Variable selection for dynamic treatment
regimes: a reinforcement learning approach

Raphael Fonteneau, Louis Wehenkel and Damien Ernst

Department of Electrical Engineering and Computer Science and GIGA-Research,
University of Liege, Grande Traverse 10, 4000 Liege, Belgium.
{raphael.fonteneau, L.Wehenkel, dernst}@ulg.ac.be

Abstract. Dynamic treatment regimes (DTRs) can be inferred from
data collected through some randomized clinical trials by using rein-
forcement learning algorithms. During these clinical trials, a large set of
clinical indicators are usually monitored. However, it is often more con-
venient for clinicians to have DTRs which are only defined on a small set
of indicators rather than on the original full set. To address this problem,
we analyse the approximation architecture of the state-action value func-
tions computed by the fitted @ iteration algorithm - a RL algorithm -
using tree-based regressors in order to identify a small subset of relevant
ones. The RL algorithm is then rerun by considering only as state vari-
ables these most relevant indicators to have DTRs defined on a small set
of indicators. The approach is validated on benchmark problems inspired
from the classical ‘car on the hill’ problem and the results obtained are
positive.

1 Introduction

Nowadays, many diseases as for example HIV/AIDS, cancer, inflammatory or
neurological diseases are seen by the medical community as being chronic-like
diseases, resulting in medical treatments that can last over very long periods.
For treating such diseases, physicians often adopt explicit, operationalized se-
ries of decision rules specifying how drug types and treatment levels should be
administered over time, which are referred to in the medical community as Dy-
namic Treatment Regimes (DTRs). Designing an appropriate DTR for a given
disease is a challenging issue. Among the difficulties encountered, we can men-
tion the complex dynamics of the human body interacting with treatments and
other environmental factors, as well as the often poor compliance to treatments
due to the side effects of the drugs. While typically DTRs are based on clinical
judgment and medical insight, since a few years the biostatistics community is
investigating a new research field addressing specifically the problem of inferring
in a well principled way DTRs directly from clinical data gathered from patients
under treatment. Among the results already published in this area, we mention
[1] which uses statistical tools for designing DTRs for psychotic patients.

One possible approach to infer DTR from the data collected through clinical
trials is to formalize this problem as an optimal control problem for which most



of the information available on the ‘system dynamics’ (the system is here the
patient and the input of the system is the treatment) is ‘hidden’ in the clinical
data. This problem has been vastly studied in Reinforcement Learning (RL), a
subfield of machine learning (see e.g., [2]). Its application to the DTR problem
would consist of processing the clinical data so as to compute a closed-loop
treatment strategy which takes as inputs all the various clinical indicators which
have been collected from the patients. Using policies computed in this way may
however be inconvenient for the physicians who may prefer DTRs based on an
as small as possible subset of relevant indicators rather than on the possibly
very large set of variables monitored through the clinical trial. In this research,
we therefore address the problem of determining a small subset of indicators
among a larger set of candidate ones, in order to infer by RL convenient decision
strategies. Our approach is closely inspired by work on ‘variable selection’ for
supervised learning.

The rest of this paper is organized as follows. In Section II we formalize
the problem of inferring DTRs from clinical data as an optimal control prob-
lem for which the sole information available on the system dynamics is the one
contained in the clinical data. We also briefly present the fitted @) iteration al-
gorithm which will be used to compute from these data a good approximate
of the optimal policy. In Section III, we present our algorithm for selecting the
most relevant clinical indicators and computing (near-) optimal policies defined
only on these indicators. Section IV reports our simulation results and, finally,
Section V concludes.

2 Learning from a sample

We assume that the information available for designing DTRs is a sample of
discrete-time trajectories of treated patients, i.e. successive tuples (zy, ut, Try1),
where x; represents the state of a patient at some time-step ¢ and lies in an
n-dimensional space X of clinical indicators, u; is an element of the action space
(representing treatments taken by the patient in the time interval [¢,¢ + 1]), and
x4 is the state at the subsequent time-step.

We further suppose that the responses of patients suffering from a specific
type of chronic disease all obey the same discrete-time dynamics:

Ti41 = f(a:t,ut,wt) 7‘)20,17 (1)

where disturbances w; are generated by the probability distribution P(w|z,u).
Finally, we assume that one can associate to the state of the patient at time ¢ and
to the action at time ¢, a reward signal r, = r(x¢,us) € R which represents the
‘well being’ of the patient over the time interval [t, ¢ + 1]. Once the choice of the
function r; = r(xs, us) has been realized (a problem often known as preference
elicitation, see e.g., [3]), the problem of finding a ‘good’ DTR may be stated as
an optimal control problem for which one seeks to find a policy which leads to
a sequence of actions ug, u1, ..., ur—_1, which maximizes, over the time horizon



T € N, and for any initial state the criterion:

T
R§?07u1,...,uT—1)(x0) — E [Z ’I“(J?t,Ut)‘| (2)

One can show (see e.g., [2]) that there exists a policy m : X x [0,...,T —
1] — U which produces such a sequence of actions for any initial state xzg. To
characterize these optimal T-stage policies, let us define iteratively the sequence

of state-action value functions Qn : X xU — R, N =1,...,T as follows:
Qn(z,u) =E |r(z,u) + SU%QNA(f(%U,w)aU/) ] (3)
w u/e

with Qo(z,u) = 0 for all (z,u) € X x U. By using results from the dynamic
programming theory, one can write that, for all ¢ € {1,...,7 — 1} and z € X,
the policy
73 (t, 7) = argmax Qr_4(z,u)
uelU

is a T-step optimal policy.

Exploiting directly (3) for computing the @ y-functions is not possible in our
context since f is unknown and replaced here by a sample of one-step trajectories:
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where 7! = r(z!,ul). To address this problem, we exploit the fitted @ iteration
algorithm which offers a way for computing the @n-functions from the sole
knowledge of F [2]. In a few words, this RL algorithm computes these functions
by solving a T-length sequence of standard supervised learning problems. A Qn-
function - approximation of the @ y-function as defined by Eqn (3) - is computed
by solving the Nth supervised learning problem of the sequence. The training
set for this problem is computed from F and the Qy_;-function. Notice that
when used with tree-based approximators and especially Extremely Randomized
Trees [4], as it is the case in this paper, this algorithm offers good generalization
performances. Furthermore, we exploit the particular structure of these tree-
based approximators in order to identify the most relevant clinical indicators
among the n candidate ones.

3 Selection of clinical indicators

As mentioned in Section 1, we propose to find a small subset of state variables
(clinical indicators), the m (m < n) most relevant ones with respect to a certain
criterion, so as to create an m-dimensional subspace of X on which DTRs will
be computed. The approach we propose for this exploits the tree structure of
the Q n-functions computed by the fitted @ iteration algorithm. This approach
will score each attribute by estimating the variance reduction it can be associ-
ated with by propagating the training sample over the different tree structures



(this criterion was originally proposed in the context of supervised learning for
identifying relevant attributes in the context of regression tree induction [5]).
In our context, it evaluates the relevance of each state variable x*, by the score

function: . 4
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where v is a nonterminal node in a tree 7 (one of those used to build the ensemble
model representing one of the Qy-functions), §(v, z%) = 1 if 2 is used to split
at node no or equal to zero otherwise, |v| is the number of samples at node v,
Ayar(v) is the variance reduction when splitting node v:

S(z)

Apar(v) =v(v) — MQJ(Z/L) — %U(VR)

where vy, (resp. vg) is the left-son node (resp. the right-son node) of node v,
and v(v) (resp. v(vy) and v(vg)) is the variance of the sample at node v (resp.
vy, and vR).

The approach then sorts the state variables * by decreasing values of their
score so as to identify the m most relevant ones. A DTR defined on this subset
of variables is then computed by running the fitted @ iteration algorithm again
on a ‘modified F’, where the state variables of 2} and z! 11 that are not among
these m most relevant ones are discarded.

The algorithm for computing a DTR defined on a small subset of state vari-
ables is thus as follows:

(1) compute the Qn-functions (N = 1,...,T) using the fitted Q iteration algo-
rithm on F,

(2) compute the score function for each state variable, and determine the m best
ones,

(3) run the fitted @ iteration algorithm on

~ ~ g A #F
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where th = Mz, and M is a m X n boolean matrix where T?Li’j = 1 if the state
variable z7 is the ¢-th most relevant one and 0 otherwise.

4 Preliminary validation

We report in this section simulation results that have been obtained by testing
the proposed approach on a modified version of the classical ‘car on the hill’
benchmark problem [2].! The original ‘car on the hill’ problem has two state

! The optimality criterion of the car on the hill problem is usually chosen as being
the sum of the discounted rewards observed over an infinite time horizon. We have
chosen here to shorten this infinite time horizon to 50 steps and not use discount
factors in order to have an optimality criterion in accordance with (2).



variables, the position p and the speed s of the car, and one action variable
u which represents the acceleration of the car. The action can only take two
discrete values (full acceleration or full deceleration).

For illustrating our approach, we have slightly modified the car on the hill
problem by adding new “dummy state variables” to the problem. These variables
take at each time ¢ a value which is drawn independently from all other variable-
values according to a uniform probability distribution over the interval [0, 1] and
do not affect the actual dynamics of the problem.

In such a context, our approach is expected to associate the highest scores
S(-) to the variables s and p since these are the only ones that actually contain
relevant information about the optimal policy of the system. Results obtained
are presented in Table 1. As one can see, the approach consistently gives the two
highest scores to p and s.

Table 1. Variance reduction scores of the different state variables for various exper-
imental settings. The first column gives the cardinality of the sets F considered (the
elements of these sets have been generated by drawing (z!,ul) at random in X x U
and computing z},; from the system dynamics (1)). The second column gives the
number of Non-Relevant Variables (NRV) added to the original state vector. The re-
maining columns report the different scores S(-) computed for the different (relevant
and non-relevant) variables considered in each scenario.

#F |[NB. OF NRV| p | s |[NRV 1|NRV 2[NRV 3
5000 0 0.24[0.35] - - -
5000 1 0.270.30| 0.08 | - -
5000 2 0.16/0.26] 0.12 | 0.06 | -
5000 3 0.15[0.18| 0.07 | 0.07 | 0.09
10000 1 0.16(0.34| 0.09 | - -
10000 2 0.20{0.19] 0.08 | 0.12 | -
10000 3 0.15[0.31| 0.05 | 0.05 | 0.06
20000 1 0.18{0.27| 0.10 | - -
20000 2 0.15(0.24] 0.08 | 0.10 | -
20000 3 0.15[0.21| 0.08 | 0.08 | 0.07

5 Conclusion

We have proposed in this paper an approach for computing from clinical data
DTR strategies defined on a small subset of clinical indicators. The approach is
based on a formalisation of the problem as an optimal control problem for which
the system dynamics is unknown and replaced to some extent by the information
contained in the clinical data. Once this formalisation is done, the tree-based
approximators computed by the fitted @ iteration algorithm used for inferring
policies from the data are analyzed to identify the ‘most relevant variables’. This
identification is carried out by exploiting variance reduction concepts which are



determinant in our approach. Preliminary simulation results carried out on some
academic examples have shown that the proposed approach for selecting the most
relevant indicators is promising.

Techniques based on variance reduction for selecting the most relevant in-
dicators have already been successfully used in supervised learning (SL) (see,
e.g., [5]) and have inspired the work reported in this paper. But many other
techniques for selecting relevant variables have also been proposed in the lit-
erature on supervised learning, such as for example those based on Bayesian
approaches [6,7]. In this respect, it will be interesting to investigate to which
extent these other approaches could be usefully exploited in our reinforcement
learning context.

A next step in our research is to test our variable selection approach for
getting policies defined on a small subset of indicators on real-life clinical data.
However, in such a context, one difficulty we will face is the inability to determine
whether the indicators selected by our approach are indeed the right ones since
no accurate model of the system will be available. This issue is closely related to
the problem of estimating the quality of a policy in model-free RL. We believe
it is made particularly relevant in the context of DTRs since it would probably
be unacceptable to adopt some dynamic treatment regimes which would trade
the use of a smaller number of decision variables at the expense of a significant
deterioration of the health of patients.
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