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Abstract  The scarcity of internal loss databases tends to hinder the use of the advanced 

approaches for operational risk measurement (AMA) in financial institutions. As there is a greater 

variety in credit risk modelling, this paper explores the applicability of a modified version of 

CreditRisk+ to operational loss data. Our adapted model, OpRisk+, works out very satisfying Values-

at-Risk at 95% level as compared with estimates drawn from sophisticated AMA models. OpRisk+ 

proves to be especially worthy in the case of small samples, where more complex methods cannot be 

applied. OpRisk+ could therefore be used to fit the body of the distribution of operational losses up to 

the 95%-percentile, while Extreme Value Theory, external databases or scenario analysis should be 

used beyond this quantile. 
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1 Introduction 

Over the past decades, financial institutions have experienced several large operational 

loss events leading to big banking failures. Memorable examples include the Barings bank 

losing 1.4 billion USD from rogue trading in his branch in Singapore leading to the failure of 

the whole institution1; Allied Irish Banks losing 750 MM USD in rogue trading2, or 

Prudential Insurance incurring 2 billion USD settlement in class action lawsuit3, to name a 

few. These events, as well as developments such as the growth of e-commerce, changes in 

banks’ risks management or the use of more highly automated technology, have led 

regulators and the banking industry to recognize the importance of operational risk in 

shaping the risk profiles of financial institutions.  

Reflecting this recognition, regulatory frameworks such as the New Capital Accord of 

the Basel Committee on Banking Supervision (“Basel II”) have introduced explicit capital 

requirements for operational risk. Similar to credit risk, Basel II does not impose a “one-size-

fits-all” approach to capital adequacy and proposes three distinct options for the calculation 

of the capital charge for operational risk: the Basic Indicator Approach, the Standardized 

Approach and the Advanced Measurement Approaches (AMA). The use of these approaches 

of increasing risk sensitivity is determined according to the risk management systems of the 

banks. The first two methods are a function of gross income, while the advanced methods are 

based on internal loss data, external loss data, scenario analysis, business environment and 

internal control factors.  

In 2001, the Basel Committee was encouraging two specific AMA methods: (i) the Loss 

Distribution Approach (LDA) and (ii) an Internal Measurement Approach (IMA) developing 

a linear relationship between unexpected loss and expected loss to extrapolate credit-risk’s 

internal rating based (IRB) approach to operational risk. While the Basel Committee dropped 

formal mention of the IMA in favour of Value-at-Risk approaches in the final version of the 

Accord, it is still legitimate to be inspired by modelling approaches for credit risk in order to 
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model the distribution of operational loss data. Indeed, both risk measurement frameworks 

have similar features, such as their focus on a one-year measurement horizon or their use of 

an aggregate loss distribution skewed towards zero with a long right-tail. 

This paper explores the possibility of adapting one of the current proposed industry 

credit-risk models to perform much of the functionality of an actuarial LDA model (see 

Crouhy et al. (2000) or  Gordy (2000) for a comparative analysis of the main credit risk 

models). We identify CreditRisk+, the model developed by Credit Suisse, as an actuarial-

based model, whose characteristics can be adapted to fit the Loss Distribution Approach 

(LDA). The LDA is explicitly mentioned in the Basel II Accord as eligible among the 

Advanced Measurement Approaches (AMA) to estimate risk capital, and has unambiguously 

emerged as the standard industry practice4. After some adjustment, we construct a 

distribution of operational losses through an adapted CreditRisk+model, that we name 

“OpRisk+”5. As this model calibrates the whole distribution, not only can we retrieve the 

quantiles of the operational loss distribution, but also an estimate of its expectation, needed 

for the computation of the economic capital.  

Our research is aimed at answering the following questions: (i) How would the 

adaptation of CreditRisk+ model perform compared to sophisticated models such as the 

approach developed by Chapelle et al. (2008) (henceforth CCHP) or Moscadelli (2004) 

among others? (ii) Does OpRisk+ provide a reasonable assessment of the body of the 

distribution of the operational losses? (iii) Are the VaR computed with OpRisk+ more 

conservative than the lower bound of Alexander, (2003), an extended IMA approach? 

We address the questions with an experiment based on generated databases using three 

different Pareto distributions, proven to be appropriate to model operational loss data by 

Moscadelli (2004) and de Fontnouvelle and Rosengren (2004). The knowledge of the true 

distribution of losses is necessary to assess the quality of the different fitting methods. Had a 

real data set been used instead of controlled numerical simulations as proposed by McNeil 

and Saladin (1997), we would not be able to benchmark the observed results against the true 
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loss distribution and to evaluate the performance of OpRisk+ for different loss generating 

processes and sample sizes.  

We assess the influence of the number of losses recorded in the database on the quality 

of the estimation. Indeed, Carrillo-Menéndez and Suárez (2012) have shown the difficulty of 

selecting the correct model from the data when only small samples are available. We also 

test our new adapted internal rating based  model against Alexander’s existing improvement 

to the basic IMA formula. Alexander’s Value-at-Risk on operational loss data (OpVaR) is 

effectively a quantile value from a normal distribution table which allows identification of 

the unexpected loss if one knows the mean and variance of the loss severity distribution and 

the mean of the frequency distribution.  

Our main findings are twofold. First, we note that the precision of OpRisk+ is not 

satisfactory to estimate the very far end of the loss distribution, such as the Value-at-Risk 

(VaR)6 at the 99.9% confidence level (VaR99.9). Yet, our model works out very satisfying 

quantile estimates, especially for thin-tailed Pareto-distributions, up to a 95% confidence 

level for the computation of the VaR. Secondly, the simplicity of our model makes it 

applicable to “problematic” business lines, that is, with very few occurrences of events, or 

with limited history of data. Procedures that rely on extreme-value theory, by contrast, are 

very data-consuming, and yield very poor results when used with small databases.  

Moreover, as argued by Malevergne et al. (2006), when there is a lack of data, non-

parametric methods are useful to assess risk at probability level 95% but fail at high 

probability level such as 99% or larger. 

These findings make the OpRisk+ approach clearly not an effective substitute, but 

indeed a very useful complement to approaches that specifically target the extreme tail of the 

loss distribution. In particular, the body of the loss distribution can be safely assessed with 

our method, while external data or scenario analysis, as specifically mentioned in the 

Accord, can be used to estimate the tail. This model could also represent for a bank a very 

good cross-check method for scenario-based approaches and for regulators who would want 
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to challenge banks using internal approaches that might seems too aggressive on small 

samples. Moreover, being able to simultaneously rely on the body and the tail of the 

distribution is crucial for the operational risk capital estimation, because one needs the full 

distribution of losses in order to capture the expected loss that enters the regulatory capital 

estimate.  

Next section describes the adjustment needed in order to apply CreditRisk+ model to 

operational loss data and presents two alternative methods to calibrate a VaR on operational 

loss data (OpVaR). We then describes our database, presents our results and compares them 

to the other approaches’ results.  

2 Alternative Approaches for the Measurement of Operational Risk 

This section presents three alternative ways to calibrate a Value-at-Risk on operational 

loss data. The first one represents an adaptation of the CreditRisk+ framework, while the 

second one proposes an adaptation of the Loss Distribution Approach (LDA) in the context 

of operational losses with the use of Extreme Value Theory (EVT). Finally, we introduce an 

IMA approach developed by Alexander (2003). 

2.1 OpRisk+: Application of CreditRisk+ to Operational Loss Data 

CreditRisk+ developed by Credit Suisse First Boston is an actuarial model derived from 

insurance losses models. It models the default risk of a bond portfolio through the Poisson 

distribution. Its basic building block is simply the probability of default of a counterparty. In 

this model, no assumptions are made about the causes of default: an obligor is either in 

default with a probability PA, or not in default with a probability 1-PA. Although operational 

losses do not depend on a particular counterparty, this characteristic already simplifies the 

adaptation of our model, as we do not need to make assumptions on the causes of the loss.  

CreditRisk+ determines the distribution of default losses in three steps: the 

determination of the frequency of defaults, approximated by a standard Poisson distribution, 
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the determination of the severity of the losses, and the determination of the distribution of 

default losses.  

The determination of the frequency of events leading to operational losses can be 

modelled through the Poisson distribution as for the probability of default in CreditRisk+: 
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where µ is the average number of defaults per period, and N is a stochastic variable with 

mean µ, and standard deviation √µ. 

CreditRisk+ computes the parameter µ by adding the probability of default of each 

obligor, supplied, for instance, by rating agencies. However, operational losses do not 

depend on a particular obligor. Therefore, instead of being defined as a sum of probabilities 

of default depending on the characteristics of a counterpart, µ can be interpreted as the 

average number of loss events of one type occurring in a specific business line during one 

period.  

CreditRisk+ adds the assumption that the mean default rate is itself stochastic in order 

to take into account the fat right tail of the distribution of defaults. Nevertheless, the Poisson 

distribution being one of the most popular in operational risk frequency estimation, 

according to Cruz (2002)7 and Basel Committee on Banking Supervision (2009), we keep on 

assuming that the number of operational loss events follows a Poisson distribution with a 

fixed mean µ. 

In order to perform its calculations, CreditRisk+ proposes to express the exposure (here, 

the losses) in a unit amount of exposure L.8 The key step is then to round up each exposure 

size to the nearest whole number, in order to reduce the number of possible values and to 

distribute them into different bands. Each band is characterized by an average exposure, νj, 

and an expected loss, εj, equal to the sum of the expected losses of all the obligors belonging 

to the band. Table 1 shows an example of this procedure. 
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Insert Table 1 

 

CreditRisk+ posits that  

jjj µνε =  (2) 

where εj is the expected loss in band j, νj is the common exposure in band j, and µj is the 

expected number of defaults in band j.  

As the operational losses do not depend on a particular transaction, we slightly modify 

the definition of these variables. The aim is to calculate the expected aggregate loss. We will 

therefore keep the definition of εj unchanged. However, as noted earlier, µj is not an 

aggregate expected number of defaults anymore but simply the (observed9) average number 

of operational loss events of size j occurring in one year. Consequently, in order to satisfy 

equation (2), νj must be defined as the average loss amount per event for band j.  

Table 2 illustrates the reprocessing of the data. 

 

Insert Table 2 

 

Each band is viewed as a portfolio of exposures by itself. Because some defaults lead to 

larger losses than others through the variation in exposure amounts, the loss given default 

involves a second element of randomness, which is mathematically described through its 

probability generating function.  

Thus, let G(z) be the probability generating function for losses expressed in multiples of 

the unit L of exposure:  
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As the number of defaults follows a Poisson distribution, this is equal to:  
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As far as operational losses are concerned, we can no more consider a band as a 

portfolio but simply as a category of loss size. This also simplifies the model, as we do not 

distinguish exposure and expected loss anymore. For credit losses, one first sorts exposures, 

and then calculates the expected loss, by multiplying the exposures by their probability of 

default. As far as operational losses are concerned, the loss amounts are directly sorted by 

size. Consequently, the second element of randomness is not necessary anymore. This has no 

consequences on the following results except simplifying the model. 

Whereas CreditRisk+ assumes the exposures in the portfolio to be independent, 

OpRisk+ assumes the independence of the different loss amounts. Thanks to this assumption, 

the probability generating function for losses of one type for a specific business line is given 

by the product of the probability generating function for each band: 
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Finally, the loss distribution of the entire portfolio is given by: 
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Note that this equation allows only computing the probability of losses of size 0, L, 2L 

and so on. This probability of loss of nL will further be denoted An.   

Then, under the simplified assumption of fixed default rates, Credit Suisse has 

developed the following recursive equation:10 
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The calculation depends only on 2 sets of parameters: νj and εj, derived from µj , the 

number of events of each range, j, observed. With operational data, A0 is derived directly 

from A0 = e-µ . 

To illustrate this recurrence, suppose the database contains 20 losses, 3 (resp. 2) of 

which having a rounded-off size of 1L (resp. 2L): 
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Therefore, the probability of having a loss of size resp. 0, 1L and 2L is resp. 2.06.10-9, 

6.18.10-9 and 1.13.10-8, and so on. 

From there, one can re-construct the distribution of the loss of size nL. 

 

 

2.2 The Loss Distribution Approach adapted to Operational Risk 

Among the Advanced Measurement Approaches (AMA) developed over the recent 

years to model operational risk, the most common one is the Loss Distribution Approach (), 

which is derived from actuarial techniques (see Frachot et al. (2001; Cruz (2004); Chavez-

Demoulin et al., 2006); Peters et al. (2011)for an introduction). 

By means of convolution, this technique derives the aggregate loss distribution (ALD) 

through the combination of the frequency distribution of loss events and the severity 
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distribution of a loss given event.11 The operational Value-at-Risk is then simply the 99.9th 

percentile of the ALD. As an analytical solution is very difficult to compute with this type of 

convolution, Monte Carlo simulations are usually used to do the job. Using the CCHP 

procedure with a Poisson distribution with a parameter µ equal to the number of observed 

losses during the whole period to model the frequency,12 we generate a large number M of 

Poisson(µ) random variables (say, 100,000). These M values represent the number of events 

for each of the M simulated periods. For each period, generate the required number of 

severity random variables (that is, if the simulated number of events for period m is x, then 

simulate x severity losses) and add them to get the aggregate loss for the period. The 

obtained vector represents M simulated periods and OpVaRs are then readily obtained (e.g. 

the OpVaR at 99.99% confidence interval is the 10th lowest value of the M sorted aggregate 

losses)  

Examples of empirical studies using this technique for operational risk include 

Moscadelli (2004) on loss data collected from the Quantitative Impact Study (QIS) of the 

Basel Committee, de Fontnouvelle and Rosengren (2004) on loss data from the 2002 Risk 

Loss Data Collection Exercise initiated by the Risk Management Group of the Basel 

Committee or Chapelle et al. (2008) with loss data coming from a large European bank.  

In the latter case, mixing two distributions fits more adequately the empirical severity 

distribution than a single distribution. Therefore, the authors divide the sample into two 

parts: a first one with losses below a selected threshold, considered as the “normal” losses, 

and a second one, including the “large” losses. To model the “normal” losses, CCHP 

compare several classic continuous distributions such as gamma, lognormal or Pareto. In our 

example, we will use the lognormal distribution. 

To take extreme and very rare losses into account (i.e. the “large” losses), CCHP apply 

the Extreme Value Theory (EVT) on their results.13 The advantage of EVT is that it provides 

a tool to estimate rare and not-yet-recorded events for a given database,14 hence providing an 
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attractive solution for loss databases with limited collection history that are used to reach a 

very high confidence levels like the one required by Basel II (i.e. 99.9%). 

 

2.3 Alexander’s Internal Measurement Approach 

The basic formula of the Internal Measurement Approach (IMA) included in the 

Advanced Measurement Approaches of Basel II is: 

ELUL γ=  (8) 

where UL = unexpected loss, determining the operational risk requirement,15 γ  is a 

multiplier, and EL is the expected loss.  

Gamma factors are not easy to evaluate as no indication of their possible range has been 

given by the Basel Committee. Therefore, Alexander (2003) suggests that instead of writing 

the unexpected loss as a multiple (γ) of expected loss, one writes unexpected loss as a 

multiple (Φ) of the loss standard deviation (σ). Using the definition of the expected loss, she 

gets the expression for Φ: 

σ
ELaR −

=Φ 9.99V
 (9) 

The advantage of this parameter is that it can be easily calibrated. 

The basic IMA formula is based on the binomial loss frequency distribution, with no 

variability in loss severity. For very high-frequency risks, Alexander notes that the normal 

distribution could be used as an approximation of the binomial loss distribution, providing 

for Φ a lower bound equal to 3.1 (as can be found from standard normal tables when the 

number of losses goes to infinity). She also suggests that the Poisson distribution should be 

preferred to the binomial as the number of transactions is generally difficult to quantify. 

Alexander (2003) shows that Φ, as a function of the parameter µ  of the Poisson 

distribution, must be in a fairly narrow range: from about 3.2 for medium-to high frequency 

risks (20 to 100 loss events per year) to about 3.9 for low frequency risks (one loss event 
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every one or two years) and only above 4 for very rare events that may happen only once 

every five years or so.  Table 3 illustrates the wide range for the gammas by opposition to the 

narrow range of the phi’s values. 

 

Insert Table 3 

 

Then, assuming the loss severity to be random, i.e. with mean µL and standard deviation 

σL, and independent of the loss frequency, Alexander writes the Φ parameter as: 
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where λ is the average number of losses. 

For σL > 0, this formula produces slightly lower Φ than with no severity uncertainty, but 

it is still bounded below by the value 3.1.  

For a comparison purpose, we will use the following value for the needed OpVaRs, 

derived from equation (10) in which we replace Φ by a value corresponding to the selected 

level of confidence:  

( )[ ] LLLOpVaR λµσµλ ++Φ= 22

 (11) 

 

3 An Experiment on Simulated Losses 

3.1 Data 

OpRisk+ makes the traditional statistical tests impossible, as it uses no parametric form 

but a purely numerical procedure. Therefore, as proposed in McNeil and Saladin (1997), in 

order to perform tests of the calibrating performance of OpRisk+ on any distribution of loss 

severity, we simulate databases to obtain an exhaustive picture of the capabilities of the 

approach.  Moscadelli (2004) and de Fontnouvelle and Rosengren (2004) having shown that 
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loss data for most business lines and event types may be well modelled by a Pareto-type 

distribution, we simulated our data on the basis of three different kinds of Pareto 

distributions: a heavy-tail, a medium-tail and a thin-tail Pareto distribution.  

A Pareto distribution is a right-skewed distribution parameterized by two quantities: a 

minimum possible value or location parameter, xm, and a tail index or shape parameter, ξ. 

Therefore, if X is a random variable with a Pareto distribution, the probability that X is 

greater than some number x is given by: 

k

mx

x
xX

−









=> )Pr(  (12) 

for all x ≥ xm., and for  xm and  k= 1/ξ >0. 

The parameters of our distributions are Pareto(100;0.3), Pareto(100;0.5) and 

Pareto(100;0.7): the larger the value of the tail index, the fatter the tail of the distribution. 

The choice of these functions has been found to be reasonable with a sample of real data 

obtained from a large European institution.  

We run three simulations: one for the thin-tailed Pareto severity distribution case, one 

for the medium-tailed Pareto severity distribution case and one for the fat-tailed Pareto 

severity distribution case. For each of these cases, we simulate two sets of 1000 years of 20 

and 50 operational losses respectively and two sets of 100 series of 200 and 300 operational 

losses respectively.16 1 

Table 4 gives the characteristics of each of the twelve databases (each thus comprising 

1000 or 100 simulated loss distributions) constructed in order to implement OpRisk+. For 

each series of operational losses we compute the expected loss, that is, the mean loss 

multiplied by the number of losses, as well as the standard deviation, median, maximum and 

minimum of these expected losses.  

 

Insert Table 4 
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These results clearly show that data generated with a thin-tailed Pareto-distribution 

exhibit characteristics that make the samples quite reliable. The mean loss is very close to its 

theoretical level even for 20 draws. Furthermore, we observe a standard deviation of 

aggregate loss that is very limited, from less than 10% of the average for N=20 to less than 

3% for N=200. The median loss is also close to the theoretical value. For a tail index of 0.5 

(medium-tailed), the mean loss still stays close to the theoretical value but the standard 

deviation increases. Thus, we can start to question the stability of the loss estimate. 

When the tail index increases, the mean aggregate loss becomes systematically lower 

than the theoretical mean, and this effect aggravates when one takes a lower number of 

simulations (100 drawings) with a larger sample. The standard deviation and range become 

extremely large, thereby weakening inference based on a given set of loss observations. 

This highlights the difficulty of modelling operational risk losses (which often exhibit 

this type of tail behaviour) using classical distribution fitting methods when only a limited 

number of loss data points are available. 

 

3.2 Application of OpRisk+  

To apply OpRisk+ to these data, the first step consists of computing A0 = e-µ, where µ is 

the average number of loss events. For instance, for N=200, this gives the following value:

87200
0 1038.1 −− ⋅== eA . Then, in order to assess the loss distribution of the entire population 

of operational risk events, we use the recursive equation (7) to compute A1, A2 etc. 

Once the different probabilities An for the different sizes of losses are computed, we can 

plot the aggregate loss distribution as illustrated in Figure 1-117. 

 

Insert Figure 1 
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With this information, we can compute the different Operational Values-at-Risk 

(OpVaRs). This is done by calculating the cumulated probabilities for each amount of loss. 

The loss for which the cumulated probability is equal to p% gives us the OpVaR at 

percentile p. 

We repeat the procedure for each year of losses and report the average values of the 

different yearly OpVaRs in Tables 5 and 6. Even though this procedure is likely to 

underestimate the true quantiles (see Section 3.4), we view this setup as more realistic than 

merely computing a single OpVaR on the whole number of years. Indeed, the operational 

risk manager is likely to be confronted with a few years of limited data, which is consistent 

with our simulation procedure. 

Table 5 compares the OpVaRs obtained using OpRisk+ with the simulated data for the 

small databases. The first column represent the average observed quantiles of the aggregate 

distribution when simulating 100,000 years with a Poisson(µ) distribution for the frequency 

and a Pareto(100, ξ) for the severity. The tables also gives the minimum, maximum and 

standard deviation of the 100(0) OpVaRs produced by OpRisk+. 

 

Insert Table 5 

 

Panel A of Table 5 shows that OpRisk+ achieves very satisfactory OpVaRs for the 

Pareto-distribution with thin tail. The mean OpVaRs obtained for both the samples of 20 and 

50 observations stays within a 3% distance from the true value. Even at the level of 99.9% 

required by Basel II, the OpRisk+ values remain within a very narrow range, while the root 

mean square error (RMSE) of the estimates is kept within 13% of the true value.  

The results obtained with the OpRisk+ procedure with medium and fat tails tend to 

deteriorate, which is actually not surprising as the adaptation of the credit risk model strictly 

uses observed data and does necessarily underestimate the fatness of the tails. However, we 

still have very good estimation for OpVaR95. It mismatches the true 95% quantile by 2% to 
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7% for the medium and fat tailed Pareto-distribution, while the RMSE tends – naturally – to 

increase very fast.  

The bad news is that the procedure alone is not sufficient to provide the OpVaR99.9 

required by Basel II. It severely underestimates the true quantile, even though this true value 

is included in the range of the observed values of the loss estimates, mainly because the 

support of the distribution generated by the OpRisk+ method is finite and thus truncates the 

true loss distribution. This issue had been pointed out by Mignola and Ugoccioni (2006) who 

propose to reduce the sources of uncertainty in modelling the operational risk losses, by 

lowering the percentile at which the risk measure is calculated and finding some other 

mechanism to reach the 99.9% percentile. 

Further reasons for this systematic underestimation can be found in the setup of the 

simulations. The procedure averages the individual yearly OpVaRs, each of them being 

computed using a very small number of losses. This modelling choice mimics a realistic 

situation as closely as possible. There is thus a small likelihood of observing extreme losses 

over a particular year, and the averaging process tends to lead to the dominance of too small 

OpVaR estimates for the extreme quantiles.  Table 6 displays the results of the simulations 

when a large sample size is used. 

 

Insert Table 6 

 

Table 6, Panel A already delivers some rather surprising results. The OpRisk+ 

procedure seems to overestimate the true operational risk exposure for all confidence levels. 

This effect aggravates for a high number of losses in the database. This phenomenon may be 

due to an intervalling effect, where losses belonging to a given band are assigned the value 

of the band’s upper bound. Given that extreme losses are likely to occur in the lower part of 

the band, as the distribution is characterized by a thin tail Pareto-distribution, taking the 

upper bound limit value for aggregation seems to deteriorate the estimation, making it too 
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conservative. Nevertheless, the bias is almost constant in relative terms, indicating that its 

seriousness does not aggravate as the estimation gets far in the tail of the distribution. Sub-

section 3.4 investigates further this issue. 

This intervalling phenomenon explains the behaviour of the estimation for larger values 

of the tail index. In Panel B, the adapted credit risk model still overestimates the distribution 

of losses up to a confidence level of 99%, while in Panel C, the underestimation starts 

earlier, around the 95% percentile of the distribution. In both cases, the process does not 

capture to distribution at the extreme end of the tail (99.9%), similar to what we observed for 

smaller sample sizes.  

Nevertheless, from panels B and C altogether, the performance of OpRisk+ still stays 

honourable when the confidence level of 95% is adopted. The RMSE of the estimates also 

remains within 20% (with the tail index of 0.5) and 32% of the mean (with a tail index of 

0.7), which is fairly large but mostly driven by large outliers as witnessed in the last column 

of each panel. 

A correct mean estimate of the OpVaR95 would apply to a tail index between 0.5 and 

0.7, which corresponds to a distribution with a fairly large tail index. Only when the tail of 

the Pareto-distribution is actually thin, one observes that the intervalling effect induces a 

large discrepancy between the theoretical and observed values.  

It remains to be mentioned that the good empirical application of OpRisk+ does not 

depend on the number of observed losses as it only affects the first term of the recurrence, 

namely A0.  

 

3.3  Comparison with the CCHP and the Alexander’s approaches 

These results, if their economic and statistical significance have to be assessed, have to 

be compared with a method that aims at specifically addressing the issue of operational 

losses in the Advanced Measurement Approaches setup. We choose the CCHP approach, 
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which is by definition more sensitive to extreme events than OpRisk+, but has the drawback 

of requiring a large number of events to properly derive the severity distributions of 

“normal” and “large” losses. For low frequency database, the optimization processes used by 

this type of approaches (e.g. Maximum Likelihood Estimation) might not converge to stable 

parameters estimates. 

The graphs from Figure 1-2 display the OpVaRs (with confidence levels of 90, 95, 99 

and 99.9%) generated from three different kind of approaches, that is the sophisticated 

CCHP approach, OpRisk+ and the simpler Alexander (2003) approach (see Section 2.3) for 

each of the three tail index values (0.3, 0.5 and 0.7) and for each of the four sample size (20, 

50, 200 and 300 loss events). 

 

Insert Figure 2 

 

From the graphs in Figure 1-2, we can see that for most databases, OpRisk+ is working 

out a capital requirement higher than the Alexander’s IMA, but smaller than the CCHP 

approach. This last result could be expected as CCHP is more sensitive to extreme events. In 

next sub-section, we will discuss the fact that the database with 300 observations shows 

higher OpVaRs for OpRisk+ than CCHP.  However, we can already conclude that our model 

is more risk sensitive than a simple IMA approach. 

Considering the thin tailed Pareto-distribution in Panel A, we can observe that OpRisk+ 

produces the best estimations for the small database. Indeed, those are very close to the 

theoretical OpVaRs for all confidence level. However, for the large database, it is producing 

too cautious (large) OpVaRs. The comparison with other methods sheds new light on the 

results obtained with Panel A of Table 6: OpRisk+ overestimates the true VaR, but the 

CCHP model, especially dedicated to the measurement of operational risk, does frequently 

worse. Actually, Alexander (2003) approach, also using observed data but not suffering from 
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an intervalling effect, works out very satisfactory results when the standard deviation of loss 

is a good proxy of the variability of the distribution. 

For the medium and fat tailed Pareto-distributions, neither of the models is sensitive 

enough for OpVaRs of 99% and more. This could raise some questions on the feasibility or 

appropriateness of a requirement of a 99.9% VaR by the Basel Accord, where it appears that 

even an LDA model is far from being able to estimating economic capital with such a high 

level of confidence. Nevertheless, as far as the small databases are concerned, it is interesting 

to note that OpRisk+ is producing the best estimations for OpVaR95.  

While none of these approach seems good enough for the level of confidence required 

by Basel II, we would first recommend OpRisk+ or Alexander’s for low frequency 

databases, as none of these needs the pre-determination of the shape of the distribution. 

Then, although Alexander’s approach is simpler and provides as good OpVaRs as our model 

for the thin-tail Pareto distribution, this method has the drawback of deteriorating much 

faster than OpRisk+ for larger tails. Unfortunately, risk managers usually do not know the 

type of distribution they are dealing with, and in this case, we would recommend the 

OpRisk+ method that seems a bit more complicated but yields more consistent results. 

 

3.4 Comparison with OpRisk+ taking an average value of loss for each band 

As shown above, taking the upper bound limit value for aggregation as described in the 

CreditRisk+ model tends to overestimate the true operational risk exposure for all confidence 

levels; especially with larger databases. A solution could be to take the average value of 

losses for each band.18 Table 7 displays the results of the simulations when a relatively large 

sample size is used. 

 

Insert Table 7 
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Panel A of Table 7 shows that OpRisk+ achieves very good results for the Pareto-

distribution characterized by a thin tail when using an average value for each band (“round” 

column). The OpVaR values obtained for the sample of 200 observations is very close to the 

theoretical value, whereas it stays within a 6% range from the “true” value with a 300 

observations sample, including at the Basel II level of 99.9%. 

When the loss Pareto-distributions are medium-tailed, the results obtained with the 

OpRisk+ procedure with the databases are very good for quantiles up to 95% but deteriorate 

for more sensitive OpVaRs.  OpRisk+ is still totally unable to capture the tailedness of the 

distribution of aggregate losses for very high confidence interval, such as the Basel II 

requirement.  

Table 8 compares the two methods when applied to small databases of 20 and 50 

observations. In such cases, OpRisk+ provides better results with the “round up” solution 

than with the “round-off” one.  This bias could be due to the fact that with the second 

method we tend to loosen the “extreme value theory” aspect of the model.  Small databases 

tend indeed to lack extreme losses and taking the upper bound limit value for the aggregation 

makes the resulting distribution’s tail fatter.   

 

Insert Table 8 

 

4 An application to real loss data 

As an illustration of the application of our model, we applied the three models on 

operational loss data provided by a large European bank.  As this bank required 

confidentiality, we will not publish our results.  Given that we only had a collection of one 

year of data, we could not apply the CCHP model on low frequency data.   

We first applied the three models on two cells characterized by more than 100 losses, 

and noticed that OpRisk+ VaRs were systematically higher than the lower bound of 
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Alexander and lower than the CCHP VaRs at the 99.9% level of confidence. However, we 

found close VaRs for the 90th and the 95th percentiles.   

We then applied OpRisk+ to two lower frequency cells, with about 20 losses, and were 

able to computed OpVaRs for both cells, that were higher than the lower bound of 

Alexander. 

 

 

5 Conclusions 

This paper introduces a structural operational risk model, named OpRisk+, that has been 

inspired from the well known credit risk model, CreditRisk+, which has characteristics 

transposable to the operational risk modelling.  

In a simulation setup, we work out aggregate loss distributions and operational Value-

at-Risks (OpVaR) for various confidence levels, including the one required by Basel II. The 

performance of our model is assessed by comparing our results to theoretical OpVaRs, to an 

OpVaR issued from a simpler approach, that is, the IMA approach of Alexander (2003), and 

to a more sophisticated approach proposed in Chapelle et al. (2008), or “CCHP” approach 

which uses a mixture of two distributions to model the body and the tail of the severity 

distribution separately.  

The results show that OpRisk+ produces OpVaRs closer to theoretical ones than the 

approach of Alexander (2003), but that it is not receptive enough to extreme events. On the 

other hand, our goal is not to produce a complete compliant AMA model to compute 

regulatory capital requirements, but rather to propose a first solution to the lack of low 

frequency operational risk models. Besides, whereas the CCHP approach has better 

sensitivity to very extreme losses, the simplicity of OpRisk+ gives the model the advantage 

of requiring no large database in order to be implemented.  

Specifically, we view the value-added of the OpRisk+ procedure as twofold. Firstly, it 

produces average estimates of operational risk exposures that are very satisfactory at the 
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95% level, which makes it a very useful complement to approaches that specifically target 

the extreme tail of the loss distribution. Indeed, even though the performance of OpRisk+ is 

clearly not sufficient for the measurement of unexpected operational losses as defined by the 

Basel II Accord (the VaR should be measured with a 99.9% confidence level), it could be 

thought of as a sound basis for the measurement of the body of losses; another more 

appropriate method must relay OpRisk+ for the measurement of the far end of the 

distribution. Moreover, it appeared to us, that the 99.9% level of confidence required by 

Basel II might be quite utopian when we observe that even an LDA approach with 300 losses 

do not even get close to the theoretical level when the distribution is characterized with a 

Pareto(100;0.7). 

Secondly, despite the fact that we cannot conclude that OpRisk+ is an adequate model 

to quantify the economic capital associated to the bank’s operational risk, its applicability to 

approximate the loss distribution with small databases is proven. Even for such a small 

database as one comprising 20 observations, the estimation could make it attractive as a 

complement to more sophisticated approaches requiring large numbers of data per period. 

The fit is almost perfect when the Pareto-distribution has a thin tail, and the OpVaR95 is the 

closest among the three specifications tested when the tail gets fatter. 

Of course, this approach is still subject to refinements, and could be improved in many 

ways. Indeed, internal data rarely includes very extreme events (banks suffering those losses 

probably would no more be there to tell us), whereas the last percentiles are very sensitive to 

the presence of those events. The problem would therefore be to determine which weight to 

place on the internal data and on the external ones. From our study, we could imagine that 

fitting a distribution calibrated with external data, EVT or relying on scenario analysis 

beyond the 95% percentile would justify the use of OpRisk+ preferably to other models. This 

advantage can prove to be crucial for business lines or event types where very few internal 

observations are available, and thus where more data intensive approaches such as the CCHP 

would be powerless.   
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6 Appendix - CreditRisk+: The distribution of default  losses - Calculation 

procedure19 

CreditRisk+ mathematically describes the random effect of the severity distribution through 

its probability generating function G(Z): 
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Table 1 

Allocating losses to bands.  

Loss Amount Loss in L round-off loss band j 
(A) (B) νj (C) (D) 

1 500 1.5 2.00 2 

2 508 2.51 3.00 3 

3 639 3.64 4.00 4 

1 000 1.00 1.00 1 

1 835 1.84 2.00 2 

2 446 2.45 3.00 3 

7 260 7.26 8.00 8 

Illustration of the first three steps of the OpRisk+ approach:  1. Choose a unit amount of loss L. (1000 in the 
example) 2. Divide the losses of the available database (column A) by L (column B)and round up these numbers 
(column C). 3. Allocate the losses of different sizes to their band (column D) 
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Table 2 

Exposure, number of events and expected loss.  

νj µj εj 

1 9 9 

2 121 242 

3 78 234 

4 27 108 

5 17 85 

6 15 90 

7 8 56 

8 4 32 

M M M 

Illustration of step 5 of the OpRisk+ approach:  “Compute the expected loss per band, εj, equal to the expected 
number of losses per band µj , multiplied by the average loss amount per band, νj , equal to j.” 

  



29 

 

Table 3 

 Gamma and phi values (no loss severity variability)  

µ 100 50 40 30 20 10 8 6 

VaR99.9 131.81 72.75 60.45 47.81 34.71 20.66 17.63 14.45 

Φ 3.18 3.22 3.23 3.25 3.29 3.37 3.41 3.45 

γ 0.32 0.46 0.51 0.59 0.74 1.07 1.21 1.41 

         

µ 5 4 3 2 1 0.9 0.8 0.7 

VaR99.9 12.77 10.96 9.13 7.11 4.87 4.55 4.23 3.91 

Φ 3.48 3.48 3.54 3.62 3.87 3.85 3.84 3.84 

γ 1.55 1.74 2.04 2.56 3.87 4.06 4.29 4.59 

         

µ 0.6 0.5 0.4 0.3 0.2 0.1 0.05 0.01 

VaR99.9 3.58 3.26 2.91 2.49 2.07 1.42 1.07 0.90 

Φ 3.85 3.90 3.97 4.00 4.19 4.17 4.54 8.94 

γ 4.97 5.51 6.27 7.30 9.36 13.21 20.31 89.40 

(source: Alexander, C. (2003), p151). 

Illustratation of the wide range for the gammas by opposition to the narrow range of the phi’s values in the 

computation of the unexpected loss (UL=. VaR99.9 – EL) determining the operational risk requirement 

 The basic formula of the Internal Measurement Approach (IMA) of Basel II is UL = γ EL, 

where γ  is a multiplier, and EL is the expected loss. As Gamma factors are not easy to evaluate, Alexander, C. 

(2003) suggests to write unexpected loss as a multiple (Φ) of the loss standard deviation (σ).  
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Table 4 

Characteristics of the twelve databases created for testing the different models.  For three  Pareto 
severity distribution (thin-tailed, medium tailed and fat-tailed), we simulate two sets of 1000 years of 
20 and 50 operational losses respectively and two sets of 100 series of 200 and 300 operational losses 
respectively. For each of the 6600 simulated years (3 x 2 x 1100), the aggregate loss distribution is 
computed with the algorithm described in Section 2.2.  

Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3) 

Poisson parameter µ 20 50 200 300 

Theoretical Mean 2857 7143 28571 42857 

Mean  2845 7134 28381 42886 

Standard deviation 287 472 847 1118 

Median 2796 7078 28172 42763 

Maximum 4683 9026 30766 45582 

Minimum 2268 6071 26713 40383 

Number of simulated years 1000 1000 100 100 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5) 

Poisson parameter µ 20 50 200 300 

Theoretical Mean 4000 10000 40000 60000 

Mean  3924 9913 39871 59431 

Standard deviation 1093 1827 3585 5504 

Median 3676 9594 39777 57947 

Maximum 15680 29029 54242 91182 

Minimum 2567 7097 33428 52436 

Number of simulated years 1000 1000 100 100 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7) 

Poisson parameter µ 20 50 200 300 

Theoretical Mean 6667 16667 66667 100000 

Mean  6264 16165 61711 93724 

Standard deviation 5940 13018 13899 24514 

Median 5180 13721 57713 87646 

Maximum 157134 265621 137699 248526 

Minimum 2646 8304 45315 69991 

Number of simulated years 1000 1000 100 100 
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Table 5  

Values-at-Risk generated by OpRisk+ for small databases, with 20 and 50 loss events. The OpVaRs 
are calculated separately for each year of data, and we report their average (Mean), the average value 
of the spread between the “true” value, Target,  and the OpVaRs, as percents of the latest (Bias), and 
the root mean square error as percents of the “true” OpVaRs (RMSE). The “true” value or target is 
approximated through a Monte Carlo simulation of 100,000 years of data, characterized by a 
frequency equal to a random variable following a Poisson(N) and a severity characterized by the 
selected Pareto-distribution. The unit amount chosen for the OpRisk+ implementation and the average 
number of corresponding bands is reported in brackets. 

 

 

N = 20 N = 50 

Target 

OpRisk+  
(L=10, bands = 9) Target 

OpRisk+ 
 (L=10, bands = 13) 

Mean Bias RMSE Mean Bias RMSE 

OpVaR90 3770 3880 3% 13% 8573 8882 3% 8% 

OpVaR95 4073 4173 3% 13% 9030 9334 3% 9% 

OpVaR99 4712 4744 1% 13% 9942 10209 3% 9% 

OpVaR99,9 5596 5410 -3% 13%   11141 11250 1% 10% 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5)    

N = 20 N = 50 

Target 

OpRisk+ 
 (L=10, bands = 11) Target 

OpRisk+  
(L=10, bands = 19) 

Mean Bias RMSE Mean Bias RMSE 

OpVaR90 5579 5672 2% 40% 12630 12855 -6% 29% 

OpVaR95 6364 6247 -2% 46% 13862 13734 -7% 32% 

OpVaR99 8966 7329 -18% 48% 18051 15410 -20% 36% 

OpVaR99,9 18567 8626 -54% 60%   33554 17338 -52% 55% 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)  

N = 20 N = 50 

Target 

OpRisk+  
(L=50, bands = 7) Target 

OpRisk+  
(L=50, bands = 13) 

Mean Bias RMSE Mean Bias RMSE 

OpVaR90 9700 11410 18% 107% 22495 23992 7% 116% 

OpVaR95 12640 12931 3% 99% 28103 27089 -3% 134% 

OpVaR99 27261 15583 -43% 72% 55994 32020 -43% 99% 

OpVaR99,9 114563 18726 -84% 85%   220650 38761 -83% 88% 
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Table 6 

 OpVaRs generated by OpRisk+ for databases with 200 and 300 loss events. The OpVaRs are 
calculated separately for each year of data, and we report their average (Mean), the average value of 
the spread between the “true” value and the OpVaRs, as percents of the latter (Bias), and the root 
mean square error as percents of the “true” OpVaRs (RMSE). The “true” value is approximated 
through a Monte Carlo simulation of 100,000 years of data, characterized by a frequency equal to a 
random variable following a Poisson(N) and a severity characterized by the selected Pareto-
distribution. The unit amount chosen for the OpRisk+ implementation and the average number of 
corresponding bands is reported in brackets. 

Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3)  

N = 200 N = 300 

Target 

OpRisk+  
(L=20, bands = 13) Target 

OpRisk+ 
(L=50, bands = 8) 

  Mean Bias RMSE Mean Bias RMSE 

OpVaR90 31448 33853 7% 8% 46355 56470 22% 22% 

OpVaR95 32309 34728 7% 8% 47403 57683 22% 22% 

OpVaR99 33995 36397 7% 7% 49420 59992 21% 22% 

OpVaR99,9 36063 38310 6% 7% 51750 62628 21% 21% 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5) 

N = 200 N = 300 

Target 

OpRisk+ 
(L=50, bands = 14) Target 

OpRisk+ 
(L=50, bands = 11) 

  Mean Bias RMSE Mean Bias RMSE 

OpVaR90 45757 51836 13% 18% 67104 75723 13% 19% 

OpVaR95 48259 53816 12% 18% 70264 78161 11% 20% 

OpVaR99 55919 57668 3% 16% 79718 82817 4% 19% 

OpVaR99,9 83292 62237 -25% 29% 113560 88309 -22% 27% 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)   

N = 200 N = 300 

Target 

OpRisk+ 
(L=50, bands = 21) Target 

OpRisk+ 
(L=50, bands = 17) 

  Mean Bias RMSE Mean Bias RMSE 

OpVaR90 82381 82539 0% 30% 120654 119943 -1% 29% 

OpVaR95 96971 88248 -9% 32% 139470 127037 -9% 32% 

OpVaR99 166962 98972 -41% 47% 234442 140665 -40% 47% 

OpVaR99,9 543597 111875 -79% 80% 733862 156642 -79% 79% 
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Table 7 

Comparison of the average of the yearly OpVaRs computed with OpRisk+ using resp. an upper bound 
limit value (rounded up) and an average value (rounded) for the allocations into bands (see step 2 of 
the OpRisk+ procedure described in section 2.1), for large databases. The average value of the spread 
between the “true” value and the mean of the yearly OpVaRs, as percents of the latter, is reported 
under the “Bias” column’s titles. The “true” value is approximated through a Monte Carlo simulation 
of 100,000 years of data, characterized by a frequency equal to a random variable following a 
Poisson(N) and a severity characterized by the selected Pareto distribution.  

Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3)  

 N = 200  N = 300 

 
Target 

OpRisk+  
Target 

OpRisk+ 

  Roundup Bias Round Bias   Roundup Bias Round Bias 

OpVaR90 31448 33853 8% 30576 -3%  46355 56470 22% 43558 -6% 

OpVaR95 32309 34728 7% 31404 -3%  47403 57683 22% 44563 -6% 

OpVaR99 33995 36397 7% 32991 -3%  49420 59992 21% 46486 -6% 

OpVaR99,9 36063 38310 6% 34813 -3%   51750 62628 21% 48687 -6% 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5)    

 N = 200  N = 300 

 
Target 

OpRisk+  
Target 

OpRisk+ 

  Roundup Bias Round Bias   Roundup Bias Round Bias 

OpVaR90 45757 51836 13% 44338 -3%  67104 75723 13% 64523 -4% 

OpVaR95 48259 53816 12% 46222 -4%  70264 78161 11% 66849 -5% 

OpVaR99 55919 57668 3% 49885 -11%  79718 82817 4% 71296 -11% 

OpVaR99,9 83292 62237 -25% 54257 -35%   113560 88309 -22% 76544 -33% 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)   

 N = 200  N = 300 

 
Target 

OpRisk+  
Target 

OpRisk+ 

  Roundup Bias Round Bias   Roundup Bias Round Bias 

OpVaR90 82381 82539 0% 75696 -8%  120654 119943 -1% 112596 -7% 

OpVaR95 96971 88248 -9% 81375 -16%  139470 127037 -9% 120850 -13% 

OpVaR99 166962 98972 -41% 91991 -45%  234442 140665 -76% 135481 -42% 

OpVaR99,9 543597 111875 -79% 104699 -81%   733862 156642 -79% 152904 -79% 
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Table 8 

Comparison of the average of the yearly OpVaRs computed using OpRisk+ with an upper bound limit 
value (round up) and an average value (rounded ) for the allocations into bands (see step 2 of the 
OpRisk+ procedure described in section 2.1), for small databases. The average value of the spread 
between the “true” value and the mean of the yearly OpVaRs, as percents of the latter, is reported 
under the “Bias” column’s titles. The “true” value is approximated through a Monte Carlo simulation 
of 100,000 years of data, characterized by a frequency equal to a random variable following a 
Poisson(N) and a severity characterized by the selected Pareto distribution.  

Panel A : Thin-tailed-Pareto distribution (shape parameter = 0.3)    

 N = 20  N = 50 

 
Target 

OpRisk+  
Target 

OpRisk+ 

  Roundup Bias Round Bias  Roundup Bias Round Bias 

OpVaR90 3770 3880 3% 3535 -6%  8573 8882 4% 8074 -6% 

OpVaR95 4073 4173 2% 3815 -6%  9030 9334 3% 8501 -6% 

OpVaR99 4712 4744 1% 4363 -7%  9942 10209 3% 9332 -6% 

OpVaR99,9 5596 5410 -3% 5010 -10%  11141 11250 1% 10311 -7% 

Panel B : Medium-tailed-Pareto distribution (shape parameter = 0.5)  

 N = 20  N = 50 

 
Target 

OpRisk+  
Target 

OpRisk+ 

 Roundup Bias Round Bias  Roundup Bias Round Bias 

OpVaR90 5579 5672 2% 5332 -4%  12630 12855 2% 11323 -10% 

OpVaR95 6364 6247 -2% 5901 -7%  13862 13734 -1% 12152 -12% 

OpVaR99 8966 7329 -18% 6945 -23%  18051 15410 -15% 13668 -24% 

OpVaR99,9 18567 8626 -54% 7904 -57%  33554 17338 -48% 14377 -57% 

Panel C : Fat-tailed-Pareto distribution (shape parameter = 0.7)  

 N = 20  N = 50 

 
Target 

OpRisk+  
Target 

OpRisk+ 

 Roundup Bias Round Bias  Roundup Bias Round Bias 

OpVaR90 9700 11410 18% 9413 -3%  22495 23992 7% 25235 12% 

OpVaR95 12640 12931 2% 10914 -14%  28103 27089 -4% 28537 2% 

OpVaR99 27261 15583 -43% 13353 -51%  55994 32020 -43% 33837 -40% 

OpVaR99,9 114563 18726 -84% 16290 -86%  220650 38761 -82% 40024 -82% 
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Figure 1. Aggregate loss distribution derived from the application of OpRisk+ for a series of 200 loss 
events characterized by a Pareto(100;0.3). 
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    Panel A : Thin-tailed Pareto distribution (tail index = 0,3) 

 

 

    Panel B : medium-tailed Pareto distribution (tail index = 0,5) 
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   Panel C : fat-tailed Pareto distribution (tail index = 0,7) 

 

 
 

 

Figure 2.  Comparison of CCHP, OpRisk+ and Alexander’s IMA Approach. 

On the basis of N simulated losses, characterized by a thin, medium or fat-tailed Pareto distribution, 
we computed OpVaR with level of confidence at 90, 95, 99 and 99.9 percents using three different 
approaches. The “Simulated” value corresponds to the true value to estimate. 
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