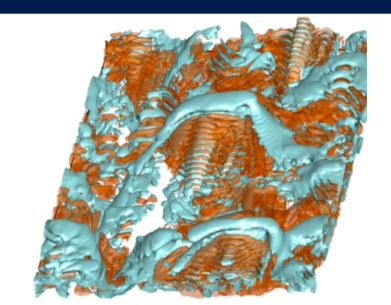


Dynamics of Elasto-Inertial Turbulence in Flows with Polymer Additives

Vincent E. Terrapon Yves Dubief Julio Soria



Acknowledgements

Collaborators

Yves Dubief
 University of Vermont, USA

Julio Soria Monash University, Australia
 King Abdulaziz University, Kingdom of Saudi Arabia

Financial support

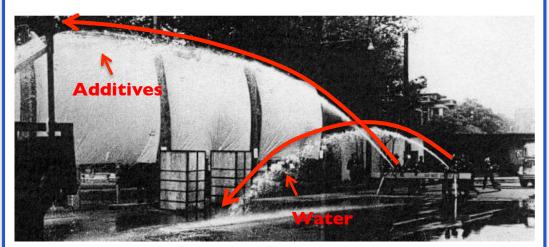
- Marie Curie FP7 CIG
- Vermont Advanced Computing Center
- US National Institutes of Health
- Australian Research Council
- Center for Turbulence Research Summer Program

Outline

Context

- Models and numerical implementation
- Polymer drag reduction
- Elasto-inertial turbulence
- Conclusions and future work

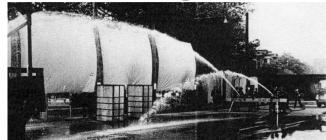
Turbulent drag reduction



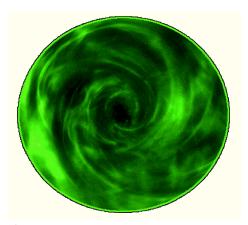
Fire hoses with and without polymer additives

- Up to 80% friction drag reduction, even at low concentration
- No significant effect on drag in laminar flows
- Bounded by Maximum Drag Reduction (MDR) asymptote
 Pipeline

Turbulent drag reduction



Elastic turbulence

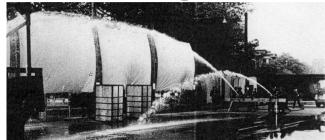


Chaotic motion of a polymer solution in micro-channel (Groisman & Steinberg, 2000)

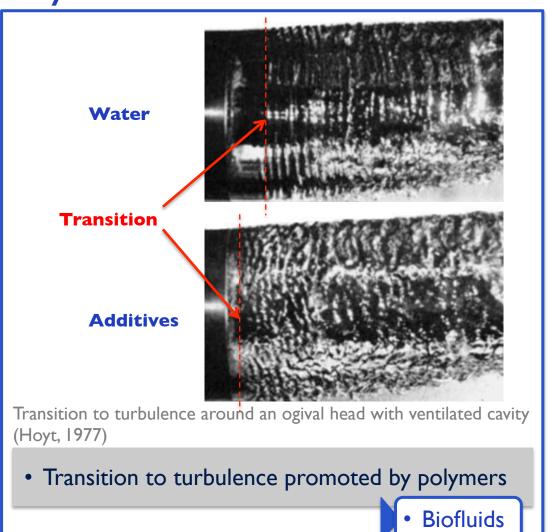
- Existence of elastic turbulence in flows with curved streamlines
- Observed at low Reynolds number
- Strong increase in mixing properties
 - **Blood flow**
 - Micro-channel flow

Elastic turbulence

Turbulent drag reduction

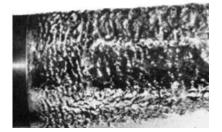


Early turbulence

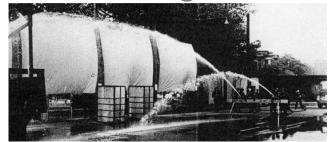


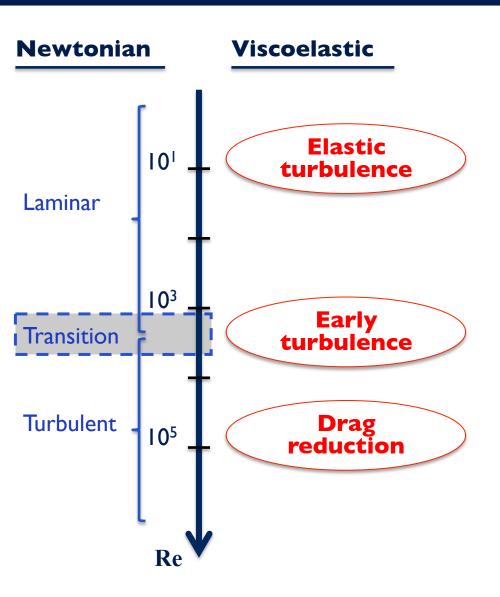
Elastic turbulence

Early turbulence



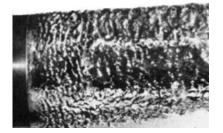
Turbulent drag reduction



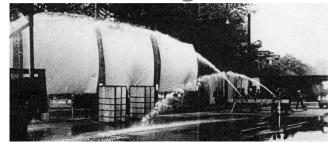


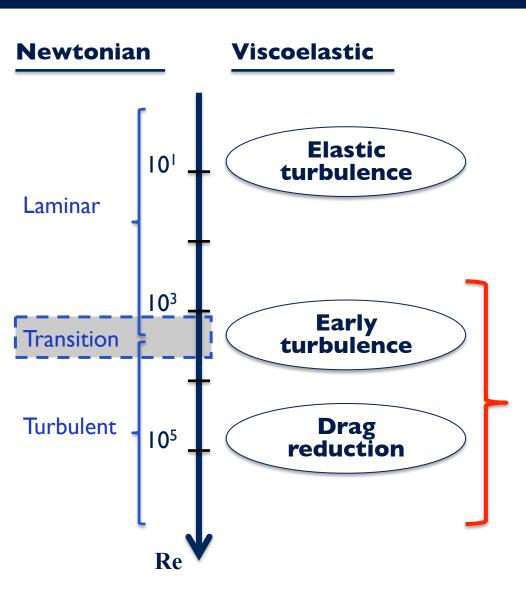
Elastic turbulence

Early turbulence



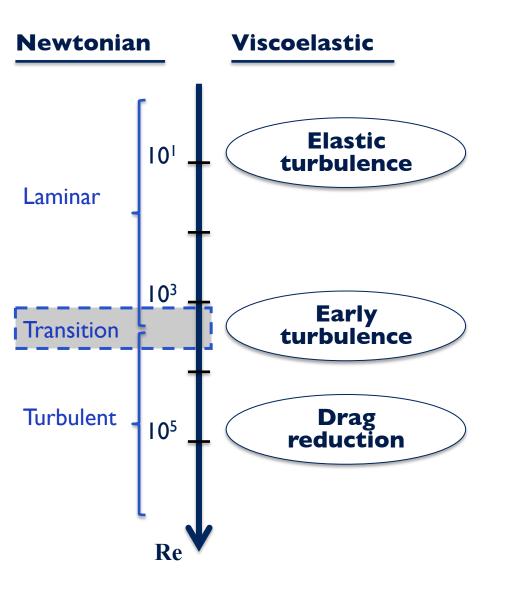
Turbulent drag reduction





Elasto-Inertial Turbulence (EIT)

- State of small-scale turbulence
- Contributions from both elastic and inertial instabilities
- Observed over a wide range of Reynolds numbers
- Link between different phenomena



Key questions

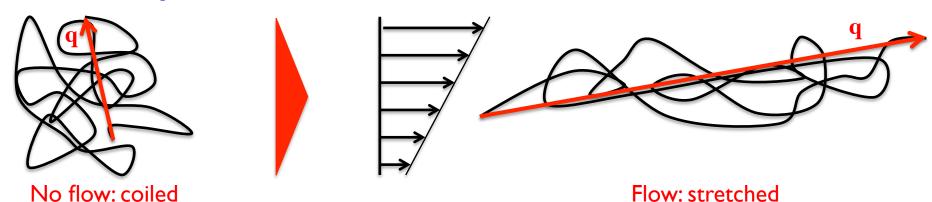
- Is drag reduction
 - a viscous and large-scale effect (Lumley)
 - an elastic and small-scale effect (de Gennes)
- What is the nature of EIT?
 - Relative contributions of elastic and inertial instabilities?
 - Characteristics of MDR?
 - Dynamical interactions between flow and polymers?

Outline

- Context
- Models and numerical implementation
- Polymer drag reduction
- Elasto-inertial turbulence
- Conclusions and future work

Polymer dynamics in flows

Coil-stretch dynamics



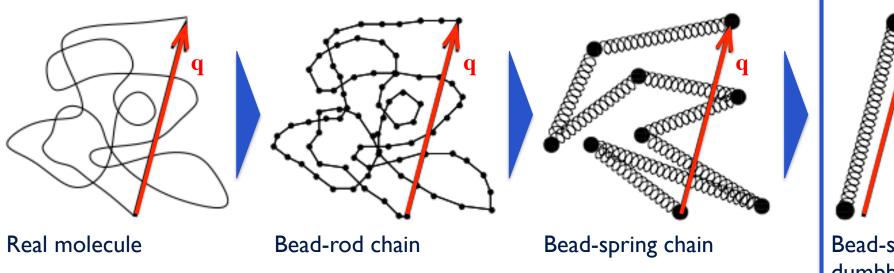
λ-DNA unraveling in extensional flow (Perkins et al., 1997)

Non-Newtonian rheology

- Long and flexible macromolecules (PAM, PEO)
- Flow deforms molecules
- Polymers exert stress onto flow
- Viscoelastic behavior (memory effect)
- Extended polymers relax over a time λ
- Typically large increase in extensional viscosity

Modeling polymer dynamics

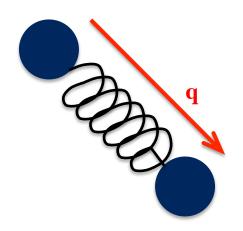
Coarse graining



- Bead-spring dumbbell
- Only dynamics of end-to-end vector q modeled
- Two beads connected by (nonlinear) spring
- Hydrodynamic and Brownian forces concentrated on beads
- Entropic restoring force modeled by spring

Modeling polymer dynamics

FENE model



$$\mathbf{F}^{\text{Drag}} + \mathbf{F}^{\text{Spring}} + \mathbf{F}^{\text{Brownian}} = \mathbf{0}$$

Evolution of end-to-end vector

$$\frac{d\mathbf{q}}{dt} = \nabla \mathbf{u} \cdot \mathbf{q} - \frac{1}{\text{Wi}} \frac{\mathbf{q}}{2(1 - q^2/L^2)} - \frac{1}{\sqrt{\text{Wi}}} \frac{dW}{dt}$$
Drag Spring Brownian

Polymer stress

$$\mathbf{T} = \frac{1}{\text{Wi}} \left\langle \frac{\mathbf{q}\mathbf{q}}{1 - q^2/L^2} - \mathbf{I} \right\rangle$$

Parameters

- Wi Weissenberg number
 (polymer relaxation time / flow time)
- L maximum extensibility of polymer

- Stochastic
- Lagrangian
- No closure model

Modeling polymer dynamics

FENE-P model

Conformation tensor

$$\mathbf{C} = \langle \mathbf{q} \mathbf{q} \rangle$$

Evolution of conformation tensor

$$\frac{DC}{Dt} = \nabla \mathbf{u} \cdot \mathbf{C} + \mathbf{C} \cdot \nabla \mathbf{u}^{T} - \mathbf{T}$$
Stretching Restoring

Polymer stress

$$\mathbf{T} = \frac{1}{\text{Wi}} \left(\frac{\mathbf{C}}{1 - \text{tr}C/L^2} - \mathbf{I} \right)$$

Parameters

- Wi Weissenberg number
 (polymer relaxation time / flow time)
- L maximum extensibility of polymer

- Deterministic (continuum)
- Eulerian
- Closure approximation

Viscoelastic NSE

Continuity
$$\nabla \cdot \mathbf{u} = 0$$

Momentum
$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \frac{\beta}{\text{Re}} \nabla^2 \mathbf{u} + \frac{1 - \beta}{\text{Re}} \nabla \cdot \mathbf{T} + \frac{dP}{dx} \mathbf{e}_x$$

Polymer stress
$$T = \frac{1}{Wi} \left(\frac{C}{1 - trC/L^2} - I \right)$$

$$\frac{\partial \mathbf{C}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{C} = \nabla \mathbf{u} \cdot \mathbf{C} + \mathbf{C} \cdot \nabla \mathbf{u}^{\mathrm{T}} - \mathbf{T}$$

$$\beta$$
 Ratio of solvent viscosity to zero-shear viscosity of solution

$$Re = \frac{U_b H}{V}$$
 Reynolds number

$$Wi = \frac{\lambda U_b}{h}$$
 Weissenberg number

Hyperbolic C equation

Equation for C is hyperbolic

$$\frac{\partial \mathbf{C}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{C} = \nabla \mathbf{u} \cdot \mathbf{C} + \mathbf{C} \cdot \nabla \mathbf{u}^{\mathrm{T}} - \mathbf{T}$$

- No spatial diffusion (Sc $\sim 10^5 10^6$)
- Sub-Kolmogorov scales of polymer stress
- Slow decay of energy spectrum
- Numerical instabilities

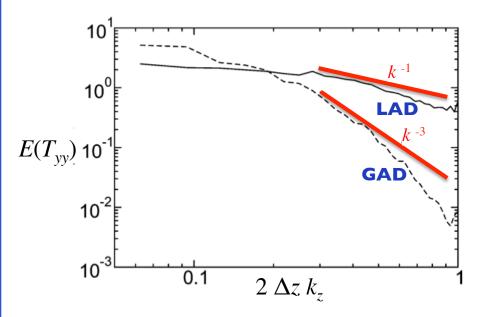
Trace of \mathbb{C} for different grid resolutions (Dubief, 2002)

Analogy with passive scalar (Batchelor, 1959)

At Sc > 1, scalar energy spectrum decreases as $E \sim k^{-1}$

from Kolmogorov scale η_K to Batchelor scale

$$\eta_B \sim \eta_K / \mathrm{Sc}^{1/2}$$



Spectrum of polymer stress T_{yy} at $y^+=15$ (Dubief et al., 2005)

Numerical approach

Space

- Structured grid
- 2nd order FD for velocity
- Non-dissipative 4th order compact scheme for polymer stress
- Compact upwind scheme for advection terms of conformation tensor

Time

- Semi-implicit fractional step
- 2nd order Crank-Nicolson/3rd order Runge-Kutta
- Implicit scheme for trace of ${f C}$ to ensure bounded trace

Artificial dissipation

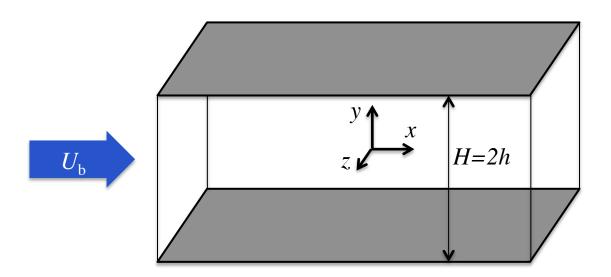
- Local artificial dissipation (LAD)
- Only used when determinant of tensor C becomes negative

- Important to rely on accurate numerical method
- Global dissipation ($Sc_{eff} \sim 1$) damps all small scales
- Capturing small polymer scales is critical to represent the correct physics

Min et al. (2001), Vaithianathan & Collins (2003), Dubief et al. (2005), Dallas et al. (2010)

Configuration

Periodic channel flow



- Mean pressure gradient in *x*
- Periodic in x and z.
- Wall (no-slip) at $y=\pm h$

Typical parameters

- Reynolds number $Re_b = U_b H/v = 1'000 10'000$
- Size: $10h \times 2h \times 5h$
- Grid: $256 \times 151 \times 256$
- Polymers: L = 50 200

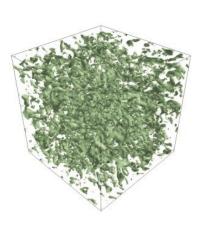
$$Wi = 3 - 40$$

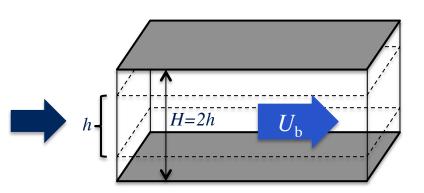
$$\beta = 0.9$$

Transition to turbulence

Simulated by-pass transition

Forced homogeneous isotropic turbulence





- t < 0:
 - Free-slip
- t = 0:
 - No-slip

Simulated roughness-induced transition

Weak initial wall perturbation (blowing)

$$v(x, y = \pm h, z, t) = H(t) \left[A \sin\left(\frac{8\pi}{L_x}x\right) \sin\left(\frac{8\pi}{L_z}z\right) + \varepsilon(t) \right]$$

Designed to trigger transition in Newtonian flow at Re=6000

Realism of the DNS

• Hyperbolicity of C transport equation respected as best as numerically possible (Dubief et al., 2005)

- Polymer parameters (for low polymer concentrations)
 - -shear thinning effect small
 - -extensional viscosity large (increasing with Wi)

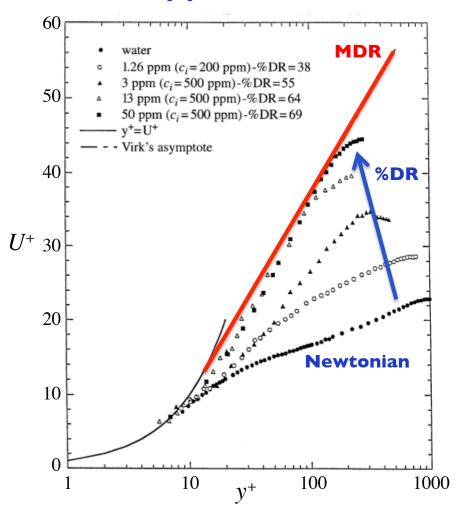
• Reproduce evolution of friction factor as function of Reynolds numbers observed in pipe flow experiments (Samanta, Dubief, Holzner, Shäfer, Morozov, Wagner & Hof, submitted)

Outline

- Context
- Models and numerical implementation
- Polymer drag reduction
- Elasto-inertial turbulence
- Conclusions and future work

Changes in mean velocity

Mean velocity profile



Modified log law

- Newtonian $U^+ = 0.4 \ln(y^+) + 5.5$
- Parallel shift at low drag reduction (LDR)
- Change of slope at high drag reduction (HDR)
- From buffer layer to edge of boundary layer

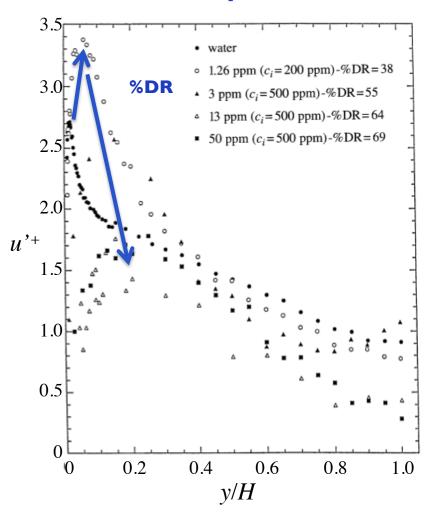
MDR asymptote

- Universal
- Not laminar
- Virk's log-law $U^+ = 11.7 \ln(y^+) 17$

Experimental measurements (Warholic et al., 1999)

Changes in velocity fluctuations

Streamwise velocity fluctuations

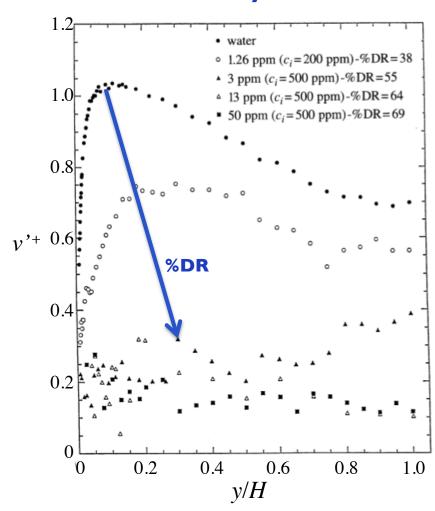


- First, increase in peak value
- Damping of peak value at higher DR
- Maximum value further away from the wall
- Thicker buffer layer
- Decrease of maximum streamwise velocity fluctuations not always observed

Experimental measurements (Warholic et al., 1999)

Changes in velocity fluctuations

Wall-normal velocity fluctuations

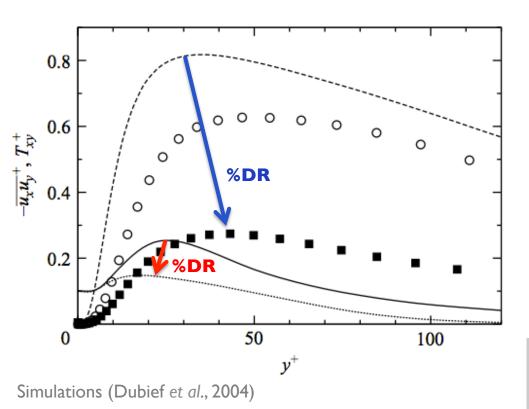


- Strong damping with increasing DR
- Maximum value further away from the wall

Experimental measurements (Warholic et al., 1999)

Changes in Reynolds stress

Reynolds stress and polymer stress

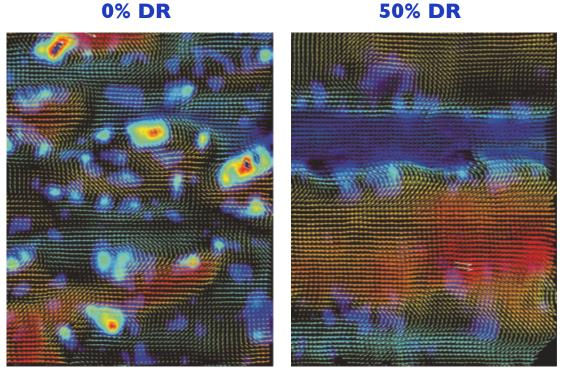


- Strong damping of Reynolds stress
- Maximum value further away from wall
- Increasing contribution of polymer stress

$$-\overline{u'v'}^{+} + \beta \frac{\mathrm{d}U^{+}}{\mathrm{d}y^{+}} + (1-\beta)T_{xy}^{+} = 1 - \frac{y^{+}}{h^{+}}$$
Reynolds Stress Shear stress ("stress deficit")

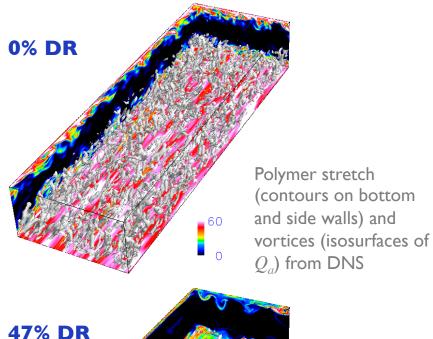
 Does Reynolds stress vanishes at MDR or is it finite?

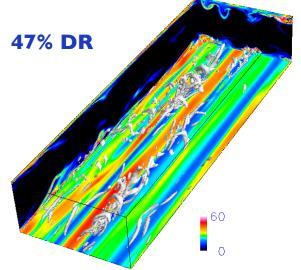
Changes in coherent structures



PIV measurements in viscoelastic boundary layer (White et al., 2004)

- Strong damping of quasi-streamwise vortices
- Coarsening and stabilization of streaks



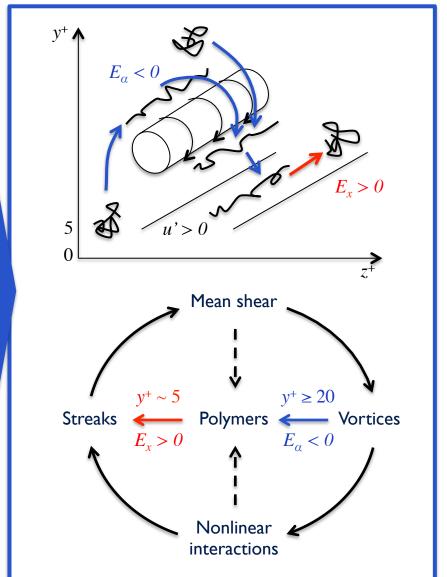


Mechanism

Polymer – turbulence interactions

- Energy transfer from flow to polymers
 - Kinetic to elastic energy
 - In up- and downwashes
 - Around near-wall vortices
 - Stretching caused by bi-axial extensional flow
- Energy transfer from polymers to flow
 - Into high-speed streaks
 - Very close to the wall

Dubief et al. (2004), Terrapon et al. (2004)



Outline

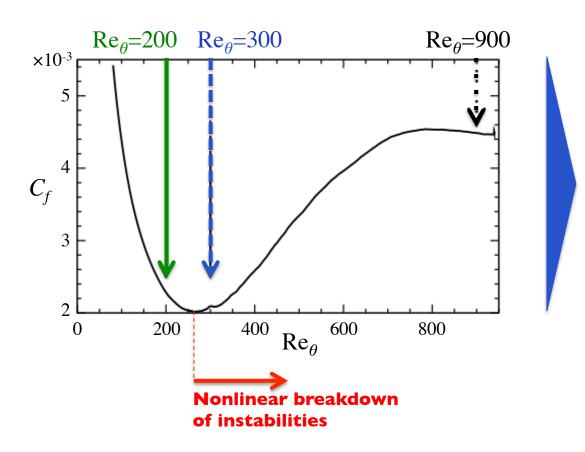
- Context
- Models and numerical implementation
- Polymer drag reduction
- Elasto-inertial turbulence

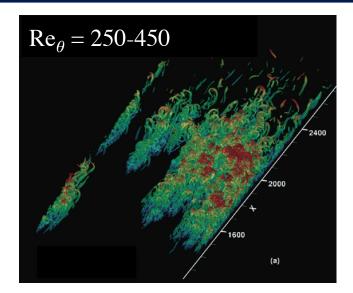
- MDR

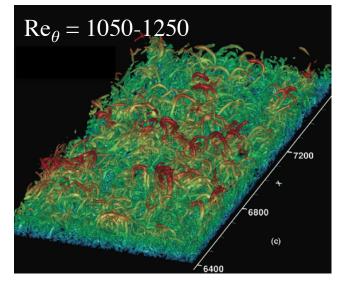
- Early turbulence
- Transition
- Conclusions and future work

Transition in Newtonian BL

Skin friction coefficient (ZPGBL)



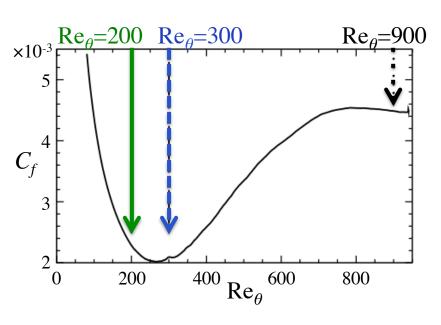




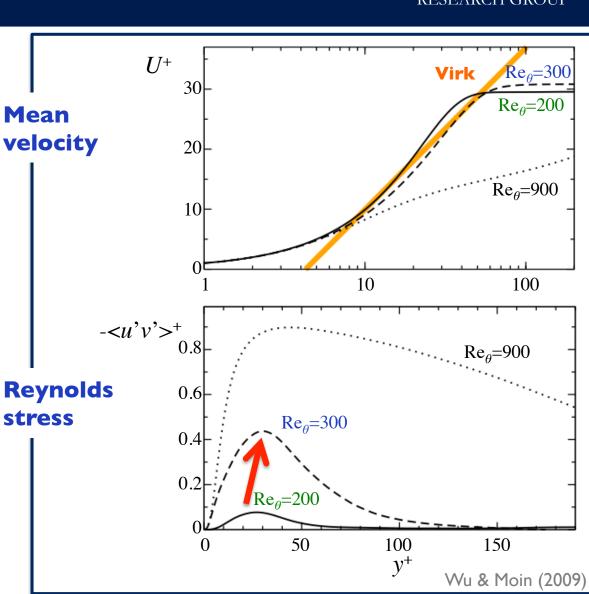
DNS of a ZPGBL (Wu & Moin, 2009)

Transition in Newtonian BL

Skin friction coefficient (ZPGBL)

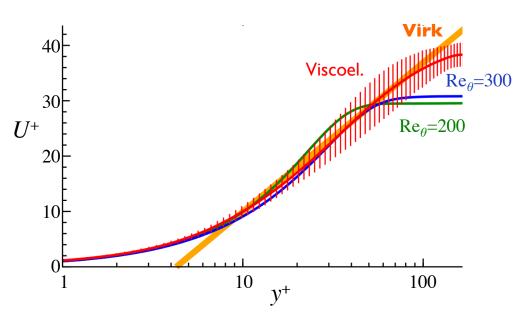


Virk's asymptote very similar to velocity profiles around nonlinear breakdown of instabilities

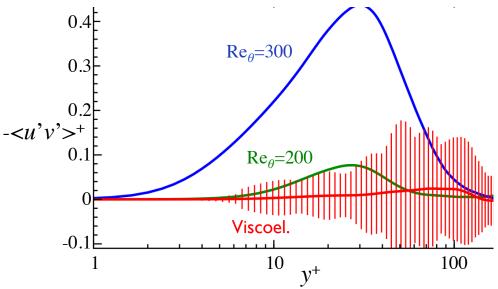


MDR and Newtonian transitional flow

Mean velocity



Reynolds stress

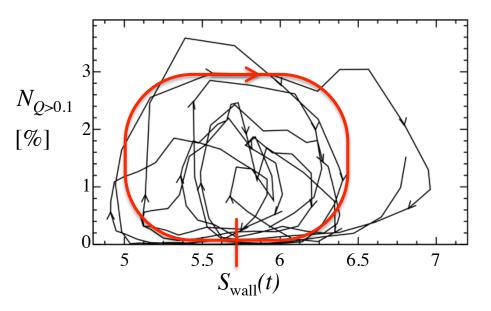


- Velocity profile at MDR (Virk) similar to Newtonian transitional flow
- Time fluctuations at MDR span both pre- and post-breakdown velocity profiles

- Average MDR Reynolds stress negligible
- Time fluctuations at MDR larger than prebreakdown Newtonian case
- Correlation with dP/dx

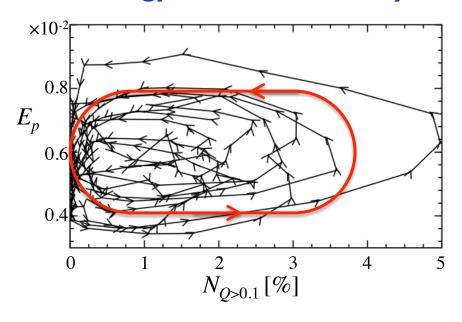
MDR oscillating behavior

Vortical activity vs. wall-shear



- Correlation between increasing vortical activity and increasing shear stress
- When vortices are damped, shear stress decreases

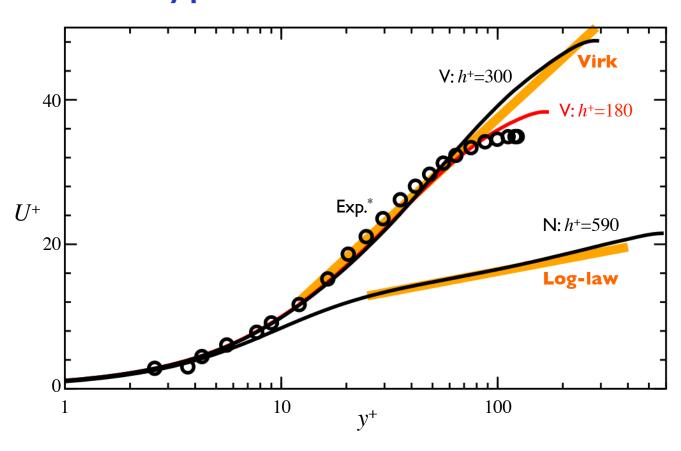
Elastic energy vs. vortical activity



- Elastic energy increases when vortical activity grows
- Elastic energy peaks during decaying portion of vortical activity
- Rapid drop when vortical activity vanishes
- Phase lag depends on elasticity

Is MDR logarithmic?

Mean velocity profile

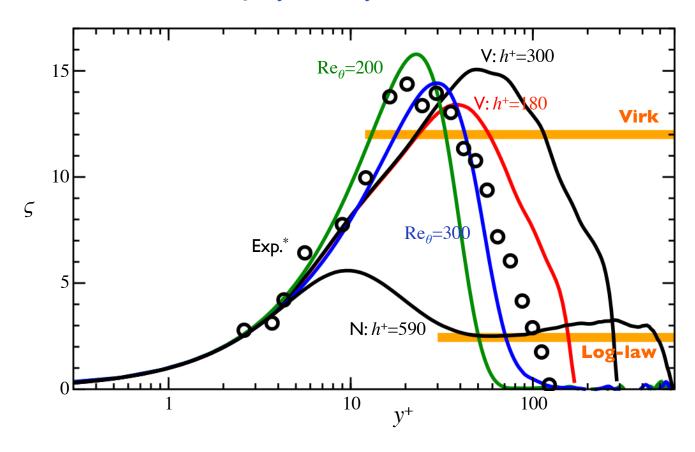


- MDR experiment, BL transitional flow, and MDR simulations straddle Virk's asymptote
- But is it a logarithmic scaling?

^{*} Escudier et al.(2009)

Is MDR logarithmic?

Indicator function $\zeta = y^+(dU^+/dy^+)$



- If logarithmic behavior, indicator function should be constant
- No apparent logarithmic behavior
 - MDR simulations
 - MDR experiment
 - BL transitional flow
- Possibly due to low Re but other experiments at higher Re show similar velocity profile
- Need more data at higher Re

White et al.(2012)

^{*} Escudier et al.(2009)

Our understanding of MDR

- MDR is a transitional state corresponding to the onset of the nonlinear breakdown of instabilities
- MDR flow oscillates between pre- and post-breakdown state
 - Polymers disrupt the near-wall autonomous cycle of wall turbulence
 - Vortices are damped out (or sufficiently weakened as to "turn-off" their ability to stretch polymers)
 - Stretching mechanism for polymers is limited to wall-shear and spanwise shear layers between streaks (both modest source of polymer stretching compared to biaxial-extensional flow)
 - Polymers recoil, allowing instabilities to grow and new vortices to form
- Oscillation "amplitude" depends on **polymer elasticity**
- There is **no apparent logarithmic scaling** of velocity at MDR or in transitional flows
- There are indications of **elastic instabilities** at small scales that contribute to the regeneration of vortices following the low vortical activity

White et al. (2012), Xi & Graham (2010), L'vov et al. (2004)

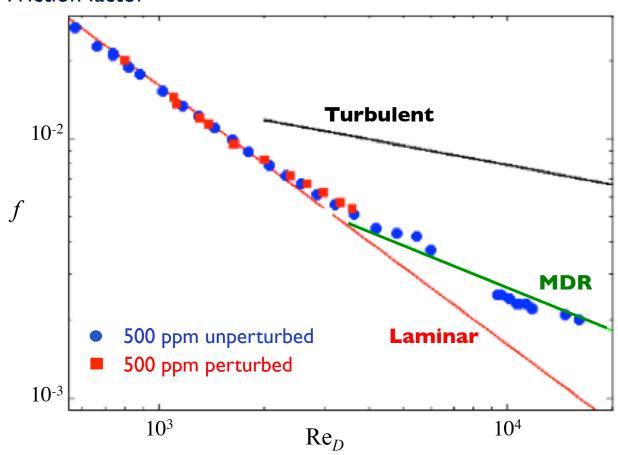
Outline

- Context
- Models and numerical implementation
- Polymer drag reduction
- Elasto-inertial turbulence
 - MDR
 - Early turbulence
 - Transition
- Conclusions and future work

Transitional viscoelastic flows

Pipe flow experiment with PAAm solution

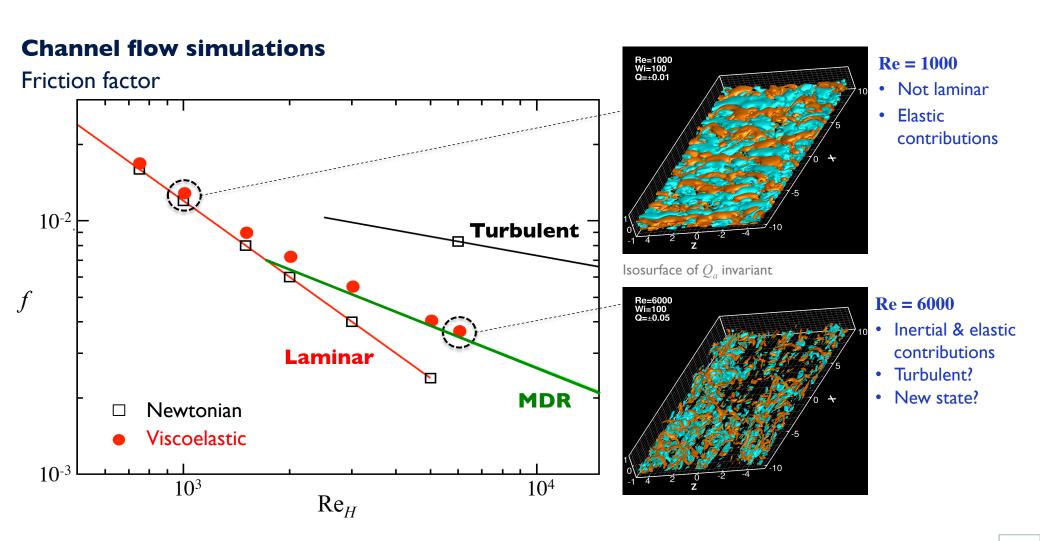
Friction factor

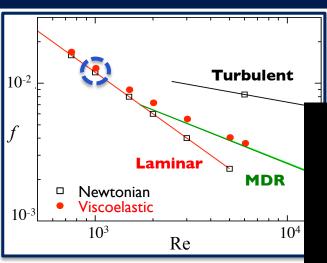


- Departure from laminar state at Re~800
- Smooth transition from laminar to MDR state
- Flow dynamics controlled by elastic and inertial instabilities

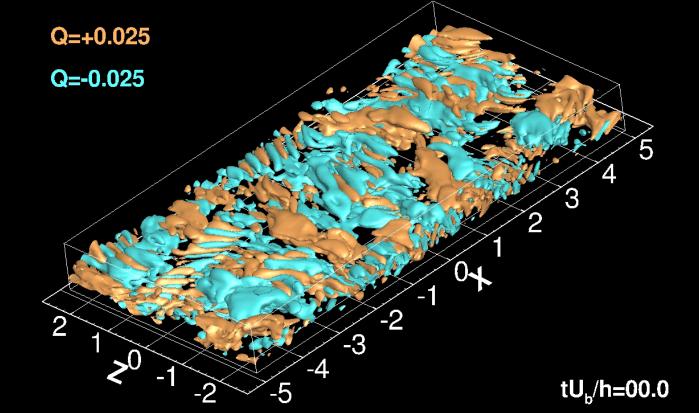
Samanta et al. (2012, submitted)

Transitional viscoelastic flows

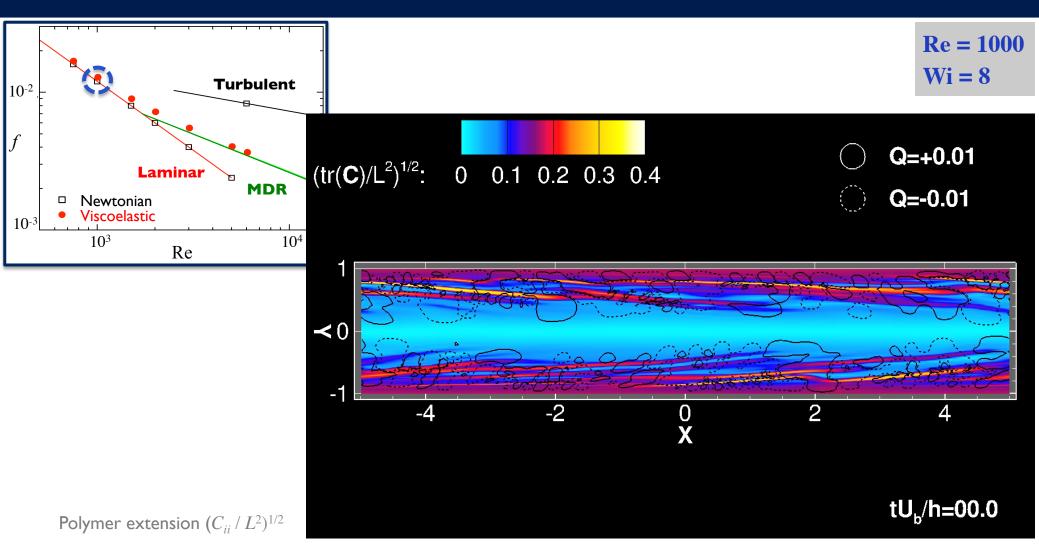


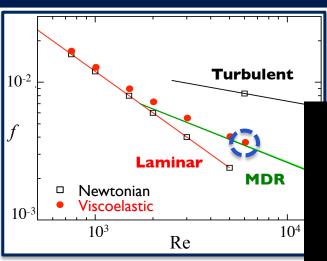


Re = 1000 Wi = 8

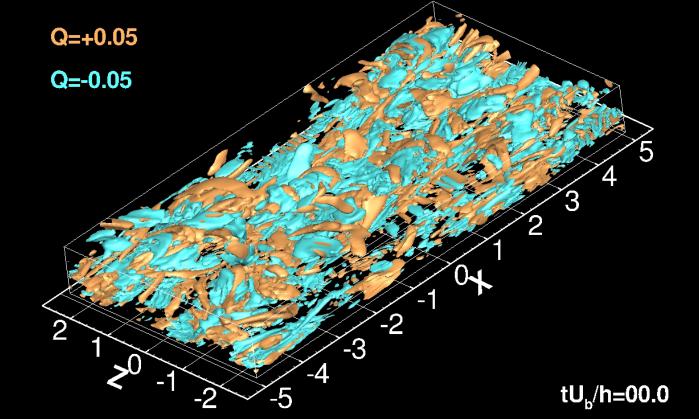


Second invariant of the velocity gradient tensor: $Q_a = \frac{1}{2} (\Omega^2 - S^2)$

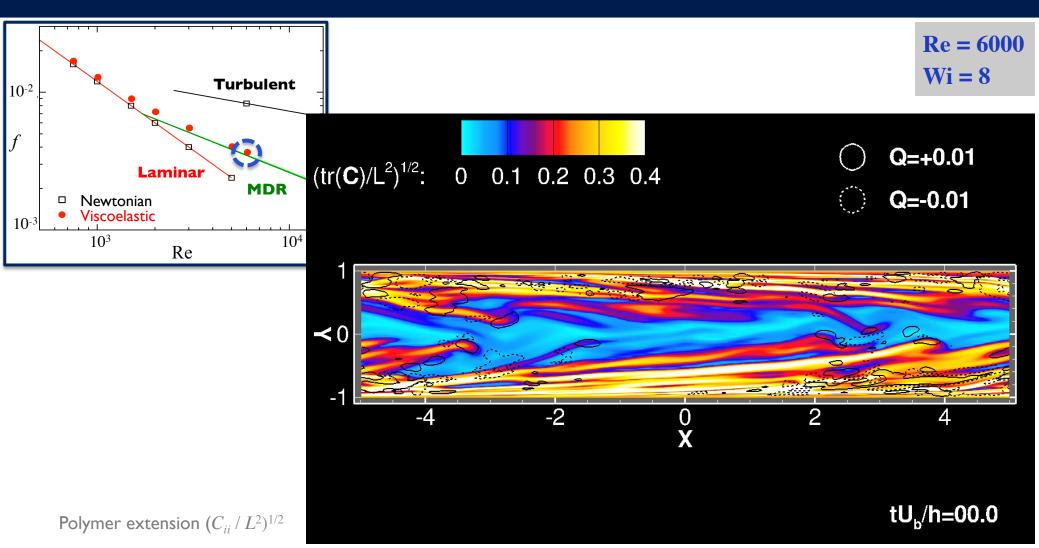




Re = 6000Wi = 8



Second invariant of the velocity gradient tensor: $Q_a = \frac{1}{2} (\Omega^2 - S^2)$



Local flow pattern at fluid particle

Velocity gradient tensor:

$$A_{ij} = (\nabla \mathbf{u})_{ij}$$

Invariants:

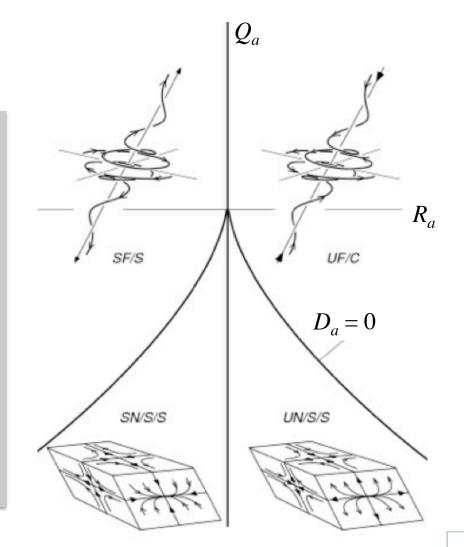
$$P_a = -A_{ii} = 0$$

$$Q_a = -\frac{1}{2}A_{ij}A_{ji}$$

$$R_a = -\frac{1}{3}A_{ij}A_{jk}A_{ki}$$

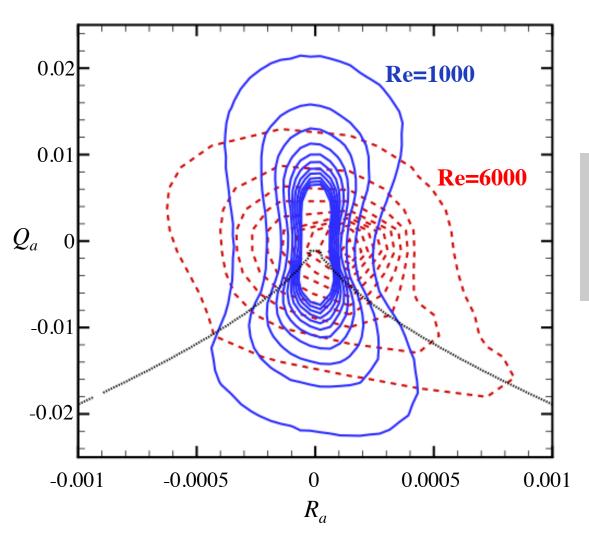
Discriminant:

$$D_a = \frac{27}{4} R_a^2 + Q_a^3$$



Chong et al. (1990), Soria et al. (1994)

EIT flow (JPDF)



- At low Re, symmetric distribution around 2D flow $(R_a=0)$
- At higher Re, "teardrop" shape similar to Newtonian turbulence

Velocity gradient tensor:

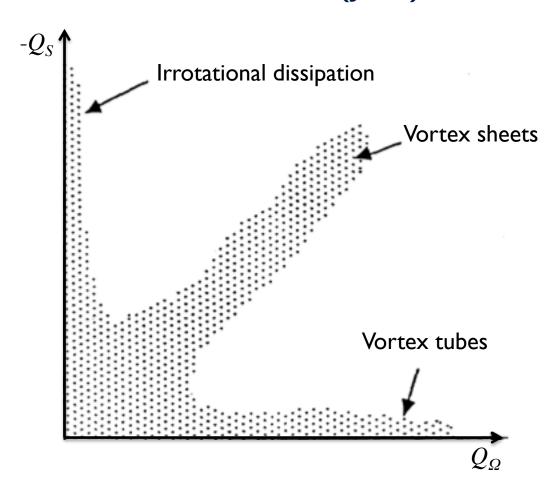
$$A_{ij} = (\nabla \mathbf{u})_{ij} = S_{ij} + \Omega_{ij}$$

$$Q_a = Q_S + Q_{\Omega}$$

$$Q_S = -\frac{1}{2} S_{ij} S_{ji}$$

$$Q_{\Omega} = -\frac{1}{2}\Omega_{ij}\Omega_{ji}$$

Newtonian turbulent flow (JPDF)



Velocity gradient tensor:

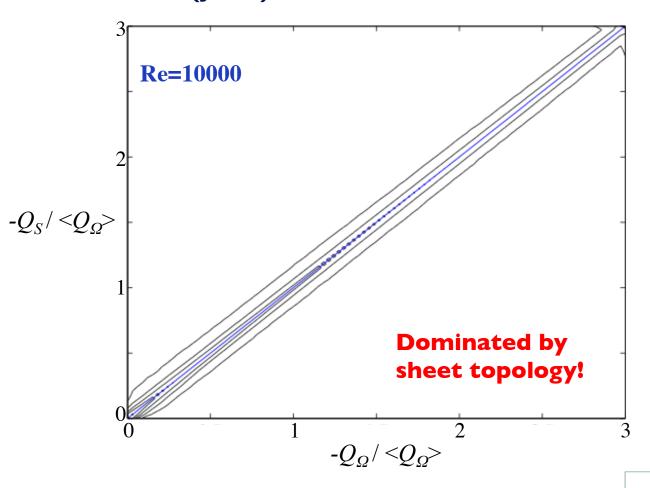
$$A_{ij} = (\nabla \mathbf{u})_{ij} = S_{ij} + \Omega_{ij}$$

$$Q_a = Q_S + Q_{\Omega}$$

$$Q_S = -\frac{1}{2} S_{ij} S_{ji}$$

$$Q_{\Omega} = -\frac{1}{2}\Omega_{ij}\Omega_{ji}$$

EIT flow (JPDF)

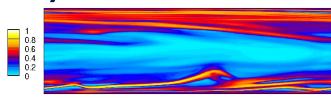


Observations

- Flow is perfectly **laminar** in the absence of polymers
- Polymer addition creates a **self-sustained** chaotic flow consisting of **trains** of cylindrical weakly rotational regions (positive Q_a) and weakly extensional regions (negative Q_a)
- There is a **hierarchy** of cylindrical structures, the smallest one being of the order of the **Kolmogorov** scale
- The polymer extension field is organized in sheets
- Polymers cause the flow to evolve from pure shear flow to mix extensionalshear flow
- The cylindrical Q_a structures are attached to sheets of large polymer extension
- Elasto-inertial turbulence results from the combination of the **hyperbolic** transport equation of ${\bf C}$ and the **elliptic** equation of p
- Pressure **redistributes** energy with trains of cylindrical structures to attenuate the anisotropy caused by sheets of extensional viscosity

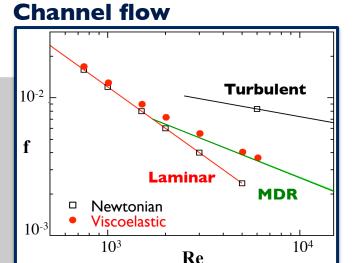
Proposed mechanism

Polymer extension



$$\partial_t \mathbf{C} + (\mathbf{u} \cdot \mathbf{\nabla}) \mathbf{C}$$

Formation of sheets



$$abla^2 p = 2Q_a - rac{1-eta}{Re} oldsymbol{
abla} \cdot (oldsymbol{
abla} \cdot oldsymbol{ au})$$

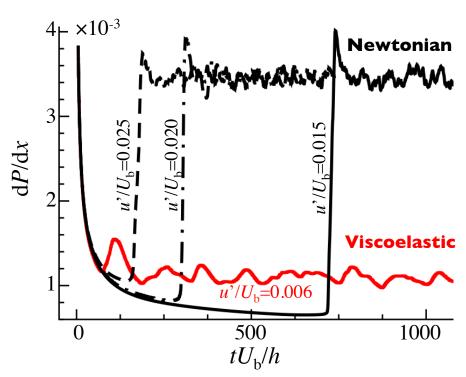
- Excitation of extensional sheet flow
- Elliptical pressure redistribution of energy

$$\mathbf{C}(\mathbf{\nabla} \mathbf{u}) + (\mathbf{\nabla} \mathbf{u})^{\mathrm{T}}\mathbf{C} - \mathbf{T}$$

 Increase of extensional viscosity (anisotropic)

Outline

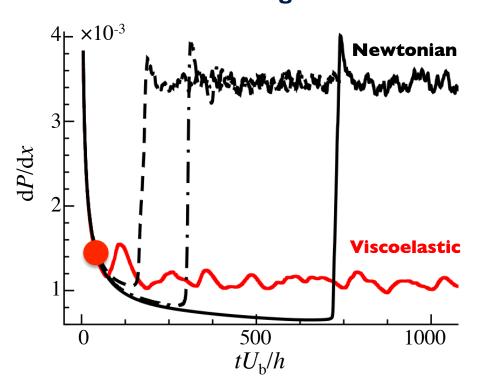
- Context
- Models and numerical implementation
- Polymer drag reduction
- Elasto-inertial turbulence
 - MDR
 - Early turbulence
 - Transition
- Conclusions and future work

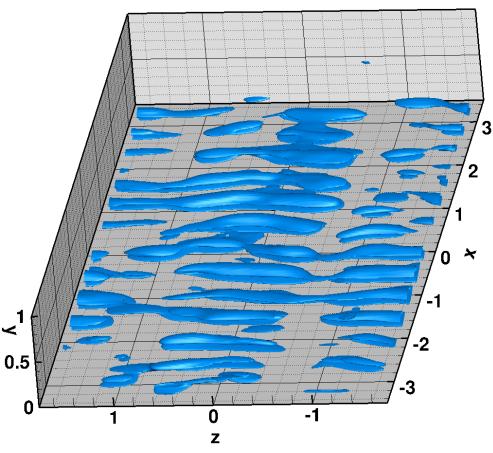


Re = 10000 Wi = 40

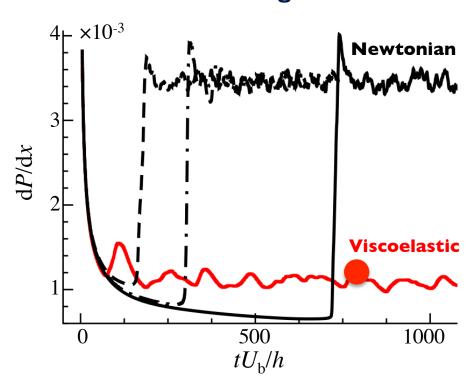
$$L = 200$$
 $\beta = 0.9$

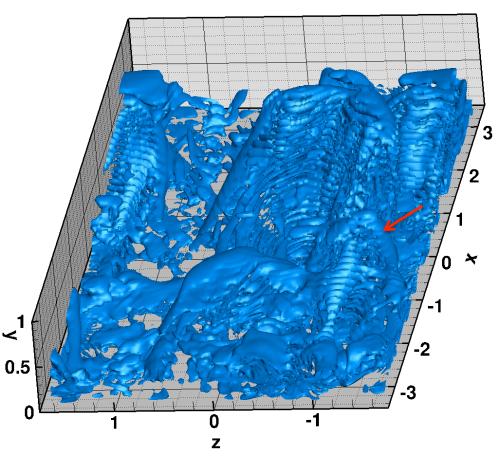
- Viscoelastic flow transitions with weaker perturbations
- Same perturbation level would lead to laminar Newtonian flow
- Viscoelastic flow transitions to MDR and stays at MDR



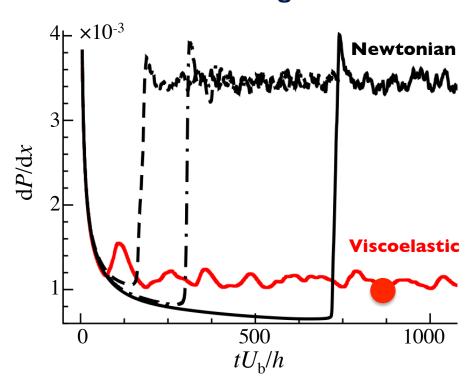


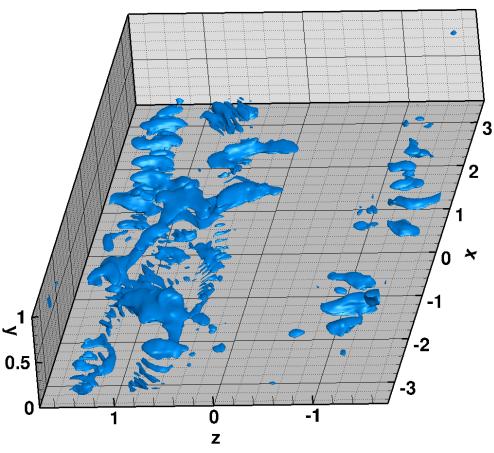
 2^{nd} invariant Q_a of the velocity gradient tensor





 2^{nd} invariant Q_a of the velocity gradient tensor

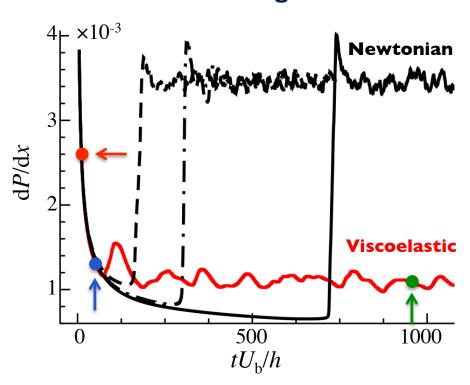




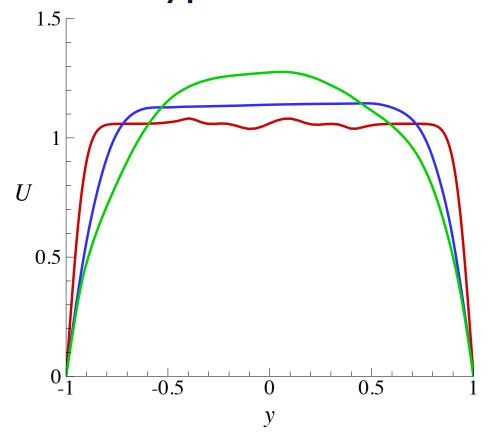
 2^{nd} invariant Q_a of the velocity gradient tensor

Spatial statistics

Time evolution of drag

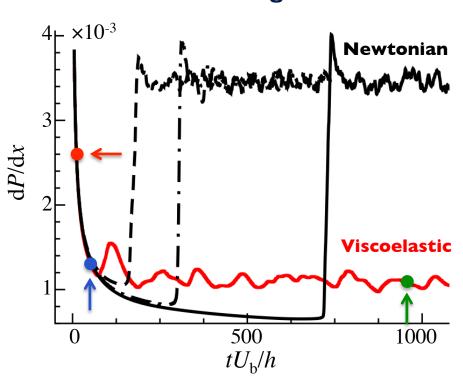


Mean velocity profile

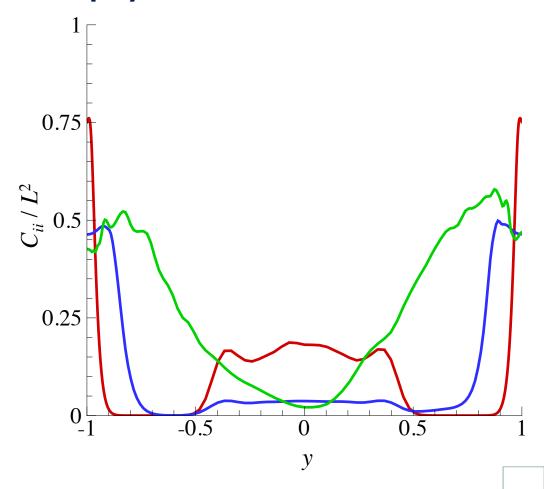


Spatial statistics

Time evolution of drag

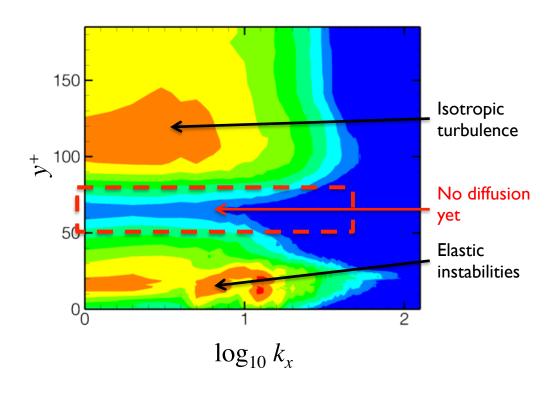


Mean polymer extension



Excitation of instabilities

Power spectrum of the elastic energy before nonlinear breakdown of instabilities



- Instabilities in near-wall regions not caused by diffusion of turbulence from channel center
- What triggers the instability?

Poisson equation for pressure

Extended Poisson equation

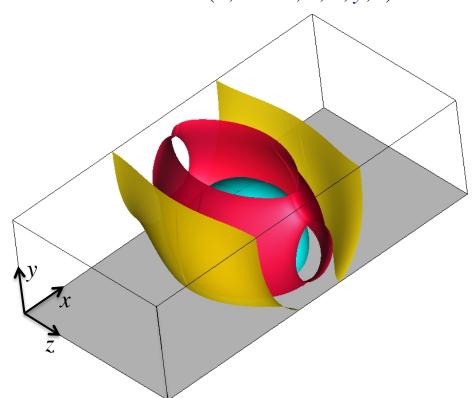
$$\nabla^2 p = 2Q_a + \frac{1-\beta}{Re} \nabla \cdot (\nabla \cdot \mathbf{T})$$

Pressure kernel – Green function G

$$p(\boldsymbol{\xi}) = \int_{V} G(\boldsymbol{\xi}, \mathbf{x}) f(\mathbf{x}) d\mathbf{x} \equiv \int_{V} F(\boldsymbol{\xi}, \mathbf{x}) d\mathbf{x}$$

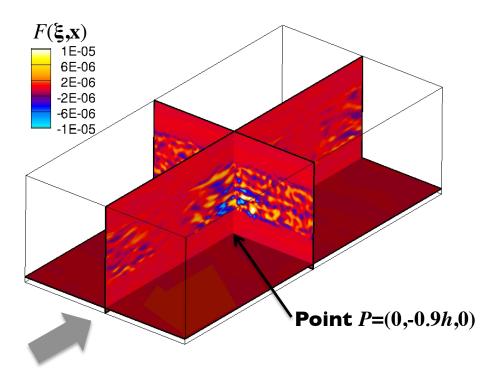
"Influence" function $F(\mathbf{x}, \boldsymbol{\xi})$ represents the contribution of point \mathbf{x} to the pressure at point $\boldsymbol{\xi}$

Green function G(0, -0.9H, 0; x, y, z)



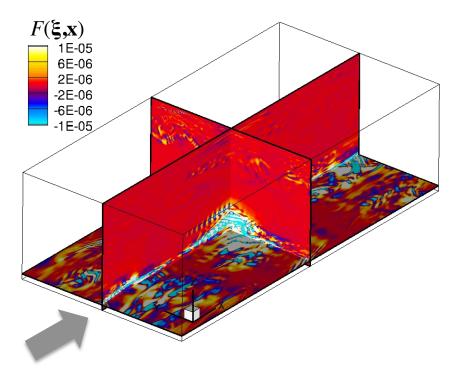
Influence function

Before nonlinear breakdown of instabilities



Source of contribution to pressure at point P from relative "unorganized" free-stream turbulence in channel center

After nonlinear breakdown of instabilities



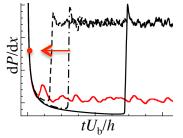
Source of contribution to pressure at point P from elastically induced more "organized" structures in near-wall region

$$\nabla^2 p = 2Q_a - \frac{1-\beta}{Re} \boldsymbol{\nabla} \cdot (\boldsymbol{\nabla} \cdot \mathbf{T})$$

$$p(\boldsymbol{\xi}) = \int_V G(\boldsymbol{\xi}, \mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

$$\overline{p^2}(\eta) = \int_{-h}^{h} h(y;\eta) dy$$

- $h(y;\eta)$ represents the influence of plane y on the pressure fluctuations averaged over plane η
- Three contributions
 - $-Q_a$ alone
 - T alone
 - the interaction of Q_a and ${f T}$

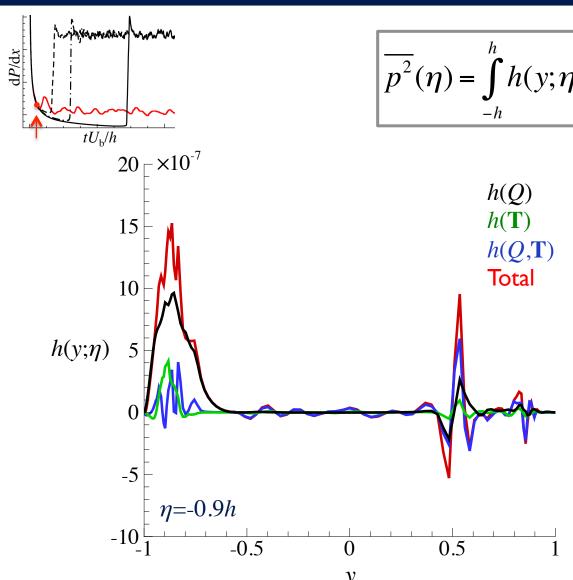


$$\overline{p^2}(\eta) = \int_{-h}^{h} h(y;\eta) \, \mathrm{d}y$$



Before nonlinear breakdown of instabilities

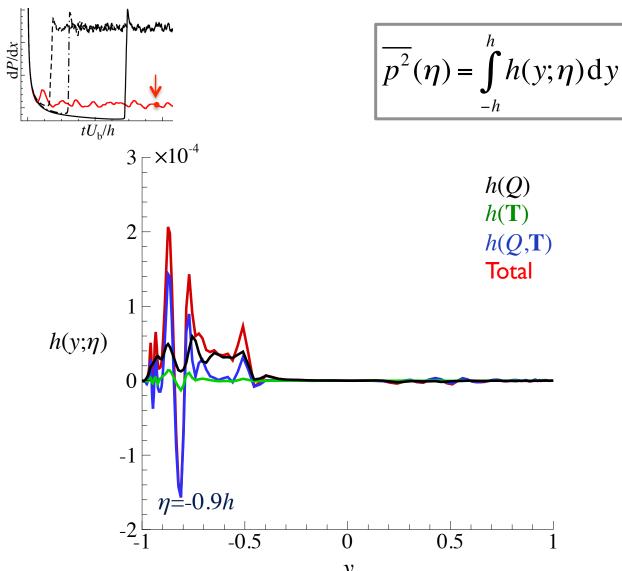
- Major contribution from
 - free-stream turbulence at center of the channel
 - polymer stress



$$\overline{p^2}(\eta) = \int_{-h}^{h} h(y;\eta) \, \mathrm{d}y$$

After nonlinear breakdown of instabilities

- Major contribution from
 - near-wall region
 - -Q
- Contribution from free-stream turbulence negligible



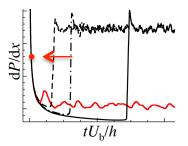
h(Q)Much after nonlinear

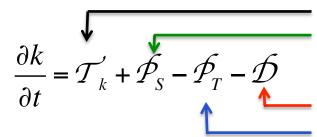
- breakdown of instabilities
 - near-wall region

Major contribution from

- the interaction between Q and \mathbf{T}
- Free-stream turbulence fully decayed
- Activity mostly at lower wall at this specific instant

Budget of turbulent kinetic energy

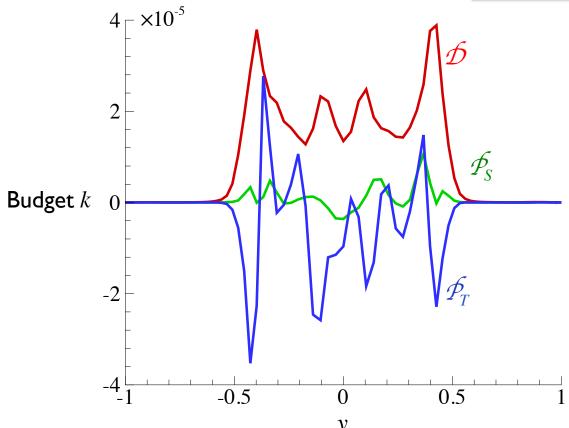




Transport
Production from mean shear

Dissipation

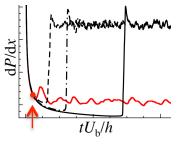
Production of elastic energy

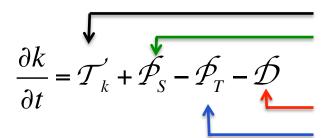


Before nonlinear breakdown of instabilities

- Dissipation dominates
- Larger production of k from polymers
- Free-stream turbulence decays

Budget of turbulent kinetic energy

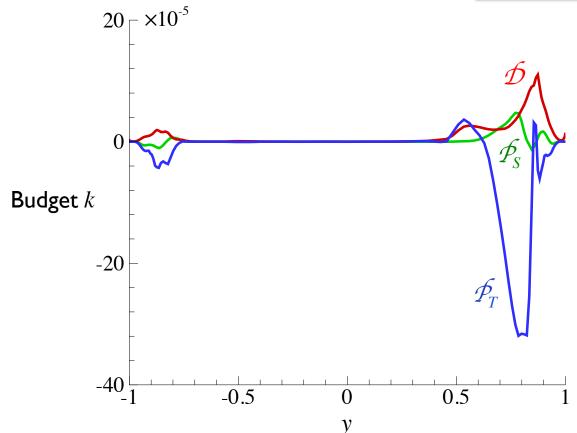




Transport
Production from mean shear

Dissipation

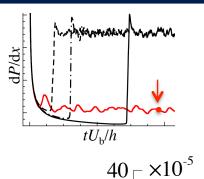
Production of elastic energy



After nonlinear breakdown of instabilities

- Production of k from polymers dominates
- Larger values at upper wall

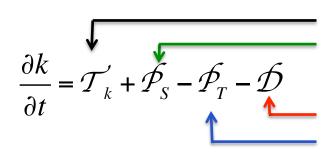
Budget of turbulent kinetic energy



Budget k

-20

-40



Transport
Production from mean shear

Dissipation
Production of elastic energy

Much after nonlinear breakdown of instabilities

- Production of k from polymers dominates
- Larger values at lower wall



Outline

- Context
- Models and numerical implementation
- Polymer drag reduction
- Elasto-inertial turbulence
- Conclusions and future work

Viscoelasticity leads to new phenomena

- Common to many fluids (e.g., blood)
- Viscoelasticity can dramatically reduce drag at higher Reynolds number
- Viscoelasticity can promote departure from laminar state at lower Reynolds number
- Elasto-Inertial Turbulence (EIT) identified as new regime explaining this seemingly contradictory behavior

Drag reduction

- Up to 80% drag reduction can be achieved with dilute polymer or surfactant solutions
- Maximum drag reduction achievable bounded by MDR asymptote
- Polymers stretched in bi-axial flow regions around near-wall vortices
- Polymers damp quasi-streamwise vortices in near-wall region
- Polymers can store kinetic energy from the flow as elastic energy
- Polymers release elastic energy to the flow in high-speed streaks

Maximum drag reduction

- MDR is transitional state corresponding to onset of nonlinear breakdown of instabilities
- MDR flow oscillates between pre- and post-breakdown state
- No apparent logarithmic scaling of velocity at MDR or in transitional flows
- Elastic instabilities at small scales contribute to regeneration of vortices

Elasto-inertial turbulence

- EIT identified as new regime describing both MDR and early turbulence
- Hyperbolic transport equation leads to creation of thin sheets of high polymer extension and large extensional viscosity
- Self-sustained chaotic flow consisting of trains of cylindrical weakly rotational and extensional regions
- Pressure redistributes energy with trains of cylindrical structures to attenuate the anisotropy caused by sheets of extensional viscosity
- Transfer of elastic energy from polymers into turbulent kinetic energy of the flow

Transition

- Long-range excitation of elastic instabilities through pressure
- Feeding of energy to elastic instabilities from mean flow
- Transfer of elastic energy from the polymers into turbulent kinetic energy of the flow
- Elastic instabilities self-sustained

Numerics

- Accurate numerical approach is required
- Small-scales must be captured to simulate EIT
- Use of global artificial dissipation prevents formation of elastic instabilities

Overall

- Viscoelastic turbulent flows are a very exciting area
- EIT explains seemingly contradictory phenomena in viscoelastic turbulence
- EIT provides support to de Gennes' theory
- Understanding EIT is relevant for biofluids, but also to better understand and control Newtonian turbulence

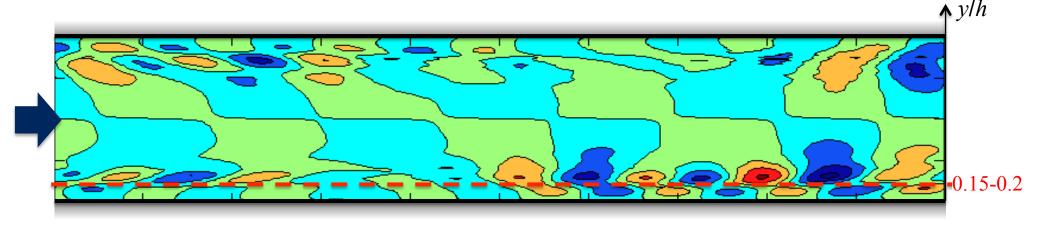
Future work

- Further characterize EIT
- Understand the exact mechanisms during transition process
- Develop new control strategies for turbulent flows
- Identify potential role of EIT in biofluid flows

Future work – DMD analysis

Most amplified mode from DMD analysis

 Q_a invariant (streamwise – wall-normal plane) at Re=1000

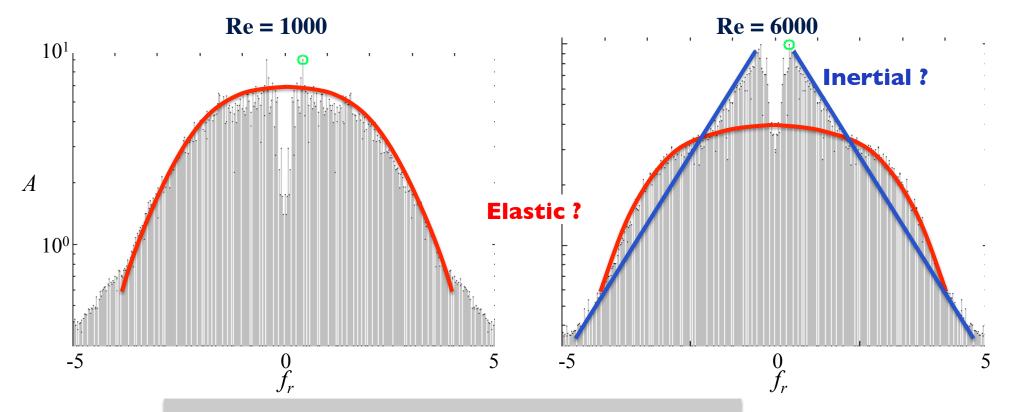


- Mostly two-dimensional structures
- Located in near-wall region
- Alternating pressure minima and maxima
- "Discontinuity" close to wall corresponding to location of maximum of mean polymer extension (critical layer?)

Future work – DMD analysis

Mode amplitude as a function of frequency from DMD analysis

 Q_a invariant (streamwise – wall-normal plane)



- Shape change with increasing Re
- At larger Re, two apparent contributions
- Hypothesis: elastic and inertial (to be verified)