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BAsICS

The Thue—Morse word t is the infinite word lim,,_,~ f"(a) where
f:aw—ab, b~ ba

t = abbabaabbaababbabaababbaabbabaab - - -

The factor complexity of the Thue—Morse word is well-known
pe(0) =1, pe(1) =2, pe(2) =4,

dn—2-2m -4 if2.2m<n<3-2m
2n4+4-2m -2 if3-2M<n<4-2m
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BAsICS

Let £ > 1 be an integer. Two words u and v in AT are k-abelian
equivalent, in symbols u =, v, if
» pref,_;(u) = pref,_;(v) and sufy_1(u) = sufy_1(v), and
» for all w € A%, the number of occurrences of w in u and v
coincide, |uly = |v|y.

REMARK

=,k is an equivalence relation

U=V=> USg V= U=, 0

U=V U=, 0,V > 1



BAsICS

» J. Karhumaki, Generalized Parikh Mappings and
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BAsICS

A FEW EXAMPLES

abbabaabb =, 2 aabbabbab

[ Wee =1, |wlay =3, |wle =2, |w|pp=2

but the two words are not 3-abelian equivalent,
\u|aba =1 and |’U‘aba = 0.

Note that
> lwly =|w| -k +1
feAk

abcababb =, 3 ababcabb



Number of equivalence classes for 2-abelian factors of length n
occurring in the Thue—Morse word,

ae(n) == PE (n) = #(Fe(n)/ Zar)

(az(n))n>0 =1,2,4,6,8,6,8,10,8,6,8,8, 10, 10,
10,8,8,6,8,10, 10,8, 10, 12, 12, 10, 12, 12, 10, 8, 10, 10,
8,6,8,8,10,10,12,12, 10,8, 10,12, 14, 12, 12,12, 12, 10,
12,12,12,12,14,12,10,8, 10, 12, 12, 10, 10, 8, 8, 6, 8, 10,
10,8,10,12,12,10,12,12,12,12, 14, 12, 10, 8, 10, 12, 14,
12,14,16, 14,12, 14, 14, 14,12, 12,12, 12, 10,12, 12, . ..

(QUESTIONS

Is the sequence (agt(n))n>0 bounded?

v

» How to compute (easily) these values?

v

Is there a structure behind?

v

What is general about any g-automatic sequence?



The 6 factors of length 3
aab, aba, abb, baa, bab, bba

occur in the Thue-Morse word (aaa and bbb do not occur)
and are pairwise 2-abelian non-equivalent.
We consider vectors of N0 for any word u = ujup - - - up—1 g

|ul‘a
| |y
|| aa
|u|ab

_ |u]ba
V(W) = ||
‘u€—1u€|aa
|ug—1ug| 0t
| 10— 1| ba
10— 1 %]t

almost similar to Iy : {a, b}* — N8 introduced in Juhani's talk.



u =42 v if and only if U(u)~V¥(v), i.e.,
» the first six components of ¥(u) and ¥(v) coincide
> [P(u)l7 + [W(w)]o = [¥(v)]7 + [¥(v)]o
> [W(u)]s + [¥(w)]o = [¥(v)]s + [¥(v)]ho

aab aba abb baa bab bba

lui|q | 1 1 1 0 0 0

|U1|b 0 0 0 1 1 1

|u]ga | 1 0 0 1 0 0
lulgp | 1 1 1 0 1 0
lupe| O 1 0 1 1 1
|ulpp | O 0 1 0 0 1
|ug—1uplqa | O 0 0 1 0 0
|ug—1uplap | 1 0 0 0 1 0
|ug—1uplpe | O 1 0 0 0 1
|ug—1uglpp | O 0 1 0 0 0



Computation of ay ¢(¢), first for £ odd, i.e., £ =2n — 1
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Computation of ay ¢(¢), first for £ odd, i.e., £ =2n — 1




Computation of ay ¢(¢), first for £ odd, i.e., £ =2n — 1




Computation of ay ¢(¢), first for £ odd, i.e., £ =2n — 1




Computation of ay ¢(¢), first for £ odd, i.e., £ =2n — 1

even
position



Computation of ay ¢(¢), first for £ odd, i.e., £ =2n — 1

even
position



Computation of ay ¢(¢), first for £ odd, i.e., £ =2n — 1

even
position



We know precisely what's happening

e
——-abb--- ad |---abbaba--- aba

~— ~—



Given a vector corresponding to a factor of length n occurring in t,
these two matrices produce vectors corresponding to factors of
length 2n — 1 occurring respectively in an even and odd position
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each block of length 2 produces roughly 2 blocks of length 2.



Computation of az ¢(€), now for £ even, ie., £ =2n —2

even
position



Computation of az ¢(€), now for £ even, ie., £ =2n —2

even
position



Given a vector corresponding to a factor of length n occurring in t,

these two matrices produce vectors corresponding to factors of

length 2n — 2 occurring respectively in an even and odd position
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LEMMA (FROM n TO 2n — 1)

Let y,z € N0

he converse does not hold in general: abaab Z, 2 ababb but
abbaababb(a) =, 2 abbaabbab(a) and (a)bbaababba =, 2 (a)bbaabbaba.

LEMMA (FROM n TO 2n — 2)

Let y,z € N1U.
y ~z=mDy~ mDz

If y ~ z and y # z, this means that the corresponding second to
last letters are different, hence

(y ~zAy #z)= mCy % mCaz.



Sy ={veNY|3uecA®:v=U(u)Auoccurs in t}

Sy ={mCv, mDv |v € S3}
S5 = {mMv, mNv |v e S3}




CONJECTURE

The sequence ((az,¢(n))n>0 is unbounded.

Consider the subsequence corresponding to the following picture

S
cD?
S 4n-5
M,N 4
87 4n—4
C,D
S 4n-5

4n-4
?:lc Dszs
S44



We get the following

n | ag ¢(n)
3 6
4 8
7 10
12 10
23 12
44 14
87 16
172 16
343 18
684 20
1367 22
2732 22
5463 24
10924 26
21847 28
43692 28
87383 30
174764 32
349527 34
699052 34
1398103 36
2796204 38
5592407 40
11184812 40
22369623 42
44739244 44
89478487 46
178956972 46
357913943 48
715827884 50
1431655767 52
2863311532 52



1501

20 40 60 80 10¢

6,8,10, 10,12, 14, 16, 16, 18, 20, 22, 22, 24, 26, 28, 28, 30, 32, 34, 34, 36, 38, 40, 40, 42, 44, 46, 46, 48, 50,
52, 52, 54, 56, 58, 58, 60, 62, 64, 64, 66, 68, 70, 70, 72, 74, 76, 76, 78, 80, 82, 82, 84, 86, 88, 88, 90, 92, 94, 94,
96, 98, 100, 100, 102, 104, 106, 106, 108, 110, 112,112, 114, 116, 118, 118, 120, 122, 124, 124, 126, 128, 130,

The sequence seems to satisfy the relation

Yn+5 = Yn+d T Yn+1 — Yn

and
25 + (—1)" — (1 — i) (=)™ — (1 4+ i)i" .

4

St
Yn = zn
" g



A sequence (zp,)n>0 (over Z) is k-regular if the Z-module
generated by its k-kernel

K= {(xken+r)n20 | Ve>0,r < ke}

is finitely generated.

J.-P. Allouche, J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992)

PROPOSITION (EILENBERG)

A sequence (z,)n>0 is k-automatic if and only if its k-kernel is
finite.

Notation:

Xoe1r = (a2,6(2°N + 7)) n>0.




Section 6 Recognizing a k-regular sequence in the paper:

J.-P. Allouche, J. Shallit, The ring of k-regular sequences. I, Theoret. Comput. Sci. 307 (2003).

» We compute the first N = 100 terms of the first 63 sequences
in the 2-kernel of the sequence a = (az(n))n>0 € Z,

{a,x2 = (t2n), X3 = (tan41), X4 = (tan), ..., Xe3 = (t320431)}
| 4 ] — 1
> Select the first sequence a.
> At step j, r < j sequences have been selected,

take sequence x; from K, check on the first N elements

whether x; seems to be a combination of the selected ones.
If not, select this new sequence.

> j < j+1, until j =63.

Sequences X390, ...,Xg3 are all combinations of a, xo, ..

-5, X31
(checked for some N > 10000).



We conjecture the following relations

X5

X9

X12
X13
X16
X17
X18
X20
X21
X22
X23
X24
X25
X26
xX27
X28
X29
X30
X31

x3

x3

—X6 + X7 + X11

x7

X8

X3

X10

—xj0 +X11 +X19

X11

—x3 — 2xg + X7 + 3x10 + X11 — X19
—x3 — 3x6 + 2x7 + 3x10 + X11 — X19
—x3 + X7 + X10

X7

—x3 + X7 + X10

—2x3 + x7 + 3%x10 — X19

—2x3 + x7 +3x10 — X14 + X15 — X19
X15

—X3 + 3Xg — X7 — X10 — X11 + X15 + X19
—3x3 + 6x6 — 2x11 — 3X14 + 2X15 + X19

(Mathematica experiments)



We also conjecture the following relations

X32
X33
X34
X35
X36
x37

X53

X55

X8

x3

Xx10

x11

—x10 + X11 + X19

Xx19

—x3 + x10 + X19

—x3 + %11 + X19

—x3 + x10 + X11

x11

—x3 + X10 + X11

—2x3 + 3x10

—2x3 — xg + x7 + 3x10

—x3 — 3x¢ + 2x7 + 3x10 + X11 — X19
—2x3 — 3xg + 2x7 + 5x10 + x11 — 2X19
—2x3 + x7 + 3X10 — X19

—x3 + x7 + X10

x7

—x3 + X7 + X109

—x3 — 3x¢ + 2x7 + 3x10 + X11 — X19
—2x3 — 3xg + 2x7 + 5x10 + %11 — 2X319
—2x3 + x7 + 3x10 — X19

—4x3 + 3xg + x7 + 3x10 — X11 — 2X14 + X715
—4x3 + 3xg + x7 + 3x10 — xX11 — 3%X14 + 2X15
—x3 + x10 + X15

X15

—x3 + x10 + X15

—2x3 + 3% — X7 — x11 +X15 + X19
—4x3 + 6xg + x10 — 2X11 — 3X14 + 2X15 + X19
—3x3 + 6xg — 2x11 — 3X14 + 2X15 + X19
—X3 + 3Xg — X7 — X10 — X11 + X15 + X19
X15



If the conjecture holds, then any x,, for n > 32 is a linear
combination of a, xo, ..., X19.

CONJECTURE

The sequence (ap¢(n))n>0 is 2-regular.

EXAMPLE

To get x75 = (ag,¢(64n + 11)),>0, take every second element in

(a2,6(32n +11))p>0 = Xu3
—2x3 + 3x10
= —2(a2¢(2n +1))n>0 + 3(a2,t(8n + 2))n>0-

Hence

X75 = (a27t(64n + 11))7120
= —2(azt(4n +1))n>0 + 3(azt(16n + 2))n>0
= —2x5 + 3x33.



LEMMA
Let y,z € N9, We have

y ~ z < mNy ~ mNz,

y~mNz < mNy ~ mMaz,

MOZ yo NOZ

from factors of length n + 1 to factors of length 2n + 1.

Eg.,y=Y(aba), z= VY (bab), mMy ~ mNz and mNy ~ mMz
abbaa(b) =42 (b)aabba, (a)bbaab =, 2 baabb(a).



LEMMA
Let y,z € N9, We have

mMy ~ mMz < mNy ~ mNz,

mMy ~mNz < mNy ~ mMz,

yOMOZ @) NOZ
N M
o No o No

from factors of length n + 1 to factors of length 2n + 1.

Eg.,y=Y(aba), z= VY (bab), mMy ~ mNz and mNy ~ mMz
abbaa(b) =42 (b)aabba, (a)bbaab =, 2 baabb(a).



LEMMA
Let y € N0,
» mMy 7 mNy
> #{mMmMy, mMmNy, mNmMy, nNmNy}/ ~= 2.

yo

N
@) @)
@) @)

from factors of length n + 1 to factors of length 2n + 1 and 4n + 1.



PROPOSITION
For all n, ap¢(2n 4+ 1) = ap(4n +1).

© o o o o © o o
%\ %\ v

O O ©O O 0 O O O

o O © O O O O O

from factors of length n + 1 to factors of length 2n + 1 and 4n + 1.



2n+1 | 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
an+1 | 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

Corollary:

X3 = X5 = X9 = X17 = X33
X7 = X13 = X25 = X49

X11 = X21 = X41

X15 = X29 = Xs57

X19 = X371

We also obtain “new” relations

|X23 = X45,  Xo7 = X353, X31 = X1




Related work: B. Madill, N. Rampersad, The abelian complexity of
the paperfolding word, arXiv:1208.2856

0010011000110110001001110011011 - - -

THEOREM

The abelian complexity function of the ordinary paperfolding word
is a 2-regular sequence.

QUESTION
Is the abelian complexity function of a g-automatic sequence

always q-regular?

We can generalize the question. Is the k-abelian complexity
function of a q-automatic sequence always q-regular?



ANOTHER APPROACH

v

V. Bruyere, G. Hansel, C. Michaux, R. Villemaire, Logic and
p-recognizable sets of integers, Bull. Belg. Math. Soc. 1
(1994).

» J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity,

repetitions, and orbits of an automatic sequence, Theoret.
Comput. Sci. 410 (2009).

» E. Charlier, N. Rampersad, J. Shallit, Enumeration and
Decidable Properties of Automatic Sequences,
arXiv:1102.3698.

» D. Henshall, J. Shallit, Automatic Theorem-Proving in
Combinatorics on Words, arXiv:1203.3758.

» D. Goc, H. Mousavi, J. Shallit, On the Number of Unbordered
Factors, arXiv:1211.1301.



We take verbatim Biichi’s theorem as stated by Charlier,
Rampersad and Shallit expressing that k-automatic sequences are
exactly the sequences definable in the first order structure

(N, +, V).

THEOREM

If we can express a property of a k-automatic sequence x using
quantifiers, logical operations, integer variables, the operations of
addition, subtraction, indexing into x, and comparison of integers
or elements of x, then this property is decidable.



Let x be a k-automatic sequence.

» Same factor of length n occurring in position ¢ and j
Fx(n,i,7) = VE < n)(x(i+k)=x( + k))
» First occurrence of a factor of length n occurring in position
Px(n,i) = (Vj < i)=Fx(n,i,7)
The set {(n, i) | Px(n,i) true} is k-recognizable and

Vn >0, #{i| Px(n,i) true} = px(n).



Let x a k-automatic sequence.

» Two factors of length n occurring in position ¢ and j are
abelian equivalent

Ax(n,i,j) = (v € 5,)(Vk < n)(x(i + k) = x(v(j + k)))

The length of the formula is ~ n! and grows with n.

» First occurrence (up to abelian equivalence) of a factor of
length n occurring in position i

APy(n,i) = (Vj < i)=Ax(n,4,))

For a constant n. The set {i | APx(n, i) true} is k-recognizable
and

#{i | APx(n,i) true} = ax(n).



For instance, Henshall and Shallit ask

» Can the techniques be applied to detect abelian powers in
automatic sequences?

REMARK

The Thue—Morse word is abelian periodic, t € {ab, ba}“, therefore
abelian equivalence is “easy”, but then problems occur for 2-abelian
equivalence.

» J. Berstel, M. Crochemore, J.-E. Pin, Thue—Morse sequence
and p-adic topology for the free monoid, Disc. Math. 76
(1989), 89-94.



