
On the Fairness of Centralised Decision-Making Strategies
in multi-TSO Power Systems

Yannick Phulpin Miroslav Begovic Marc Petit
SUPELEC Georgia Tech SUPELEC

Paris, France Atlanta, USA Paris, France
yannick.phulpin@supelec.fr miroslav@ece.gatech.edu marc.petit@supelec.fr

Damien Ernst
University of Liège
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Abstract - In this paper, we consider an interconnected
power system, where the different Transmission System Op-
erators (TSOs) have agreed to transferring some of their
competences to a Centralised Control Center (CCC). In such
a context, a recurrent difficulty for the CCC is to define
decision-making strategies which are fair enough to every
TSO of the interconnected system. We address this multi-
objective problem when the objective of every TSO can be
represented by a real-valued function. We propose an al-
gorithm to elect the solution that leads to the minimisation
of the distance with the utopian minimum after having nor-
malised the different objectives. We analyse the fairness of
this solution in the sense of economics. We illustrate the ap-
proach with the IEEE 118 bus system partitioned in 3 areas
having as local objective the minimisation of active power
losses, the maximisation of reactive power reserves, or a com-
bination of both criteria.

Keywords - multi-area power system, centralised con-
trol, multi-objective optimisation, fairness.

1 Introduction

THE operational coordination of Transmission System
Operators (TSOs), particularly with regard to se-

curity operation, is an important issue in interconnected
power systems [1, 2]. To address this problem of coordi-
nation, new control strategies have been proposed [3, 4]
and recent work, such as [5], has highlighted the potential
benefits of a Centralised Control Center (CCC) to make
decisions for multi-TSO systems. In large-scale intercon-
nected power systems such as the UCTE system for ex-
ample, a CCC could thus be created in order to coordinate
the actions of the different TSOs.

It is, however, expected that, even with the creation
of a CCC, every TSO will preserve some prerogatives on
its own system operation. Indeed, operational objectives
are likely to remain defined by the TSOs since they may
be dependent on local topology, system architecture, gen-
eration capacity or continuation of traditional engineering
practices [6]. Moreover, prior to agreeing to transferring
some of their competences to a higher decision level, the
TSOs would probably require some guarantees regarding
the fulfillment of their own objectives by the CCC. This is-

sue may be conflicting as satisfying the objective of a sin-
gle TSO may adversely affect other TSOs. The CCC will
thus be continuously confronted with an arbitrage, which
should be “fair enough” to every TSO.

While this arbitrage could be carried out through a
negotiation between different parties for long-term deci-
sions (e.g., transmission investments), decision-making at
an operational level should handle short-term operation
and should thus rely on some well-established procedures.
This paper proposes an optimisation scheme for the CCC
when the objective of every TSO can be represented by a
real-valued function, which may be of non-economic na-
ture and will from now on be referred to as “cost function”.
Such a scheme could be used as a systematic procedure
to address short-term operation issues. The scheme re-
lies on the formulation of the problem as a multi-objective
optimisation problem and selects a solution which could
at least, in principle, bring consensus among the differ-
ent TSOs. Besides the fact that the solution minimises the
distance with the utopian minimum in a normalised multi-
dimensional space, we also analyse its fairness in the sense
of economics. Many of the discussions will be based on
an illustrative example which will also serve as common
thread in this paper.

The paper is organised as follows. Section 2 defines
the multi-objective problem and presents the illustrative
example. In Section 3, we propose a normalisation of
the multi-objective problem and a procedure for identi-
fying the element that stands closest to the origin of the
normalised space. Section 4 introduces the concept of
fairness in economics and we show in Section 5 that our
method has indeed some properties of fairness. Finally,
some opportunities for further research are outlined in
Section 6.

2 Formulation and illustrative example

In the first part of this section, we introduce some no-
tations that will be used through this paper to study the
multi-objective problem which the CCC is supposed to
solve. Afterwards, our illustrative example is presented.



2.1 Formulation of the problem

We focus on a system partitioned in nbArea areas.
Each area i has a TSO i, which has its own objective ex-
pressed by an objective function Ci. We also assume that
its ability to influence the system has been transferred to a
CCC. Let u denote the joint control variable1 that appends
every TSO’s individual control variables and U the set of
joint control variables. We assume that Ci is defined on
U , that is Ci(u) : U 7→ <. Also, the set of constraints
imposed by TSO i is denoted by gi(u) ≤ 0. The joint
constraint function g(u) for the entire system is obtained
by appending the nbArea functions gi(u).

The constrained multi-objective optimisation problem
faced by the CCC can thus be formulated as follows:

min
u

[C1(u), C2(u), . . . , CnbArea(u)] (1)

subject to:

g(u) ≤ 0 (2)

The cost associated with a solution u can be repre-
sented in a nbArea-dimensional cost-space by a vector
[C1(u), C2(u), . . . , CnbArea(u)]. It is commonly adopted
in the multi-objective optimisation literature that the solu-
tion of such a problem is characterised by its Pareto-front.

A Pareto-front is defined in the nbArea-dimensional
cost-space as the set of non-dominated solutions. A so-
lution up is non-dominated if there exists no other solu-
tion u ∈ U such that for every i ∈ [1, 2, . . . , nbArea],
Ci(u) ≤ Ci(up). Should the Pareto-front be reduced to
a single element, the solution of the arbitrage made by the
CCC would then be this element. In such a particular con-
text, there would indeed exist a solution minimising every
single objective. However, in general, the Pareto-front is
composed of many elements (possibly an infinite number
of them) and the CCC must choose one of those elements.
In this paper, the arbitrage problem to which the CCC is
confronted will therefore be the problem of selection of
the fairest solution on the Pareto-front.

Numerous papers have proposed methods for tracing
the Pareto-front of multi-objective optimisation problems.
Many of these techniques compute the Pareto-front by ex-
ploiting the property that by minimising a linear combina-
tion of the individual objectives, one has a solution which
stands on the Pareto-front [10,11]. To compute the Pareto-
front, we use in this paper the so-called normal boundary
intersection approach, already used in [12] to solve a 2-
objective OPF problem. As proven in [13], its output so-
lutions are evenly distributed unlike those obtained with
other techniques.

2.2 Illustrative example

The benchmark power system used herewith is the
IEEE 118 bus system, commonly used as test system by
the power system researchers (see e.g. [14, 15]). We have
partitioned the system into 3 areas referred to as 1, 2 and
3. This system is shown in Figure 1.

The proposed methodology is applied to a multi-TSO
reactive power scheduling problem, which is a particular
type of Optimal Power Flow (OPF). In such a context, the
load demand is supposed to be static, as well as the gen-
eration dispatch. A decentralised slack bus is used in our
simulations, which may slightly change this dispatch. Ev-
ery element u ∈ U is composed of the generators’ output
voltages, the capacitor banks’ or FACTS’ reactive power
injections and the tap settings. The inequality (2) repre-
sents the limits on voltage magnitude at each bus and on
reactive power injections for every generator or compen-
sator, as well as the fact that the active power exports are
maintained constant.

Every TSO i has an objective of a different nature.
TSO 1 focuses only on the minimisation of its own ac-
tive power losses APL1, TSO 2 on the minimisation of a
quadratic sum of its reactive power injections (QSQ2) and
TSO 3 has an objective function which is a linear combi-
nation of APL3 and QSQ3. Such types of objectives are
commonly used in the literature to describe operational
objectives of TSOs (see for example [7–9]). These 3 ob-
jectives can be represented by the generic expression:

Ci(u) = γiAPLi(u) + (1− γi)QSQi(u) (3)

where γi ∈ [0, 1] is the weight coefficient for area i,
APLi(u) is the amount of active power losses in area
i and QSQi(u) is the sum of the square of the reactive
power injections in area i. In our example, γ1 is equal to
1, γ2 to 0 and γ3 to 0.9. The Pareto-front of our illustrative
case is represented in Figure 2.
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Figure 1: IEEE 118 bus system with 3 TSOs.

Figure 2: Representation of the Pareto-front for the IEEE 118 bus sys-
tem with 3 areas.

1Multi-dimensional variables are represented by bold fonts in this paper.



3 An algorithm to make decision for multi-objective
problems

In this section, we propose an approach for electing
the point on the Pareto-front that could satisfy the differ-
ent parties. The approach relies on finding a solution as
close as possible to the “utopian minimum” Cut defined
as follows:

Cut = [C1(u∗1), C2(u∗2), . . . , CnbArea(u
∗
nbArea)] (4)

where u∗i is the solution of Problem (5) which optimises
the entire system with a unique objective Ci(u) under
Constraint (2), that is:

u∗i = arg min
u∈U

Ci(u) (5)

This approach is based on the following principle:
should a “utopian minimum” exist, it would then be picked
as solution since everyone of TSOs’ objectives are op-
timised with that solution. However, we know that, ex-
cept if the Pareto-front is reduced to a single element, the
“utopian minimum” can not be reached. That is why we
choose the solution that minimises the distance (related to
an Euclidian norm after having normalised the cost func-
tions) with the “utopian minimum”.

The method for normalising the cost functions is pre-
sented in Section 3.1, while the algorithm for finding the
point on the Pareto-front is described in Section 3.2. Fi-
nally, the approach is illustrated on the test system de-
scribed in Section 2.2.

3.1 Normalisation

We explain hereafter the normalisation process that
can be adopted to obtain a fair arbitrage. Its rationale is
twofold. First, every local objective can have a different
nature (e.g., minimisation of active power losses, max-
imisation of reactive power reserves, etc.). This problem
should naturally be addressed by the normalisation pro-
cess. Second, it also makes sense to normalise the cost
functions in order to penalise the TSOs whose objective
fulfillment is detrimental to other TSOs’ objectives and
favor those whose objectives are particularly compatible
with the others.

For a cost function Ci, the normalisation factor will be
the product of the two terms C◦i and χi. The normalised
cost function C

i
will thus be computed using the follow-

ing equation:

Ci(u) =
Ci(u)
C◦i × χi

(6)

Before defining the two terms, since we will pick
a solution on the Pareto-front that stands closest to the
“utopian minimum” according to a Euclidian distance, a
small normalisation factor for TSO i will have for effect
to give more weight to its own objective function Ci and
will then favor it.

The term C◦i is defined as follows:

C◦i =
∑
j

Ci(u∗j )− Ci(u∗i )
nbArea

(7)

and has been introduced for two main reasons. First, it is
expressed in the same unit as Ci and will therefore make
possible the comparison between objective functions hav-
ing different natures. In particular, it will make our ap-
proach independent of any scaling factor that may affect
the different cost functions Ci. Second, the term C◦i will
also favor a TSO whose objective fulfillment is weakly pe-
nalised by the fulfillment of the other objectives. Indeed,
C◦i being the average value of the overcosts supported
by TSO i for the nbArea control variables u∗1, u∗2, . . .,
u∗nbArea, this term will be particularly small if the over-
costs induced by other objective fulfillments Ci(u∗j ) are
small.

The term χi is defined as follows:

χi =
∑
j

Cj(u∗i )− Cj(u∗j )
C◦j

(8)

and has been introduced to penalise the detrimental im-
pact of TSO i’s objective achievement on the other TSOs’
costs, represented by the term Cj(u∗i )−Cj(u∗j ). We note
that this difference term is divided by C◦j . Thus, this di-
vision allows to sum up unitless overcosts having differ-
ent natures. Also, this normalisation aims to leverage the
penalisation that TSO i endures when its optimal control
variables are detrimental to the objective of another TSO
j, which is itself compatible with the other TSO’s objec-
tive.

By anticipating the results of Section 5, we find that,
by using the normalisation factor C◦i × χi, the solution of
the arbitrage has some properties of fairness in the eco-
nomic sense. It is obvious that other approaches to com-
pute the normalisation factors could also be designed.

3.2 Optimisation of the normalised problem

As mentioned earlier, our approach will elect the solu-
tion u∗, whose cost vector C(u∗) minimises (in the nor-
malised cost space) the Euclidian distance to the “utopian
minimum”. This problem can be formulated as follows:

u∗ = arg min
u∈U

nbArea∑
i=1

(Ci(u)− Ci(u∗i ))2 (9)

under Constraint (2).
Solving this problem is equivalent to finding the point

on the Pareto-front that minimises the distance to the
utopian minimum. As proof, suppose that u∗ is not
on the Pareto-front and is solution of (9) under Con-
straint (2). Then, there would exist a solution u′ such
that Ci(u′) ≤ Ci(u∗) for every i ≤ nbArea. In this
case, for every area i, we would have Ci(u′) ≤ Ci(u∗)
and consequently,

∑nbArea
i=1 (Ci(u′)− Ci(u∗i ))2 ≤∑nbArea

i=1 (Ci(u∗)− Ci(u∗i ))2. Therefore, u∗ would not
be the solution of (9), which is contradiction.

Table 1 summarises the procedure for computing, ac-
cording to our strategy, a point on the Pareto-front which



could satisfy the different TSOs. This procedure implies
solving the optimisation problem (9) under Constraint (2).
This problem can be solved using a standard OPF algo-
rithm [16–18]. In principle, its resolution should not be
more difficult than a classical OPF problem, at least if we
assume that solving an OPF problem whose cost function
is the sum of squared individual OPF-like functions is not
more difficult than solving any other OPF problem. Such
an assumption makes sense since the convexity properties
of the different Ci, usually assumed by OPFs, are pre-
served in (9). As optimisation tools, we have used MI-
NOS [19] with a formulation of the problem in AMPL (A
Mathematical Programming Language) [20].

Input: For every TSO i, a real-valued objective function
Ci(u) and a constraint vector gi(u).
Output: A vector of control variables u∗.
Step 1: For every TSO i, compute u∗i , solution of:
arg min

u∈U
Ci(u) with respect to: g(u) ≤ 0.

Step 2: Compute the solution u∗ of:
arg min

u∈U

∑nbArea
i=1 (Ci(u)− Ci(u∗i ))2

with respect to: g(u) ≤ 0
where Ci(u) = Ci(u)

C◦i ×χi

with C◦i =
∑
j

Ci(u
∗
j )−Ci(u

∗
i )

nbArea

and χi =
∑
j

(Cj(u
∗
i )−Cj(u

∗
j ))

C◦j
.

Table 1: An algorithm for identifying a fair solution of the multi-
objective optimisation problem.

3.3 Example

The proposed method is illustrated hereafter with the
test system described in Section 2.2. Table 2 gives the dif-
ferent costs Ci(u∗j ), the normalised overcosts Ci(u∗j ) −
Ci(u∗i ) and the terms involved in the computation of the
normalisation factors. The bottom of the table also gives
the costs Ci(u∗) and the normalised overcosts Ci(u∗) −
Ci(u∗i ) supported by each TSO. As one can see, those
overcosts are particularly small. Figure 3 represents the
localisation of the normalised costs corresponding to u∗

on the normalised Pareto-front.

i = 1 i = 2 i = 3
Ci(u∗1) 43.02 1359.8 66.65
Ci(u∗2) 59.40 0.0 211.70
Ci(u∗3) 51.79 1999.9 37.84
C◦i 8.38 1119.9 67.56
χi 1.64 4.53 2.83

Ci(u∗1)− Ci(u∗i ) 0 0.2682 0.1506
Ci(u∗2)− Ci(u∗i ) 1.1910 0 0.9088
Ci(u∗3)− Ci(u∗i ) 0.6375 0.3944 0

Ci(u∗) 43.17 60.65 38.85
Ci(u∗)− Ci(u∗i ) 0.0111 0.0120 0.0053

Table 2: Values of the different costs Ci(u) and normalised overcosts
Ci(u)−Ci(u

∗
i ) for every solution u∗j of the single objective optimisa-

tions and for the solution u∗ of the centralised decision making scheme.
Values of C◦i and χi for TSO i are also reported.

Figure 3: Localisation of the CCC’s solution on the normalised Pareto-
front for the IEEE 118 bus system partitioned into 3 areas.

4 Fairness criteria for an arbitrage

The notion of fairness has been widely studied in eco-
nomics. A consensus is that this notion is highly subjec-
tive [21] and that different arbitrages can be simultane-
ously considered as “fair” for any given situation. How-
ever, the classification proposed by J. Konow in [22] pro-
vides some objective criteria for assessing the fairness
of a particular allocation, namely the ”efficiency”, the
”accountability” and the “altruism”. Those criteria have
been defined by analysing experimental data obtained by
polling people on their opinions concerning the fairness of
different types of allocations.

4.1 On efficiency

According to J. Konow, an arbitrage can not be qual-
ified as fair if it is poorly efficient, that is, if consider-
able resources are not allocated. While he does not de-
fine explicitly the level of efficiency of a given arbitrage
for a multi-objective problem, we will consider here that
the level of performance is optimal if there exists no other
arbitrage which can lead to a better outcome for all the
parties. In this paper, where all objectives are expressed
using real-valued functions, we propose to relate the effi-
ciency of an arbitrage to the distance between its outcome
and the Pareto-front of the problem. Since, as stated in
Section 2.1, the problem of arbitrage is reduced here to
the choice of the fairest solution on the Pareto-front, this
efficiency criterion, or at least the interpretation we make
of it, will not help in this task.

There has been a trend in the economic literature to op-
pose the Pareto efficiency and fairness of an arbitrage (see
e.g. [23]). In our view, this trend is not conflicting with
our approach to fairness, since efficiency is not sufficient
to guarantee the fairness of an arbitrage.

4.2 On accountability

“Acountability” is defined by J. Konow as follows:
“if the individual with more has earned his superior po-
sition”. An example of an accountable arbitrage is given
in [22]: consider two individuals with the same abilities



and a global earning that should be divided between them,
if one chooses to work 50% less, an accountable notion of
fairness would allocate him less earning than to the other
individual.

4.3 On altruism

The notion of ”altruism” is defined by J. Konow in
[22]. He states that what parties can not influence should
not affect the allocation. J. Konow gives in the following
example for altruism: if two individuals having different
abilities work each at 100% of their capabilities, an altru-
ist notion of fairness would allocate them the same share
of the global earning. This notion is also developed by M.
Rabin, who associates in [24] the fairness with the concept
of “reciprocity”.

5 Evaluation of the centralised strategy

In Section 3, we have presented a method for electing
one solution of the multi-objective optimisation problem
described in Section 2. In Section 4, we reviewed three
criteria used in economics for assessing the fairness of an
arbitrage. We assess hereafter whether the arbitrage pro-
posed in Section 3 satisfies those criteria for our example.
Afterwards, we discuss the sensitivity of our allocation
scheme with respect to false information a TSO may be
tempted to provide in order to gain more.

5.1 Efficiency

As proven in Section 3.2, the solution of our optimi-
sation scheme is on the Pareto-front. The solution elected
has thus the property of maximum efficiency whatever the
objective functions are.

5.2 Accountability

As introduced in Section 4, an allocation is “account-
able” if it is profitable for the party investing more effort.
In the context of MVAr scheduling, this notion is hardly
quantifiable. However, we will consider here that an “ef-
fort” of TSO i could be to make the constraints gi(u) ≤ 0
less strict. Let us define, for example, that an “effort”
would be the increase of the range of possible bus voltages
in an entire control area (from [0.94, 1.06] to [0.92, 1.08]).

In order to study the accountability of our arbitrage
strategy, we have optimised the base case system with
no effort and with an effort from each TSO, successively.
Table 3 presents the costs and normalised overcosts sup-
ported by each TSO in every case.

When comparing the results obtained with different
localisations of the effort, one can notice that if a TSO
makes an effort, the final allocation is generally more prof-
itable for this TSO, at least in the original cost space. This
“accountability” can also be observed in the normalised
space, where the overcosts Ci(u∗) − Ci(u∗i ) tend to de-
crease when TSO i makes an effort (except for TSO 3 in
this example).

Effort C1(u∗) C2(u∗) C3(u∗)
None 43.17 60.65 38.85
TSO 1 42.34 49.40 38.58
TSO 2 43.13 44.25 38.45
TSO 3 43.10 61.00 38.59

C1(u∗)− C2(u∗)− C3(u∗)−
Effort C1(u∗1) C2(u∗2) C3(u∗3)
None 0.0111 0.0120 0.0053
TSO 1 0.0088 0.0107 0.0058
TSO 2 0.0083 0.0081 0.0052
TSO 3 0.0114 0.0119 0.0056

Table 3: Values of the cost functions Ci(u
∗) and normalised overcosts

Ci(u
∗)−Ci(u

∗
i ) in every area of the test system. Four cases have been

studied: no extra effort, effort from TSO 1, effort from TSO 2 and effort
from TSO 3.

However, those observations can not be generalised
since there are some cases for which the final allocation
is not accountable. Indeed, let us consider the case where
a TSO i makes an “effort” from which it does not benefit
directly (Ci(u∗i ) remains constant). In such a context, its
effort could allow the other TSOs to increase their possi-
ble benefits by increasing their use of TSO i’s resources.
This could change the normalisation factors, especially the
ones related to TSO i, and the location of the utopian min-
imum so that the final allocation could be less profitable
for TSO i. In particular, this situation has arisen when
defining as “effort” from TSO 2 an increase of the reac-
tive power injection capabilities for every generator in its
control area. For such a case, C2(u∗2) remains the same
(0.0, see Table 2) but its resources can be used by the other
TSOs, which leads to an increase of C◦2 (from 1119.9 to
1971.0) while χ2 does not decrease significantly (from
4.53 to 4.28) and the other normalisation factors tend to
decrease. This leads to an increase of C2(u∗) (from 60.65
to 86.19) and so, penalises TSO 2, which has made more
effort.

Our allocation is also not accountable if applied to
a system with only two parties. The normalisation fac-
tors for TSO 1 and TSO 2 would then be C◦1 × χ1 =
C1(u∗2)− C1(u∗1) and C◦2 × χ2 = C2(u∗1)− C2(u∗2), re-
spectively. Therefore, one TSO would be rewarded if its
objective fulfillment is highly penalising its neighbor and
the arbitrage could not be accountable. This flaw disap-
pears, however, when considering systems with 3 TSOs or
more. Indeed, the more TSOs participate in the process,
the more importance is given to a local objective which
affects slightly the other TSOs’ objectives.

5.3 Altruism

One concept behind altruism is that a parameter which
does not depend on TSOs’ actions should not affect the al-
locations. The interpretation we make here of this concept
is that a TSO i, whose control variables have little im-
pact on the objectives of the other TSOs, should not have
much influence in their allocations, whatever its objective
function Ci. However, since the dynamics of the differ-
ent areas of our benchmark system were highly coupled,
we have been unable to check on the test problem whether
this concept was indeed satisfied.



Another concept behind altruism is that the allocations
should not be biased toward the TSOs with the greatest
“abilities”. Indeed, as written in Section 4.3, the overcosts
should rather be shared according to the efforts made by
the different TSOs. In the context of MVAr scheduling,
we consider that the ability of a TSO is related to its influ-
ence on the dynamics of the system. Thus, the TSOs that
have a strong influence on the system should not have a
highly negative impact on the other TSOs. In this respect,
our allocation scheme has clearly some altruism proper-
ties since the terms χi and C0

i penalise the TSO i whose
objective fulfilment is not compatible with the other ob-
jective fulfilments.

5.4 Sensitivity to biased information

In the context of a CCC, the TSOs may be tempted
to provide wrong information in order to gain more. We
discuss here how sensitive our arbitrage scheme is with re-
spect to biased information concerning the objective func-
tions or the constraints (e.g., limitations on voltage or re-
active power injections).

We first focus on a biased formulation of a TSO’s cost
functions. More precisely, we suppose that a TSO i pro-
vides the CCC with a function Cwi rather than Ci and that
any other type of information provided is correct.

IfCwi (u) = a×Ci(u)+bwith a, b ∈ <, the allocation
strategy is not affected since, as emphasised in Section 3.2,
our arbitrage strategy has the property of being immune to
any linear transformation of the objective functions2.

Now, let us consider the case, where Cwi (u) =
Ci(u) × Ci(u). Intuitively, with such a wrong formu-
lation of its objective function, TSO i could obtain a bet-
ter allocation, since it may give to the CCC the impres-
sion that a deviation from u∗i is worse for it than it is in
reality. However, such a strategy is not systematically
beneficial for a TSO. For example, if TSO 1, which fo-
cuses on minimisation of its active power losses APL1,
asks the CCC to minimise the square of APL1, the arbi-
trage leads to a solution were APL1 = 43.178 rather than
APL1 = 43.172 if TSO 1 were to provide its true objec-
tive function. Therefore, such a strategy of overestimating
its costs may be counter-productive.

Even if it is clear that by truncating their objective
function, the TSOs could bias the allocation in their fa-
vor, such a problem could be avoided in practice by con-
straining the TSOs to select their cost function in a set of
reasonable formulations for the objectives.

Another way for the TSOs to bias the arbitrage scheme
in their favor would be to report more restrictive con-
straints gi such that they avoid non-accountable efforts.
We refer to Section 5.2, for an example of the poten-
tial benefits of a TSO when it provides wrong informa-
tion about its voltage constraints. The lack of account-
ability of our scheme may indeed induce such types of
gaming. However, this strategy could be avoided if TSOs
have to declare only one set of constraints, which would
serve for scheduling very different types of situations (e.g.,

peak load or low demand). A biased formulation of the
constraints could then be profitable in one situation but
counter-productive in others.

6 Conclusions

In this paper, we have addressed the problem of cen-
tralised decision making for a multi-TSO power system
for which every TSO’s individual objective can be repre-
sented by a real-valued cost function. We emphasise that
the problem could be reduced to the election of the fairest
point on the Pareto-front. First, we advocated using “com-
mon engineering sense” to select the point which is clos-
est (according to a specific distance measure) to the de-
fined utopian minimum. We also proposed an algorithm
for computing this point. This approach was illustrated
with the IEEE 118 bus system partitioned in 3 areas hav-
ing as local objective the minimisation of active power
losses, the maximisation of reactive power reserves, or a
combination of both criteria. Afterwards, we introduce
briefly the concept of fairness as studied in economics and
we show that our approach is indeed satisfying, at least to
some extent, the fairness criteria.

While the number of potential applications of our
method is large (any allocation that can be formulated
as a multi-objective problem could be solved through our
method), its Achilles’ heel is related to the way we define
the “fairest allocation” and, more specifically, to the cost
functions normalisation procedure. This definition is in
essence subjective. It may perhaps even be naı̈ve to assess
the fairness of an allocation without consulting the differ-
ent parties.

In the framework of multi-TSO power system opera-
tion, there is a multitude of tasks, such as dynamic security
assessment or transmission investments for which the ob-
jective of each party can not be expressed as a real-valued
cost function. In such contexts, it would also be interest-
ing, even challenging, to attempt to define the concept of
fairest allocation.
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