Decentralized reactive power dispatch for a time-varying multi-TSO system

Y. Phulpin1 M. Begovic2 M. Petit1 D. Ernst3

1Department of power and energy systems, Supélec, Paris, France

2School of electrical and computer engineering, Georgia Tech, Atlanta, USA

3FNRS and University of Liège, Belgium
Motivation of the talk

- Formalize the multi-TSO reactive power dispatch problem.
- Introduce the decentralized optimization scheme.
- Propose some adaptive methods to track changes in the power system configuration.
- Evaluate those strategies in the context of the reactive power dispatch problem for a multi-TSO system.
Formalization of the multi-TSO optimization problem

- N areas controlled by different system operators.
- Every TSO_i has:
 - local knowledge of the system,
 - its own objective $C_i^{k+1}(u)$.

Figure: Example of a 118 bus multi-TSO power system.
Formalization of the multi-TSO optimization problem

- Iteratively-varying operation conditions

![Diagram showing reactive power dispatch model in a time-varying system](image)

Figure: Reactive power dispatch model in a time-varying system.
Proposed Approach

Principle of the scheme

At every instant k, every TSO_i:

- has a perfect prediction of the operation conditions within its own control area for the instant $k + 1$.
- solves its own optimization problem,

$$\min_{u_i, x_i} \hat{C}_i^{k+1}(u_i, x_i)$$

under the constraints,

$$\hat{g}_i^{k+1}(u_i, x_i) \leq 0$$
$$\hat{h}_i^{k+1}(u_i, x_i, z_i^*(k + 1)) = 0$$

where the other TSOs are modeled by external network equivalents represented by $\hat{h}_i^{k+1}(u_i, x_i, z_i^*(k + 1)) = 0$.
Proposed Approach

Principle of the scheme

At the instant $k + 1$,

- locally optimized control settings are applied to the interconnected system:

$$u^*(k + 1) = [u_1^*(k + 1), \ldots, u_{nbArea}^*(k + 1)]$$

- In case of constraint violations, secondary control actions are modeled by:

$$u^m(k + 1) = \min_u ||u^*(k + 1) - u||$$

such that:

$$g^{k+1}(u) \leq 0$$

- Then, voltage and current $z_{i}^m(k + 1)$ are measured at the interconnections.
Previous observations

- Close to optimal performance is obtained with PQ equivalents in time-invariant systems.
- Constraint violations are extremely small.
- Problem: design a suitable parameter fitting procedure to assess $z_i^*(k + 1)$ in time-varying systems.
Exponential recursive least squares approach

- Approach: track system changes through past observations at the interconnections.
- Design a suitable function $f(j, k + 1)$, such that

$$z_i^*(k + 1) = \min_{z_i} \sum_{j=0}^{k} f(j, k + 1)^{j-k} \times ||z^m(j) - z_i||^2$$

leads to optimal performance in time-varying systems.

- Preliminary approach: constant memory factor β.

$$f(j, k + 1) = \beta$$
Approach: relate the fitting function $f(k + 1, j)$ to the load demand $r(j)$ faced by the system at the instant j.

$$f(j, k + 1) = N_{r(k+1)}^\sigma(r(j))$$

where $N_{r(k+1)}^\sigma(\cdot)$ is a Gaussian function with mean $r(k + 1)$ and variance σ.
Parameter fitting procedures

Adaptive forgetting factor approach

- Approach: relate the weight factor to past prediction errors and to similarity with past operation conditions.

\[f(j, k + 1) = N_r(k+1)(r(j)) \times \psi(k + 1) \]

- where \(\psi(k + 1) \) is a second weight factor, which depends on the prediction error at each instant \(k \).

\[\epsilon_i(k) = \|z_i^m(k) - z_i^*(k)\| \]

\[\psi(k + 1) = \exp(-\tau \times \epsilon_i(k)) \]

where \(\tau \) is a constant forgetting factor.
Illustrative example

Benchmark system

- Reactive power dispatch problem.
- IEEE 118 bus system with three TSOs.
- Two types of objective functions for all TSOs:
 - Minimize active power losses.
 - Minimize reactive power support.
- Comparison with a global minimization $\mapsto ASO(\%)$.
- Constraints:
 - Load-flow equations.
 - Bus voltages, reactive power injections.
 - Inter-area active power export.
Benchmark system

- Iterative load variations.

Figure: Load demand factor $r(k)$ evolution over the test period.
Results with the ERLS approach

Figure: Average suboptimality index as a function of β for the minimization of active power losses through the decentralized control scheme with an ERLS fitting algorithm.
Results with the ERLS approach

Figure: Average suboptimality index as a function of β for the minimization of reactive power support through the decentralized control scheme with an ERLS fitting algorithm.
Results with the ED-ERLS approach

Figure: Average suboptimality index as a function of σ for the minimization of reactive power support through the decentralized control scheme with an ED-ERLS fitting algorithm.
Results with the AFF approach

Figure: Average suboptimality index as a function of σ and τ for the minimization of reactive power support through the decentralized control scheme with an AFF fitting algorithm.
Conclusions

- Upgrade of the decentralized control scheme for time-varying systems.
- The scheme leads to close to optimal MVAr dispatch.
- Performance depends on the fitting procedure’s parameters.
- The same results have been observed, when the TSOs have different types of objectives.
- New challenge: design of a systematic procedure to assess optimal parameters values.
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Contribution</th>
<th>Simulation results</th>
<th>Conclusions/Perspectives</th>
</tr>
</thead>
</table>

Y. Phulpin, M. Begovic, M. Petit, D. Ernst

Decentralized reactive power dispatch for a time-varying multi-TSO system
Coordination problem in a multi-TSO power system

- Need for coordination in multi-TSO power systems.
- Potential benefits of coordinated operation:
 - Operate the system with optimal control settings.
 - Better prediction of inter-area power flows.
- Two classes of approaches:
 - Centralized control scheme with a coordination entity.
 - Decentralized control scheme with/without information exchange.
Summary of the algorithm

Figure: Proposed control scheme for multi-TSO optimization problem.