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1 Introduction

Over the past decades, financial institutions hexgerienced several large operational
loss events leading to big banking failures. Merhleraxamples include the Barings bank
losing 1.4 billion USD from rogue trading in hisabich in Singapore leading to the failure of
the whole institutioh Allied Irish Banks losing 750 MM USD in rogue diagf, or
Prudential Insurance incurring 2 billion USD settént in class action lawsgjito name a
few. These events, as well as developments sutieagrowth of e-commerce, changes in
banks’ risks management or the use of more highioraated technology, have led
regulators and the banking industry to recognize ithportance of operational risk in

shaping the risk profiles of financial institutions

Reflecting this recognition, regulatory framewosgch as the New Capital Accord of
the Basel Committee on Banking Supervision (“BdBglhave introduced explicit capital
requirements for operational risk. Similar to ctetik, Basel Il does not impose a “one-size-
fits-all” approach to capital adequacy and propdbese distinct options for the calculation
of the capital charge for operational risk: the iBdadicator Approach, the Standardized
Approach and the Advanced Measurement Approach@\JAThe use of these approaches
of increasing risk sensitivity is determined ac@ogdo the risk management systems of the
banks. The first two methods are a function of giasome, while the advanced methods are
based on internal loss data, external loss datmasio analysis, business environment and

internal control factors.

In 2001, the Basel Committee was encouraging tveaiip AMA methods: (i) the Loss
Distribution Approach (LDA) and (ii) an Internal Msurement Approach (IMA) developing
a linear relationship between unexpected loss apédated loss to extrapolate credit-risk’s
internal rating based (IRB) approach to operatioisél While the Basel Committee dropped
formal mention of the IMA in favour of Value-at-Rispproaches in the final version of the

Accord, it is still legitimate to be inspired by delling approaches for credit risk in order to
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model the distribution of operational loss dataleled, both risk measurement frameworks
have similar features, such as their focus on ayeae measurement horizon or their use of

an aggregate loss distribution skewed towards wéhoa long right-tail.

This paper explores the possibility of adapting ofidhe current proposed industry
credit-risk models to perform much of the functiiiyaof an actuarial LDA model (see
Crouhy et al. (2000) or Gordy (2000) for a comparative analydfithe main credit risk
models). We identify CreditRisk+, the model develdgy Credit Suisse, as an actuarial-
based model, whose characteristics can be adaptétthe Loss Distribution Approach
(LDA). The LDA is explicity mentioned in the Basdl Accord as eligible among the
Advanced Measurement Approaches (AMA) to estimiateaapital, and has unambiguously
emerged as the standard industry prattidsfiter some adjustment, we construct a
distribution of operational losses through an aeépCreditRisk+model, that we name
“OpRisk+™. As this model calibrates the whole distributioot only can we retrieve the
gquantiles of the operational loss distribution, bl#o an estimate of its expectation, needed

for the computation of the economic capital.

Our research is aimed at answering the followingstjons: (i) How would the
adaptation of CreditRisk+ model perform comparedsophisticated models such as the
approach developed by Chape#e al. (2008) (henceforth CCHP) or Moscadelli (2004)
among others? (ii) Does OpRisk+ provide a reasenalssessment of the body of the
distribution of the operational losses? (iii) AdeetVaR computed with OpRisk+ more

conservative than the lower bound of AlexanderD®0an extended IMA approach?

We address the questions with an experiment baseiwerated databases using three
different Pareto distributions, proven to be appaip to model operational loss data by
Moscadelli (2004) and de Fontnouvelle and Rosen{?804). The knowledge of the true
distribution of losses is necessary to assessuthkgyjof the different fitting methods. Had a
real data set been used instead of controlled ricahesimulations as proposed by McNeil

and Saladin (1997), we would not be able to benckitihee observed results against the true
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loss distribution and to evaluate the performanic®pRisk+ for different loss generating

processes and sample sizes.

We assess the influence of the number of lossesded in the database on the quality
of the estimation. Indeed, Carrillo-Menéndez andr€n (2012) have shown the difficulty of
selecting the correct model from the data when enhall samples are available. We also
test our new adapted internal rating based maghihat Alexander’s existing improvement
to the basic IMA formula. Alexander’s Value-at-Risk operational loss data (OpVaR) is
effectively a quantile value from a normal disttibn table which allows identification of
the unexpected loss if one knows the mean andnariaf the loss severity distribution and

the mean of the frequency distribution.

Our main findings are twofold. First, we note thhé precision of OpRisk+ is not
satisfactory to estimate the very far end of thss Idistribution, such as the Value-at-Risk
(VaR)® at the 99.9% confidence level (VaR). Yet, our model works out very satisfying
quantile estimates, especially for thin-tailed Raubstributions, up to a 95% confidence
level for the computation of the VaR. Secondly, 8implicity of our model makes it
applicable to “problematic” business lines, thatwgh very few occurrences of events, or
with limited history of data. Procedures that rely extreme-value theory, by contrast, are
very data-consuming, and yield very poor resultsemwhused with small databases.
Moreover, as argued by Malevergne et al. (2006)erwthere is a lack of data, non-
parametric methods are useful to assess risk diapildty level 95% but fail at high

probability level such as 99% or larger.

These findings make the OpRisk+ approach clearly am effective substitute, but
indeed a very useful complement to approachessgietifically target the extreme tail of the
loss distribution. In particular, the body of tless distribution can be safely assessed with
our method, while external data or scenario anglyas specifically mentioned in the
Accord, can be used to estimate the tail. This hodeld also represent for a bank a very

good cross-check method for scenario-based appeanid for regulators who would want
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to challenge banks using internal approaches thghtnseems too aggressive on small
samples. Moreover, being able to simultaneously m the body and the tail of the

distribution is crucial for the operational riskpital estimation, because one needs the full
distribution of losses in order to capture the expe loss that enters the regulatory capital

estimate.

Next section describes the adjustment needed ier dodapply CreditRisk+ model to
operational loss data and presents two alternaigthods to calibrate a VaR on operational
loss data (OpVaR). We then describes our databassents our results and compares them

to the other approaches’ results.

2 Alternative Approaches for the Measurement of Oper&ional Risk

This section presents three alternative ways tbrea¢ a Value-at-Risk on operational
loss data. The first one represents an adaptafistheoCreditRisk+ framework, while the
second one proposes an adaptation of the Losstisbtn Approach (LDA) in the context
of operational losses with the use of Extreme Vdlaeory (EVT). Finally, we introduce an

IMA approach developed by Alexander (2003).

2.1 OpRisk+: Application of CreditRisk+ to Operational Loss Data

CreditRisk+ developed by Credit Suisse First Bogsosmn actuarial model derived from
insurance losses models. It models the defaultaisk bond portfolio through the Poisson
distribution. Its basic building block is simplyeiprobability of default of a counterparty. In
this model, no assumptions are made about the sanfsdefault: an obligor is either in
default with a probability B or not in default with a probability 1zPAlthough operational
losses do not depend on a particular counterptrity,characteristic already simplifies the

adaptation of our model, as we do not need to raakamptions on the causes of the loss.

CreditRisk+ determines the distribution of defaltisses in three steps: the

determination of the frequency of defaults, appr@ated by a standard Poisson distribution,



the determination of the severity of the lossesl @@ determination of the distribution of

default losses.

The determination of the frequency of events legdim operational losses can be

modelled through the Poisson distribution as ferphobability of default in CreditRisk+:

na—H
P(N=n)= 'U:I forn=012,... (1)

whereyu is the average number of defaults per period, Mdnsl a stochastic variable with

meany, and standard deviatiof.

CreditRisk+ computes the parametety adding the probability of default of each
obligor, supplied, for instance, by rating agenciel®wever, operational losses do not
depend on a particular obligor. Therefore, instebdeing defined as a sum of probabilities
of default depending on the characteristics of anterpart,iu can be interpreted as the
average number of loss events of one type occumirggspecific business line during one

period.

CreditRisk+ adds the assumption that the mean Hetste is itself stochastic in order
to take into account the fat right tail of the diaition of defaults. Nevertheless, the Poisson
distribution being one of the most popular in operal risk frequency estimation,
according to Cruz (2002and Basel Committee on Banking Supervision (2088)keep on
assuming that the number of operational loss evititsvs a Poisson distribution with a

fixed meanu.

In order to perform its calculations, CreditRiskroposes to express the exposure (here,
the losses) in a unit amount of exposufeThe key step is then to round up each exposure
size to the nearest whole number, in order to redhe number of possible values and to
distribute them into different bands. Each bandharacterized by an average exposute,
and an expected loss, equal to the sum of the expected losses of albtiligors belonging

to the band. Table 1 shows an example of this piwee



Insert Table 1

CreditRisk+ posits that
Ej SVjH; 2)
whereg; is the expected loss in bandy; is the common exposure in bapdandy; is the

expected number of defaults in bgnd

As the operational losses do not depend on a pkatitransaction, we slightly modify
the definition of these variables. The aim is tlwglate the expected aggregate loss. We will
therefore keep the definition &f unchanged. However, as noted earljgris not an
aggregate expected number of defaults anymoreimplysthe (observell average number
of operational loss events of sig@ccurring in one year. Consequently, in orderatisg/

equation (2)y; must be defined as the average loss amount pat ®reband.

Table 2 illustrates the reprocessing of the data.

Insert Table 2

Each band is viewed as a portfolio of exposuresdayf. Because some defaults lead to
larger losses than others through the variatioaxjposure amounts, the loss given default
involves a second element of randomness, whichath@matically described through its

probability generating function.

Thus, letG(2) be the probability generating function for losse&pressed in multiples of

the unitL of exposure:

G,(2)= S Plloss=nL)z" = 3 P(n defaultgz™" (3)

n=0 n=0



As the number of defaults follows a Poisson distidn, this is equal to:

Hi IL[n Vi
G/(g)=y——2" =™ (@)
n=0 n

As far as operational losses are concerned, wenoamore consider a band as a
portfolio but simply as a category of loss sizeisTélso simplifies the model, as we do not
distinguish exposure and expected loss anymoreciealit losses, one first sorts exposures,
and then calculates the expected loss, by multiglyhe exposures by their probability of
default. As far as operational losses are concerthedloss amounts are directly sorted by
size. Consequently, the second element of rand@nige®mt necessary anymore. This has no

consequences on the following results except siyipdj the model.

Whereas CreditRisk+ assumes the exposures in thiolgo to be independent,
OpRisk+ assumes the independence of the diffeosatdmounts. Thanks to this assumption,
the probability generating function for losses nédype for a specific business line is given

by the product of the probability generating fuantfor each band:

m m
m S > 2
G(Z)= I_le_”j+inV] =g i7 =

i<l ®)

Finally, the loss distribution of the entire potibas given by:

n
P(lossof nL):%ddGn(z) forn=1,2,...

o (6)

Note that this equation allows only computing thebability of losses of size @, 2L

and so on. This probability of loss wif will further be denoted\,.

Then, under the simplified assumption of fixed défarates, Credit Suisse has

developed the following recursive equation:



A] 5
jvisn n

(7)

-5 Hj X
where A =G(0)=e* =e # =¢!?",

The calculation depends only on 2 sets of parasieteande;, derived fromy; , the
number of events of each rangepbserved. With operational daty, is derived directly
from Ay = e¥ .

To illustrate this recurrence, suppose the databaséins 20 losses, 3 (resp. 2) of

which having a rounded-off size of {resp. 2):

A, =e® = 206107

A=Y EA, =£A =3x 20610 %=6.18.10°

jvj<e 1

r=Y Sn,, :%(a‘lAl +£2Ao):%(3x 61810° +2x 2.06.10° )= 11310°®

jvjs2 2

Therefore, the probability of having a loss of siesp. 0, L and 2 is resp. 2.06.19

6.18.10° and 1.13.18, and so on.

From there, one can re-construct the distributioth® loss of sizelL.

2.2 The Loss Distribution Approach adapted to Operatioral Risk

Among the Advanced Measurement Approaches (AMA)etiped over the recent
years to model operational risk, the most commanierthe Loss Distribution Approach (),
which is derived from actuarial techniques (seeloget al. (2001; Cruz (2004); Chavez-

Demoulinet al, 2006); Peterst al.(2011)for an introduction).

By means of convolution, this technique derivesabgregate loss distribution (ALD)

through the combination of the frequency distribntiof loss events and the severity



distribution of a loss given event.11 The operaidralue-at-Risk is then simply the 99.9th

percentile of the ALD. As an analytical solutionviery difficult to compute with this type of

convolution, Monte Carlo simulations are usuallyedigo do the job. Using the CCHP

procedure with a Poisson distribution with a par@me equal to the number of observed
losses during the whole period to model the frequdr2 we generate a large number M of
Poisson(p) random variables (say, 100,000). Thesallves represent the number of events
for each of the M simulated periods. For each gerigenerate the required number of
severity random variables (that is, if the simulatember of events for period m is x, then
simulate x severity losses) and add them to getatigregate loss for the period. The
obtained vector represents M simulated periods@pdaRs are then readily obtained (e.g.
the OpVaR at 99.99% confidence interval is the 10iest value of the M sorted aggregate

losses)

Examples of empirical studies using this technidoe operatonal risk include
Moscadelli (2004) on loss data collected from theaitative Impact Study (QIS) of the
Basel Committee, de Fontnouvelle and Rosengrer4{200 loss data from the 2002 Risk
Loss Data Collection Exercise initiated by the Riglanagement Group of the Basel

Committee or Chapellet al.(2008) with loss data coming from a large Europeank.

In the latter case, mixing two distributions fitora adequately the empirical severity
distribution than a single distribution. Therefothe authors divide the sample into two
parts: a first one with losses below a selectedstiwld, considered as the “normal” losses,
and a second one, including the “large” losses.nmadel the “normal” losses, CCHP
compare several classic continuous distributio$ 15 gamma, lognormal or Pareto. In our

example, we will use the lognormal distribution.

To take extreme and very rare losses into accownttiie “large” losses), CCHP apply
the Extreme Value Theory (EVT) on their restft¥he advantage of EVT is that it provides

a tool to estimate rare and not-yet-recorded evienis given databasé hence providing an
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attractive solution for loss databases with limitailection history that are used to reach a

very high confidence levels like the one requirgdhsel I (i.e. 99.9%).

2.3 Alexander’s Internal Measurement Approach

The basic formula of the Internal Measurement Appho (IMA) included in the
Advanced Measurement Approaches of Basel Il is:

UL = JEL (8)
where UL = unexpected loss, determining the operational ristiuirement? y is a
multiplier, andEL is the expected loss.

Gamma factors are not easy to evaluate as no trahaaf their possible range has been
given by the Basel Committee. Therefore, Alexar{@003) suggests that instead of writing
the unexpected loss as a multipj¢ ¢f expected loss, one writes unexpected loss as a
multiple (@) of the loss standard deviatios).(Using the definition of the expected loss, she

gets the expression fdr.

VaR,, — EL
g

= )

The advantage of this parameter is that it carelsgyecalibrated.

The basic IMA formula is based on the binomial l&exjuency distribution, with no
variability in loss severity. For very high-frequenrisks, Alexander notes that the normal
distribution could be used as an approximationhef hinomial loss distribution, providing
for ® a lower bound equal to 3.1 (as can be found fraandard normal tables when the
number of losses goes to infinity). She also suggisit the Poisson distribution should be

preferred to the binomial as the number of tramsastis generally difficult to quantify.

Alexander (2003) shows thab, as a function of the parametgr of the Poisson
distribution, must be in a fairly narrow range:rfrabout 3.2 for medium-to high frequency

risks (20 to 100 loss events per year) to aboutf@.9ow frequency risks (one loss event
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every one or two years) and only above 4 for varg revents that may happen only once
every five years or so. Table 3 illustrates thdeniange for the gammas by opposition to the

narrow range of the phi’s values.

Insert Table 3

Then, assuming the loss severity to be randomyith.meanyu, and standard deviation

o., and independent of the loss frequency, Alexandiées thed parameter as:

d = VaRy —Ap,

Tl o) o

where) is the average number of losses.

For o, > 0, this formula produces slightly low@rthan with no severity uncertainty, but

it is still bounded below by the value 3.1.

For a comparison purpose, we will use the followwadue for the needed OpVaRs,
derived from equation (10) in which we replakéyy a value corresponding to the selected

level of confidence:

2 2
OpVaR=®,/ /]‘,uL +o] )]+/],u|_ (11)

3 An Experiment on Simulated Losses

3.1 Data

OpRisk+ makes the traditional statistical testsasgible, as it uses no parametric form
but a purely numerical procedure. Therefore, apgsed in McNeil and Saladin (1997), in
order to perform tests of the calibrating performgnf OpRisk+ on any distribution of loss
severity, we simulate databases to obtain an ekkaugicture of the capabilities of the

approach. Moscadelli (2004) and de FontnouvelteRosengren (2004) having shown that
12



loss data for most business lines and event typss be well modelled by a Pareto-type
distribution, we simulated our data on the basistlufee different kinds of Pareto

distributions: a heavy-tail, a medium-tail and @il Pareto distribution.

A Pareto distribution is a right-skewed distributiparameterized by two quantities: a
minimum possible value or location parametgy and a tail index or shape parameter,
Therefore, ifX is a random variable with a Pareto distributidme probability thatX is
greater than some numbeis given by:

« -k

Pr(X >x) =(Z] (12)
for all x> x,, and for x,, and k= 1/ >0.

The parameters of our distributions are Pareto(l8); Pareto(100;0.5) and
Pareto(100;0.7): the larger the value of the taileix, the fatter the tail of the distribution.
The choice of these functions has been found toebsonable with a sample of real data

obtained from a large European institution.

We run three simulations: one for the thin-tailedd®o severity distribution case, one
for the medium-tailed Pareto severity distributicise and one for the fat-tailed Pareto
severity distribution case. For each of these ¢casesimulate two sets of 1000 years of 20
and 50 operational losses respectively and twodetf0 series of 200 and 300 operational

losses respectively.1

Table 4 gives the characteristics of each of thevievdatabases (each thus comprising
1000 or 100 simulated loss distributions) consedan order to implement OpRisk+. For
each series of operational losses we compute thected loss, that is, the mean loss
multiplied by the number of losses, as well assfamdard deviation, median, maximum and

minimum of these expected losses.

Insert Table 4
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These results clearly show that data generated avithin-tailed Pareto-distribution
exhibit characteristics that make the samples geltable. The mean loss is very close to its
theoretical level even for 20 draws. Furthermore @bserve a standard deviation of
aggregate loss that is very limited, from less th@% of the average for N=20 to less than
3% for N=200. The median loss is also close tothieeretical value. For a tail index of 0.5
(medium-tailed), the mean loss still stays closeh® theoretical value but the standard

deviation increases. Thus, we can start to questimstability of the loss estimate.

When the tail index increases, the mean aggregateldecomes systematically lower
than the theoretical mean, and this effect aggesvathen one takes a lower number of
simulations (100 drawings) with a larger samplee Btandard deviation and range become

extremely large, thereby weakening inference basedl given set of loss observations.

This highlights the difficulty of modelling operatial risk losses (which often exhibit
this type of tail behaviour) using classical disition fitting methods when only a limited

number of loss data points are available.

3.2 Application of OpRisk+

To apply OpRisk+ to these data, the first step istsm®f computingd, = €*, whereu is

the average number of loss events. For instancé\$800, this gives the following value:
A, =e™?° =138110"%. Then, in order to assess the loss distributiothefentire population
of operational risk events, we use the recursivagon (7) to computéy, A etc.

Once the different probabilitie%, for the different sizes of losses are computedcare

plot the aggregate loss distribution as illustrateBigure 1-1'.

Insert Figure 1
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With this information, we can compute the differe@perational Values-at-Risk
(OpVaRs). This is done by calculating the cumulagisababilities for each amount of loss.
The loss for which the cumulated probability is &lqto p% gives us the OpVaR at

percentilep.

We repeat the procedure for each year of lossegeputt the average values of the
different yearly OpVaRs in Tables 5 and 6. Evenutfio this procedure is likely to
underestimate the true quantiles (see Section ®elyiew this setup as more realistic than
merely computing a single OpVaR on the whole numidfeyears. Indeed, the operational
risk manager is likely to be confronted with a fggars of limited data, which is consistent

with our simulation procedure.

Table 5 compares the OpVaRs obtained using OpRistt-the simulated data for the
small databases. The first column represent theagegeobserved quantiles of the aggregate
distribution when simulating 100,000 years withasBong) distribution for the frequency
and a Pareto(10@) for the severity. The tables also gives the mumm maximum and

standard deviation of the 100(0) OpVaRs produce@pRisk+.

Insert Table 5

Panel A of Table 5 shows that OpRisk+ achieves #atysfactory OpVaRs for the
Pareto-distribution with thin tail. The mean OpVaddained for both the samples of 20 and
50 observations stays within a 3% distance fromtthe value. Even at the level of 99.9%
required by Basel Il, the OpRisk+ values remairhimita very narrow range, while the root

mean square error (RMSE) of the estimates is ké&ptnnl3% of the true value.

The results obtained with the OpRisk+ proceduréhwitedium and fat tails tend to
deteriorate, which is actually not surprising as #ldaptation of the credit risk model strictly
uses observed data and does necessarily undetestimaatness of the tails. However, we

still have very good estimation for OpV&RIt mismatches the true 95% quantile by 2% to
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7% for the medium and fat tailed Pareto-distributiwhile the RMSE tends — naturally — to

increase very fast.

The bad news is that the procedure alone is ndicuft to provide the OpVaRkg
required by Basel Il. It severely underestimatestthe quantile, even though this true value
is included in the range of the observed valuethefloss estimates, mainly because the
support of the distribution generated by the OpRisiethod is finite and thus truncates the
true loss distribution. This issue had been poiotgtcby Mignola and Ugoccioni (2006) who
propose to reduce the sources of uncertainty ineftind the operational risk losses, by
lowering the percentile at which the risk measwgecalculated and finding some other

mechanism to reach the 99.9% percentile.

Further reasons for this systematic underestimateom be found in the setup of the
simulations. The procedure averages the individearly OpVaRs, each of them being
computed using a very small number of losses. Tuoslelling choice mimics a realistic
situation as closely as possible. There is thusalldikelihood of observing extreme losses
over a particular year, and the averaging proasdstto lead to the dominance of too small
OpVaR estimates for the extreme quantiles. Tahllesplays the results of the simulations

when a large sample size is used.

Insert Table 6

Table 6, Panel A already delivers some rather mingr results. The OpRisk+
procedure seems to overestimate the true operhtiskaxposure for all confidence levels.
This effect aggravates for a high number of logsdle database. This phenomenon may be
due to an intervalling effect, where losses belogdbd a given band are assigned the value
of the band’s upper bound. Given that extreme kbase likely to occur in the lower part of
the band, as the distribution is characterized bjim tail Pareto-distribution, taking the

upper bound limit value for aggregation seems terilrate the estimation, making it too
16



conservative. Nevertheless, the bias is almosttaoh#n relative terms, indicating that its
seriousness does not aggravate as the estimati®rfiagen the tail of the distribution. Sub-

section 3.4 investigates further this issue.

This intervalling phenomenon explains the behavafihe estimation for larger values
of the tail index. In Panel B, the adapted credk model still overestimates the distribution
of losses up to a confidence level of 99%, whilePanel C, the underestimation starts
earlier, around the 95% percentile of the distidout In both cases, the process does not
capture to distribution at the extreme end of #ile(99.9%), similar to what we observed for

smaller sample sizes.

Nevertheless, from panels B and C altogether, gréopnance of OpRisk+ still stays
honourable when the confidence level of 95% is sethpThe RMSE of the estimates also
remains within 20% (with the tail index of 0.5) aB#8% of the mean (with a tail index of
0.7), which is fairly large but mostly driven byrd@ outliers as witnessed in the last column

of each panel.

A correct mean estimate of the Op\aRould apply to a tail index between 0.5 and
0.7, which corresponds to a distribution with alfalarge tail index. Only when the tail of
the Pareto-distribution is actually thin, one olssrthat the intervalling effect induces a

large discrepancy between the theoretical and vbdemlues.

It remains to be mentioned that the good empirggadlication of OpRisk+ does not
depend on the number of observed losses as itaffdgts the first term of the recurrence,

namelyA.

3.3  Comparison with the CCHP and the Alexander’s appraches

These results, if their economic and statistioghificance have to be assessed, have to
be compared with a method that aims at specificatlgressing the issue of operational

losses in the Advanced Measurement Approaches.sétapchoose the CCHP approach,
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which is by definition more sensitive to extremerig than OpRisk+, but has the drawback
of requiring a large number of events to properbrive the severity distributions of
“normal” and “large” losses. For low frequency dstae, the optimization processes used by
this type of approaches (e.g. Maximum Likelihoodir&gation) might not converge to stable

parameters estimates.

The graphs from Figure 1-2 display the OpVaRs (withfidence levels of 90, 95, 99
and 99.9%) generated from three different kind ppraaches, that is the sophisticated
CCHP approach, OpRisk+ and the simpler Alexande®3® approach (see Section 2.3) for
each of the three tail index values (0.3, 0.5 aidl &d for each of the four sample size (20,

50, 200 and 300 loss events).

Insert Figure 2

From the graphs in Figure 1-2, we can see thainfust databases, OpRisk+ is working
out a capital requirement higher than the AlexasdBvA, but smaller than the CCHP
approach. This last result could be expected asFCiSHnore sensitive to extreme events. In
next sub-section, we will discuss the fact that da¢abase with 300 observations shows
higher OpVaRs for OpRisk+ than CCHP. However, ae already conclude that our model

is more risk sensitive than a simple IMA approach.

Considering the thin tailed Pareto-distributiorPianel A, we can observe that OpRisk+
produces the best estimations for the small da¢abdasleed, those are very close to the
theoretical OpVaRs for all confidence level. HoweYer the large database, it is producing
too cautious (large) OpVaRs. The comparison witteoimethods sheds new light on the
results obtained with Panel A of Table 6: OpRisk#erestimates the true VaR, but the
CCHP model, especially dedicated to the measurenfenperational risk, does frequently

worse. Actually, Alexander (2003) approach, alsogisbserved data but not suffering from

18



an intervalling effect, works out very satisfactoegults when the standard deviation of loss

is a good proxy of the variability of the distribn.

For the medium and fat tailed Pareto-distributiomsither of the models is sensitive
enough for OpVaRs of 99% and more. This could ra@ae questions on the feasibility or
appropriateness of a requirement of a 99.9% Vaké&yBasel Accord, where it appears that
even an LDA model is far from being able to estingaeconomic capital with such a high
level of confidence. Nevertheless, as far as thalsfatabases are concerned, it is interesting

to note that OpRisk+ is producing the best estiomatfor OpVakss.

While none of these approach seems good enoughddevel of confidence required
by Basel Il, we would first recommend OpRisk+ orerdnder's for low frequency
databases, as none of these needs the pre-deteominé the shape of the distribution.
Then, although Alexander’s approach is simpler proides as good OpVaRs as our model
for the thin-tail Pareto distribution, this methbds the drawback of deteriorating much
faster than OpRisk+ for larger tails. Unfortunatefgk managers usually do not know the
type of distribution they are dealing with, and this case, we would recommend the

OpRisk+ method that seems a bit more complicatégiblds more consistent results.

3.4 Comparison with OpRisk+ taking an average value ofoss for each band

As shown above, taking the upper bound limit vdbreaggregation as described in the
CreditRisk+ model tends to overestimate the trusratmonal risk exposure for all confidence
levels; especially with larger databases. A sofubould be to take the average value of
losses for each barfliTable 7 displays the results of the simulationgmvh relatively large

sample size is used.

Insert Table 7
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Panel A of Table 7 shows that OpRisk+ achieves gagd results for the Pareto-
distribution characterized by a thin tail when gsam average value for each band (“round”
column). The OpVaR values obtained for the sampR0O observations is very close to the
theoretical value, whereas it stays within a 6%geafrom the “true” value with a 300

observations sample, including at the Basel Illle¥€©9.9%.

When the loss Pareto-distributions are mediumdaitbe results obtained with the
OpRisk+ procedure with the databases are very fmoguantiles up to 95% but deteriorate
for more sensitive OpVaRs. OpRisk+ is still totalinable to capture the tailedness of the
distribution of aggregate losses for very high aatice interval, such as the Basel I

requirement.

Table 8 compares the two methods when applied tall stiatabases of 20 and 50
observations. In such cases, OpRisk+ provides rbetgeilts with the “round up” solution
than with the “round-off” one. This bias could Hae to the fact that with the second
method we tend to loosen the “extreme value theasgect of the model. Small databases
tend indeed to lack extreme losses and takingppernbound limit value for the aggregation

makes the resulting distribution’s tail fatter.

Insert Table 8

4  An application to real loss data

As an illustration of the application of our modele applied the three models on
operational loss data provided by a large Europbank. As this bank required
confidentiality, we will not publish our resultsGiven that we only had a collection of one

year of data, we could not apply the CCHP moddbanfrequency data.

We first applied the three models on two cells abarized by more than 100 losses,

and noticed that OpRisk+ VaRs were systematicalyhdr than the lower bound of
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Alexander and lower than the CCHP VaRs at the 998#| of confidence. However, we

found close VaRs for the 90th and the 95th perigemnti

We then applied OpRisk+ to two lower frequencysedith about 20 losses, and were
able to computed OpVaRs for both cells, that weighdr than the lower bound of

Alexander.

5 Conclusions

This paper introduces a structural operational misklel, named OpRisk+, that has been
inspired from the well known credit risk model, @i®isk+, which has characteristics

transposable to the operational risk modelling.

In a simulation setup, we work out aggregate lasgildutions and operational Value-
at-Risks (OpVaR) for various confidence levels]uding the one required by Basel Il. The
performance of our model is assessed by compatingesults to theoretical OpVaRs, to an
OpVaR issued from a simpler approach, that isJkh& approach of Alexander (2003), and
to a more sophisticated approach proposed in Cleagiehl. (2008), or “CCHP” approach
which uses a mixture of two distributions to motied body and the tail of the severity

distribution separately.

The results show that OpRisk+ produces OpVaRs rclms¢heoretical ones than the
approach of Alexander (2003), but that it is natepgive enough to extreme events. On the
other hand, our goal is not to produce a complet@mptiant AMA model to compute
regulatory capital requirements, but rather to psgpa first solution to the lack of low
frequency operational risk models. Besides, whertws CCHP approach has better
sensitivity to very extreme losses, the simpliafyOpRisk+ gives the model the advantage

of requiring no large database in order to be imgleted.

Specifically, we view the value-added of the OpRigkocedure as twofold. Firstly, it

produces average estimates of operational risksexpe that are very satisfactory at the
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95% level, which makes it a very useful complemenapproaches that specifically target
the extreme tail of the loss distribution. Indeeden though the performance of OpRisk+ is
clearly not sufficient for the measurement of ureotpd operational losses as defined by the
Basel 1l Accord (the VaR should be measured wiB9®% confidence level), it could be
thought of as a sound basis for the measuremenheofbody of losses; another more
appropriate method must relay OpRisk+ for the memmant of the far end of the
distribution. Moreover, it appeared to us, that #89% level of confidence required by
Basel Il might be quite utopian when we observeé ¢van an LDA approach with 300 losses
do not even get close to the theoretical level wiendistribution is characterized with a

Pareto(100;0.7).

Secondly, despite the fact that we cannot conclhde OpRisk+ is an adequate model
to quantify the economic capital associated tobidnek’s operational risk, its applicability to
approximate the loss distribution with small datdsais proven. Even for such a small
database as one comprising 20 observations, timaatisin could make it attractive as a
complement to more sophisticated approaches reguisrge numbers of data per period.
The fit is almost perfect when the Pareto-distitouthas a thin tail, and the OpVaRs the

closest among the three specifications tested wieetail gets fatter.

Of course, this approach is still subject to rafieats, and could be improved in many
ways. Indeed, internal data rarely includes vettyeewe events (banks suffering those losses
probably would no more be there to tell us), whetba last percentiles are very sensitive to
the presence of those events. The problem woulefttre be to determine which weight to
place on the internal data and on the external.dfesn our study, we could imagine that
fitting a distribution calibrated with external datEVT or relying on scenario analysis
beyond the 95% percentile would justify the us®©pRisk+ preferably to other models. This
advantage can prove to be crucial for business limeevent types where very few internal
observations are available, and thus where moeeidegnsive approaches such as the CCHP

would be powerless.
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6 Appendix - CreditRisk+: The distribution of default losses - Calculation

procedure®®

CreditRisk+ mathematically describes the randoracfbf the severity distribution through

its probability generating functio@(Z):

00

G (z) = Z P(aggregatedbss: nx L)zn

n=0

Comparing this definition with the Taylor seriegparsion forG(z), the probability of a loss

of n x L, A, is given by:

P(Iossof nL):% =
I dz

In CreditRisk+,G(2)is given in closed form by :

m Vi
rl ﬂJ"'/f] Z,UJ Z/JJZ

Therefore, using Leibniz formula we have:

1d'6l) 17 g d 5y

n! dZn 70 n! dZn_1 .dZ j=1 ! =0

—in_l(n_lj dn—k 1 dk+1 z'u , v,
Nzl K dz”'k'1 d ke ' -

However

_ u(k+1)! if k=v; -1 forsomej
o 0 otherwise

and by definition,

d n-k-1

-WG(Z)

=(n-k-D)'A, ..

z=0
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Therefore

A= X i(n—lj(k+1)!(n—k—1)!,uj A= S AV
ksn-1 n{ k itn n

k=v;—1for somej

Using the relation;; = ;. «;, the following recursive equation is obtained:

&

n

A= D

-
jvisn

Av,
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Table 1
Allocating losses to bands.

Loss Amount Lossin L round-off loss band |

(A) (B) vj (C) (D)
1500 15 2.00 2
2508 251 3.00 3
3639 3.64 4.00 4
1 000 1.00 1.00 1
1835 1.84 2.00 2
2 446 2.45 3.00 3
7260 7.26 8.00 8

lllustration of the first three steps of the OpRiskpproach: 1. Choose a unit amount of loss L. (li0he
example) 2. Divide the losses of the available lazda (column A) by L (column B)and round up thesalers
(column C). 3. Allocate the losses of different sit@ their band (column D)
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Table 2
Exposure, number of events and expected loss.

Yi 4 &

1 9 9

2 121 242
3 78 234
4 27 108
5 17 85
6 15 90
7 8 56
8 32

lllustration of step 5 of the OpRisk+ approach: “Guute the expected loss per bagdequal to the expected
number of losses per bapgd, multiplied by the average loss amount per bandequal tg.”
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Table 3
Gamma and phi values (no loss severity variability)

V] 100 50 40 30 20 10 8 6
VaRggo 131.8172.7560.45 47.81 34.71 20.66 17.63 14.45

O] 3.18 3.22 3.23 3.25 3.29 3.37 341 3.45
% 0.32 046 051 059 0.74 1.07 121 141
V] 5 4 3 2 1 09 08 0.7
VaRye 12.77 10.969.13 7.11 487 455 423 391
O] 348 348 354 362 387 385 3.84 3.84
% 155 174 204 256 3.874.06 4.29 4.59
V] 0.6 05 04 03 02 01 0.05 0.01
VaRye 3.58 3.26 291 249 2.07 142 107 0.90
O] 3.85 390 3.97 4.00 419 417 454 8.94
% 497 551 6.27 7.30 9.36 13.220.31 89.40

(source: Alexander, C. (2003), p151).
lllustratation of the wide range for the gammasobposition to the narrow range of the phi’'s valirethe

computation of the unexpected loss (UL=. a§* EL) determining the operational risk requirement

The basic formula of the Internal Measurement Apph (IMA) of Basel Il is UL =y EL,
wherey is a multiplier, and EL is the expected loss.@@nma factors are not easy to evaluate, Alexar@ler,

(2003) suggests to write unexpected loss as aptaulth) of the loss standard deviatios) (
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Table 4

Characteristics of the twelve databases createde&iing the different models. For three Pareto
severity distribution (thin-tailed, medium tailedchfat-tailed), we simulate two sets of 1000 yesrs
20 and 50 operational losses respectively and et af 10Geries of 200 and 300 operational losses
respectively. For each of the 6600 simulated yéanrs 2 x 1100), the aggregate loss distribution is
computed with the algorithm described in Sectich 2.

Panel A : Thin-tailed-Pareto distribution (shapeapaeter = 0.3)

Poisson parametar 20 50 200 300
Theoretical Mean 2857 7143 28571 42857
Mean 2845 7134 28381 42886
Standard deviation 287 472 847 1118
Median 2796 7078 28172 42763
Maximum 4683 9026 30766 45582
Minimum 2268 6071 26713 40383
Number of simulated years 1000 1000 100 100

Panel B : Medium-tailed-Pareto distribution (shapeameter = 0.5)

Poisson parametar 20 50 200 300
Theoretical Mean 4000 10000 40000 60000
Mean 3924 9913 39871 59431
Standard deviation 1093 1827 3585 5504
Median 3676 9594 39777 57947
Maximum 15680 29029 54242 91182
Minimum 2567 7097 33428 52436
Number of simulated years 1000 1000 100 100

Panel C : Fat-tailed-Pareto distribution (shapeupater = 0.7)

Poisson parametgar 20 50 200 300
Theoretical Mean 6667 16667 66667 100000
Mean 6264 16165 61711 93724
Standard deviation 5940 13018 13899 24514
Median 5180 13721 57713 87646
Maximum 157134 265621 137699 248526
Minimum 2646 8304 45315 69991
Number of simulated years 1000 1000 100 100
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Table 5

Values-at-Risk generated by OpRisk+ for small dasals, with 20 and 50 loss events. The OpVaRs
are calculated separately for each year of dathwanreport their average (Mean), the average value
of the spread between the “true” vall@rget and the OpVaRs, as percents of the latest (Baas)

the root mean square error as percents of the”®py/aRs (RMSE). The “true” value or target is
approximated through a Monte Carlo simulation 00,000 years of data, characterized by a
frequency equal to a random variable following dasBan{N) and a severity characterized by the
selected Pareto-distribution. The unit amount chdsethe OpRisk+ implementation and the average
number of corresponding bands is reported in bitacke

N =20 N =50
OpRisk+ OpRisk+

Target (L:].O, bands = 9) Target (L:J.O, bands = 13)
Mean Bias RMSE Mean Bias RMSE

OpVaRy 3770 3880 3% 13% 8573 8882 3% 8%
OpVaRys 4073 4173 3% 13% 9030 9334 3% 9%
OpVaRy 4712 4744 1% 13% 9942 10209 3% 9%

OpVaRgy 5596 5410 -3% 13% 11141 11250 1% 10%

Panel B : Medium-tailed-Pareto distribution (shppeameter = 0.5)

N =20 N =50
OpRisk+ OpRisk+
Target (L=10, bands = 11) Target (L=10, bands = 19)
Mean Bias RMSE Mean Bias RMSE
OpVaRy 5579 5672 2% 40% 12630 12855 -6% 29%
OpVaRys 6364 6247 2% 46% 13862 13734 7% 32%
OpVaRy 8966 7329 -18%48% 18051 15410 -20%B6%

OpVaRygo 18567 8626  -54%60% 33554 17338 -52%55%

Panel C : Fat-tailed-Pareto distribution (shapeupater = 0.7)

N =20 N =50
OpRisk+ OpRisk+
Target (L:50, bands = 7) Target (L:50, bands = 13)
Mean Bias RMSE Mean Bias RMSE

OpVaRy 9700 11410 18% 107% 22495 23992 7% 116%
OpVaRys 12640 12931 3% 99% 28103 27089 -3% 134%
OpVaRy 27261 15583 -43%72% 55994 32020 -43909%
OpVaRyy 114563 18726 -84%85% 220650 38761 -83%88%
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Table 6

OpVaRs generated by OpRisk+ for databases with & 300 loss events. The OpVaRs are
calculated separately for each year of data, andepert their average (Mean), the average value of
the spread between the “true” value and the OpVaRsercents of the latter (Bias), and the root
mean square error as percents of the “true” OpVARESE). The “true” value is approximated
through a Monte Carlo simulation of 100,000 yedrslata, characterized by a frequency equal to a
random variable following a Poisst)( and a severity characterized by the selected tdrare
distribution. The unit amount chosen for the OpRisknplementation and the average number of
corresponding bands is reported in brackets.

Panel A : Thin-tailed-Pareto distribution (shapeapaeter = 0.3)

N =200 N =300
OpRisk+ OpRisk+
Target (L=20, bands = 13) Target (L=50, bands = 8)
Mean Bias RMSE Mean Bias RMSE
OpVaRy 31448 33853 7% 8% 46355 56470 229%22%
OpVaRys 32309 34728 1% 8% 47403 57683 22922%
OpVaRy 33995 36397 % 7% 49420 59992 219%22%
OpVaRygo 36063 38310 6% 7% 51750 62628 219%%1%
Panel B : Medium-tailed-Pareto distribution (shppeameter = 0.5)
N =200 N =300
OpRisk+ OpRisk+
Target (L=50, bands = 14) Target (L=50, bands = 11)
Mean Bias RMSE Mean Bias RMSE
OpVaRy 45757 51836 13% 18% 67104 75723  13%9%
OpVaRys 48259 53816 12% 18% 70264 78161 11%0%
OpVaRy 55919 57668 3%  16% 79718 82817 4% 19%
OpVaRygo 83292 62237 -25% 29% 113560 88309 -22%/%
Panel C : Fat-tailed-Pareto distribution (shapeupeter = 0.7)
N =200 N =300
OpRisk+ OpRisk+
Target (L=50, bands = 21) Target (L=50, bands = 17)
Mean Bias RMSE Mean Bias RMSE
OpVaRy 82381 82539 0%  30% 120654 119943 -1% 29%
OpVaRys 96971 88248 -9% 32% 139470 127037 -9% 32%
OpVaRy 166962 98972 -41% 47% 234442 140665 -40%%
OpVaRygo 543597 111875-79% 80% 733862 156642 -79%79%

32



Table 7

Comparison of the average of the yearly OpVaRs atetpwith OpRisk+ using resp. an upper bound
limit value (rounded up) and an average value (dedj for the allocations into bands (see step 2 of
the OpRisk+ procedure described in section 2.1)laige databases. The average value of the spread
between the “true” value and the mean of the ye@myvaRs, as percents of the latter, is reported
under the “Bias” column’s titles. The “true” valigapproximated through a Monte Carlo simulation
of 100,000 years of data, characterized by a frecuesqual to a random variable following a
Poisson) and a severity characterized by the selectedddistribution.

Panel A : Thin-tailed-Pareto distribution (shapeapaeter = 0.3)

N =200 N =300

OpRisk+ OpRisk+

Target i i Target i i
RoundupBias Round Bias Roundup Bias Round Bias

OpVaRy, 31448 33853 8% 30576 -3% 46355 56470 22% 43558 -6
OpVaRys 32309 34728 7% 31404 -3% 47403 57683 22% 445630 -6
OpVaRy 33995 36397 7% 32991 -3% 49420 59992 21% 464860 -6

OpVaRy ¢ 36063 38310 6% 34813 -3% 51750 62628 21% 48687 -6%

Panel B : Medium-tailed-Pareto distribution (shapeameter = 0.5)

N =200 N =300
OpRisk+ OpRisk+
Target i i Target i i
RoundupBias Round Bias Roundup Bias Round Bias
OpVaRy, 45757 51836 13944338 -3% 67104 75723 13% 64523 -4%
OpVaRys 48259 53816 129646222 -4% 70264 78161 11% 66849 -5%
OpVaRy 55919 57668 3% 49885 -11%79718 82817 4% 71296 -11%

OpVaRy ¢ 83292 62237  -25%4257 -35% 113560 88309 -22%76544 -33%

Panel C : Fat-tailed-Pareto distribution (shapematar = 0.7)

N =200 N =300

OpRisk+ OpRisk+

Target i i Target i i
RoundupBias Round Bias Roundup Bias Round Bias

OpVaRy, 82381 82539 0% 75696 -8% 120654 119943 -1% 112596
OpVaRys 96971 88248 -9% 81375 -16%139470 127037 -9% 12085A3%
OpVaRyy 166962 98972  -41991991 -45% 234442 140665 -769435481-42%

OpVaRyg 543597 111875 -799%04699-81% 733862 156642 -79%452904-79%
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Table 8

Comparison of the average of the yearly OpVaRs atetpusing OpRisk+ with an upper bound limit
value (round up) and an average value (rounded jh#® allocations into bands (see step 2 of the
OpRisk+ procedure described in section 2.1), foalbuatabases. The average value of the spread
between the “true” value and the mean of the ye@mywaRs, as percents of the latter, is reported
under the “Bias” column’s titles. The “true” valigeapproximated through a Monte Carlo simulation
of 100,000 years of data, characterized by a frecuesqual to a random variable following a
Poisson) and a severity characterized by the selectedddistribution.

Panel A : Thin-tailed-Pareto distribution (shapeapaeter = 0.3)

N =20 N =50
OpRisk+ OpRisk+
Target _ _ Target i _
Roundup Bias Round Bias RoundupBias Round Bias
OpVaRy 3770 3880 3% 3535 -6% 8573 8882 4% 8074 -6%
OpVaRys 4073 4173 2% 3815 -6% 9030 9334 3% 8501 -6%
OpVaRy 4712 4744 1% 4363 -7% 9942 10209 3% 9332 -6%
OpVaRygy 5596 5410 -3% 5010 -10% 11141 11250 1% 10311 -7%
Panel B : Medium-tailed-Pareto distribution (shapeameter = 0.5)
N =20 N =50
OpRisk+ OpRisk+
Target _ _ Target _ _
Roundup Bias Round Bias Roundup Bias Round Bias
OpVaRy 5579 5672 2% 5332 -4% 12630 12855 2% 11323 -10%
OpVaRys 6364 6247 -2% 5901 -7% 13862 13734 -1% 12152 -12%
OpVaRy 8966 7329 -18% 6945 -23% 18051 15410 -15% 13668 -24%
OpVaRyo 18567 8626 -54% 7904 -57% 33554 17338 -48% 14377 -57%
Panel C : Fat-tailed-Pareto distribution (shapematar = 0.7)
N =20 N =50
OpRisk+ OpRisk+
Target _ _ Target _ _
Roundup Bias Round Bias Roundup Bias Round Bias
OpVaRy 9700 11410 18% 9413 -3% 22495 23992 7% 25235 12%
OpVaRys 12640 12931 2% 10914 -14% 28103 27089 -4% 28537 2%
OpVaRy 27261 15583 -43%13353 -51% 55994 32020 -43%33837 -40%
OpVaRygg 114563 18726 -84%16290 -86% 220650 38761 -82%40024 -82%
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Figure 1. Aggregate loss distribution derived from the &galon of OpRisk+ for a series of 200 loss
events characterized by a Pareto(100;0.3).
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Panel A : Thin-tailed Pareto distribution (faitlex = 0,3)
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Panel C : fat-tailed Pareto distribution (tadiéx = 0,7)
127500
OpVaRs for N=20 260000 -
107500 OpVaRs for N=50
210000
87500
160000
67500
110000
47500
60000
27500
7500 10000
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Figure 2. Comparison of CCHP, OpRisk+ and Alexander’s IMA Aqgch.

On the basis of N simulated losses, characterized thin, medium or fat-tailed Pareto distribution,
we computed OpVaR with level of confidence at 99, @ and 99.9 percents using three different
approaches. The “Simulated” value correspondsedrtie value to estimate.

37



! See Ross, J. (1997) Rogue trader: How | brought d®anngs Bank and shook the financial world by
Nick Leeson,Academy of Management Revie22, 1006-1010.; Stonham, P. (1996) Whatever Happeed
Barings? Part Two: - Unauthorised Trading and thkiFeaof Controls European Management Journal, 269-
278.; Sheaffer, Z., Richardson, B. and Rosenblatf1998) Early-warning-signals management: A lessom

the Barings crisisJournal of Contingencies and Crisis Managemént,-22..

2 See Dunne, T. and Helliar, C. (2002) The Ludwig reptmplications for corporate governance,

Corporate Governance, 26-31..

3 See Walker, P. L., Shenkir, W. G. and Hunn, C.2801) Developing risk skills: An investigation of
business risks and controls at Prudential Insur&@mmpany of Americalssues in Accounting Educatioh,

291-313..

* See Sahay, A., Wan, Z. and B., K. (2007) Operati®&isk Capital: Asymptotics in the case of Heavy-
Tailed Severity. Journal of Operational Risk. or Degen, M., Embrechts, P. and Lambrigger, D072 The
quantitative modelling of operational risk: betwagand-h and EVTAstin Bulletin, 37, 265-291..

® We named our model OpRisk+ to keep its source talpimat is, the CreditRisk+ model developed by
Credit Suisse First Boston. Our model is not a newlehbut an adaptation of their model to make itfuisie

our specific situation: that is small samples oémapional loss data.

®The Value-at-Risk (VaR) is the amount that losseslikiély not exceed, within a predefined confidence
level and over a given time-period.

" Cruz, M. G. (2002) Frequency models,Ntodeling, Measuring and Hedging Operational Riskiley
Finance, New York. argues that this is due toiitgp8city and to the fact that it fits most of tidatabases very
well.

8 CreditRisk+'s authors argue that the exact amourach loss cannot be critical in the determinatibn
the global risk.

°The purpose of the model is to be applied to kesd Hata.
10 see Appendix.

1 More precisely the ALD is obtained through théold convolution of the severity distribution wittself,
n being a random variable following the frequencgsity function.

12 While frequency could also be modelled with ottiiscrete distributions such as the Negative Binomial
for instance, many authors use the Poisson assum{ee de Fontnouvelle, P., Dejesus-Rueff, V.,algrd. and
Rosengren, E. (2003) Capital and risk: New evidemcanplications of large operational losses, Workiteper
No 03-5, Federal Reserve Bank of Boston. for instance)

13 This solution has been advocated by many othédroasit see for instance King, J. (20@perational

Risk: Measurement and ModellingViley, New York., Cruz, M. (2004)perational Risk Modelling and
38



Analysis: Theory and PracticeRisk Waters Group, London., Moscadelli, M. (2004)eTmodelling of
operational risk: Experience with the analysis lod fata collected by the Basel Committee, No 517, 8anc
d'ltalia., de Fontnouvelle, P. and Rosengren, EO4P0mplications of alternative operational risk aeting
techniques, Federal Reserve Bank of Boston. or ChaeembDlin, V., Embrechts and Neslehova, J. (2006)
Quantitative models for operational risk: Extremédgpendence and aggregatiaglgurnal of Banking and
Finance,30, 2635-2658..

14 See Embrechts, P., Kluppelberg, C. and Mikosch{1997) Modelling Extremal Events for Insurance
and FinanceSpringer-Verlag, Berlin. for a comprehensive ovemwd EVT.

5 The unexpected loss is defined as the differeet@den the value-at-risk at the 99.9% confidencel le
(VaRgg 9 and the expected loss.

16 Only 100 years of data were simulated for higlyfiency databases as the computation becomes too
heavy for a too large number of data. Howeverteséed our model with 200 years of data for thepdamf 200
events characterized by a Pareto (100, 0.7), ahdatiobtain significantly different OpVaRs. Detdileesults are
available upon request.

" Note that this figure represents the distributioiitdfrom one year of data (200 losses), wheredslerda
displays the average mean of the 100 years of @&3@s$.

18 That is, every loss between 15000 and 25000 woeldnbband 20, instead of every loss
between 10,000 and 20,000 being in band 20.

19 Source : Credit Suisse (1997); “CreditRisk+ : A @r&isk Management Framework”, Credit Suisse
Financial Products, Appendix A4, p36.

39



