωe

�
q(F̄) :

�
∇centroidη−∇η

��
:∇δu dΩe (C.11)

with

ai jkl

�
F̄
�
=

1

J̄
F̄kB ĀiAjB

�
F̄
�

F̄lA (C.12)

and having defined

q(F̄) =
1

3
a(F̄) : (I⊗ I)−

2

3

�
σ̄(F̄)⊗ I

�
(C.13)

Discretising (C.11) using the finite element approximating functions (6.36) gives

DδW int,e
�
η
�
= δu ·

∫

Ωe

(∇N)
T

a(F̄)∇N dΩe ·η

+δu ·

∫

Ωe

(∇N)
T

q(F̄)
�
∇centroidN−∇N

�
dΩe ·η (C.14)
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