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Basics

The Thue–Morse word t is the infinite word limn→∞ f n(a) where

f : a 7→ ab, b 7→ ba

t = abbabaabbaababbabaababbaabbabaab · · ·

The factor complexity of the Thue–Morse word is well-known

pt(0) = 1, pt(1) = 2, pt(2) = 4,

pt(n) =

{

4n − 2 · 2m − 4 if 2 · 2m < n ≤ 3 · 2m

2n + 4 · 2m − 2 if 3 · 2m < n ≤ 4 · 2m
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S. Brlek, Enumeration of factors in the Thue-Morse word, DAM’89
A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, IPL’88



Basics

Let k ≥ 1 be an integer. Two words u and v in A+ are k -abelian

equivalent, in symbols u ≡a,k v , if

◮ prefk−1(u) = prefk−1(v) and sufk−1(u) = sufk−1(v), and

◮ for all w ∈ Ak , the number of occurrences of w in u and v

coincide, |u|w = |v |w .

Remark

≡a,k is an equivalence relation

u = v ⇒ u ≡a,k v ⇒ u ≡a v

u = v ⇔ u ≡a,k v ,∀k ≥ 1.



Basics

◮ J. Karhumäki, Generalized Parikh Mappings and
Homomorphisms, Information and control 47, 155–165
(1980).

◮ M. Huova, J. Karhumäki, A. Saarela, K. Saari, Local squares,
periodicity and finite automata, Rainbow of Computer
Science, 90–101, Springer, (2011).

◮ M. Huova, J. Karhumäki, A. Saarela, Problems in between
words and abelian words: k-abelian avoidability, Special issue
of TCS.



Basics

A few examples

abbabaabb ≡a,2 aabbabbab

|w |aa = 1, |w |ab = 3, |w |ba = 2, |w |bb = 2

but the two words are not 3-abelian equivalent,
|u|aba = 1 and |v |aba = 0.
Note that

∑

f ∈Ak

|w |f = |w | − k + 1

abcababb ≡a,3 ababcabb



Number of equivalence classes for 2-abelian factors of length n
occurring in the Thue–Morse word,

a2,t(n) := P
(2)
t

(n) = #(Ft(n)/ ≡a,k)

(a2,t(n))n≥0 =1, 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10,

10, 8, 8, 6, 8, 10, 10, 8, 10, 12, 12, 10, 12, 12, 10, 8, 10, 10,

8, 6, 8, 8, 10, 10, 12, 12, 10, 8, 10, 12, 14, 12, 12, 12, 12, 10,

12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 12, 10, 10, 8, 8, 6, 8, 10,

10, 8, 10, 12, 12, 10, 12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 14,

12, 14, 16, 14, 12, 14, 14, 14, 12, 12, 12, 12, 10, 12, 12, . . .

Questions

◮ Is the sequence (a2,t(n))n≥0 bounded?

◮ How to compute (easily) these values?

◮ Is there a structure behind?

◮ What is general about any q-automatic sequence?



The 6 factors of length 3

aab, aba, abb, baa, bab, bba

occur in the Thue–Morse word (aaa and bbb do not occur)
and are pairwise 2-abelian non-equivalent.
We consider vectors of N10 for any word u = u1u2 · · · uℓ−1uℓ

Ψ(u) =

































|u1|a
|u1|b
|u|aa
|u|ab
|u|ba
|u|bb

|uℓ−1uℓ|aa
|uℓ−1uℓ|ab
|uℓ−1uℓ|ba
|uℓ−1uℓ|bb

































almost similar to Π2 : {a, b}
∗ → N

8 introduced in Juhani’s talk.



u ≡a,2 v if and only if Ψ(u)∼Ψ(v), i.e.,

◮ the first six components of Ψ(u) and Ψ(v) cöıncide

◮ [Ψ(u)]7 + [Ψ(u)]9 = [Ψ(v)]7 + [Ψ(v)]9
◮ [Ψ(u)]8 + [Ψ(u)]10 = [Ψ(v)]8 + [Ψ(v)]10

aab aba abb baa bab bba

|u1|a 1 1 1 0 0 0
|u1|b 0 0 0 1 1 1
|u|aa 1 0 0 1 0 0
|u|ab 1 1 1 0 1 0
|u|ba 0 1 0 1 1 1
|u|bb 0 0 1 0 0 1

|uℓ−1uℓ|aa 0 0 0 1 0 0
|uℓ−1uℓ|ab 1 0 0 0 1 0
|uℓ−1uℓ|ba 0 1 0 0 0 1
|uℓ−1uℓ|bb 0 0 1 0 0 0



Computation of a2,t(ℓ), first for ℓ odd, i.e., ℓ = 2n − 1

n 2n

f



Computation of a2,t(ℓ), first for ℓ odd, i.e., ℓ = 2n − 1
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Computation of a2,t(ℓ), first for ℓ odd, i.e., ℓ = 2n − 1
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Computation of a2,t(ℓ), first for ℓ odd, i.e., ℓ = 2n − 1
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Computation of a2,t(ℓ), first for ℓ odd, i.e., ℓ = 2n − 1

n 2n

f

position
even



Computation of a2,t(ℓ), first for ℓ odd, i.e., ℓ = 2n − 1
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Computation of a2,t(ℓ), first for ℓ odd, i.e., ℓ = 2n − 1

n 2n

f

position
even

2n−1



We know precisely what’s happening

a b b a a a b b a b a a b a b



Given a vector corresponding to a factor of length n occurring in t,
these two matrices produce vectors corresponding to factors of
length 2n − 1 occurring respectively in an even and odd position

mM =













1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 1 0 1 1 −1 0 −1 0
0 1 1 1 0 1 0 −1 0 −1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0













mN =













0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0
0 0 1 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0













each block of length 2 produces roughly 2 blocks of length 2.



Computation of a2,t(ℓ), now for ℓ even, i.e., ℓ = 2n − 2

n 2n

f

position
even

2n−2



Computation of a2,t(ℓ), now for ℓ even, i.e., ℓ = 2n − 2

n 2n

f

position
even

2n−2



Given a vector corresponding to a factor of length n occurring in t,
these two matrices produce vectors corresponding to factors of
length 2n − 2 occurring respectively in an even and odd position

mC =













1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0
1 0 1 0 1 1 −1 0 −1 −1
0 1 1 1 0 1 −1 −1 0 −1
0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0













mD =













0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 1 −1 0 −1 0
0 0 1 1 0 1 0 −1 0 −1
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0















Lemma (from n to 2n − 1)

Let y, z ∈ N
10.

y ∼ z⇒

{

mMy ∼ mM z

mNy ∼ mN z.

he converse does not hold in general: abaab 6≡a,2 ababb but
abbaababb(a) ≡a,2 abbaabbab(a) and (a)bbaababba ≡a,2 (a)bbaabbaba.

Lemma (from n to 2n − 2)

Let y, z ∈ N
10.

y ∼ z⇒ mDy ∼ mDz

If y ∼ z and y 6= z, this means that the corresponding second to
last letters are different, hence

(y ∼ z ∧ y 6= z)⇒ mCy 6∼ mCz.



S3 = {v ∈ N
10 | ∃u ∈ A3 : v = Ψ(u) ∧ u occurs in t}

S4 = {mCv, mDv | v ∈ S3}

S5 = {mMv, mNv | v ∈ S3}

S3

S

S S S S

S4 5

6 7 8 9

C,D M,N

C,D C,DM,N M,N

a2,t(n) = #(Sn/ ∼).



Conjecture

The sequence ((a2,t(n))n≥0 is unbounded.

Consider the subsequence corresponding to the following picture

C,D

M,N

C,D

C,D

M,N

S

S

S

S

S

S

3

4

7

12

23

44

4n−4

4n−4

4n−5

4n−5



We get the following
n a2,t(n)
3 6
4 8
7 10

12 10
23 12
44 14
87 16

172 16
343 18
684 20

1367 22
2732 22
5463 24

10924 26
21847 28
43692 28
87383 30

174764 32
349527 34
699052 34

1398103 36
2796204 38
5592407 40

11184812 40
22369623 42
44739244 44
89478487 46

178956972 46
357913943 48
715827884 50

1431655767 52
2863311532 52
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6, 8, 10, 10, 12, 14, 16, 16, 18, 20, 22, 22, 24, 26, 28, 28, 30, 32, 34, 34, 36, 38, 40, 40, 42, 44, 46, 46, 48, 50,
52, 52, 54, 56, 58, 58, 60, 62, 64, 64, 66, 68, 70, 70, 72, 74, 76, 76, 78, 80, 82, 82, 84, 86, 88, 88, 90, 92, 94, 94,
96, 98, 100, 100, 102, 104, 106, 106, 108, 110, 112, 112, 114, 116, 118, 118, 120, 122, 124, 124, 126, 128, 130,

The sequence seems to satisfy the relation

yn+5 = yn+4 + yn+1 − yn

and
yn =

3

2
n +

25 + (−1)n − (1 − i)(−i)n − (1 + i)in

4
.



A sequence (xn)n≥0 (over Z) is k -regular if the Z-module
generated by its k -kernel

K = {(xken+r )n≥0 | ∀e ≥ 0, r < k e}

is finitely generated.
J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

Proposition (Eilenberg)

A sequence (xn)n≥0 is k -automatic if and only if its k -kernel is
finite.

Notation:
x2e+r = (a2,t(2

en + r))n≥0.



Section 6 Recognizing a k -regular sequence in the paper:
J.-P. Allouche, J. Shallit, The ring of k-regular sequences. II, Theoret. Comput. Sci. 307 (2003).

◮ We compute the first N = 100 terms of the first 63 sequences
in the 2-kernel of the sequence a = (a2,t(n))n≥0 ∈ Z

N,

{a,x2 = (t2n),x3 = (t2n+1),x4 = (t4n), . . . ,x63 = (t32n+31)}

◮ j = 1.

◮ Select the first sequence a.

◮ At step j , r < j sequences have been selected,
take sequence xj from K, check on the first N elements
whether xj seems to be a combination of the selected ones.
If not, select this new sequence.

◮ j ← j + 1, until j = 63.

Sequences x32, . . . ,x63 are all combinations of a,x2, . . . ,x31

(checked for some N > 10000).



We conjecture the following relations (Mathematica experiments)

x5 = x3

x9 = x3

x12 = −x6 + x7 + x11

x13 = x7

x16 = x8

x17 = x3

x18 = x10

x20 = −x10 + x11 + x19

x21 = x11

x22 = −x3 − 2x6 + x7 + 3x10 + x11 − x19

x23 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19

x24 = −x3 + x7 + x10

x25 = x7

x26 = −x3 + x7 + x10

x27 = −2x3 + x7 + 3x10 − x19

x28 = −2x3 + x7 + 3x10 − x14 + x15 − x19

x29 = x15

x30 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19

x31 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19



We also conjecture the following relations

x32 = x8

x33 = x3

x34 = x10

x35 = x11

x36 = −x10 + x11 + x19

x37 = x19

x38 = −x3 + x10 + x19

x39 = −x3 + x11 + x19

x40 = −x3 + x10 + x11

x41 = x11

x42 = −x3 + x10 + x11

x43 = −2x3 + 3x10

x44 = −2x3 − x6 + x7 + 3x10

x45 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19

x46 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19

x47 = −2x3 + x7 + 3x10 − x19

x48 = −x3 + x7 + x10

x49 = x7

x50 = −x3 + x7 + x10

x51 = −x3 − 3x6 + 2x7 + 3x10 + x11 − x19

x52 = −2x3 − 3x6 + 2x7 + 5x10 + x11 − 2x19

x53 = −2x3 + x7 + 3x10 − x19

x54 = −4x3 + 3x6 + x7 + 3x10 − x11 − 2x14 + x15

x55 = −4x3 + 3x6 + x7 + 3x10 − x11 − 3x14 + 2x15

x56 = −x3 + x10 + x15

x57 = x15

x58 = −x3 + x10 + x15

x59 = −2x3 + 3x6 − x7 − x11 + x15 + x19

x60 = −4x3 + 6x6 + x10 − 2x11 − 3x14 + 2x15 + x19

x61 = −3x3 + 6x6 − 2x11 − 3x14 + 2x15 + x19

x62 = −x3 + 3x6 − x7 − x10 − x11 + x15 + x19

x63 = x15



If the conjecture holds, then any xn for n ≥ 32 is a linear
combination of a,x2, . . . ,x19.

Conjecture

The sequence (a2,t(n))n≥0 is 2-regular.

Example

To get x75 = (a2,t(64n + 11))n≥0, take every second element in

(a2,t(32n + 11))n≥0 = x43

= −2x3 + 3x10

= −2(a2,t(2n + 1))n≥0 + 3(a2,t(8n + 2))n≥0.

Hence

x75 = (a2,t(64n + 11))n≥0

= −2(a2,t(4n + 1))n≥0 + 3(a2,t(16n + 2))n≥0

= −2x5 + 3x18.



Lemma

Let y, z ∈ N
10. We have

mMy ∼ mM z⇔ mNy ∼ mN z,

mMy ∼ mN z⇔ mNy ∼ mM z,

y z y z

M M
NM

from factors of length n + 1 to factors of length 2n + 1.

E.g., y = Ψ(aba), z = Ψ(bab), mMy ∼ mN z and mNy ∼ mM z

abbaa(b) ≡a,2 (b)aabba, (a)bbaab ≡a,2 baabb(a).



Lemma

Let y, z ∈ N
10. We have

mMy ∼ mM z⇔ mNy ∼ mN z,

mMy ∼ mN z⇔ mNy ∼ mM z,

y z y z

M M
NM

N

N

N

M

from factors of length n + 1 to factors of length 2n + 1.

E.g., y = Ψ(aba), z = Ψ(bab), mMy ∼ mN z and mNy ∼ mM z

abbaa(b) ≡a,2 (b)aabba, (a)bbaab ≡a,2 baabb(a).



Lemma

Let y ∈ N
10.

◮ mMy 6∼ mNy

◮ #{mMmMy,mMmNy,mNmMy,mNmNy}/ ∼= 2.

y

M N

from factors of length n + 1 to factors of length 2n + 1 and 4n + 1.



Proposition

For all n, a2,t(2n + 1) = a2,t(4n + 1).

from factors of length n + 1 to factors of length 2n + 1 and 4n + 1.



2n + 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
4n + 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Corollary:

x3 = x5 = x9 = x17 = x33

x7 = x13 = x25 = x49

x11 = x21 = x41

x15 = x29 = x57

x19 = x37

We also obtain“new” relations

x23 = x45, x27 = x53, x31 = x61.



Related work: B. Madill, N. Rampersad, The abelian complexity of
the paperfolding word, arXiv:1208.2856

0010011000110110001001110011011 · · ·

Theorem

The abelian complexity function of the ordinary paperfolding word

is a 2-regular sequence.

Question

Is the abelian complexity function of a q-automatic sequence

always q-regular?

We can generalize the question. Is the k -abelian complexity

function of a q-automatic sequence always q-regular?



Another approach

◮ V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and
p-recognizable sets of integers, Bull. Belg. Math. Soc. 1

(1994).

◮ J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity,
repetitions, and orbits of an automatic sequence, Theoret.
Comput. Sci. 410 (2009).

◮ E. Charlier, N. Rampersad, J. Shallit, Enumeration and
Decidable Properties of Automatic Sequences,
arXiv:1102.3698.

◮ D. Henshall, J. Shallit, Automatic Theorem-Proving in
Combinatorics on Words, arXiv:1203.3758.

◮ D. Goc, H. Mousavi, J. Shallit, On the Number of Unbordered
Factors, arXiv:1211.1301.



We take verbatim Büchi’s theorem as stated by Charlier,
Rampersad and Shallit expressing that k -automatic sequences are

exactly the sequences definable in the first order structure

〈N,+,Vk 〉.

Theorem

If we can express a property of a k -automatic sequence x using
quantifiers, logical operations, integer variables, the operations of
addition, subtraction, indexing into x, and comparison of integers
or elements of x, then this property is decidable.



Let x be a k -automatic sequence.

◮ Same factor of length n occurring in position i and j

Fx(n, i , j ) ≡ (∀k < n)(x(i + k) = x(j + k))

◮ First occurrence of a factor of length n occurring in position i

Px(n, i) ≡ (∀j < i)¬Fx(n, i , j )

The set {(n, i) | Px(n, i) true} is k -recognizable and

∀n ≥ 0, #{i | Px(n, i) true} = px(n).



Let x a k -automatic sequence.

◮ Two factors of length n occurring in position i and j are
abelian equivalent

Ax(n, i , j ) ≡ (∃ν ∈ Sn)(∀k < n)(x(i + k) = x(ν(j + k)))

The length of the formula is ≃ n! and grows with n.

◮ First occurrence (up to abelian equivalence) of a factor of
length n occurring in position i

APx(n, i) ≡ (∀j < i)¬Ax(n, i , j )

For a constant n. The set {i | APx(n, i) true} is k -recognizable
and

#{i | APx(n, i) true} = ax(n).



For instance, Henshall and Shallit ask

◮ Can the techniques be applied to detect abelian powers in

automatic sequences?

Remark

The Thue–Morse word is abelian periodic, t ∈ {ab, ba}ω , therefore
abelian equivalence is “easy”, but then problems occur for 2-abelian
equivalence.

◮ J. Berstel, M. Crochemore, J.-E. Pin, Thue–Morse sequence
and p-adic topology for the free monoid, Disc. Math. 76

(1989), 89–94.


