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Watershed management and hydrological modeling require data related to the very important matter of precipitation, often 
measured using rain gauges or weather stations. Hydrological models often require a preliminary spatial interpolation as 
part of the modeling process. The success of spatial interpolation varies according to the type of model chosen, its mode of 
geographical management and the resolution used. The quality of a result is determined by the quality of the continuous spatial 
rainfall, which ensues from the interpolation method used. The objective of this article is to review the existing methods for 
interpolation of rainfall data that are usually required in hydrological modeling. We review the basis for the application of 
certain common methods and geostatistical approaches used in interpolation of rainfall. Previous studies have highlighted the 
need for new research to investigate ways of improving the quality of rainfall data and ultimately, the quality of hydrological 
modeling.
Keywords. Rain, spatial distribution, geostatistics, kriging, Thiessen polygon, Inverse Distance Weighting (IDW), computer 
applications, simulation models, hydrology.

Méthodes de spatialisation de données pluviométriques dédiées à l’hydrologie opérationnelle et à la modélisation 
hydrologique à l’échelle du bassin versant (synthèse bibliographique). La gestion hydrologique des bassins versants et la 
modélisation hydrologique exigent des données relatives aux précipitations, variable très importante, le plus souvent mesurée 
par des pluviomètres ou des stations météorologiques. Les modèles hydrologiques demandent souvent une spatialisation 
préalable à la modélisation, la spatialisation est dépendante du type de modèle et de son mode de gestion géographique et de la 
résolution utilisée. La qualité d’un résultat est conditionnée à la qualité de la pluie spatiale continue qui découle de la méthode 
d’interpolation utilisée. L’objectif de cet article est de fournir une revue sur les méthodes de spatialisation de la pluie existantes 
qui sont habituellement exigées par la modélisation hydrologique. Nous passons en revue les méthodes de base généralement 
utilisées et des approches géostatistiques. Les études précédentes mettent en lumière un besoin de nouvelle recherche sur les 
moyens nécessaires pour améliorer la donnée de pluie et in fine, la qualité de la modélisation hydrologique.
Mots-clés. Pluie, distribution spatiale, géostatistique, krigeage, polygone de Thiessen, distance inverse, application des 
ordinateurs, modèle de simulation, hydrologie.

1. INTRODUCTION

Computer hydrological models that simulate most of the 
hydrological cycle are an essential tool for hydrologists 
and engineers in understanding and describing the 
hydrological system. When these models are successful 
in attaining accurate results, they can forecast what 
will occur within the hydrological system. This can be 

useful for climate studies (e.g. in terms of precipitation 
or evaporation), optimized water management and land 
use changes: so-called scenario analysis. In the last 
30 years, not only the number but also the complexity 
of hydrological computer models have increased 
enormously, due to the availability of more powerful 
computers and Geographic Information Systems (GIS) 
(Singh, 1995). Watershed models can be categorized as 
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physically-based or conceptual, according to the degree 
of complexity and physical completeness present in 
the formulation of the structure (Refsgaard, 1996). In 
addition, hydrological models are classified as either 
“lumped” or “distributed”, depending on the degree of 
discretization when describing the terrain in the basin. 
The physically-based models describe the natural 
system using the basic mathematical representations 
of the flow of mass, momentum and various forms of 
energy at local scale (Refsgaard, 1996). These models 
are therefore also described as “distributed” and they 
can explicitly account for spatial variability within 
a watershed. Physically-based distributed models 
are generally believed to be preferable to conceptual 
models because they better represent a certain reality 
of the hydrological cycle (Ruelland et al., 2008).

Fully distributed and physically-based models 
always require as inputs the main spatially distributed 
dataset for the Digital Elevation Model (DEM), land 
use and its management, soil, and climate. The quality 
of these inputs has a significant impact on the model 
formulation process and on the results. Climatic data, 
air temperature, solar radiation, and precipitation all 
provide essential controls on surface energy balance and 
ecosystem processes. Among these climatic data, the 
amount of precipitation, traditionally collected using 
rain gauges or weather stations, is a very important 
parameter, which has a direct impact on runoff or 
watershed discharge (Obled et al., 1994). For a large 
watershed scale, the spatial variability of rainfall needs 
to be taken into account instead of using areal average 
rainfall as the input for the model. In this context, it 
is necessary to gain insight into the day-to-day spatial 
variability of watershed discharge, groundwater level 
and soil moisture content (Schuurmans et al., 2007a). 
In order to gain insight into the general behavior of 
the hydrological system, it is sufficient to use accurate 
predictions of areal average rainfall over the watershed.

The spatial variability of rainfall represents the 
dominant effect in the production of runoff; as the 
spatial variability increases, so does the significance 
of appropriate rainfall characterization (Segond 
et al., 2007). Averaging of the rainfall input limits 
the accuracy of the model’s results. Under such 
circumstances, catchment response is highly nonlinear, 
which means that the response to an averaged input will 
differ much more from the response to a distributed 
input (Shah et al., 1996b). When a single rain gauge 
is used to model the catchment response, the results 
become less accurate at both the sub-catchment and 
catchment scales and this also affects the reproduction 
of the hydrograph (Segond et al., 2007). When spatial 
homogeneity of rainfall is assumed to be used in a 
hydrological model, rainfall variability causes certain 
effects to occur. Spatial variability in rainfall affects 
the catchment response (Shah et al., 1996a; Shah et al., 

1996b), the timing of peak runoff (Singh, 1997), the 
estimation of model parameters (Chaubey et al., 1999) 
and the hydrological model outputs (Bell et al., 2000; 
Segond et al., 2007).

The distributed model has been shown to be sensitive 
to the locations of the rain gauges within the catchment 
and hence to the spatial variability of the rainfall over 
the catchment (Bell et al., 2000). Failing to consider 
adequately the spatial variability of rainfall will lead 
to errors in the values of the model parameters, which 
will be wrongly adjusted to compensate for errors in 
the rainfall input data (Schuurmans et al., 2007a). This 
is problematic since the required density of rain gauges 
to capture the spatial variability exceeds that normally 
available from routine monitoring networks (Segond 
et al., 2007). Furthermore, rain gauge density over 
the forecast catchments is one of the main factors in 
attaining forecast accuracy during an extreme event that 
results in significant flooding in a major metropolitan 
area (Looper et al., 2011). Therefore, the precipitation 
input, as with other climatic data, should be prepared 
as spatially distributed data before being forced into 
the hydrological modeling. However, measuring at 
every point where data are needed is prohibited by the 
associated high costs.

Spatially distributed rainfall can be interpolated 
by a range of different methods but the complexity 
lies in choosing the one that best reproduces the most 
accurate data (Caruso et al., 1998). One approach is 
to measure associated ancillary data, which have 
been available since the late 1960s via ground-based 
meteorological radars and by remote sensing devices 
located on satellite platforms. The accuracy and 
consistency of these indirect processes for hydrological 
purposes still remain to be determined. Techniques for 
interpolating rainfall must be calibrated and validated 
by means of historical information (Lanza et al., 
2001). From 2000s onwards, standard range-corrected 
radar products proved to be sufficiently informative 
to capture the spatial variability of rainfall to be 
used in hydrological applications (Schuurmans et al., 
2007a). In particular, the use of radar products in 
combination with multivariate geostatistical methods 
proved to be beneficial for spatial rainfall estimation 
(Velasco-Forero et al., 2009; Schiemann et al., 2011; 
Verworn et al., 2011). However for regions without 
these sophisticated instruments, direct ground-based 
measurement deserves to be considered for spatial 
interpolation processes.

The major problem, prior to the choice of the 
most suitable interpolation method, is related to the 
availability of rainfall data. Sometimes, data are 
continuously recorded but the rain gauges are too 
scattered. This is particularly true in mountainous 
areas, where amounts of precipitation are more difficult 
to forecast due to complex topography, distance to 



394	 Biotechnol. Agron. Soc. Environ. 2013 17(2), 392-406	 Ly S., Charles C. & Degré A.

the sea and the presence of large water bodies such 
as lakes (Johnson et al., 1995; Buytaert et al., 2006). 
Within a complex topography, the spatial scale features 
of rainfall are characteristically difficult to capture 
even by means of a moderately dense network of rain 
gauges. Topography impacts rainfall pattern through 
so-called orographic effects, which refer to the rise 
in precipitation rates induced through altitude due to 
uplift, adiabatic cooling and resulting condensation of 
humid air masses on windward mountainsides (Chow 
et al., 1988). Observation of these orographic effects and 
weather patterns has prompted ongoing investigation 
into whether precipitation, in general, increases with 
altitude (Groisman et al., 1994; Sevruk, 1997; Sinclair 
et al., 1997). These authors found that the relationship 
between precipitation and elevation depended on the 
region’s exposure to wind and synoptic conditions. 
Depending on the predominant wind direction, rain 
shadows may appear when more rainfall occurs at or 
near the mountain peak and much less rainfall occurs 
at lower altitudes (Sinclair et al., 1997). Even in flatter 
areas, rain gauges need to be correctly distributed in 
order to detect air flow influences, thermal inversions 
and other phenomena that could affect climatic patterns. 
This difficulty of accurately reproducing continuous 
spatial rainfall has led to notable failures in the resulting 
hydrological response models, which are sensitive to 
input volume at the watershed scale (Nicotina et al., 
2008). At a smaller scale, rainfall variability also has a 
greater impact on peak flows (Mandapaka et al., 2009). 
As the scale increases, the importance of spatial rainfall 
decreases and distribution of catchment response time, 
rather than spatial variability of rainfall, becomes the 
dominant factor governing runoff generation (Segond 
et al., 2007).

The objective of this paper is to provide a review of 
existing spatial interpolation methods of rainfall, which 
are required for hydrological modeling. We review the 
basis for the application of some commonly used spatial 
interpolation methods and geostatistical approaches 
and provide an overview of the characteristics of the 
methods.

2. SPATIAL INTERPOLATION METHODS FOR 
CALCULATING RAINFALL

A number of interpolation techniques have been 
described in the literature, which reproduce the 
spatial continuity of rainfall fields based on rain 
gauge measurement. These methods can be generally 
classified into two main groups: deterministic 
methods and geostatistical methods. Some commonly 
used methods are briefly introduced here. Spatial 
interpolation is generally carried out by estimating 
a regionalized value at unsampled points based on a 

weight of observed regionalized values. The general 
formula for spatial interpolation is as follows:

where Zg is the interpolated value at the required 
points, Zsi is the observed value at point i, ns is the total 
number of observed points and λ = (λi) is the weight 
contributing to the interpolation.

The problem lies in calculating the weights, λ, 
which will be used in the interpolation. The different 
methods for computing the weights will be presented 
in the following sections.

2.1. Deterministic interpolation methods

Regarding the first group of spatial interpolation 
methods for measuring rainfall, the most frequently 
used deterministic methods are the Thiessen polygon 
(THI) and Inverse Distance Weighting (IDW), which 
are based on the location of the measured stations and 
on measured values. In a general way, the forecast of 
the regionalized value takes into account the weighted 
average of the observed regionalized values. 
–	 The simplest and most common spatial interpolation	
	 method, particularly in relatively flat zones, is to use	
	 the simple average of the number of stations.	
	 However, use of this method has decreased because	
	 it does not provide representative measurements of	
	 rainfall in most cases (Chow, 1964).
–	 The Thiessen polygon (THI) method assumes that	
	 the estimated values can take on the observed values	
	 of the closest station. The THI method is also	
	 known as the nearest neighbor (NN) method (Nalder	
	 et al., 1998). The method requires the construction	
	 of a Thiessen polygon network. These polygons	
	 are formed by the mediators of segments joining the	
	 nearby stations to other related stations. The surface	
	 of each polygon is determined and used to balance the	
	 rain quantity of the station at the center of the	
	 polygon. The polygon must be changed every time	
	 a station is added or deleted from the network (Chow,	
	 1964). The deletion of a station is referred to as	
	 “missing rainfall”. This method, although more	
	 popular than taking the simple average of the	
	 number of stations, is not suitable for mountainous	
	 regions, because of the orographic influence of the	
	 rain (Goovaerts, 1999).
–	 The Inverse Distance Weighting (IDW) method	
	 is based on the functions of the inverse distances in	
	 which the weights are defined by the opposite of the	
	 distance and normalized so that their sum equals one.	
	 The weights decrease as the distance increases. This	
	 method is more complex than the previous methods,	

	          ns
	 Zg = ∑ λiZsi                                                          (1)
	                

i=1
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	 since the power of the inverse distance function	
	 must be selected before the interpolation is	
	 performed. A low power leads to a greater weight	
	 towards a grid point value of rainfall from remote	
	 rain gauges. As the power tends toward zero, the	
	 interpolated values will approximate the areal-mean	
	 method, while for higher levels of power, the method	
	 approximates the Thiessen method (Dirks et al.,	
	 1998). There is a possibility of including in this	
	 method elevation weighting along with distance	
	 weighting, Inverse Distance and Elevation Weighting	
	 (IDEW). IDEW provides more suitable results for	
	 mountainous regions where topographic impacts on	
	 precipitation are important (Masih et al., 2011).
–	 In the polynomial interpolation (PI) method, a	
	 global equation is fitted to the study area of interest	
	 using either an algebraic or a trigonometric	
	 polynomial function (Tabios et al., 1985). In order to	
	 express the polynomial equation in the form of	
	 equation (1), the least squares and Lagrange	
	 approaches can be used. For more details on this	
	 method, see Tabios et al. (1985).
–	 The spline interpolation method is based on a	
	 mathematical model for surface estimation that	
	 fits a minimum-curvature surface through the input	
	 points. The method fits a mathematical function to	
	 a specified number of the nearest input points, while	
	 passing through the sample points. This method is	
	 not appropriate if there are large changes in the	
	 surface within a short distance, because it can	
	 overshoot estimated values (Ruelland et al., 2008).
–	 The Moving Window Regression (MWR) method is	
	 a general linear regression, which is conducted only	
	 in areas where a relationship between the primary and	
	 secondary variables is thought to exist (Lloyd, 2005).	
	 For example, in applying the MWR method to rainfall,	
	 rainfall represents the primary variable and elevation	
	 the secondary variable. The rainfall estimation is	
	 based on the modeled relationship between the	
	 rainfall and elevation data closest to the estimation	
	 location.

2.2. Geostatistical interpolation methods

The second group of spatial interpolation methods 
for measuring rainfall, geostatistical methods, 
constitutes a discipline connecting mathematics and 
earth sciences. Kriging is an example of a group 
of geostatistical techniques used to interpolate the 
value of a random field. Matheron (1971) named and 
formalized this method in honor of Daniel G. Krige, a 
South African mining engineer who pioneered the field 
of geostatistics. Kriging is based on statistical models 
involving autocorrelation. Autocorrelation refers to 
the statistical relationships between measured points. 
Not only do geostatistical methods have the capability 

of producing a prediction surface, but they can also 
provide some measures of the certainty and accuracy 
of the predictions. 

In kriging, the value of the interest variable is 
estimated for a particular point using a weighted sum of 
the available point observations. The weights of the data 
are chosen so that the interpolation is unbiased and the 
variance is minimized. In general, the kriging system 
must be Linear, Authorized, Unbiased and Optimal 
(LAUO). Kriging is the first method of interpolation 
to take into account the spatial dependence structure 
of the data. There are several types of kriging, which 
differ according to the form applied to the mean of the 
interest variable: 
–	 when it is assumed that the mean is constant and	
	 known, simple kriging (SK) is applied; 
–	 where the mean is constant but unknown, ordinary	
	 kriging (ORK) is applied; 
–	 finally, universal kriging (UNK) is applied where	
	 the mean is assumed to show a polynomial function	
	 of spatial coordinates. So, in contrast to the other	
	 two types, this last type of kriging is not stationary	
	 with regard to the mean. 

Stationarity defines itself here by the constancy 
of the mean, but also by the covariance between two 
observations that depend only on the distance between 
these observations. All the different types of kriging 
apply the stationarity of the covariance, or, more 
generally, the semi-variogram. This function, which 
represents the spatial dependence structure of the 
data, must be estimated and modeled before making 
the interpolation. First of all, the experimental semi-
variogram can be calculated as being half the squared 
difference between paired values to the distance by 
which they are separated:

where N(h) is the number of pairs of data locations at 
distance h apart.

In practice, the average squared distance can be 
obtained for all pairs separated by a range of distances 
and these average squared differences can be plotted 
against the average separation distance. A theoretical 
model might then be fitted to the experimental semi-
variogram (Figure 1) and the coefficient of this model 
(nugget effect, sill and range) can be used for a kriging 
equation system.

The kriging method encompasses several ways of 
integrating auxiliary variables:
–	 if the mean is not constant, but we can estimate the	
	 mean at locations in the domain of interest, then this	

^
                       N(h)
γ(h) =    1         ∑ (Zsi - Z(si + h))

2                     (2)
           2N(h)     i=1
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	 locally varying mean can be used to inform estimation	
	 using SK; this is referred to as Simple Kriging with	
	 a Locally varying mean (SKL) (Goovaerts, 2000); 
–	 Kriging with External Drift (KED) assumes that	
	 the mean of the interest variable depends on	
	 auxiliary variables; the theory behind KED is in fact	
	 the same as the theory behind universal kriging,	
	 which also contains a non-constant mean. The drift	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 is defined externally through certain auxiliary	
	 variables (Hengl et al., 2003);
–	 in order to better meet the assumptions of stationarity,	
	 linear regression may be carried out against	
	 secondary variables to remove first order trends. The	
	 residuals can be used to generate a new variogram	
	 and then ordinary kriging can be applied to these	
	 residuals. The resulting estimates can be added to	

Figure  1. Example of an experimental semi-variogram with different permissible models fitted — Exemple d’un semi-
variogramme expérimental sur lequel différents modèles possibles sont ajustés.
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	 the trend to give the estimated values. This technique	
	 has been termed Residual Kriging (RK) or Detrended	
	 Kriging (DK).
–	 the other type of kriging, Ordinary Cokriging	
	 (OCK), involves estimating the variable of interest	
	 by the weighted linear combination of its observations	
	 and the observations of the auxiliary variables. This	
	 technique requires the study of the spatial dependence	
	 between variables in addition to the study of simple	
	 spatial dependences.

A detailed presentation of geostatistical theories 
can be found in Cressie (1991); Goovaerts (1997); 
Chilès et al. (1999) and Webster et al. (2007).

3. APPLICATIONS AND PERFORMANCE 
OF DIFFERENT METHODS FOR SPATIAL 
INTERPOLATION OF RAINFALL DATA

Studies relating to the interpolation of precipitation 
often involve a comparison of methods. When a large 
number of data are available, these comparisons are 
made by dividing the dataset into two: one set of data 
for interpolation and the other for validation. This 
method is ideal because the validation is completely 
independent of the formulation of the model. Often the 
data are very few and, in such cases, the comparison 
of methods is instead made by cross-validation (Isaaks 
et al., 1990). However, whether the validation is 
independent or crossed, it allows the identification 
of errors of prediction. Another way to compare 
interpolation methods is to use a hydrological model. 
Here, the interpolated rainfall data can be used as an 
input into the hydrological model. The observed and 
simulated discharge can be compared and the error of 
prediction can be found.

Spatial interpolation techniques differ in their 
assumption, deterministic or statistical (geostatistical) 
nature, and local or global perspective. Deterministic 
techniques, such as IDW, have been used in numerous 
studies. Even though IDW is a fairly straightforward 
deterministic interpolation technique, which offers 
adaptable weights, the selection of the weighting 
function is subjective and no measure of error 
is provided. Therefore, the literature has sought 
to address questions regarding the bases for the 
application and further development of multivariate 
geostatistical techniques, such as KED or cokriging, 
using various co-variables. It is often recognized that 
the statistical approach, geostatistical techniques or 
kriging, present several advantages over deterministic 
methods. Kriging presents an important advantage 
in its ability to give unbiased predictions with 
minimum variance and to take into account the spatial 
correlation between the data recorded at different rain 

gauges or weather stations. In addition to providing 
a measure of prediction error (kriging variance), 
another major advantage of kriging over simpler 
methods is that its geostatistical framework is also 
able to accommodate secondary information in order 
to improve the interpolation results. For countries 
with access to satellites, radar, microwave links, etc., 
the data obtained via these instruments are generally 
used to improve precipitation interpolation. However, 
in countries where these modern instruments are 
not available, measurements of altitude, especially 
as extracted from a digital elevation model (DEM), 
form an extensively accessible data source, which 
can be incorporated into multivariate geostatistical 
interpolation of rainfall. Nevertheless, some studies 
have shown that deterministic interpolation methods 
perform better than geostatistical methods and that the 
results depend on the sampling density (Dirks et al., 
1998). Dirks et al. (1998) compared the performance 
of IDW, THI and kriging in interpolating rainfall data 
from a network of thirteen rain gauges on Norfolk 
Island in all multiple time steps: hour, day, month and 
year. The results led the authors to recommend IDW 
for interpolations for spatially dense networks of rain 
gauges. Most studies have used only daily, monthly 
or annual time steps for precipitation interpolation. 
Moreover, some other studies have used only hourly 
time steps for large-scale extreme rainfall events. 
Validations in these studies have often been performed 
using cross-validation methods, although a few other 
studies have been based on results obtained through 
hydrological modeling. However, no single method 
has been shown to be optimal for all time steps and 
conditions.

3.1. Studies investigating the performance of 
spatial interpolation methods for annual and 
monthly rainfall

Some studies have tested both deterministic and 
geostatistical methods for interpolating rainfall data. 
Most of these studies have used only monthly or annual 
time steps for precipitation interpolation and mapping. 
There have been many comparative assessments of 
common interpolation techniques.

In their study of monthly totals in a large scale 
network from a 30-year dataset of annual rainfall at 
29 stations located in the North Central continental 
United States, Tabios et al. (1985) found that the 
statistical methods of kriging and optimal interpolation 
were superior to other methods. The comparison 
was based on the error of estimates obtained at five 
selected sites. The authors found that THI and IDW 
gave fairly satisfactory results, while PI did not 
produce good results. In a separate study, Phillips 
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et al. (1992) evaluated three geostatistical methods 
for making mean annual precipitation estimates on 
a regular grid of points in the mountainous terrain 
of the Willamette River basin. Results showed that, 
compared with ORK, DK and OCK both exhibited 
better precision and accuracy. In that study, contour 
diagrams for ORK and DK exhibited smooth zonation 
following general elevation trends, while OCK showed 
a patchier pattern more closely corresponding to local 
topographic features. In another study, Abtew et al. 
(1993) applied six methods of spatial interpolation 
over a 4,000 square mile area in South Florida and 
the results validated historical observations. Results 
indicated that the multiquadric, kriging, and optimal 
interpolation schemes were the best three methods for 
interpolation of monthly rainfall within the study area. 
The optimal and kriging methods have the advantage 
of providing the error of interpolation. Nalder et  al. 
(1998) later used four types of kriging and three 
simple alternatives to estimate 30-year averages of 
monthly precipitation at specific sites in western 
Canada. One of the alternatives was a new technique, 
termed “gradient-plus-inverse distance squared” 
(GIDS), which combines multiple linear regression 
and distance-weighting. Based on the mean absolute 
errors from cross-validation tests, the authors ranked 
the methods in order of effectiveness for interpolating 
monthly precipitation as follows: GIDS, OCK, IDW, 
NN, ORK, DK and UNK. They concluded that GIDS 
was a simple, robust and accurate interpolation method 
for use in their region of study, and that it should be 
applicable elsewhere, subject to careful comparison 
with other methods. The authors also concluded that 
it was unfair to use local multiple linear regressions 
for the relevant stochastic procedure for deterministic 
methods, but not for geostatistical methods (with the 
same ancillary variable).

Basistha et al. (2008) used data from 44 stations 
to generate a normal annual rainfall map in the 
Himalayan region of India lying in Uttarakhand state 
at a 1-km spatial resolution. The authors carried out a 
comparative analysis by cross-validating interpolation 
techniques and found that UNK in combination with the 
hole-effect model (this model relates to the existence 
of two high valued rainfall fields in the study area) and 
natural logarithmic transformation with constant trend 
and the smallest Root Mean Square Error (RMSE) 
constituted the best choice. That was followed by ORK, 
spline, IDW and PI. Goovaerts (2000) employed three 
multivariate geostatistical algorithms (SKL, KED, 
and OCK) incorporating a digital elevation model 
for the spatial prediction of rainfall using annual and 
monthly rainfall observations measured at 36 climatic 
stations in a 5,000 km² region of Portugal. During 
cross-validation, the author found that these three 
multivariate geostatistical algorithms outperformed 

other interpolators, in particular linear regression, a 
technique which stresses the importance of accounting 
for spatially dependent rainfall observations in addition 
to the co-located elevation. Lastly, Goovaerts (2000) 
found that ORK yielded more accurate predictions than 
linear regression when the correlation between rainfall 
and elevation was moderate. In Great Britain, Lloyd 
(2005) applied monthly precipitation from sparse 
point data to a range of interpolation methods: MWR, 
IDW, ORK, SKL and KED. The MWR, SKL and 
KED methods relied on elevation data as secondary 
information. Based on his examination of mapped 
estimates of precipitation and cross-validation, the 
author found that KED provided the most accurate 
estimates of precipitation for all months from March 
to December, whereas for January and February, ORK 
provided the most accurate estimates. However, the 
data for these few months cannot be used to draw 
accurate conclusions regarding the better performance 
of a particular technique. The reason for Lloyd (2005) 
finding KED to be the most accurate precipitation 
interpolation method from March to December is 
that, during these months, more neighborhood data 
were used for interpolation. KED estimates based on 
a larger neighborhood tend to be more accurate. In 
another study, Diodato (2005) studied the influence of 
topographic co-variables on the spatial variability of 
precipitation using rainfall observations measured at 
51 climatic stations in a complex mountainous region 
of southern Italy (Benevento province). In addition 
to employing the ORK method, the author added for 
OCK two auxiliary variables of annual and seasonal 
precipitation: terrain elevation data and a topographic 
index. Cross-validation indicated that ORK yielded 
the largest prediction errors. The smallest prediction 
errors were produced by a multivariate geostatistical 
method. Diodato (2005) concluded that OCK is a very 
flexible and robust interpolation method because it 
is capable of taking into account several properties 
of the landscape. More recently, Moral (2010) 
applied a wide range of geostatistical methods to 
monthly and annual precipitation data measured at 
136 meteorological stations in a region of southwestern 
Spain (Extremadura). Cross-validation revealed that 
the smallest prediction errors were obtained for the 
three multivariate algorithms. In particular, SKL and 
ORK were found to outperform OCK, which requires 
a more demanding variogram analysis.

In the studies described in this section, geostatistical 
methods were generally found to outperform 
deterministic methods for spatial interpolation and 
mapping of monthly and annual precipitation. In 
particular, the use of multivariate geostatistical 
methods in combination with elevation data as the 
secondary variable was generally found to yield the 
most accurate predictions.
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3.2. Studies investigating the performance of 
spatial interpolation methods for daily rainfall

Other studies have focused on the use of geostatistical 
and non-geostatistical approaches for the interpolation 
of daily rainfall in different sizes of area. There 
have also been several comparative studies of the 
performance of interpolation methods used for daily 
rainfall.

Employing a geostatistical approach, Creutin et al. 
(1988) used a rain gauge-radar combination to measure 
eleven daily events of areal rainfall in the Paris region. 
An external independent validation indicated that OCK 
improved slightly the performance of the raw radar data 
and that the technique exceeded the performance of the 
classical uniform calibration method. In another study, 
Beek et al. (1992) selected four days in 1984 in which 
to investigate the spatial variability in the amount of 
daily precipitation in north-western Europe in relation 
to meteorological conditions. Data were interpolated 
using kriging. Cross-validation showed the occurrence 
of large differences in the spatial structure of the 
amount of daily precipitation as a result of different 
meteorological conditions. Stratification of the study 
area into a coast, a mountain and an interior stratum 
proved to be successful, reducing the Mean Squared 
Error of prediction to a level of 55%.

Kyriakidis et al. (2001) mapped the seasonal 
average of daily precipitation for the period from 
1 November 1981 to 31 January 1982 over a region 
in northern California at a 1-km resolution. The study 
demonstrated the feasibility of constructing realistic 
analyses of precipitation. The authors integrated readily 
available and physically relevant predictors, such as 
atmospheric and terrain characteristics, which control 
the spatial distribution of precipitation at regional 
scale. Different interpolation methods were compared 
in terms of cross-validation statistics and the spatial 
characteristics of cross-validation errors. Interactions 
between lower-atmosphere state variables (humidity 
and horizontal wind components) and terrain (both 
elevation and its local gradients) provide valuable 
information for mapping the spatial distribution of 
orographic precipitation. A geostatistical framework 
using the maximum amount of relevant atmospheric 
and terrain information could lead to more accurate 
representations of the spatial distribution of rainfall 
than those found in traditional analyses based only on 
rain gauge data. The magnitude of this improvement 
in accuracy, however, would depend on the density 
of the rain gauge stations, on the spatial variability of 
the precipitation field, and on the degree of correlation 
between rainfall and its predictors. Classical objective 
analysis schemes ignore important relevant information 
such as humidity and vertical wind, and they 
consequently produce over-smooth representations 

of the spatial distribution of rainfall; such an adverse 
effect is intensified when the rain gauge network is 
sparse.

Buytaert et al. (2006) studied the variability of 
spatial and temporal rainfall in the south Ecuadorian 
Andes using the THI method and kriging with 14 rain 
gauges in the western mountain range of the Ecuadorian 
Andes. However, the number of rain gauges in that study 
was too small to allow the production of an informative 
variogram using standard estimation (means of the 
difference between each data pair; see equation 2). 
Therefore, when data series were available at each 
point, the experimental semi-variogram produced was 
calculated in another way, resembling more closely the 
definition of semi-variance:

Cross-validation undertaken by Buytaert et al. 
(2006) showed that spatial interpolation with kriging 
provided a better result than the one with THI, and 
that the accuracy of both methods improved when 
external variables were included. The external variable 
integrated into THI referred to data normalization based 
on the correlation between the mean daily rainfall and 
the external parameters. The external variable included 
in the kriging method referred to the UNK process. 

Schuurmans et al. (2007b) performed predictions of 
point rainfall using ORK and investigated the added 
value of operational radar for KED and OCK with 
respect to rain gauges in obtaining a high-resolution 
daily rainfall field. The spatial variability of daily 
rainfall was investigated at three spatial extents: 225, 
10,000 and 82,875 km², with selected rainfall events. 
Cross-validation undertaken in the study showed that 
methods using both radar and rain gauge data (KED 
and OCK) proved to be more accurate than using rain 
gauge data alone (ORK), in particular, for larger spatial 
extents. In a separate study, Carrera-Hernandez et al. 
(2007) used various forms of geostatistical method 
to analyze daily climatic data from approximately 
200 stations located in the Basin of Mexico for the 
months of June 1978 and June 1985. The results of 
cross-validation showed that the interpolation of daily 
events was improved by the use of elevation as a 
secondary variable even when that variable showed a 
low correlation.

In the studies described in this section, cross-
validation of results showed that kriging methods 
outperformed deterministic methods for the calculation 
of daily precipitation. However, both types of method 
were found to be comparable in terms of hydrological 

̭
γ(h) = 

Var(Zsi  - Z(si + h)) =
                         2

Var (Zsi) + Var(Z(si + h)) - 2Cov(Zsi, Z(si + h)).  (3)
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modeling results. In the studies described, both elevation 
and radar data were used in multivariate geostatistical 
calculations for the daily time step. However, very few 
methods were compared within any one study.

3.3. Studies investigating the performance of 
spatial interpolation methods for hourly rainfall

A small number of studies have considered using 
hourly time steps for large-scale extreme rainfall 
events. With specific reference to flood events, 
Haberlandt (2007) used the combined techniques of 
KED and indicator kriging with external drift (IKED) 
for the spatial interpolation of hourly rainfall from rain 
gauges using secondary variables from radar, daily 
precipitation within a dense network of rain gauges, 
and elevation. The methods were performed using 
data from the storm period of 10th to 13th August 2002, 
which led to a severe flood event in the Elbe river basin 
in Germany. Cross-validation carried out in the study 
showed that the multivariate geostatistical methods 
KED and IKED obviously outperformed the univariate 
methods, with the most significant added value being 
radar, followed by rainfall from the daily network and 
elevation. The authors found that the best performance 
was achieved when all secondary information was used 
at the same time with KED. In some cases, indicator-
based kriging techniques give a smaller RMSE than 
univariate techniques, which use only a single source of 
information, but this is at the expense of a considerable 
loss of variance. 

Also focusing on hourly precipitation, Velasco-
Forero et al. (2009) compared three geostatistical 
methods, all incorporating radar data as auxiliary 
variables in combination with a non-parametric 
technique to automatically compute correlograms. 
Cross-validation and spatial pattern analysis showed 
that KED produced the most accurate results. 
Schiemann et al. (2011) also used a geostatistical 
radar-rain gauge combination with non-parametric 
correlograms and parametric semi-variogram models 
for the construction of hourly precipitation grids for 
Switzerland, based on data from a sparse real-time 
network of rain gauges and from a spatially complete 
radar composite. In that study, cross-validation showed 
the KED formulation to be beneficial, particularly in 
mountainous regions where the quality of the Swiss 
radar composite was comparatively low. Recently, 
Verworn et al. (2011) used a multivariate geostatistical 
approach (KED) for the spatial interpolation of hourly 
rainfall, using auxiliary topographic data, rainfall 
data from dense daily networks and weather radar 
data. The study analyzed certain inundation events 
occurring between 2000 and 2005 caused by diverse 
meteorological conditions in northern Germany. 
Through cross-validation, the authors found that 

weather radar data were the most useful secondary 
data for KED for convective summer events, while for 
the interpolation of stratiform winter events, the use of 
daily precipitation as secondary data was satisfactory. 
Generally, the density of rain gauges is usually not 
sufficient to produce useful variograms on an hourly 
basis; so the advantage of using a radar estimate lies 
not only in its ability to give the approximate external 
variable, but also in the clues it provides regarding the 
spatial structure of rainfall. The variogram is not given 
by the reference data (rain gauges) but by the ancillary 
data.

In their investigation of hourly rainfall, the studies 
described in this section focused on large-scale 
extreme rainfall events. A multivariate geostatistical 
method (KED) was the one most commonly employed, 
typically with the incorporation of radar data as 
the secondary data source. Generally, multivariate 
geostatistical methods were shown to outperform 
univariate methods in these studies.

3.4. Validation of interpolation methods using 
hydrological modeling

Another way to compare the alternative spatial 
interpolation methods is to produce and compare 
various time-series of daily areal precipitation 
distributions using not only an internal precipitation 
validation, but also an objective verification based 
on stream flow simulations (Haberlandt et al., 1998). 
Haberlandt et al. (1998) used the Mackenzie River 
Basin in north-western Canada as their study area, 
carrying out hydrological simulations using the Semi-
distributed Land Use-based Runoff Processes (SLURP) 
model. The authors found that better interpolation 
techniques and the use of combined precipitation data 
were able to improve hydrological simulations and that 
these improvements were related to the relative size of 
the simulation units used. In a separate study, Ruelland 
et al. (2008) analyzed the sensitivity of a lumped and 
semi-distributed hydrological model (Hydrostrahler) 
to several spatial interpolations of rainfall data. The 
study was carried out within a context of scarcity of 
data over a large West African watershed. 

Point by point assessment shows that interpolation 
using IDW and kriging methods is more efficient than 
the simple Thiessen technique, and spline, particularly 
when a monthly time step is used. In fact, spline 
interpolation can be shown to perform equally as well 
as the kriging method if the appropriate covariance is 
used. In other words, a spline estimate with arbitrary 
parameters will perform in the same way as a kriging 
technique with an arbitrary variogram. In the study of 
Ruelland et al. (2008), the use of these data in a daily 
lumped modeling showed a different ranking of the 
various interpolation methods with regard to various 
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hydrological assessments. That model seems to be 
particularly sensitive to the differences in the volume 
of rainfall input produced by each interpolation 
method. In fact, the model is calibrated for each rainfall 
input. Compensation may be built into the model for 
inadequate rainfall data. 

Recently, Masih et al. (2011) used a semi-
distributed hydrological Soil & Water Assessment Tool 
(SWAT) model to compare that model’s performance 
under standard precipitation input and modified 
areal precipitation input obtained through the spatial 
interpolation Inverse Distance and Elevation Weighting 
(IDEW) method. The authors concluded that the use 
of areal precipitation, obtained through interpolation 
of the available station data, improved SWAT model 
simulated stream flows. The results were strongly 
influenced by the spatial extent of the investigations as 
well as by the station density and spatial distribution of 
the available rain gauge data used in the interpolation. 
Moreover, the authors strongly recommended further 
testing of the SWAT model using areal precipitation 
as an input obtained through the application of other 
interpolation methods to rain gauge records. They 
highlighted the fact that the SWAT model added 
value to stream flow simulations and other processes. 
They also suggested that development of an optional 
component for the interpolation of climatic data within 
the existing SWAT model would benefit multiple 
SWAT users. In a separate study, Tobin et al. (2011) 
presented a comparative analysis of the performance 
of IDW, ORK, and KED for hourly precipitation 
fields in complex Alpine terrain. The relevance of the 
study hinged on the major impact made by inadequate 
interpolations of meteorological forcing on the accuracy 
of hydrological predictions regardless of the specifics 
of the semi-distributed GSM-SOCONT models, 
during three flood events. The geostatistical methods 
used relied on a robust anisotropic variogram for the 
definition of the spatial rainfall structure. Results from 
cumulative precipitation analysis in the study indicated 
that IDW tended to significantly underestimate rainfall 
volumes, whereas ORK and KED methods captured 
spatial patterns and rainfall volumes induced by storm 
advection. The use of numerical weather forecasts and 
elevation data as covariates for precipitation provided 
evidence for KED outperforming the other methods. 
Hydrological simulations run with KED-interpolated 
input fields significantly improved results in terms of 
specific runoff volume. The model was not re-calibrated 
with each technique.

As we have seen in this section, very few studies 
have focused on comparing the performance of 
different interpolation methods as evaluated by 
hydrological modeling. Based on these few studies, 
the performance of the IDW method can be said to 
be comparable to that of the ORK method (Ruelland 

et al., 2008; Masih et al., 2011). KED was not included 
in these two studies, but this technique demonstrated 
the best performance in the study of Tobin et al. 	
(2011).

3.5. Use of variogram models and negative weight 
in geostatistical methods for interpolating rainfall 

Previous studies investigating geostatistical approaches 
have generally applied the same theoretical variogram 
model for all time steps. The spherical model has been 
the one most commonly chosen to interpolate rainfall. 
Recently, Van De Beek et al. (2011) applied the 
spherical model in examining the seasonal variogram 
parameters of daily rainfall in The Netherlands. 
Similarly, Verworn et al. (2011) applied the spherical 
model to interpolate hourly rainfall in the northern part 
of Germany. However, negative interpolated values can 
occur in kriging (Deutsch, 1996). Once a sample close 
to the location being interpolated exhibits an outlying 
value, negative weights in ORK occur. These negative 
weights can be large, depending on the variogram 
model and the data values. Moreover, negative weights 
may produce negative and nonphysical interpolated 
values when applied to high data values. In general, 
two approaches can be used to avoid a negative value: 
a posteriori correction as recommended by Deutsch 
(1996) or replacing all negative interpolated values 
with a zero value. Both are realistic solutions, but 
neither is perfect. Despite the fact that, in some cases, 
the negative values are large, no study has yet examined 
this problem.

4. DISCUSSION

In the literature, the results of the comparison of 
interpolation methods differ from one study to another. 
The successful performance of the methods depends 
on several factors, in particular, temporal and spatial 
resolutions of the data, and the parameters of the 
models, such as the semi-variogram in the case of 
kriging. The studies discussed here focused on the 
analysis of annual, monthly, daily, hourly or total 
rainfall for precipitation events of some duration 
with different densities of observation networks. It is 
thus difficult to draw a general conclusion. No one 
interpolation method stands out as being universally 
the best. Some authors recommend a particular method 
as being the best according to their judgment as to what 
is the most practical (Tabios et al., 1985; Abtew et al., 
1993; Syed et al., 2003). These authors note all the 
relatively equivalent levels of performance between 
the ORK technique and the multiquadratic functions 
(spline type). However, both Tabios et al. (1985) and 
Abtew et al. (1993) recommend the use of the ORK 
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technique because it allows the calculation of errors 
of prediction. On the other hand, Syed et al. (2003) 
chose to employ the multiquadratic functions because 
they consider them easier to use. Also, within the 
context of a dense network of stations, Dirks et al. 
(1998) did not obtain significant improvements in 
results by using ORK rather than IDW. They thus 
recommend the simpler IDW method. In fact, this 
observation of the better performance of IDW has 
been extended to its use with other types of data. 
For example, in an analysis of synthetic data from 
a computational experiment, Zimmerman et al. 
(1999) obtained a better interpolation with ORK or 
with UNK than with the IDW method only when the 
sampling point was regular, the noise low and the 
spatial correlation strong. 

Several studies have examined methods 
of multivariate interpolation. In some studies, 
radar-rainfall data have been used in combination 
with measurement at weather stations for spatial 
interpolation of precipitation (Creutin et al., 1988; 
Haberlandt, 2007; Schuurmans et al., 2007b; 
Velasco-Forero et al., 2009). However, the bulk of 
studies have made use of a cheaper, widely available 
data source, the Digital Elevation Model (DEM), 
taking advantage of the relationship between amount 
of precipitation and elevation. In particular, Phillips 
et al. (1992); Nalder et al. (1998); Goovaerts (2000) 
and Lloyd (2005) incorporated elevation into the 
interpolation of precipitation. These authors mainly 
used spline, SKL, RK or DK, KED and OCK. These 
multivariate methods seem to give better results than 
univariate methods in mountainous regions for a 
scale of about 10,000 km² (Phillips et al., 1992) or 
when the correlation between the rainfall data and 
the elevation is higher than 0.75 (Goovaerts, 2000). 
It is important to note that all these studies were 
conducted using annual or monthly precipitation. For 
finer temporal resolutions, such as a daily resolution, 
a strong relationship between elevation and 
precipitation is questionable, according to Haberlandt 
et al. (1998). Even though these authors observed 
an average correlation of 0.52 between elevation 
and the annual accumulation of precipitation, this 
correlation fell to 0.06 for daily observations. They 
thus relied more on integration into the interpolation 
of another auxiliary variable: precipitation simulated 
by an atmospheric model. Furthermore, these 
authors studied the interpolation of precipitation 
within a context of hydrological modeling and 
used hydrological simulations in addition to cross-
validation to compare their tested methods. The 
only multivariate method that they examined was 
KED. They applied this method either to all the 
time steps of their test period, or only when the 
correlation between the observations of stations and 

the auxiliary data exceeded a certain threshold (0.5 or 
0.3 depending on the auxiliary variable in question). 
Where the correlation was too low, they used ORK. 
The authors obtained better results by applying the 
KED method conditionally rather than by using it for 
every time step. On the other hand, the indications 
obtained via cross-validation for the conditional KED 
were only very slightly better than those for ORK. 
Furthermore, for the hydrological simulations, it was 
ORK that gave the best results. Multivariate methods 
were found to bring an improvement to the quality 
of the interpolation only when they were used at the 
right time, but this improvement did not seem to 
have a great impact on the quality of the hydrological 
modeling.

In contrast, Ruelland et al. (2008) found a different 
ranking of the various interpolation methods used 
between point by point assessment and hydrological 
simulation. They found that accurate assessment of 
the rainfall input volume was more important than 
the rainfall pattern itself for simulating stream flow 
hydrographs. They reached this conclusion through 
the use of a lumped model. This model does not 
account for the spatial variability of precipitation 
input with the basin. Masih et al. (2011) found 
IDEW to be a good method for rainfall input in a 
semi-distributed SWAT model. However, the authors 
did not make a comparison between IDEW and any 
geostatistical methods, which are usually found to be 
superior to such a simple method. To overcome such 
limitations, more types of geostatistical methods are 
currently being tested to prepare hourly rainfall input 
for hydrological modeling during flood events (Tobin 
et al., 2011). The use of improved rainfall input in 
KED provides evidence for increased accuracy in the 
prediction of discharge volume and peaks.

For annual and monthly rainfall, geostatistical 
methods appear preferable particularly, multivariate 
geostatistical methods which can be beneficial 
when using elevation data as a secondary variable. 
On the other hand, for daily rainfall, multivariate 
geostatistical methods and IDW are in competition. 
This is probably due to the fact that studies indicating 
the better performance of IDW were conducted using 
only one geostatistical method (ORK) and/or other 
simple methods such as THI and spline, while studies 
indicating the better performance of multivariate 
geostatistical methods only made a comparison within 
the family of geostatistical methods. Some authors 
have used radar data as a secondary variable, which 
is normally well correlated with rainfall from rain 
gauges thanks to the similar nature of the variable. 
A comparison between common deterministic 
methods (such as THI and IDW) and different types 
of geostatistical methods has not yet been made for 
daily rainfall.
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More recent studies have focused on hourly 
rainfall rather than on calculating rainfall in other 
time steps, as in previous studies. These more 
recent studies have been conducted in developed 
countries where modern instruments, such as radar, 
are available. As a result, radar rainfall has always 
been used in these studies as a secondary variable in 
multivariate geostatistical analysis (KED and OCK). 
These two methods have always demonstrated better 
performance in comparison with other types of 
geostatistical methods. However, the transposition 
of these methods (using radar rainfall) to developing 
countries cannot be made unless modern instruments 
are installed. This is very costly. Therefore, other 
cheap data such as elevation should be used as a 
secondary variable for incorporation into multivariate 
geostatistical methods.

Radar rainfall and elevation have generally been 
used as the secondary variables for integration into 
multivariate geostatistical methods. Radar rainfall has 
been found to be beneficial when incorporated into 
multivariate geostatistical methods in the interpolation 
of daily and hourly rainfall. Elevation has also provided 
a major advantage in improving the use of multivariate 
geostatistical methods for interpolating monthly and 
annual rainfall. However, very few studies have 
focused on incorporating elevation into multivariate 
geostatistical methods for daily rainfall interpolation. 
The reliability of predictions may vary if a different 
time step is chosen. The stochastic nature of daily 
rainfall, in particular, differs from that of monthly 
or annual rainfall. Therefore, it would be interesting 
to discover whether integration of elevation as a 
secondary variable improves interpolation accuracy, 
because rainfall data are mostly available at a daily 
time step in countrywide or regional measurements. 
Daily rainfall is the most important meteorological 
input into water resources and agricultural modeling 
systems. The question is whether what constitutes the 
best technique when applied to monthly or annual 
rainfall is also appropriate to apply to daily rainfall 
when precipitation pattern differences exist between 
daily and monthly timescales.

Very few analyses have been made of the impact 
of rain gauge density on interpolation methods. Some 
studies have focused primarily on the effect of rain 
gauge density using only one method (ORK, UNK or 
KED) or two methods (multiquadratic surface fitting 
and kriging) (Borga et al., 1997). This use of only one 
or two methods may have been due to the cumbersome 
nature of the analysis, in terms of computation time. 
However, given that computational facilities are 
now better developed and more widely available, 
it would be interesting to now make a comparison 
between a wider range of techniques. This might 
provide some insights in terms of particular strengths, 

weaknesses and applicability of a variety of methods. 
Such analyses related to rain gauge density would 
be valuable for engineers, hydrologists or decision 
makers working with sparse rain gauge data. 

Solutions to the problem of negative weights 
in kriging are extremely limited in the method’s 
application to rainfall. We recommend further 
investigation into how negative results can be 
eliminated through using kriging. For example, since 
negative kriged values may be generated as the result 
of a chosen variogram model, several variogram 
models could be used to minimize the risk of negative 
results appearing. Using a variety of variogram 
models might avoid negative rainfall calculations.

5. CONCLUSION

This article has presented and discussed previous 
studies related to spatial interpolation of rainfall. The 
main conclusions drawn here can be summarized as 
follows:
–	 for annual and monthly rainfall, geostatistical	
	 interpolation methods seem preferable to	
	 deterministic methods. In particular, the use of	
	 multivariate geostatistical methods in combination	
	 with elevation data has generally yielded more	
	 accurate interpolations;
–	 for daily rainfall, geostatistical methods and IDW	
	 have proved to be comparable approaches, in	
	 particular for hydrological modeling. However,	
	 very few studies have focused on incorporating the	
	 variable of elevation into multivariate geostatistical	
	 interpolation of daily rainfall. Moreover, the use	
	 of differently interpolated rainfall as an input for	
	 hydrological models has been very little studied;
–	 most authors have applied radar data as the	
	 secondary variable when analyzing hourly rainfall.	
	 Studies following this trend have been carried out	
	 mostly with multivariate geostatistics (KED) and a	
	 few other univariate methods;
–	 limited comparison has been made within a study	
	 between the use of common deterministic and	
	 different types of geostatistical interpolation	
	 methods, in particular for daily rainfall;
–	 the impact of rain gauge density on interpolation	
	 methods has been very little studied.

The studies reported here have made us strongly 
aware of the need for further research in order to 
discover the ways and means to improve the accuracy 
of rainfall input for hydrological modeling. The 
investigations undertaken so far have been restricted 
in numerous aspects, thereby stressing the need for 
further research. They have, however, provided very 
useful steps in that direction.
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Quantification and awareness of the uncertainties 
associated with hydrological data are thus essential 
for the correct interpretation of the results of the 
modeling. The precise evaluation of the spatiotemporal 
variability of rainfall on the watershed scale presents a 
complex problem because of the small number of rain 
gauges in most cases and because rainfall is extremely 
varied in space and time. The choice of interpolation 
method for measuring rainfall depends on the quantity 
of valid measures, the nature of the rain in the regions 
under study and the quality of the observations. The 
choice of method is therefore crucial. Furthermore, 
a sensitivity analysis of a hydrological model can 
be a complementary indicator of the quality of the 
interpolation of rainfall and of other meteorological 
parameters. Thus, strategies for the acquisition and 
the pretreatment of data can be better realized so as to 
achieve a more efficient hydrological modeling.
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