

# 2-ABELIAN COMPLEXITY OF THE THUE-MORSE SEQUENCE (WORK IN PROGRESS)

Michel Rigo, joint work with E. Vandomme

<http://www.discmath.ulg.ac.be/>  
<http://orbi.ulg.ac.be/>



# BASICS

The *Thue–Morse word*  $\mathbf{t}$  is the infinite word  $\lim_{n \rightarrow \infty} f^n(a)$  where

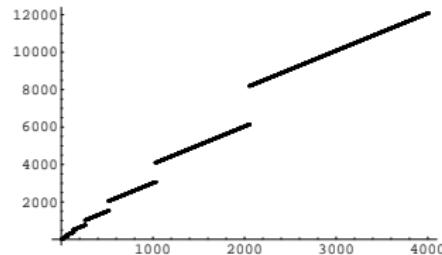
$$f : a \mapsto ab, \quad b \mapsto ba$$

$$\mathbf{t} = \textcolor{red}{abbabaabbaababbabaabababbaabbabaab} \dots$$

The factor complexity of the Thue–Morse word is well-known

$$p_{\mathbf{t}}(0) = 1, \quad p_{\mathbf{t}}(1) = 2, \quad p_{\mathbf{t}}(2) = 4,$$

$$p_{\mathbf{t}}(n) = \begin{cases} 4n - 2 \cdot 2^m - 4 & \text{if } 2 \cdot 2^m < n \leq 3 \cdot 2^m \\ 2n + 4 \cdot 2^m - 2 & \text{if } 3 \cdot 2^m < n \leq 4 \cdot 2^m \end{cases}$$



# BASICS

Let  $k \geq 1$  be an integer. Two words  $u$  and  $v$  in  $A^+$  are  $k$ -abelian equivalent, in symbols  $u \equiv_{a,k} v$ , if

- ▶  $\text{pref}_{k-1}(u) = \text{pref}_{k-1}(v)$  and  $\text{suf}_{k-1}(u) = \text{suf}_{k-1}(v)$ , and
- ▶ for all  $w \in A^k$ , the number of occurrences of  $w$  in  $u$  and  $v$  coincide,  $|u|_w = |v|_w$ .

## REMARK

$\equiv_{a,k}$  is an equivalence relation

$$u = v \Rightarrow u \equiv_{a,k} v \Rightarrow u \equiv_a v$$

$$u = v \Leftrightarrow u \equiv_{a,k} v, \forall k \geq 1.$$

# BASICS

- ▶ J. Karhumäki, Generalized Parikh Mappings and Homomorphisms, *Information and control* **47**, 155–165 (1980).
- ▶ M. Huova, J. Karhumäki, A. Saarela, K. Saari, Local squares, periodicity and finite automata, *Rainbow of Computer Science*, 90–101, Springer, (2011).
- ▶ M. Huova, J. Karhumäki, A. Saarela, Problems in between words and abelian words:  $k$ -abelian avoidability, *Special issue of TCS*.

# BASICS

## A FEW EXAMPLES

$$abbabaab \mathbf{b} \equiv_{a,2} \mathbf{a} abbabba \mathbf{b}$$

$$|w|_{aa} = 1, \quad |w|_{ab} = 3, \quad |w|_{ba} = 2, \quad |w|_{bb} = 2$$

but the two words are not 3-abelian equivalent,

$$|u|_{aba} = 1 \text{ and } |v|_{aba} = 0.$$

Note that

$$\sum_{f \in A^k} |w|_f = |w| - k + 1$$

$$abcababb \equiv_{a,3} ababcabb$$

Number of equivalence classes for 2-abelian factors of length  $n$  occurring in the Thue–Morse word,

$$a_{2,\mathbf{t}}(n) := \mathcal{P}_{\mathbf{t}}^{(2)}(n) = \#(\mathcal{F}_{\mathbf{t}}(n) / \equiv_{a,k})$$

$$\begin{aligned} (a_{2,\mathbf{t}}(n))_{n \geq 0} = & 1, 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, \\ & 10, 8, 8, 6, 8, 10, 10, 8, 10, 12, 12, 10, 12, 12, 10, 8, 10, 10, \\ & 8, 6, 8, 8, 10, 10, 12, 12, 10, 8, 10, 12, 14, 12, 12, 12, 12, 10, \\ & 12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 12, 10, 10, 8, 8, 6, 8, 10, \\ & 10, 8, 10, 12, 12, 10, 12, 12, 12, 12, 14, 12, 10, 8, 10, 12, 14, \\ & 12, 14, 16, 14, 12, 14, 14, 14, 12, 12, 12, 10, 12, 12, \dots \end{aligned}$$

## QUESTIONS

- ▶ Is the sequence  $(a_{2,\mathbf{t}}(n))_{n \geq 0}$  bounded?
- ▶ How to compute (easily) these values?
- ▶ Is there a structure behind?
- ▶ What is general about any  $q$ -automatic sequence?

## The 6 factors of length 3

$aab, aba, abb, baa, bab, bba$

occur in the Thue–Morse word ( $aaa$  and  $bbb$  do not occur) and are pairwise 2-abelian non-equivalent.

We consider vectors of  $\mathbb{N}^{10}$  for any word  $u = u_1 u_2 \cdots u_{\ell-1} u_\ell$

$$\Psi(u) = \begin{pmatrix} |u_1|_a \\ |u_1|_b \\ |u|_{aa} \\ |u|_{ab} \\ |u|_{ba} \\ |u|_{bb} \\ |u_{\ell-1} u_\ell|_{aa} \\ |u_{\ell-1} u_\ell|_{ab} \\ |u_{\ell-1} u_\ell|_{ba} \\ |u_{\ell-1} u_\ell|_{bb} \end{pmatrix}$$

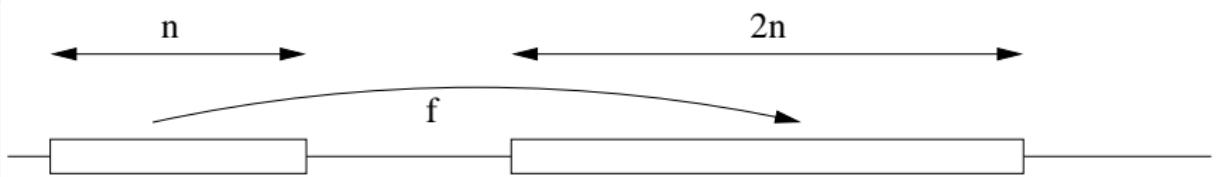
almost similar to  $\Pi_2 : \{a, b\}^* \rightarrow \mathbb{N}^8$  introduced in Juhani's talk.

$u \equiv_{a,2} v$  if and only if  $\Psi(u) \sim \Psi(v)$ , i.e.,

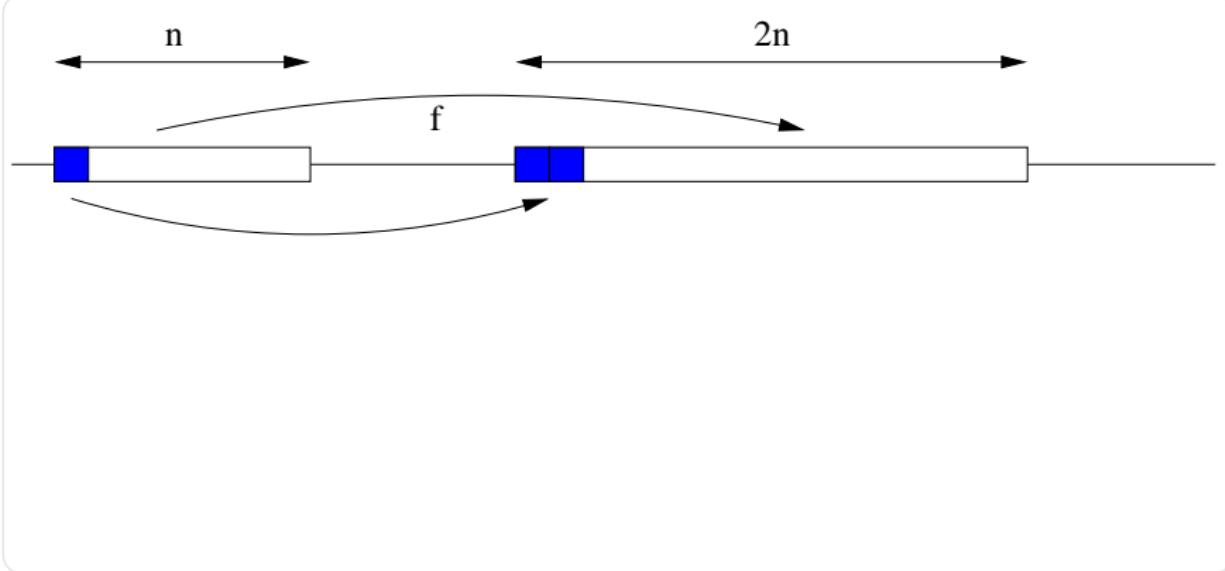
- ▶ the first six components of  $\Psi(u)$  and  $\Psi(v)$  coincide
- ▶  $[\Psi(u)]_7 + [\Psi(u)]_9 = [\Psi(v)]_7 + [\Psi(v)]_9$
- ▶  $[\Psi(u)]_8 + [\Psi(u)]_{10} = [\Psi(v)]_8 + [\Psi(v)]_{10}$

|                                          | $aab$ | $aba$ | $abb$ | $baa$ | $bab$ | $bba$ |
|------------------------------------------|-------|-------|-------|-------|-------|-------|
| $ u_1 _a$                                | 1     | 1     | 1     | 0     | 0     | 0     |
| $ u_1 _b$                                | 0     | 0     | 0     | 1     | 1     | 1     |
| $ u _{aa}$                               | 1     | 0     | 0     | 1     | 0     | 0     |
| $ u _{ab}$                               | 1     | 1     | 1     | 0     | 1     | 0     |
| $ u _{ba}$                               | 0     | 1     | 0     | 1     | 1     | 1     |
| $ u _{bb}$                               | 0     | 0     | 1     | 0     | 0     | 1     |
| $ u_{\ell-1}u_{\ell} _{a \color{red}a}$  | 0     | 0     | 0     | 1     | 0     | 0     |
| $ u_{\ell-1}u_{\ell} _{a \color{blue}b}$ | 1     | 0     | 0     | 0     | 1     | 0     |
| $ u_{\ell-1}u_{\ell} _{b \color{red}a}$  | 0     | 1     | 0     | 0     | 0     | 1     |
| $ u_{\ell-1}u_{\ell} _{b \color{blue}b}$ | 0     | 0     | 1     | 0     | 0     | 0     |

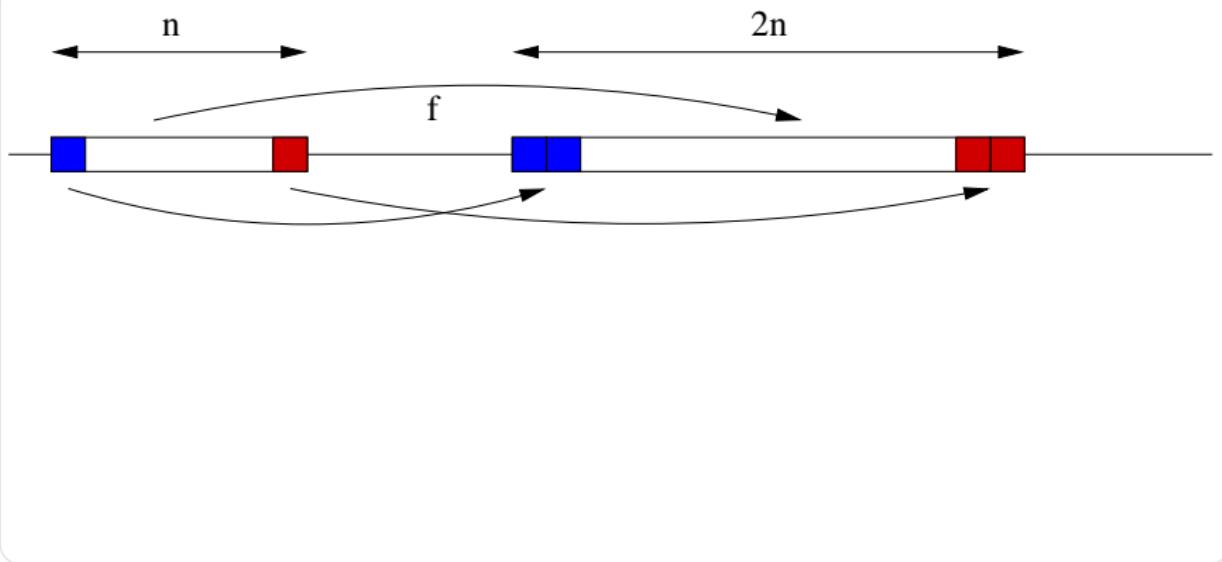
Computation of  $a_{2,t}(\ell)$ , first for  $\ell$  odd, i.e.,  $\ell = 2n - 1$



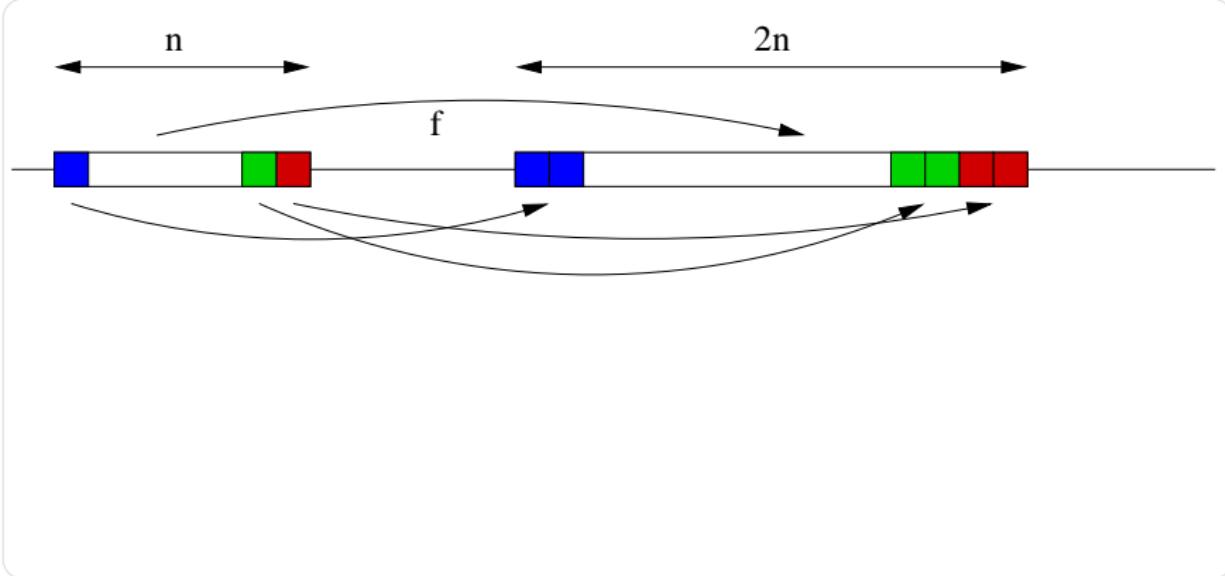
Computation of  $a_{2,t}(\ell)$ , first for  $\ell$  odd, i.e.,  $\ell = 2n - 1$



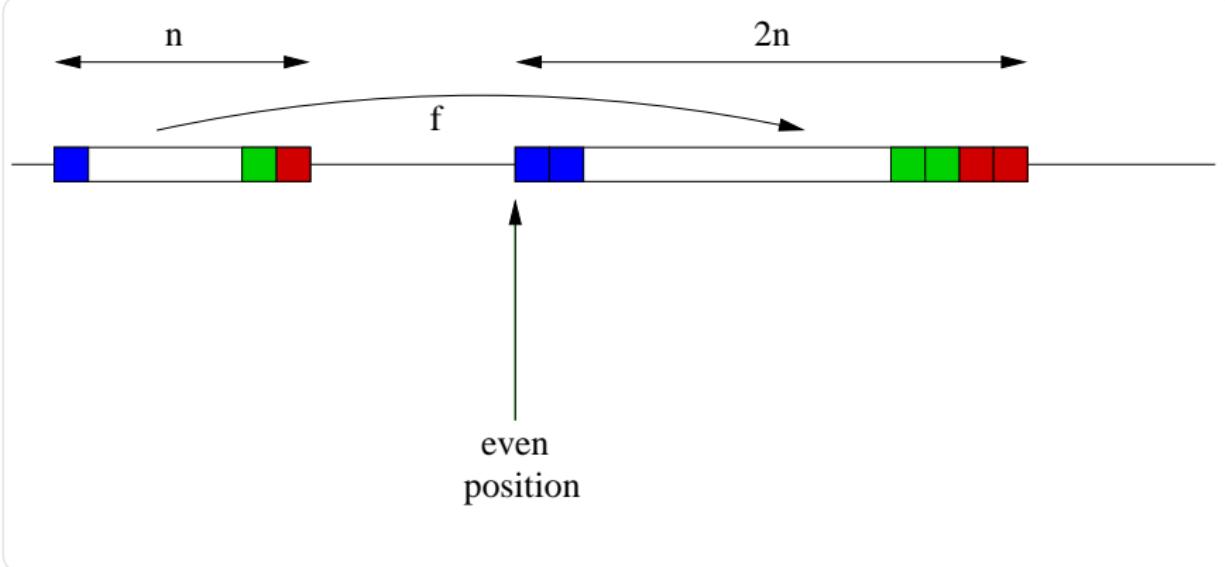
Computation of  $a_{2,t}(\ell)$ , first for  $\ell$  odd, i.e.,  $\ell = 2n - 1$



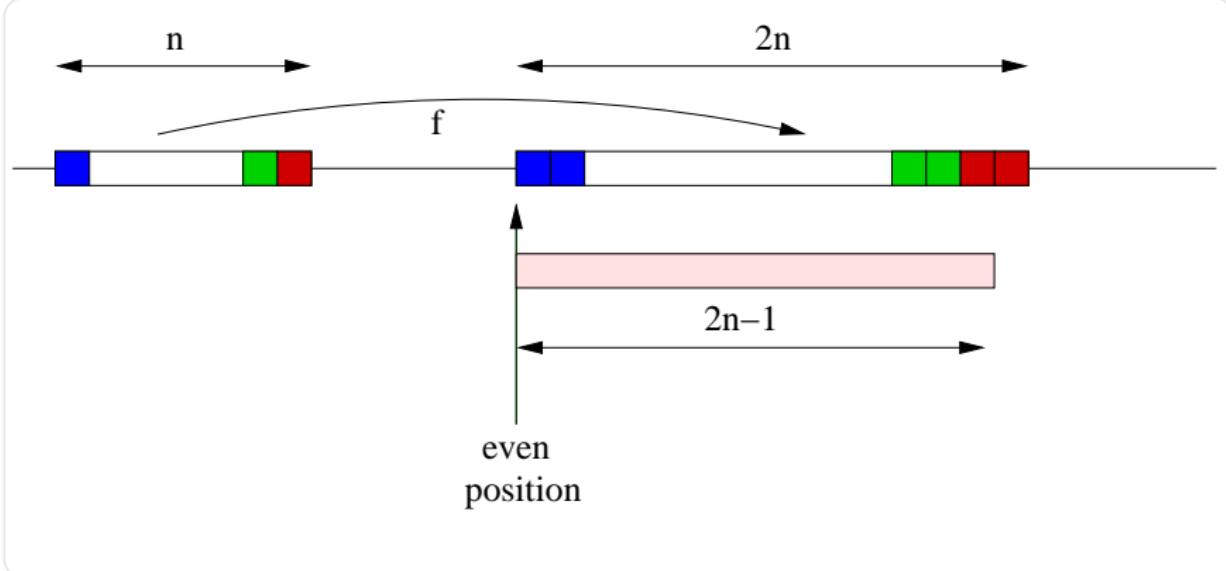
Computation of  $a_{2,t}(\ell)$ , first for  $\ell$  odd, i.e.,  $\ell = 2n - 1$



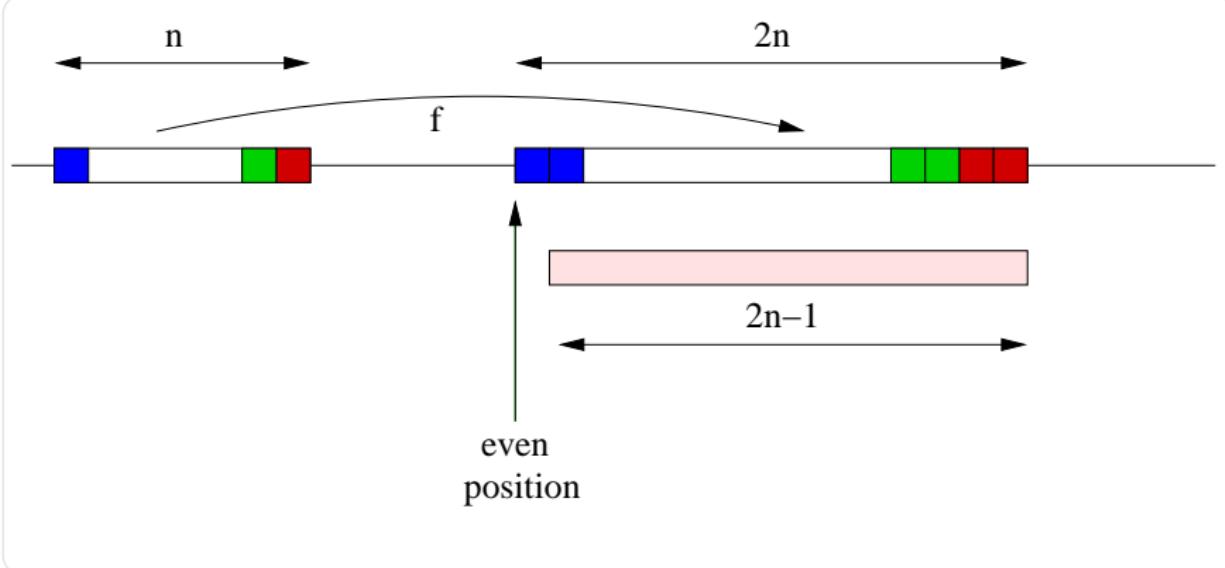
Computation of  $a_{2,t}(\ell)$ , first for  $\ell$  odd, i.e.,  $\ell = 2n - 1$



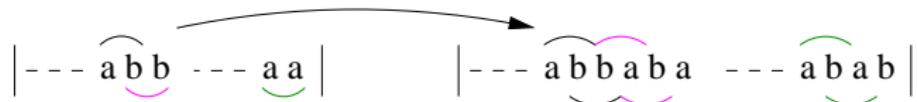
Computation of  $a_{2,t}(\ell)$ , first for  $\ell$  odd, i.e.,  $\ell = 2n - 1$



Computation of  $a_{2,t}(\ell)$ , first for  $\ell$  odd, i.e.,  $\ell = 2n - 1$



We know precisely what's happening



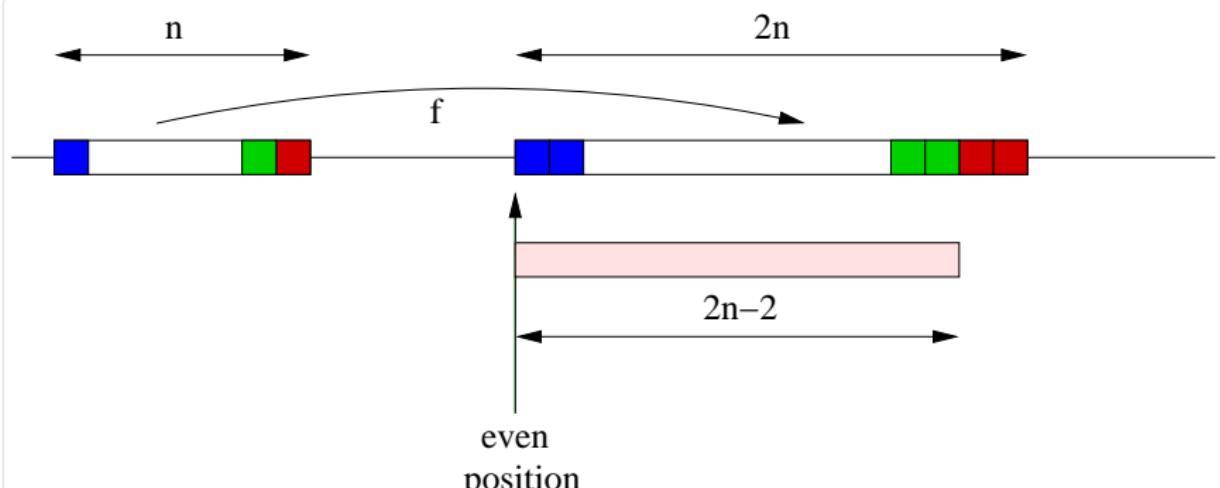
Given a vector corresponding to a factor of length  $n$  occurring in  $t$ , these two matrices produce vectors corresponding to factors of length  $2n - 1$  occurring respectively in an *even* and *odd* position

$$mM = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

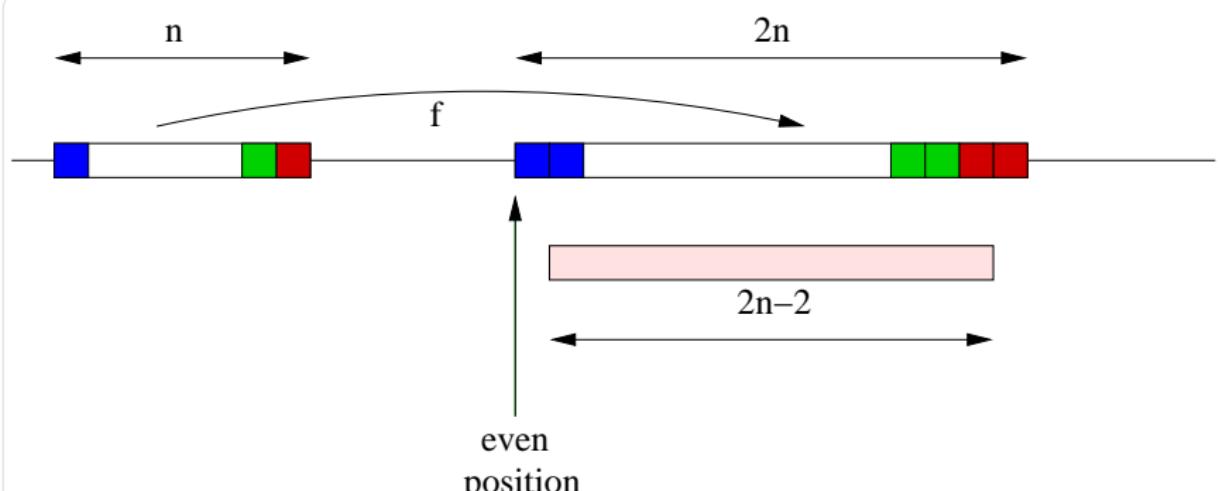
$$mN = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

each block of length 2 produces roughly **2 blocks** of length 2.

Computation of  $a_{2,t}(\ell)$ , now for  $\ell$  even, i.e.,  $\ell = 2n - 2$



Computation of  $a_{2,t}(\ell)$ , now for  $\ell$  even, i.e.,  $\ell = 2n - 2$



Given a vector corresponding to a factor of length  $n$  occurring in  $t$ , these two matrices produce vectors corresponding to factors of length  $2n - 2$  occurring respectively in an *even* and *odd* position

$$mC = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & -1 & -1 \\ 0 & 1 & 1 & 1 & 0 & 1 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$mD = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

## LEMMA (FROM $n$ TO $2n - 1$ )

Let  $\mathbf{y}, \mathbf{z} \in \mathbb{N}^{10}$ .

$$\mathbf{y} \sim \mathbf{z} \Rightarrow \begin{cases} mM\mathbf{y} \sim mM\mathbf{z} \\ mN\mathbf{y} \sim mN\mathbf{z}. \end{cases}$$

The converse does not hold in general:  $abaab \not\equiv_{a,2} ababb$  but  $abbaababb(a) \equiv_{a,2} abbaabbab(a)$  and  $(a)bbaababba \equiv_{a,2} (a)bbaabbaba$ .

## LEMMA (FROM $n$ TO $2n - 2$ )

Let  $\mathbf{y}, \mathbf{z} \in \mathbb{N}^{10}$ .

$$\mathbf{y} \sim \mathbf{z} \Rightarrow mD\mathbf{y} \sim mD\mathbf{z}$$

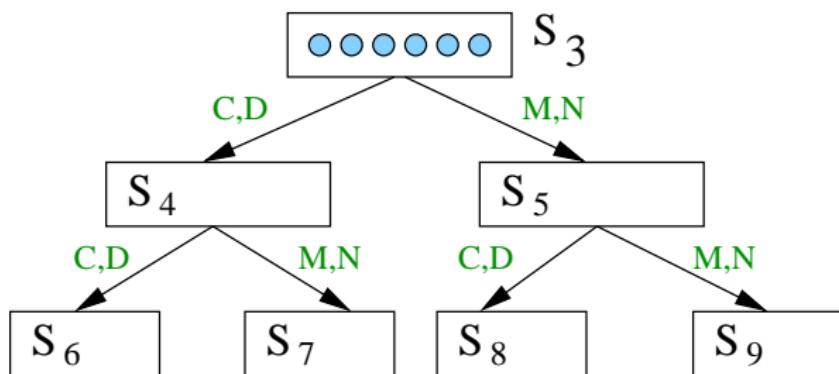
If  $\mathbf{y} \sim \mathbf{z}$  and  $\mathbf{y} \neq \mathbf{z}$ , this means that the corresponding second to last letters are different, hence

$$(\mathbf{y} \sim \mathbf{z} \wedge \mathbf{y} \neq \mathbf{z}) \Rightarrow mC\mathbf{y} \not\sim mC\mathbf{z}.$$

$$S_3 = \{\mathbf{v} \in \mathbb{N}^{10} \mid \exists u \in A^3 : \mathbf{v} = \Psi(u) \wedge u \text{ occurs in } \mathbf{t}\}$$

$$S_4 = \{mC\mathbf{v}, mD\mathbf{v} \mid \mathbf{v} \in S_3\}$$

$$S_5 = \{mM\mathbf{v}, mN\mathbf{v} \mid \mathbf{v} \in S_3\}$$

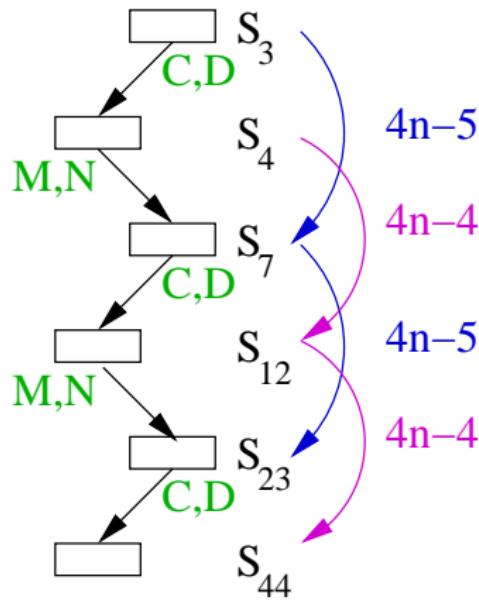


$$a_{2,\mathbf{t}}(n) = \#(S_n / \sim).$$

## CONJECTURE

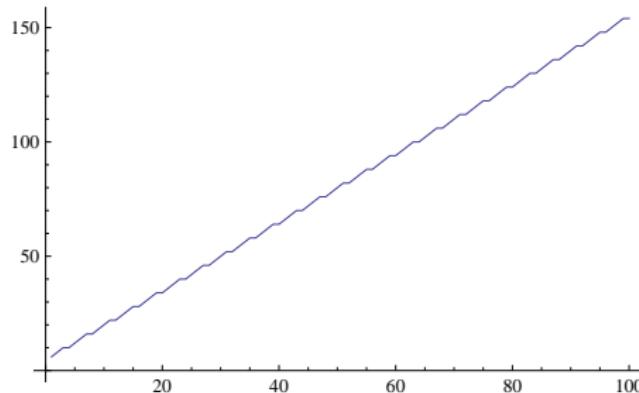
The sequence  $((a_{2,t}(n))_{n \geq 0})$  is unbounded.

Consider the subsequence corresponding to the following picture



We get the following

| $n$        | $a_{2,\mathbf{t}}(n)$ |
|------------|-----------------------|
| 3          | 6                     |
| 4          | 8                     |
| 7          | 10                    |
| 12         | 10                    |
| 23         | 12                    |
| 44         | 14                    |
| 87         | 16                    |
| 172        | 16                    |
| 343        | 18                    |
| 684        | 20                    |
| 1367       | 22                    |
| 2732       | 22                    |
| 5463       | 24                    |
| 10924      | 26                    |
| 21847      | 28                    |
| 43692      | 28                    |
| 87383      | 30                    |
| 174764     | 32                    |
| 349527     | 34                    |
| 699052     | 34                    |
| 1398103    | 36                    |
| 2796204    | 38                    |
| 5592407    | 40                    |
| 11184812   | 40                    |
| 22369623   | 42                    |
| 44739244   | 44                    |
| 89478487   | 46                    |
| 178956972  | 46                    |
| 357913943  | 48                    |
| 715827884  | 50                    |
| 1431655767 | 52                    |
| 2863311532 | 52                    |



6, 8, 10, 10, 12, 14, 16, 16, 18, 20, 22, 22, 24, 26, 28, 28, 30, 32, 34, 34, 36, 38, 40, 40, 42, 44, 46, 46, 48, 50, 52, 52, 54, 56, 58, 58, 60, 62, 64, 64, 66, 68, 70, 70, 72, 74, 76, 76, 78, 80, 82, 82, 84, 86, 88, 88, 90, 92, 94, 94, 96, 98, 100, 100, 102, 104, 106, 106, 108, 110, 112, 112, 114, 116, 118, 118, 120, 122, 124, 124, 126, 128, 130,

The sequence seems to satisfy the relation

$$y_{n+5} = y_{n+4} + y_{n+1} - y_n$$

and

$$y_n = \frac{3}{2}n + \frac{25 + (-1)^n - (1 - i)(-i)^n - (1 + i)i^n}{4}.$$

A sequence  $(x_n)_{n \geq 0}$  (over  $\mathbb{Z}$ ) is *k-regular* if the  $\mathbb{Z}$ -module generated by its *k*-kernel

$$\mathcal{K} = \{(x_{k^e n + r})_{n \geq 0} \mid \forall e \geq 0, r < k^e\}$$

is finitely generated.

J.-P. Allouche, J. Shallit, The ring of *k*-regular sequences, *Theoret. Comput. Sci.* **98** (1992)

## PROPOSITION (EILENBERG)

A sequence  $(x_n)_{n \geq 0}$  is *k*-automatic if and only if its *k*-kernel is finite.

Notation:

$$\mathbf{x}_{2^e+r} = (a_{2,\mathbf{t}}(2^e n + r))_{n \geq 0}.$$

## Section 6 Recognizing a $k$ -regular sequence in the paper:

J.-P. Allouche, J. Shallit, The ring of  $k$ -regular sequences. II, *Theoret. Comput. Sci.* 307 (2003).

- We compute the first  $N = 100$  terms of the first 63 sequences in the 2-kernel of the sequence  $\mathbf{a} = (a_{2,t}(n))_{n \geq 0} \in \mathbb{Z}^{\mathbb{N}}$ ,

$$\{\mathbf{a}, \mathbf{x}_2 = (\mathbf{t}_{2n}), \mathbf{x}_3 = (\mathbf{t}_{2n+1}), \mathbf{x}_4 = (\mathbf{t}_{4n}), \dots, \mathbf{x}_{63} = (\mathbf{t}_{32n+31})\}$$

- $j = 1$ .
- Select the first sequence  $\mathbf{a}$ .
- At step  $j$ ,  $r < j$  sequences have been selected, take sequence  $\mathbf{x}_j$  from  $\mathcal{K}$ , check on the first  $N$  elements whether  $\mathbf{x}_j$  seems to be a combination of the selected ones. If not, select this new sequence.
- $j \leftarrow j + 1$ , until  $j = 63$ .

Sequences  $\mathbf{x}_{32}, \dots, \mathbf{x}_{63}$  are all combinations of  $\mathbf{a}, \mathbf{x}_2, \dots, \mathbf{x}_{31}$  (checked for some  $N > 10000$ ).

We conjecture the following relations (Mathematica experiments)

$$\begin{aligned}\mathbf{x}_5 &= \mathbf{x}_3 \\ \mathbf{x}_9 &= \mathbf{x}_3 \\ \mathbf{x}_{12} &= -\mathbf{x}_6 + \mathbf{x}_7 + \mathbf{x}_{11} \\ \mathbf{x}_{13} &= \mathbf{x}_7 \\ \mathbf{x}_{16} &= \mathbf{x}_8 \\ \mathbf{x}_{17} &= \mathbf{x}_3 \\ \mathbf{x}_{18} &= \mathbf{x}_{10} \\ \mathbf{x}_{20} &= -\mathbf{x}_{10} + \mathbf{x}_{11} + \mathbf{x}_{19} \\ \mathbf{x}_{21} &= \mathbf{x}_{11} \\ \mathbf{x}_{22} &= -\mathbf{x}_3 - 2\mathbf{x}_6 + \mathbf{x}_7 + 3\mathbf{x}_{10} + \mathbf{x}_{11} - \mathbf{x}_{19} \\ \mathbf{x}_{23} &= -\mathbf{x}_3 - 3\mathbf{x}_6 + 2\mathbf{x}_7 + 3\mathbf{x}_{10} + \mathbf{x}_{11} - \mathbf{x}_{19} \\ \mathbf{x}_{24} &= -\mathbf{x}_3 + \mathbf{x}_7 + \mathbf{x}_{10} \\ \mathbf{x}_{25} &= \mathbf{x}_7 \\ \mathbf{x}_{26} &= -\mathbf{x}_3 + \mathbf{x}_7 + \mathbf{x}_{10} \\ \mathbf{x}_{27} &= -2\mathbf{x}_3 + \mathbf{x}_7 + 3\mathbf{x}_{10} - \mathbf{x}_{19} \\ \mathbf{x}_{28} &= -2\mathbf{x}_3 + \mathbf{x}_7 + 3\mathbf{x}_{10} - \mathbf{x}_{14} + \mathbf{x}_{15} - \mathbf{x}_{19} \\ \mathbf{x}_{29} &= \mathbf{x}_{15} \\ \mathbf{x}_{30} &= -\mathbf{x}_3 + 3\mathbf{x}_6 - \mathbf{x}_7 - \mathbf{x}_{10} - \mathbf{x}_{11} + \mathbf{x}_{15} + \mathbf{x}_{19} \\ \mathbf{x}_{31} &= -3\mathbf{x}_3 + 6\mathbf{x}_6 - 2\mathbf{x}_{11} - 3\mathbf{x}_{14} + 2\mathbf{x}_{15} + \mathbf{x}_{19}\end{aligned}$$

We also conjecture the following relations

$$\begin{aligned}x_{32} &= x_8 \\x_{33} &= x_3 \\x_{34} &= x_{10} \\x_{35} &= x_{11} \\x_{36} &= -x_{10} + x_{11} + x_{19} \\x_{37} &= x_{19} \\x_{38} &= -x_3 + x_{10} + x_{19} \\x_{39} &= -x_3 + x_{11} + x_{19} \\x_{40} &= -x_3 + x_{10} + x_{11} \\x_{41} &= x_{11} \\x_{42} &= -x_3 + x_{10} + x_{11} \\x_{43} &= -2x_3 + 3x_{10} \\x_{44} &= -2x_3 - x_6 + x_7 + 3x_{10} \\x_{45} &= -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{19} \\x_{46} &= -2x_3 - 3x_6 + 2x_7 + 5x_{10} + x_{11} - 2x_{19} \\x_{47} &= -2x_3 + x_7 + 3x_{10} - x_{19} \\x_{48} &= -x_3 + x_7 + x_{10} \\x_{49} &= x_7 \\x_{50} &= -x_3 + x_7 + x_{10} \\x_{51} &= -x_3 - 3x_6 + 2x_7 + 3x_{10} + x_{11} - x_{19} \\x_{52} &= -2x_3 - 3x_6 + 2x_7 + 5x_{10} + x_{11} - 2x_{19} \\x_{53} &= -2x_3 + x_7 + 3x_{10} - x_{19} \\x_{54} &= -4x_3 + 3x_6 + x_7 + 3x_{10} - x_{11} - 2x_{14} + x_{15} \\x_{55} &= -4x_3 + 3x_6 + x_7 + 3x_{10} - x_{11} - 3x_{14} + 2x_{15} \\x_{56} &= -x_3 + x_{10} + x_{15} \\x_{57} &= x_{15} \\x_{58} &= -x_3 + x_{10} + x_{15} \\x_{59} &= -2x_3 + 3x_6 - x_7 - x_{11} + x_{15} + x_{19} \\x_{60} &= -4x_3 + 6x_6 + x_{10} - 2x_{11} - 3x_{14} + 2x_{15} + x_{19} \\x_{61} &= -3x_3 + 6x_6 - 2x_{11} - 3x_{14} + 2x_{15} + x_{19} \\x_{62} &= -x_3 + 3x_6 - x_7 - x_{10} - x_{11} + x_{15} + x_{19} \\x_{63} &= x_{15}\end{aligned}$$

If the conjecture holds, then any  $\mathbf{x}_n$  for  $n \geq 32$  is a linear combination of  $\mathbf{a}, \mathbf{x}_2, \dots, \mathbf{x}_{19}$ .

## CONJECTURE

The sequence  $(a_{2,t}(n))_{n \geq 0}$  is 2-regular.

## EXAMPLE

To get  $\mathbf{x}_{75} = (a_{2,t}(64n + 11))_{n \geq 0}$ , take every second element in

$$\begin{aligned}(a_{2,t}(32n + 11))_{n \geq 0} &= \mathbf{x}_{43} \\ &= -2\mathbf{x}_3 + 3\mathbf{x}_{10} \\ &= -2(a_{2,t}(2n + 1))_{n \geq 0} + 3(a_{2,t}(8n + 2))_{n \geq 0}.\end{aligned}$$

Hence

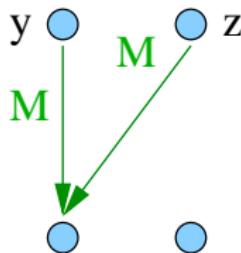
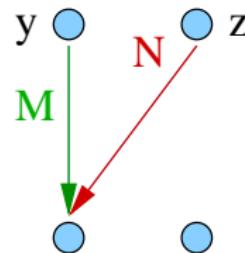
$$\begin{aligned}\mathbf{x}_{75} &= (a_{2,t}(64n + 11))_{n \geq 0} \\ &= -2(a_{2,t}(4n + 1))_{n \geq 0} + 3(a_{2,t}(16n + 2))_{n \geq 0} \\ &= -2\mathbf{x}_5 + 3\mathbf{x}_{18}.\end{aligned}$$

## LEMMA

Let  $\mathbf{y}, \mathbf{z} \in \mathbb{N}^{10}$ . We have

$$mM\mathbf{y} \sim mM\mathbf{z} \Leftrightarrow mN\mathbf{y} \sim mN\mathbf{z},$$

$$mM\mathbf{y} \sim mN\mathbf{z} \Leftrightarrow mN\mathbf{y} \sim mM\mathbf{z},$$



from factors of length  $n + 1$  to factors of length  $2n + 1$ .

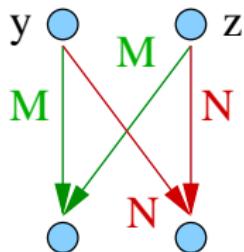
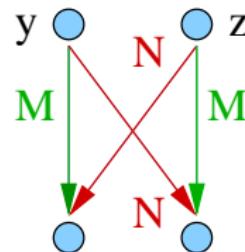
E.g.,  $\mathbf{y} = \Psi(aba)$ ,  $\mathbf{z} = \Psi(bab)$ ,  $mM\mathbf{y} \sim mN\mathbf{z}$  and  $mN\mathbf{y} \sim mM\mathbf{z}$   
 $abbaa(b) \equiv_{a,2} (b)aabba$ ,  $(a)bbaab \equiv_{a,2} baabb(a)$ .

## LEMMA

Let  $\mathbf{y}, \mathbf{z} \in \mathbb{N}^{10}$ . We have

$$mM\mathbf{y} \sim mM\mathbf{z} \Leftrightarrow mN\mathbf{y} \sim mN\mathbf{z},$$

$$mM\mathbf{y} \sim mN\mathbf{z} \Leftrightarrow mN\mathbf{y} \sim mM\mathbf{z},$$



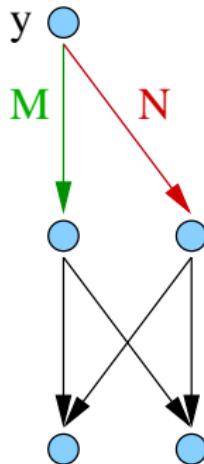
from factors of length  $n + 1$  to factors of length  $2n + 1$ .

E.g.,  $\mathbf{y} = \Psi(aba)$ ,  $\mathbf{z} = \Psi(bab)$ ,  $mM\mathbf{y} \sim mN\mathbf{z}$  and  $mN\mathbf{y} \sim mM\mathbf{z}$   
 $abbaa(b) \equiv_{a,2} (b)aabba$ ,  $(a)bbaab \equiv_{a,2} baabb(a)$ .

## LEMMA

Let  $\mathbf{y} \in \mathbb{N}^{10}$ .

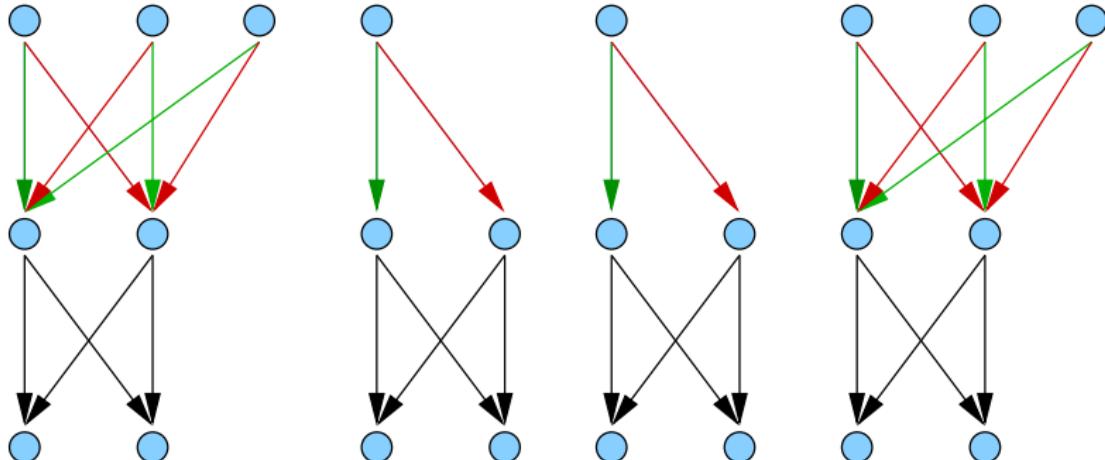
- ▶  $mM\mathbf{y} \not\sim mN\mathbf{y}$
- ▶  $\#\{mMmM\mathbf{y}, mMmN\mathbf{y}, mNmM\mathbf{y}, mNmN\mathbf{y}\}/\sim = 2$ .



from factors of length  $n + 1$  to factors of length  $2n + 1$  and  $4n + 1$ .

## PROPOSITION

For all  $n$ ,  $a_{2,t}(2n + 1) = a_{2,t}(4n + 1)$ .



from factors of length  $n + 1$  to factors of length  $2n + 1$  and  $4n + 1$ .

|          |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |
|----------|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| $2n + 1$ | 3 | 5 | 7  | 9  | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 |
| $4n + 1$ | 5 | 9 | 13 | 17 | 21 | 25 | 29 | 33 | 37 | 41 | 45 | 49 | 53 | 57 | 61 |

Corollary:

$$\mathbf{x}_3 = \mathbf{x}_5 = \mathbf{x}_9 = \mathbf{x}_{17} = \mathbf{x}_{33}$$

$$\mathbf{x}_7 = \mathbf{x}_{13} = \mathbf{x}_{25} = \mathbf{x}_{49}$$

$$\mathbf{x}_{11} = \mathbf{x}_{21} = \mathbf{x}_{41}$$

$$\mathbf{x}_{15} = \mathbf{x}_{29} = \mathbf{x}_{57}$$

$$\mathbf{x}_{19} = \mathbf{x}_{37}$$

We also obtain “new” relations

$$\mathbf{x}_{23} = \mathbf{x}_{45}, \quad \mathbf{x}_{27} = \mathbf{x}_{53}, \quad \mathbf{x}_{31} = \mathbf{x}_{61}.$$

Related work: B. Madill, N. Rampersad, The abelian complexity of the paperfolding word, arXiv:1208.2856

0010011000110110001001110011011...

## THEOREM

*The abelian complexity function of the ordinary paperfolding word is a 2-regular sequence.*

## QUESTION

*Is the abelian complexity function of a  $q$ -automatic sequence always  $q$ -regular?*

We can generalize the question. *Is the  $k$ -abelian complexity function of a  $q$ -automatic sequence always  $q$ -regular?*

## ANOTHER APPROACH

- ▶ V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and  $p$ -recognizable sets of integers, *Bull. Belg. Math. Soc.* **1** (1994).
- ▶ J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity, repetitions, and orbits of an automatic sequence, *Theoret. Comput. Sci.* **410** (2009).
- ▶ E. Charlier, N. Rampersad, J. Shallit, Enumeration and Decidable Properties of Automatic Sequences, arXiv:1102.3698.
- ▶ D. Henshall, J. Shallit, Automatic Theorem-Proving in Combinatorics on Words, arXiv:1203.3758.
- ▶ D. Goc, H. Mousavi, J. Shallit, On the Number of Unbordered Factors, arXiv:1211.1301.

We take verbatim Büchi's theorem as stated by Charlier, Rampersad and Shallit expressing that  $k$ -automatic sequences are exactly the sequences definable in the first order structure  $\langle \mathbb{N}, +, V_k \rangle$ .

## THEOREM

If we can express a property of a  $k$ -automatic sequence  $x$  using quantifiers, logical operations, integer variables, the operations of addition, subtraction, indexing into  $x$ , and comparison of integers or elements of  $x$ , then this property is decidable.

Let  $\mathbf{x}$  be a  $k$ -automatic sequence.

- ▶ Same factor of length  $n$  occurring in position  $i$  and  $j$

$$F_{\mathbf{x}}(n, i, j) \equiv (\forall k < n)(\mathbf{x}(i + k) = \mathbf{x}(j + k))$$

- ▶ First occurrence of a factor of length  $n$  occurring in position  $i$

$$P_{\mathbf{x}}(n, i) \equiv (\forall j < i) \neg F_{\mathbf{x}}(n, i, j)$$

The set  $\{(n, i) \mid P_{\mathbf{x}}(n, i) \text{ true}\}$  is  $k$ -recognizable and

$$\forall n \geq 0, \quad \#\{i \mid P_{\mathbf{x}}(n, i) \text{ true}\} = p_{\mathbf{x}}(n).$$

Let  $\mathbf{x}$  a  $k$ -automatic sequence.

- ▶ Two factors of length  $n$  occurring in position  $i$  and  $j$  are **abelian equivalent**

$$A_{\mathbf{x}}(n, i, j) \equiv (\exists \nu \in S_n)(\forall k < n)(\mathbf{x}(i+k) = \mathbf{x}(\nu(j+k)))$$

The length of the formula is  $\simeq n!$  and **grows** with  $n$ .

- ▶ First occurrence (up to abelian equivalence) of a factor of length  $n$  occurring in position  $i$

$$AP_{\mathbf{x}}(n, i) \equiv (\forall j < i) \neg A_{\mathbf{x}}(n, i, j)$$

For a **constant**  $n$ . The set  $\{i \mid AP_{\mathbf{x}}(n, i) \text{ true}\}$  is  $k$ -recognizable and

$$\#\{i \mid AP_{\mathbf{x}}(n, i) \text{ true}\} = a_{\mathbf{x}}(n).$$

For instance, Henshall and Shallit ask

- ▶ *Can the techniques be applied to detect abelian powers in automatic sequences?*

### REMARK

The Thue–Morse word is abelian periodic,  $t \in \{ab, ba\}^\omega$ , therefore abelian equivalence is “easy”, but then problems occur for 2-abelian equivalence.

- ▶ J. Berstel, M. Crochemore, J.-E. Pin, Thue–Morse sequence and  $p$ -adic topology for the free monoid, *Disc. Math.* **76** (1989), 89–94.