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Abstract. Pursuing the study started by Rigo, Salimov and Vandomme, we use elementary
number-theoretic techniques to characterize rotation words having a finite set of abelian returns
to all prefixes. We also make the connection between the three gap theorem and the number of
semi-abelian returns for Sturmian words, simplifying some arguments developed by Puzynina
and Zamboni.

1. Introduction

In this paper we study abelian return words in rotation words. The usual definition of return
word is as follows: Given a factor v of an infinite word w, a return word to v is, roughly speaking,
a factor of w that separates two consecutive occurrences of v. In the abelian setting, we define
an equivalence relation on words of the same length by saying that two such words are abelian
equivalent if one can be obtained by permuting the letters of the other. An abelian return word
to v is then a factor of w that separates two consecutive occurrences of members of the abelian
equivalence class of v.

This notion of abelian return word was developed by Puzynina and Zamboni [8], who gave a
very nice characterization of the class of Sturmian words based on abelian return words, namely:
A recurrent infinite word is Sturmian if and only if each of its factors has either two or three
abelian returns. Rigo, Salimov, and Vandomme [10] studied the set of abelian returns to prefixes
of Sturmian words. Their work used the definition of Sturmian words as rotation words. That is,
given an irrational number α and a partition of the unit circle into sub-intervals I0 = [0, 1 − α)
and I1 = [1−α, 1), a Sturmian word encodes the trajectory of a point ρ that is repeatedly rotated
by a distance α around the unit circle. One writes a 0 when the trajectory passes through I0 and
a 1 when the trajectory passes through I1. The resulting infinite sequence of 0’s and 1’s is called
a Sturmian word. The main result of Rigo, Salimov, and Vandomme is that the set of abelian
returns to prefixes of a Sturmian word is finite if and only if the initial point ρ is non-zero. The
main tool in their proof is Kronecker’s Theorem on the distribution of the points {nα} on the unit
circle (where {·} denotes the operation that takes the fractional part of a real number).

In this work we consider the more general class of rotation words. In addition to the parameters
α and ρ given above, we now add a third parameter β and partition the unit circle into intervals
I0 = [0, 1 − β) and I1 = [1 − β, 1). The infinite word encoding the trajectory of the point ρ
under rotation by α as described above is now called a rotation word. Adamczewski [1] has given
a detailed study of these words. The main result of the present paper gives a characterization
analogous to that of Rigo, Salimov, and Vandomme of the points ρ for which the resulting rotation
word has the property that the set of abelian returns to prefixes is finite. Again, our main tool is
Kronecker’s Theorem.

We also apply the classical “three gap theorem” (see [3]) to provide an alternative proof of one
direction of the characterization of Sturmian words given by Puzynina and Zamboni [8]. Note
that the three gap theorem was also used very recently to prove that in reversible Christoffel
factorizations of Sturmian words, only 2 or 3 distinct Christoffel words may occur [4].
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2. Definitions and preliminary results

Let x = x0x1 · · · be an infinite word over a finite alphabet. The language of all the finite factors
(resp. prefixes) of an infinite word x is denoted by Fac(x) (resp. Pref(x)). Let i, j be such that
i ≤ j. The factor xixi+1 · · ·xj of x is denoted by x[i, j]. The notation x[i, i] is shortened to xi.

Let A = {a1, . . . , ak} be a k-letter alphabet. We denote by |w|ai
the number of occurrences

of the letter ai in a word w ∈ A∗. The Parikh mapping Ψ : A∗ → Nk is defined by Ψ(w) =
(|w|a1

, . . . , |w|ak
). Let u, v be two finite words of the same length. We say that u and v are abelian

equivalent and we write u ∼ab v if Ψ(u) = Ψ(v). The abelian complexity of x is the function that
maps n ∈ N to the number of factors of length n that are pairwise abelian inequivalent.

Let x be an infinite word. If, for each factor u of x, there exist infinitely many i such that
x[i, i + |u| − 1] = u (resp. x[i, i + |u| − 1] ∼ab u), then x is said to be recurrent (resp. abelian
recurrent). If x is recurrent (resp. abelian recurrent) and if, for each factor u of x, the distance
between any two consecutive occurrences of factors equal to u (resp. abelian equivalent to u) is
bounded by a constant depending only on u, then x is said to be uniformly recurrent (resp. abelian
uniformly recurrent).

Definition 1. Let u be a factor of an abelian uniformly recurrent word x. We say that a nonempty
factor w of x is an abelian return to u, if there exists some i ≥ 0 such that

• x[i, i+ |w| − 1] = w,
• x[i, i+ |u| − 1] ∼ab u ∼ab x[i + |w|, i+ |w| + |u| − 1],
• x[i+ j, i + j + |u| − 1] 6∼ab u, for all j ∈ {1, . . . , |w| − 1}.

Puzynina and Zamboni [8] called this notion a semi-abelian return to the abelian class of u and
the number of abelian returns is the number of distinct abelian classes of semi-abelian returns.

If u is a prefix of x, we denote by APRx,u the set of abelian returns to the prefix u. Since x is
abelian uniformly recurrent, then the set APRx,u is finite. We define the set of abelian returns
to prefixes as

APRx :=
⋃

u∈Pref(x)

APRx,u.

The coding of rotations is a particular tool for constructing infinite words over a finite alphabet.
Let C be the one-dimensional torus R/Z identified with the interval [0, 1). As usual, we denote
by {x} the fractional part of x. The rotation Rα : C → C, defined for a real number α, maps
x to {x + α}. An interval I = [a, b] (resp. half-interval I = [a, b)) of C is the set of points
{Rδ(a) | 0 ≤ δ ≤ γ} (resp. {Rδ(a) | 0 ≤ δ < γ}), where γ is the unique real number such that
Rγ(a) = b and 0 < γ < 1. This quantity γ associated with I is denoted by |I|. For instance, if
0 ≤ b < a < 1, then [a, 1] ∪ [0, b) is denoted by [a, b) and |[a, b)| = 1− a+ b.

Definition 2. Let α ∈ (0, 1) and ρ ∈ [0, 1). Let I1 be a half-interval of C. The rotation word
r = r(α, I1, ρ) is the word r0r1 · · · satisfying, for all i ≥ 0,

(1) ri =

{

1 if Ri
α(ρ) ∈ I1;

0 otherwise.

Let β ∈ (0, 1). If I1 = [1 − β, 0), then the corresponding rotation word is usually denoted by
r(α, β, ρ).

It is clear that if α is rational, then r is periodic. So from now on we will only consider
α ∈ (0, 1) \Q and we can make use of Kronecker’s theorem.

Theorem 1 (Kronecker). Let α be irrational. Let ρ ∈ C. The set of points {Ri
α(ρ) | i ∈ N} is

dense in C.
A straightforward consequence of Theorem 1 is the following.

Corollary 2. Let α be irrational. Let c > 0. Let ρ ∈ C. There exists a constant n depending only
on c such that, for all (half-)intervals I in C satisfying |I| > c,

I ∩ {Ri
α(ρ) | 0 6 i 6 n} 6= ∅.
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Let r = r(α, I1, ρ) be a rotation word. Define I0 = C\I1. For a binary word v = v0v1 · · · vm, we
define the set Iv of C as

(2) Iv := Iv0 ∩R−1
α (Iv1 ) ∩ · · · ∩R−m

α (Ivm).

Hence r[i, i+m] = v if and only if Ri
α(ρ) ∈ Iv. See [7, Section 2.1.2]. Note that Iv is in general a

finite union of half-intervals.

Example 1. For the sake of simplicity we take rational values and show that the set Iv given in
(2) is in general a finite union of half-intervals. Take α = 1/4 and I1 = [9/10, 1). The set I00 is
given by

I0 ∩R−1
α (I0) = [0, 9/10)∩ [3/4, 13/20) = [0, 13/20)∪ [3/4, 9/10)

and I01 = [13/20, 3/4), I10 = I1 = [9/10, 1). For instance, one can easily see that I0000 is the union

13�20

3�4

1

9�10

Figure 1. The intervals I0 and R−1
α (I0).

of four pairwise disjoint half-intervals: [0, 3/20), [1/4, 3/5), [1/2, 13/20) and [3/4, 9/10). Note that
any of these four half-intervals can be obtained as the intersection of two half-intervals of the kind
R−i1

α (Ij1) and R−i2
α (Ij2 ). Such an observation will be used in the proof of our main result.

Didier gives a characterization of the coding of a rotation with a partition into m intervals of
length greater than α by using Sturmian words and cellular automata [5]. Sturmian words are
particular rotation words of the kind r(α, [1 − α, 0), ρ) or r(α, (1 − α, 0], ρ) where α is irrational.
Let us recall some well-known facts about them. An infinite word x ∈ Aω is called C-balanced,
for some C > 0, if all factors u, v of x with |u| = |v| satisfy ||u|a − |v|a| ≤ C for all letters a ∈ A.
If C = 1, then we simply say that x is balanced.

Theorem 3. [7, Theorem 2.1.5] A binary infinite word x ∈ {0, 1}ω is Sturmian if and only if it
is aperiodic and balanced.

Let x = r(α, [1 − α, 0), ρ) be a Sturmian word. As a consequence of the above result, for each
n ≥ 1, the set {|u|1 | u ∈ Fac(x) ∩ {0, 1}n} contains exactly two elements. Otherwise stated, the
abelian complexity of a Sturmian word is constant and takes only the value 2. So, we can speak
of “heavy” and “light” factors of length n of the Sturmian word x. The heavy ones contain one
more 1 than the light ones. Denote the set of heavy factors of length n by H(n). Let us define
the following two sets IH(n) :=

⋃

v∈H(n) Iv and IL(n) = C\IH(n). These sets are indeed intervals

[10].

(3) IH(n) = [1− {nα}, 1) and IL(n) = [0, 1− {nα}).
A factor xi · · ·xi+n−1 is heavy if and only if Ri

α(ρ) ∈ IH(n).
Rigo, Salimov and Vandomme prove the following two results.

Theorem 4. [10, Theorem 19] Let x = r(α, α, ρ) be a Sturmian word. The set APRx is finite if
and only if ρ 6= 0.
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Proposition 5. [10, Prop. 26] If x is an abelian recurrent word such that APRx is finite, then
x has bounded abelian complexity.

Remark 1. A rotation word r = r(α, I1, ρ) with α irrational and I1 non-empty is uniformly
recurrent and in particular, abelian recurrent. Indeed, let v be a factor of x occurring at position
i, i.e., Ri

α(ρ) ∈ Iv. If Iv is a finite union of pairwise disjoint half-intervals, we denote by ℓ the
length of the smallest such interval. Due to Kronecker’s theorem, there exist s and t such that
{sα} ∈ (0, ℓ/2) and {tα} ∈ (1−ℓ/2, 1). Therefore, for each x ∈ Iv, there exists some j ≤ max{s, t}
such that Rj

α(x) ∈ Iv. Otherwise stated, the factor v occurs with gaps bounded by max{s, t}.

2.1. Rotation words with bounded abelian complexity. Adamczewski [1] observed that
codings of rotations have different combinatorial and arithmetic behaviors depending on whether
the parameters (α, β) satisfy β ∈ Z+ αZ. It mainly follows from the following result obtained by
Kesten [6].

Theorem 6. Let α ∈ (0, 1) and 0 ≤ a < b ≤ 1. There exists a constant K such that

(4) for all M , #{i ≤ M | {iα} ∈ [a, b)} −M(b− a) < K

if and only if b− a = {jα} for some integer j.

Let L,N, n be integers. Note first that

#{L+ 1 ≤ i ≤ L+ n | {iα} ∈ [a, b)} − n(b− a)

= #{i ≤ L+ n | {iα} ∈ [a, b)} − (L+ n)(b− a)−#{i ≤ L | {iα} ∈ [a, b)}+ L(b− a).

Therefore, if there exists K such that (4) holds, we get

|#{L+ 1 ≤ i ≤ L+ n | {iα} ∈ [a, b)} − n(b − a)| < 2K.

Now observe that |#{L+1 ≤ i ≤ L+n | {iα} ∈ [a, b)}−#{N +1 ≤ i ≤ N +n | {iα} ∈ [a, b)}| is
exactly ||r[L+1, L+n]|1 − |r[N +1, N +n]|1| where r = r(α, [a, b), 0). By adding and subtracting
n(b − a), this quantity is easily seen to be bounded by 4K for all L,N, n. In other words, if (4)
holds then r is 4K-balanced. Conversely, if r = r(α, [a, b), 0) is C-balanced for some C, then one
can show along the lines of the proof of Proposition 7 in [2] that (4) holds.

Consequently, the rotation word r(α, [a, b), 0) is C-balanced, for some C, if and only if b− a =
{jα} for some integer j.

Lemma 1. [9] An infinite word has bounded abelian complexity if and only if it is C-balanced for
some C > 0.

Remark 2. Considering a rotation word where the interval I1 is of the kind [1 − β, 0) and
where the starting point ρ may vary has the same degree of freedom as considering a rotation
word where the starting point is 0 and the interval may vary. Otherwise stated, a rotation word
r(α, β, ρ) = r(α, [1 − β, 0), ρ) is in fact of the kind r(α, [a, b), 0). Indeed, if 0 ≤ ρ < 1 − β, then
r(α, β, ρ) = r(α, [1 − β − ρ, 1 − ρ), 0). If 1 − β ≤ ρ < 1, then r(α, β, ρ) is the conjugate of
r(α, [1 − ρ, 2− β − ρ), 0).

The next result is merely a consequence of Kesten’s theorem.

Proposition 7. Let α, β ∈ (0, 1). Let ρ ∈ [0, 1). The rotation word r = r(α, β, ρ) has bounded
abelian complexity if and only if β = {mα} for some integer m.

As a consequence of this result and Proposition 5, if r = r(α, β, ρ) is such that β is not of the
kind {mα} for some integer m, then APRr is infinite. The question is therefore to determine
which rotation words of the kind r = r(α, {mα}, ρ) are such that APRr is finite.
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3. Finiteness of APRr for rotation words

Theorem 8. Let α be irrational. Let m ≥ 1 be an integer. Let r = r(α, {mα}, ρ) be a rotation
word. The set APRr is finite if and only if ρ 6∈ {{−iα} | 0 6 i < m}.
Proof. Let r = r(α, {mα}, ρ) = r0r1r2 · · · be a rotation word. We define m infinite words by
periodic decimation of period m. For j ∈ {0, . . . ,m− 1}, we set

r(j) = rjrj+mrj+2m · · · .
Note that each r(j) is a Sturmian word of the kind r({mα}, [1−{mα}, 1), ρ+ {jα}) that can also

be written as r({mα}, I(j)1 , ρ) where I
(j)
1 = R−j

α ([1− {mα}, 1)).
Having m Sturmian words at our disposal, we can define as in (3), intervals IH(n) and IL(n)

corresponding respectively to the heavy and light factors of length n in r(j). Since Sturmian words
with the same slope have the same language of factors, these intervals are the same for all j and
(3) becomes

(5) IH(n) = [1− {nmα}, 1) and IL(n) = [0, 1− {nmα}).
• We will first assume that ρ does not belong to {{−iα} | 0 6 i < m} and we will show that

APRr is finite.
Consider a factor rim+jr(i+1)m+j · · · r(i+n−1)m+j of length n occurring in r(j). This factor is

heavy if and only if Rim+j
α (ρ) ∈ IH(n) or, equivalently, if

(6) Rim
α (ρ) ∈ R−j

α (IH(n)) =
[

R−nm−j
α (0), R−j

α (0)
)

=: I
(j)
H (n).

As usual, I
(j)
L (n) denotes C \ I(j)H (n).

Now consider an arbitrary factor v occurring in r of length |v| = dm + ℓ with d ≥ 0 and
0 ≤ ℓ < m and starting in position im for some i ≥ 0,

v = r[im, (i+ d)m+ ℓ− 1].

Considering positions in v congruent to the same value modulom, and doing so for each congruence
class, this factor v can be seen as the shuffle of ℓ factors of length d+1 occurring in r(0), . . . , r(ℓ−1):

v0 = rimr(i+1)m · · · r(i+d)m, . . . , vℓ−1 = rim+ℓ−1r(i+1)m+ℓ−1 · · · r(i+d)m+ℓ−1

and m− ℓ factors of length d occurring in r(ℓ), . . . , r(m−1):

vℓ = rim+ℓr(i+1)m+ℓ · · · r(i+d−1)m+ℓ, . . . , vm−1 = rim+m−1r(i+1)m+m−1 · · · r(i+d−1)m+m−1.

From the above discussion, for t ∈ {0, . . . , ℓ− 1}, vt is a heavy factor of length d+ 1 in r(t) if and
only if

Rim
α (ρ) ∈ I

(t)
H (d+ 1).

In the same way, for t ∈ {ℓ, . . . ,m− 1}, vt is a heavy factor of length d in r(t) if and only if

Rim
α (ρ) ∈ I

(t)
H (d).

Consequently, the number of 1’s occurring in v is completely determined by the position of Rim
α (ρ)

with respect to the m intervals I
(0)
H (d+ 1), . . . , I

(ℓ−1)
H (d+ 1), I

(ℓ)
H (d), . . . , I

(m−1)
H (d). Consider, for

all possible choices A0, . . . , Am−1 ∈ {H,L}, the following 2m subsets of C
ℓ−1
⋂

j=0

I
(j)
Aj

(d+ 1) ∩
m−1
⋂

j=ℓ

I
(j)
Aj

(d).

Each such nonempty subset is a finite union of some nonempty pairwise disjoint half-intervals.
The family of all the half-intervals occurring in any of these subsets is denoted by I(d, ℓ). Clearly,
this family defines a partition of C (this follows from the fact that I

(j)
H (n) and I

(j)
L (n) is already a

partition of C). Let d ≥ 0 and ℓ be such that 0 ≤ ℓ < m. From the above discussion, if there exists
some I ∈ I(d, ℓ) such that Rim

α (ρ) ∈ I and Rjm
α (ρ) ∈ I, then the factors r[im, (i+d)m+ ℓ−1] and

r[jm, (j + d)m+ ℓ − 1] are abelian equivalent. In particular, if Ri
mα(ρ) = Rim

α (ρ) ∈ I and ρ ∈ I,
then r[im, (i+d)m+ ℓ− 1] is abelian equivalent to the prefix r[0, dm+ ℓ− 1] of length dm+ ℓ of r.
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We claim that there exists ε such that, for all d ≥ 0 and all ℓ ∈ {0, . . . ,m − 1}, if ρ belongs
to some I ∈ I(d, ℓ), then |I| > ε. This is enough to ensure the finiteness of APRr. Indeed,
thanks to Corollary 2, there exists an integer nε such that, for all θ ∈ C, at least one of points in
{θ,Rmα(θ), . . . , R

nε
mα(θ)} belongs to I as well as ρ. From the conclusion obtained in the previous

paragraph and considering θ of the kind Ri
mα(ρ), we conclude that, for all i, at least one of the

factors of length dm+ ℓ starting in position im, (i+ 1)m, . . . , (i+ nε)m in r is abelian equivalent
to r[0, dm+ ℓ− 1]. Otherwise stated, the gap between any two occurrences of consecutive factors
abelian equivalent to any prefix is bounded by mnε.

To conclude this part of the proof, we still need to prove the claim. We take ε = minS where

S ={|[ρ,R−j
α 0]| : 0 6 j < m} ∪ {|[R−j

α 0, ρ]| : 0 6 j < m}
∪ {|[R−i

α 0, R−j
α 0]| : 0 6 i, j < m; i 6= j} ∪ {|[R−i

α 0, R−j−m
α 0)| : 0 6 i, j < m; i 6= j}

∪ {|[R−j−m
α 0, R−i

α 0)| : 0 6 i 6= j < m}.
We proceed by contradiction. Assume that there exists I ∈ I(n, ℓ) for some n, ℓ such that ρ ∈ I
and |I| < ε. If I is one of the half-intervals belonging to

J =
⋃

A∈{H,L}

{

I
(0)
A (n+ 1), . . . , I

(ℓ−1)
A (n+ 1), I

(ℓ)
A (n), . . . , I

(m−1)
A (n)

}

,

then the fact that ρ belongs to I would imply that |I| > ε. Indeed, from (6), one endpoint of I
would be of the kind R−j

α 0, and hence I would contain an interval either of the kind [ρ,R−j
α 0) or

(R−j
α 0, ρ]. Since |I| < ε, we deduce that I is the intersection [a, d) of two half-intervals [a, b) and

[c, d) in J such that |[a, d)| < ε and ρ ∈ [a, d).
We consider all the possible cases:

(1) If [c, d) = I
(j)
H (k) for some j, k, then we get the contradiction

|[a, d)| > |[ρ, d)| = |[ρ,R−j
α 0)| > ε.

(2) If [a, b) = I
(j)
L (k) for some j, k, then we get the contradiction

|[a, d)| > |[a, ρ)| = |[R−j
α 0, ρ)| > ε.

(3) If [c, d) = I
(j1)
L (k) and [a, b) = I

(j2)
H (k) for some j1, j2, k, then [d, c) = I

(j1)
H (k) and a =

R−j2−km
α 0, b = R−j2

α 0, c = R−j1
α 0, d = R−j1−km

α 0. We get the contradiction

|[a, d)| = |[b, c)| = |[R−j2
α 0, R−j1

α 0)| > ε.

(4) If [c, d) = I
(j1)
L (k1) and [a, b) = I

(j2)
H (k2) for some j1, j2 and k1 6= k2, then due to (5), one

of a, d is R−j1−km
α 0 and the another one is R

−j2−(k+1)m
α 0. The length of [a, d) is in S and

this is again a contradiction.

• We now consider the converse. Suppose that ρ = R−k
α 0 for some 0 6 k < m. Note that

ρ always lies in the interval I
(k)
L (n) = [R−k

α 0, R−k−nm
α 0). Hence, for all n, the prefix of length

n of r(k) is light. We will show how this fact allows one to find arbitrarily large gaps between
consecutive occurrences of factors abelian equivalent to some prefix.

Fix ℓ > 0 and define

δ = min{|[R−j
α 0, Rim

α ρ]| : 0 6 j < m, 0 < i ≤ ℓ}.
Thanks to Kronecker’s Theorem, there exists n such that 1 − {nmα} < δ. In view of (5), this

means that the m intervals I
(j)
L (n) = [R−j

α 0, R−nm−j
α 0) have length 1 − {nmα} < δ for all j ∈

{0, . . . ,m− 1}. Therefore, by definition of δ, for all i ∈ {1, . . . , ℓ} and all j ∈ {0, . . . ,m− 1}, we
get that Rim

α ρ does not belong to I
(j)
L (n), i.e., the words

rim+jr(i+1)m+j · · · r(i+n−1)m+j

are heavy. The factors r[m,m + mn − 1],. . . , r[ℓm, ℓm + mn − 1] are the shuffle of m of these
heavy words. But the prefix of length nm of r is the shuffle of the prefixes of length n of the words
r(0), . . . , r(m−1) and we already know that the prefix of length n of r(k) is light. Consequently
none of the factors r[m,m+mn−1],. . . , r[ℓm, ℓm+mn−1] are abelian equivalent to r[0,mn−1],
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showing that there exists an element in APRr of length at least (ℓ− 1)m. Since ℓ can be chosen
arbitrarily large, APRr is infinite. �

Example 2. Let τ = (1 +
√
5)/2 be the golden mean and set α = 1/τ2 = 0.381966 · · · . Consider

the rotation word r = r(α, {2α}, α). We have

r = 110111101101111011110110111101101111 · · ·
Observe that if f = r(α, {α}, α) is the Fibonacci word, we have

f = 010010100100101001010010010100100 · · · ,
and furthermore, the word r can be obtained from f by the rule ri = fi + fi+1 for all i ≥ 0.
Alternatively, we have r = h(f) where h is the substitution that maps 0 → 11 and 1 → 0.

By Theorem 8, the set APRr is finite. To show this, let I(d, ℓ) be as in the as in the proof of
Theorem 8. Then there should exist ǫ such that for all d ≥ 0 and ℓ ∈ {0, 1}, if ρ ∈ I for some
I ∈ I(d, ℓ), then |I| ≥ ǫ. To determine this ǫ, note that since ρ = α in this case, the set S defined
in the proof of Theorem 8 is

S =
{

{α}, 1− {α}, {2α}, 1− {2α}, {3α}, 1− {3α}
}

,

and therefore, we have ǫ = minS = {3α} = 0.1458980 · · · .
Next, we find nǫ such that for all θ ∈ C, at least one of the points in {θ,R2α(θ), . . . , R

nǫ

2α(θ)} be-
longs to I. A computer calculation shows that if nǫ = 12, then when the points in {θ,R2α(θ), . . . , R

nǫ

2α(θ)}
are arranged in order around the unit circle, the largest gap between consecutive points is 0.124611797 · · · ,
which is less than ǫ. Therefore, the interval I must contain one of the points. From the proof
of Theorem 8 we conclude that for any prefix of r, the longest abelian return has length at most
2 · 12 = 24. This is not the optimal bound however, since computer calculations suggest that the
longest abelian return actually has length 5.

4. Finiteness of semi-abelian returns and the three gap theorem

Puzynina and Zamboni [8] proved the following:

Theorem 9. A binary recurrent infinite word x is Sturmian if and only if each factor u of x has
two or three semi-abelian returns in x.

They give a combinatorial proof of this result. Here we show that one direction of this result is
a consequence of the three gap theorem (see [3]):

Theorem 10 (Three gap theorem). Let ρ be a real number, let α ∈ (0, 1) be irrational, and let I
be a proper subinterval of (0, 1). The gaps between the successive integers j such that {jα+ρ} ∈ I
take at most three values, one being the sum of the other two.

We now use the number-theoretic approach of Rigo, Salimov, and Vandomme [10], together
with the three gap theorem to prove:

Proposition 11. Let x be a Sturmian word. Each factor u of x has two or three semi-abelian
returns in x.

Proof. Let I0 = [0, 1− α) and I1 = [1− α, 1). Let x = x0x1 · · · be the Sturmian word defined by

xi =

{

0 if Ri
α(ρ) ∈ I0,

1 if Ri
α(ρ) ∈ I1.

For a binary word v = v0 · · · vk, recall (2) that
Iv = Iv0 ∩R−1

α (Iv1 ) ∩ · · · ∩R−k
α (Ivk),

so that x[i, i + k] = v if and only if Ri
α(ρ) ∈ Iv. For each length k there are exactly two abelian

equivalence classes of words of length k in x : As usual, let us denote these H(k) and L(k), where
the words in H(k) have one more 1 than those in L(k).

Rigo, Salimov, and Vandomme [10] proved that

• x[i, i+ k] ∈ H(k) if Ri
α(ρ) ∈ [1− {kα}, 1); and,
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• x[i, i+ k] ∈ L(k) if Ri
α(ρ) ∈ [0, 1− {kα}).

It now follows from Theorem 10 that the gaps between successive positions i such that x[i, i+k] ∈
H(k) take either two or three values. In other words, for any factor u ∈ H(k), the set of abelian
returns to u in x consist of words of either two or three different lengths. The same reasoning
applies to factors in L(k). However, from the argument given in [8, Section 6], the factor u has at
most one semi-abelian return of each length. Thus u has either two or three semi-abelian returns
in x. �
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