

POLICY SEARCH IN A SPACE OF SIMPLE CLOSED-FORM FORMULAS: TOWARDS INTERPRETABILITY OF REINFORCEMENT LEARNING

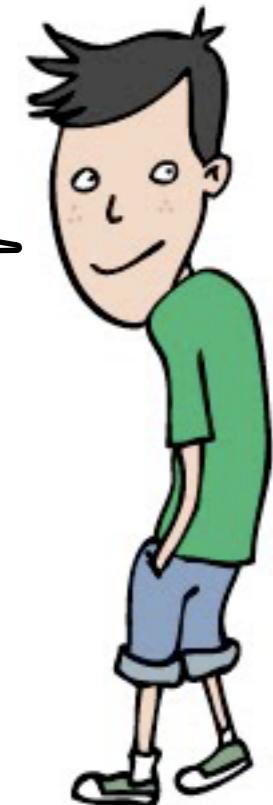
FRANCIS MAES RAPHAEL FONTENEAU

Université
de Liège

LOUIS WEHENKEL

DAMIEN ERNST

OPTIMAL SEQUENTIAL DECISION
MAKING IS A CENTRAL PROBLEM OF
COMPUTER SCIENCE AND HAS A HUGE
NUMBER OF APPLICATIONS

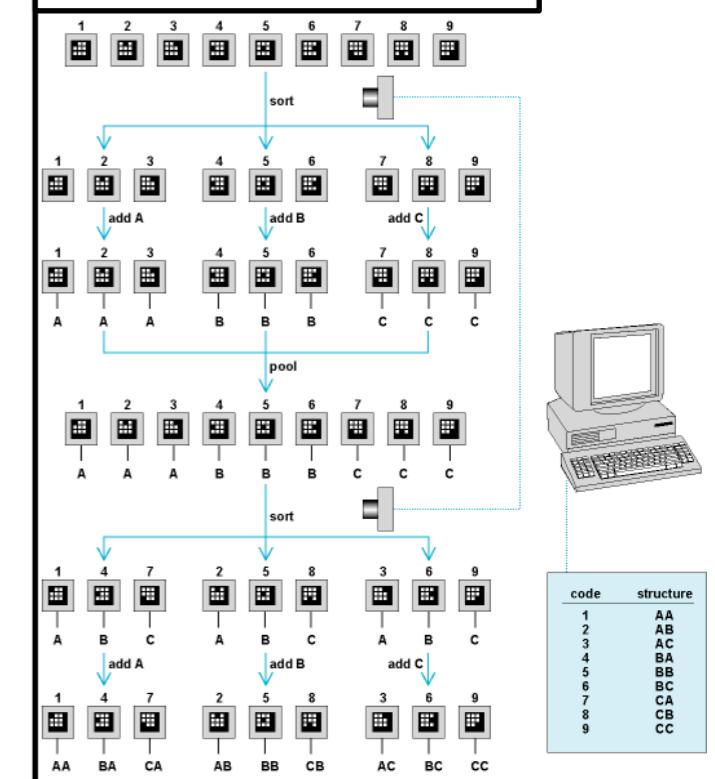


MEDICAL THERAPY OPTIMIZATION

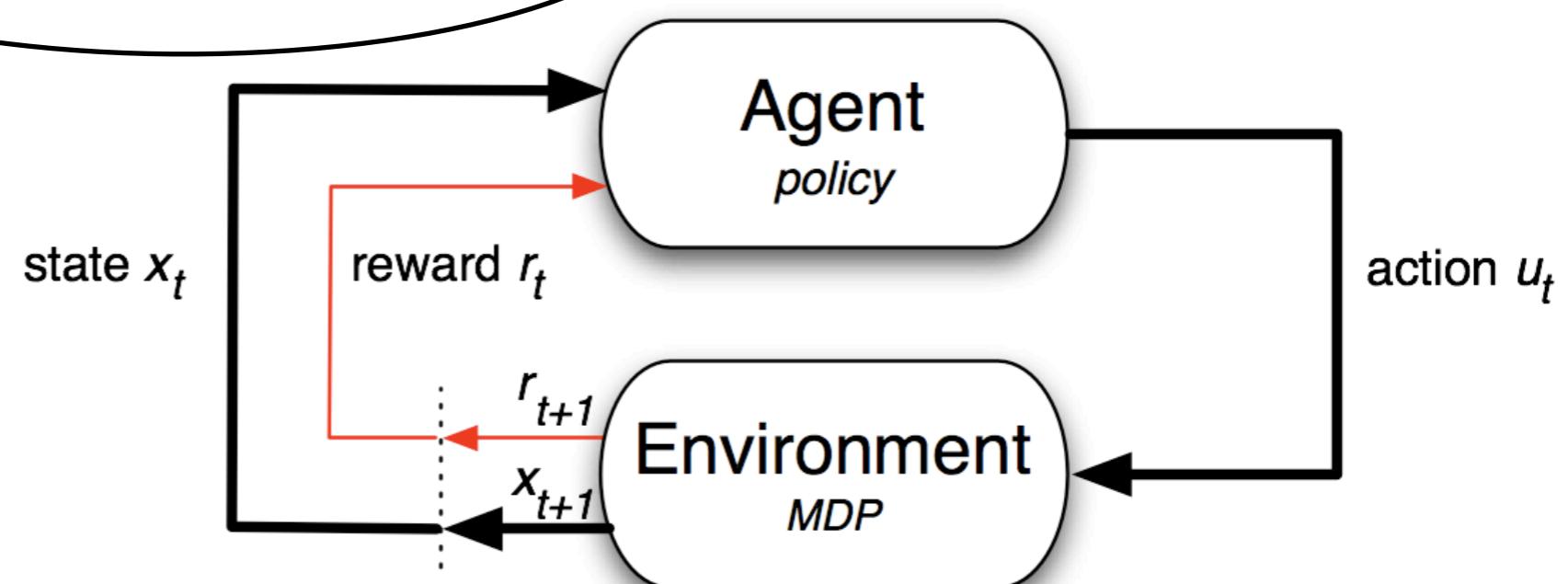
FINANCIAL TRADING

ROBOT OPTIMAL CONTROL

AUTOMATIC GAME PLAYING

COMBINATORIAL
SEARCH

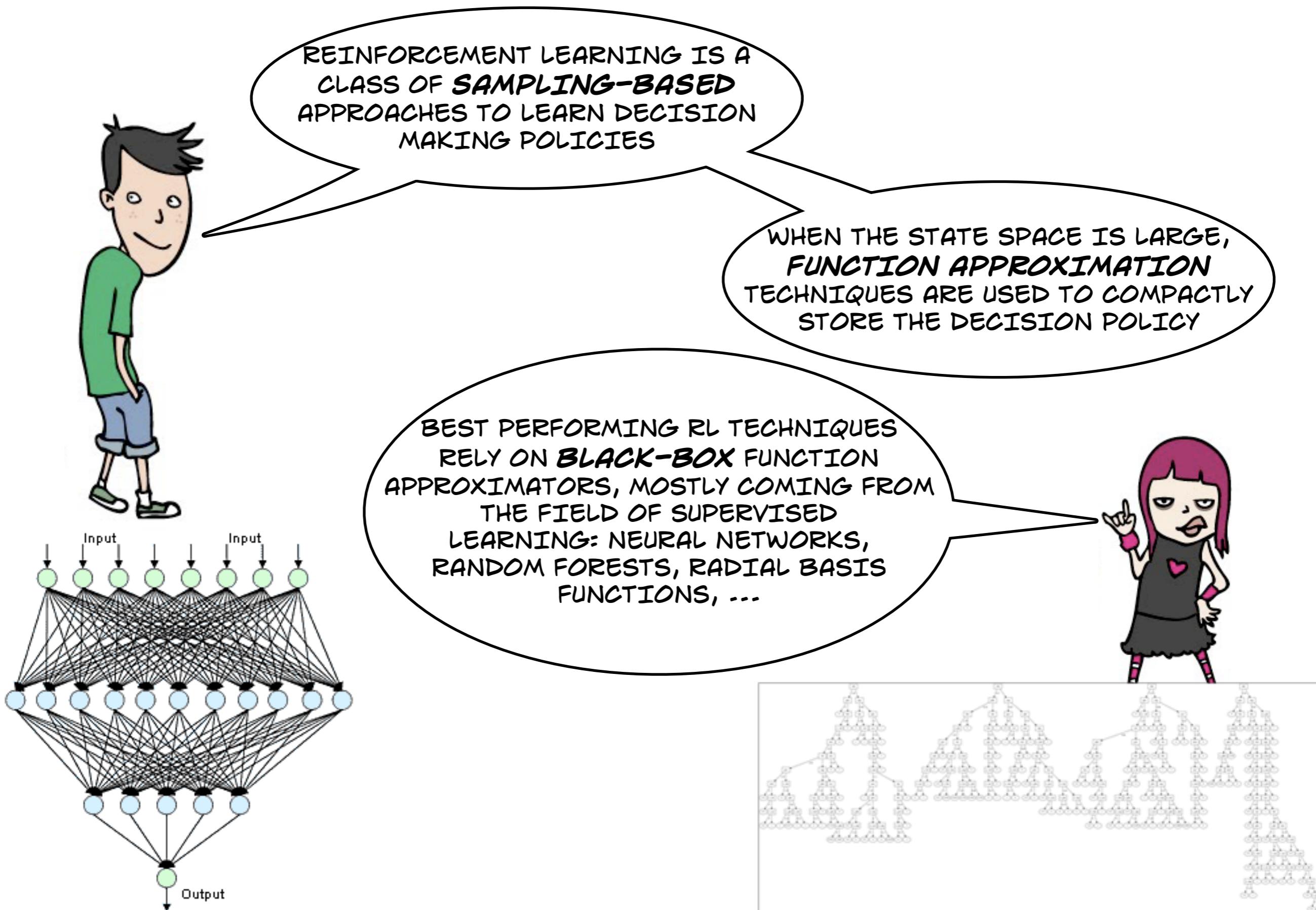
SEQUENTIAL DECISION MAKING
IS OFTEN STUDIED IN A CONTEXT
WHERE THE ENVIRONMENT IS A
MARKOV DECISION PROCESS

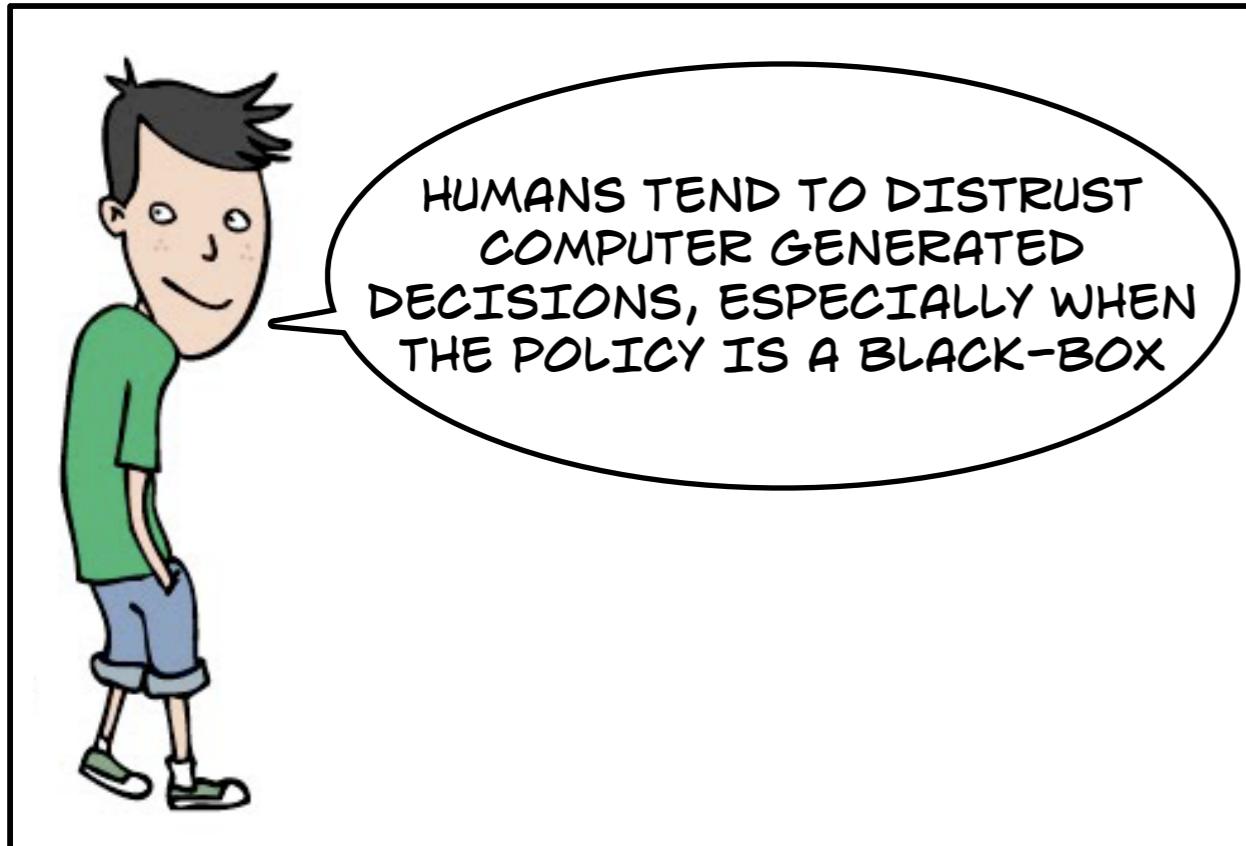
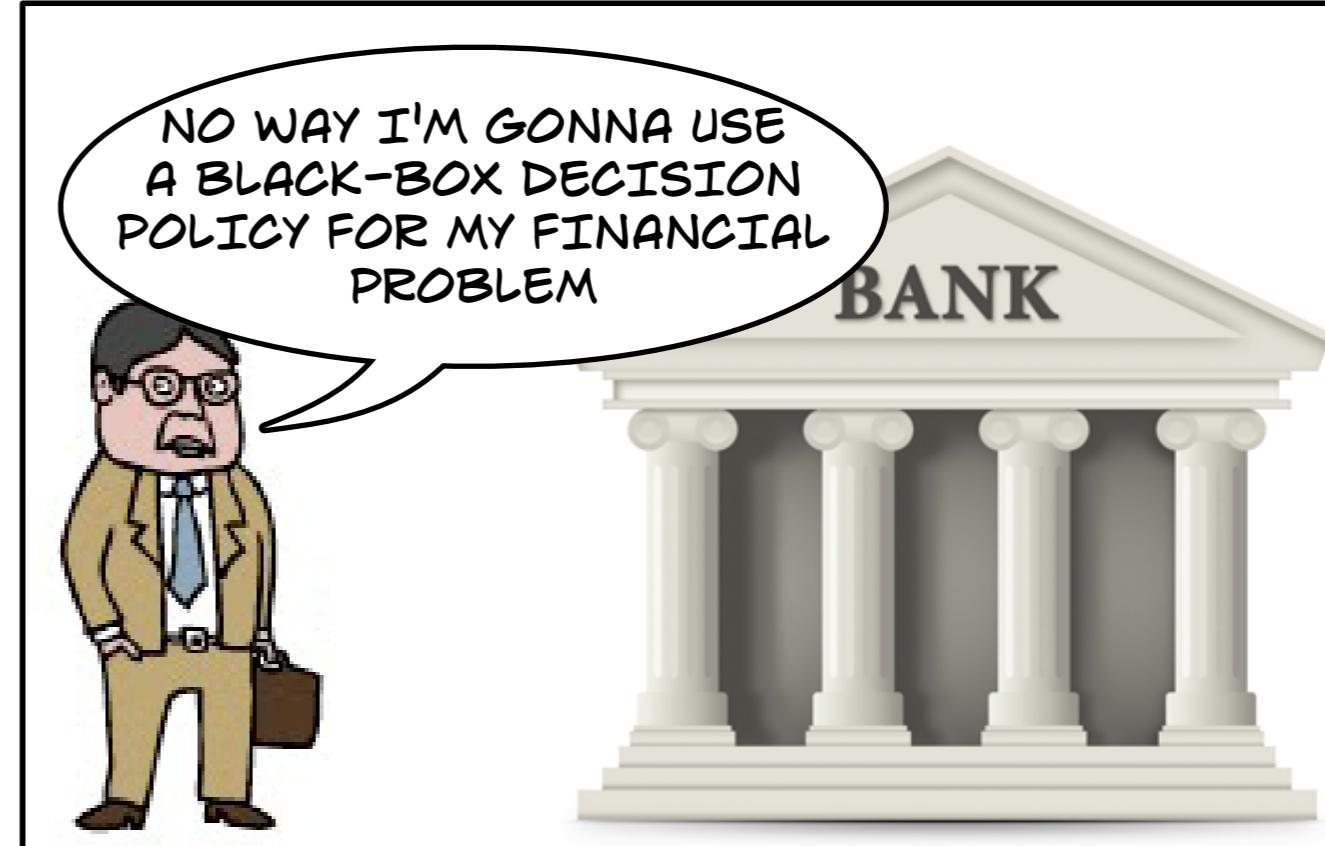
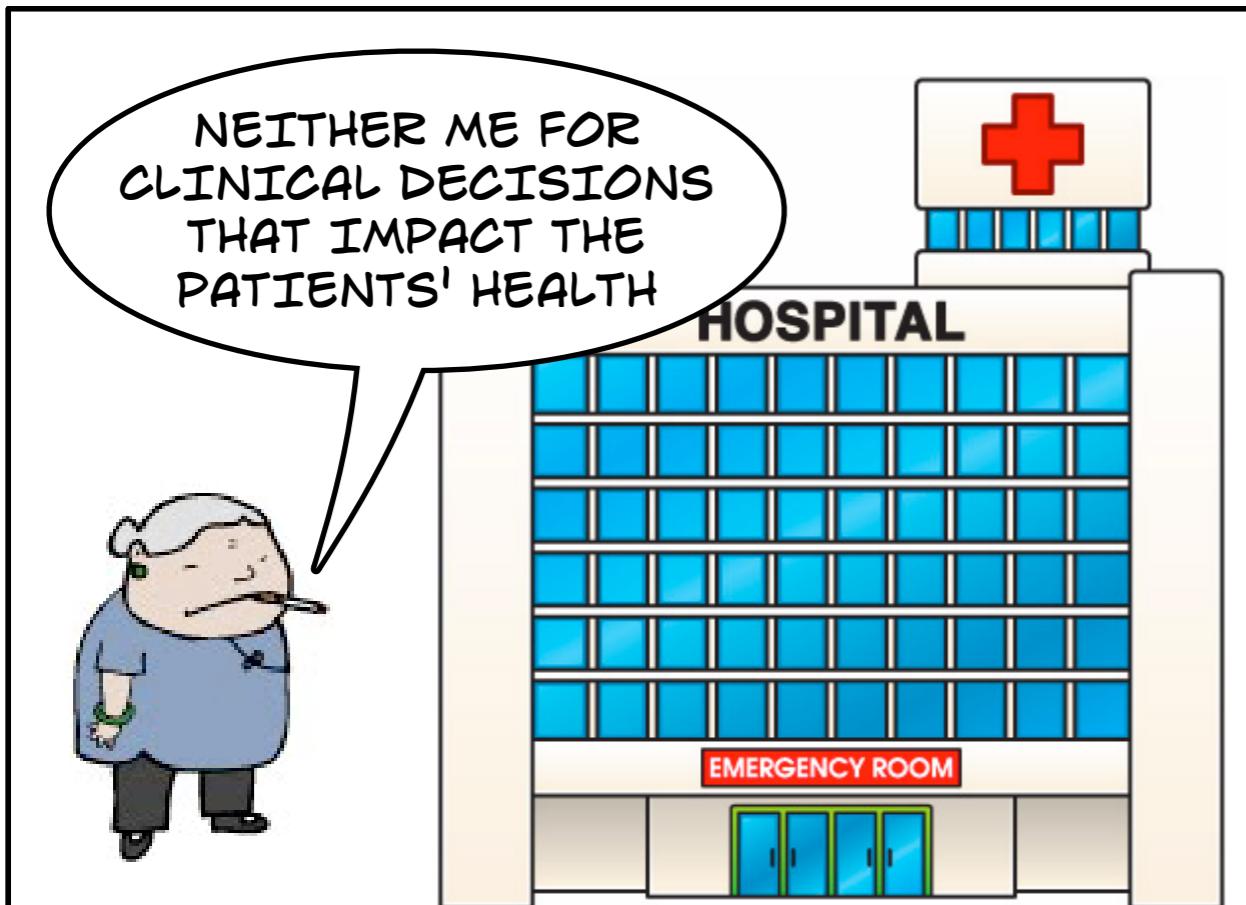
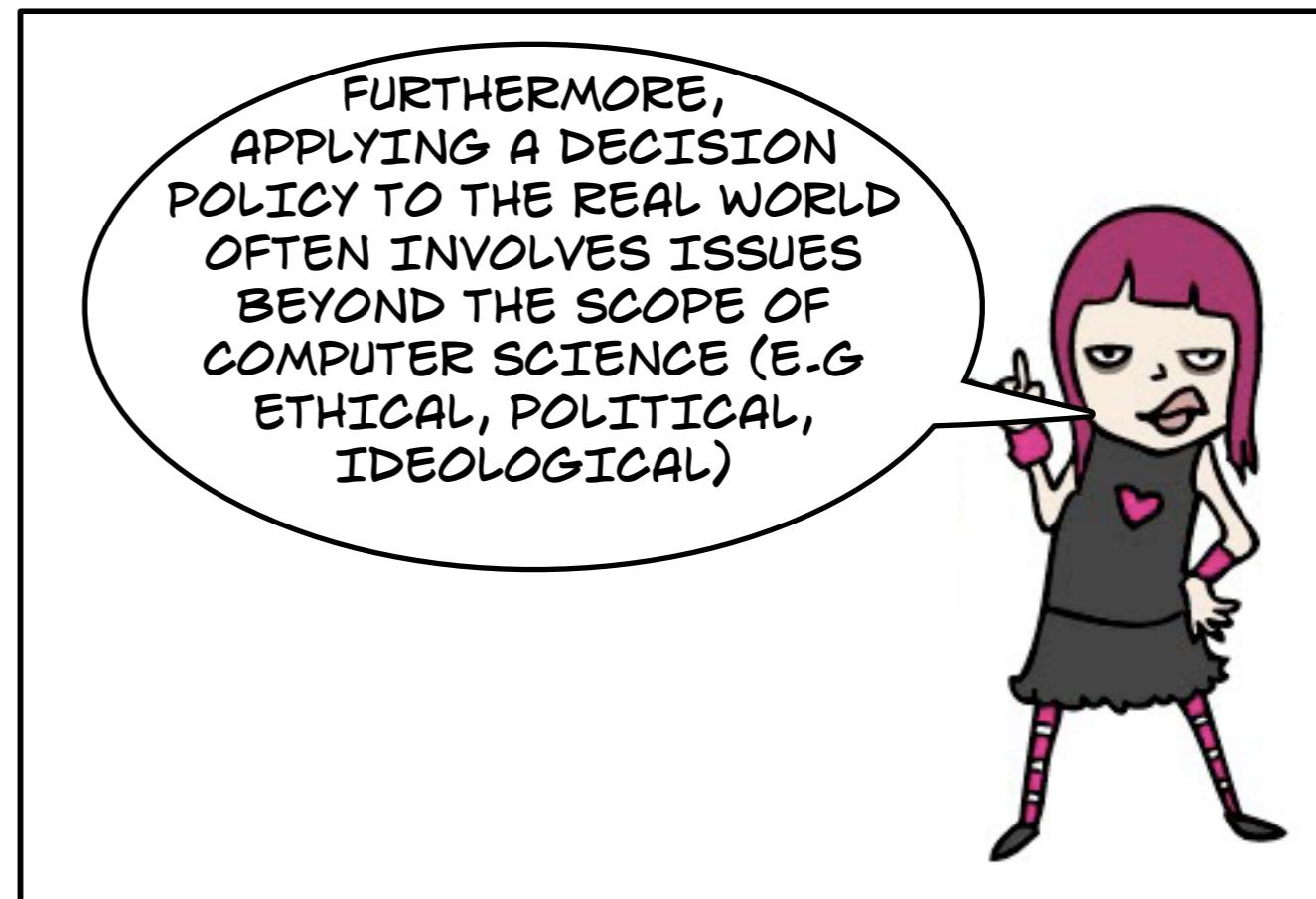


AT EACH TIME STEP t , THE
AGENT IS IN A STATE x_t
AND SELECTS AN ACTION u_t .

THE ENVIRONMENT SENDS IN
RETURN AN INSTANTANEOUS
REWARD r_t .

THE AIM OF THE
AGENT IS TO SELECT
ACTIONS SO AS TO
MAXIMIZE THE
LONG-TERM SUM OF
REWARDS





THERE ARE MANY EFFICIENT RL ALGORITHMS, SOME OF THEM WITH STRONG THEORETICAL GUARANTEES, BUT THESE ALGORITHMS DO NOT LEAVE THE LABORATORIES

IF WE WANT TO CHANGE THIS, WE MUST PROVIDE DECISION POLICIES THAT HUMANS CAN UNDERSTAND AND EVENTUALLY TRUST



WE THUS NEED RL ALGORITHMS PRODUCING **INTERPRETABLE POLICIES**

INTERPRETABILITY IS AN OLD TOPIC IN SUPERVISED LEARNING, BUT SURPRISINGLY NEARLY ABSENT FROM THE FIELD OF RL

PROPOSED APPROACH

WE PROPOSE A
DIRECT POLICY
SEARCH SCHEME IN A
SPACE OF
INTERPRETABLE
POLICIES

WE CONSIDER
INDEX-BASED
POLICIES DEFINED
BY SIMPLE CLOSED-
FORMED FORMULAS

AND WE SOLVE THE
LEARNING PROBLEM
USING MULTI-ARMED
BANDITS

WE FOCUS ON
PROBLEMS WITH
FINITE NUMBER OF
ACTIONS AND
CONTINUOUS STATE
SPACES

POLICY

$$\pi(x_t) \sim p_\pi(\cdot|x_t)$$

MDP DYNAMICS

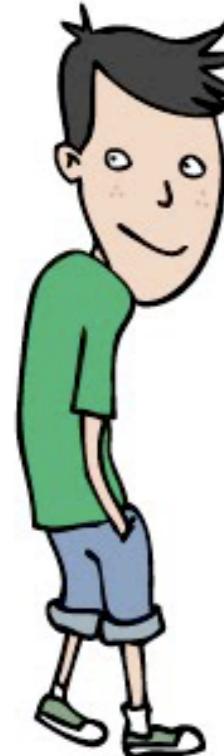
$$x_{t+1} \sim p_f(\cdot|x_t, u_t) \quad t = 0, 1, \dots$$

$$r_t \sim p_\rho(\cdot|x_t, u_t)$$

OBJECTIVE: MAXIMIZE RETURN

$$J^\pi = \mathbb{E}_{p_0(\cdot), p_f(\cdot), p_\rho(\cdot)} [\mathcal{R}^\pi(x_0)]$$

$$\mathcal{R}^\pi(x_0) = \sum_{t=0}^{\infty} \gamma^t r_t$$



AN INDEX FUNCTION $I(\cdot, \cdot)$ IS A MAPPING:

$$I : \mathcal{X} \times \mathcal{U} \rightarrow \mathbb{R}$$

GIVEN AN INDEX FUNCTION, WE CAN DEFINE THE INDEX-BASED POLICY:

$$\forall x \in \mathcal{X}, \pi_I(x) \in \arg \max_{u \in \mathcal{U}} I(x, u)$$

WE FOCUS ON THE CLASS OF INDEX-BASED POLICIES WHOSE INDEX FUNCTIONS ARE DEFINED BY SIMPLE CLOSED-FORM FORMULAS

A FORMULA $F \in \mathbb{F}$ IS:

EITHER A BINARY EXPRESSION $F = B(F', F'')$,
 OR AN UNARY EXPRESSION $F = U(F')$,
 OR A VARIABLE $F = V$,
 OR A CONSTANT $F = C$.

WE USE THE FOLLOWING
 OPERATORS AND CONSTANTS:

$$\mathbb{B} = \{+, -, \times, \div, \min, \max\}$$

$$\mathbb{U} = \{\sqrt{\cdot}, \ln(\cdot), |\cdot|, -\cdot, \frac{1}{\cdot}\}$$

$$\mathbb{C} = \{1, 2, 3, 5, 7\}$$

WE CONSIDER
 TWO DIFFERENT
 SETTINGS FOR
 THE VARIABLES:

LOOKAHEAD FREE

$$\mathbb{V} = \mathbb{V}_{LF} = \left\{ x_t^{(1)}, \dots, x_t^{(d_x)}, u_t^{(1)}, \dots, u_t^{(d_u)} \right\}$$

ONE-STEP LOOKAHEAD (MODEL ACCESSIBLE)

$$\mathbb{V} = \mathbb{V}_{OL} = \left\{ x_t^{(1)}, \dots, x_t^{(d_x)}, u_t^{(1)}, \dots, u_t^{(d_u)}, r_t, x_{t+1}^{(1)}, \dots, x_{t+1}^{(d_x)} \right\}$$

GIVEN A POLICY π , WE DEFINE:

$$D_F(\pi) = \{F \in \mathbb{F} \mid \pi_F = \pi\}$$

THE KOLMOGOROV
COMPLEXITY OF π IS:

$$\kappa(\pi) = \min_{F \in D_F(\pi)} |F|$$

GIVEN K , OUR SPACE OF INTERPRETABLE POLICIES
IS DEFINED BY:

$$\Pi_{int}^K = \{\pi \mid D_F(\pi) \neq \emptyset \text{ and } \kappa(\pi) \leq K\}$$

I REALLY LIKE
THIS SLIDE

CONSTRUCTING $\tilde{\Pi}_{int}^K$ IS NON TRIVIAL (EXCEPT FOR FINITE STATE SPACES)

WE INSTEAD APPROXIMATE THIS SPACE BY COMPARING POLICIES ON A FINITE SET OF SAMPLES

1. WE ENUMERATE ALL FORMULAS $|F| \leq K$

2. GIVEN A FINITE SET OF STATE POINTS $S = \{s_i\}_{i=1}^S$,

WE CLUSTERIZE FORMULAS. TWO FORMULAS F AND F' ARE EQUIVALENT IFF:

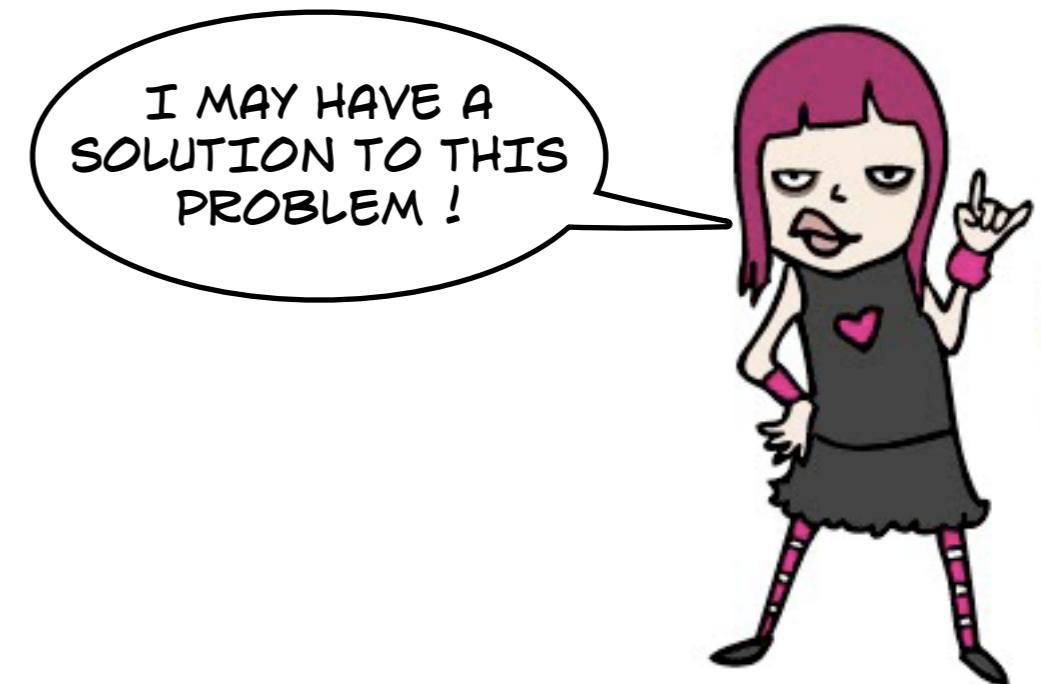
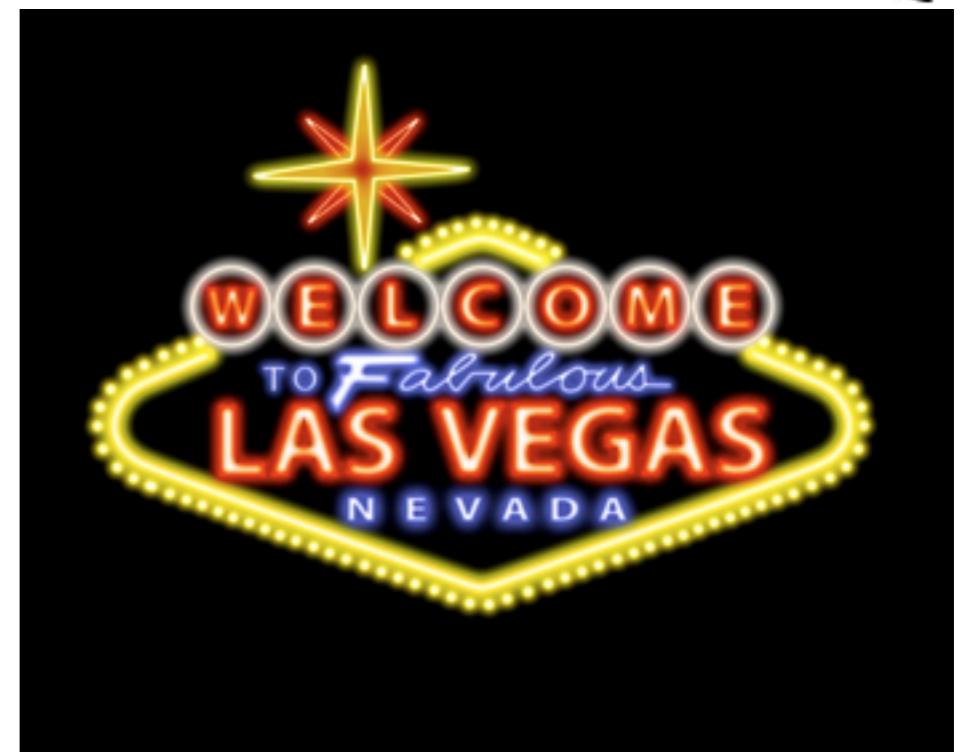
$$\forall s \in \{s_1, \dots, s_S\},$$

$$\arg \max_{u \in \mathcal{U}} F(s, u, r, y) = \arg \max_{u \in \mathcal{U}} F'(s, u, r, y)$$

3. AMONG EACH CLUSTER, WE SELECT A FORMULA OF MINIMAL LENGTH

4. WE GATHER ALL SELECTED FORMULAS OF MINIMAL LENGTH AND WE DENOTE:

$$\tilde{\Pi}_{int}^K = \{\pi_{F_1}, \dots, \pi_{F_N}\}$$



A MULTI-ARMED BANDIT PROBLEM IS A SEQUENTIAL GAME

- N ARMS WITH UNKNOWN REWARD DISTRIBUTIONS

- AT EACH STEP, THE PLAYER SELECTS ONE OF THE ARMS AND RECEIVES A REWARD DRAWN FROM THE ASSOCIATED DISTRIBUTION

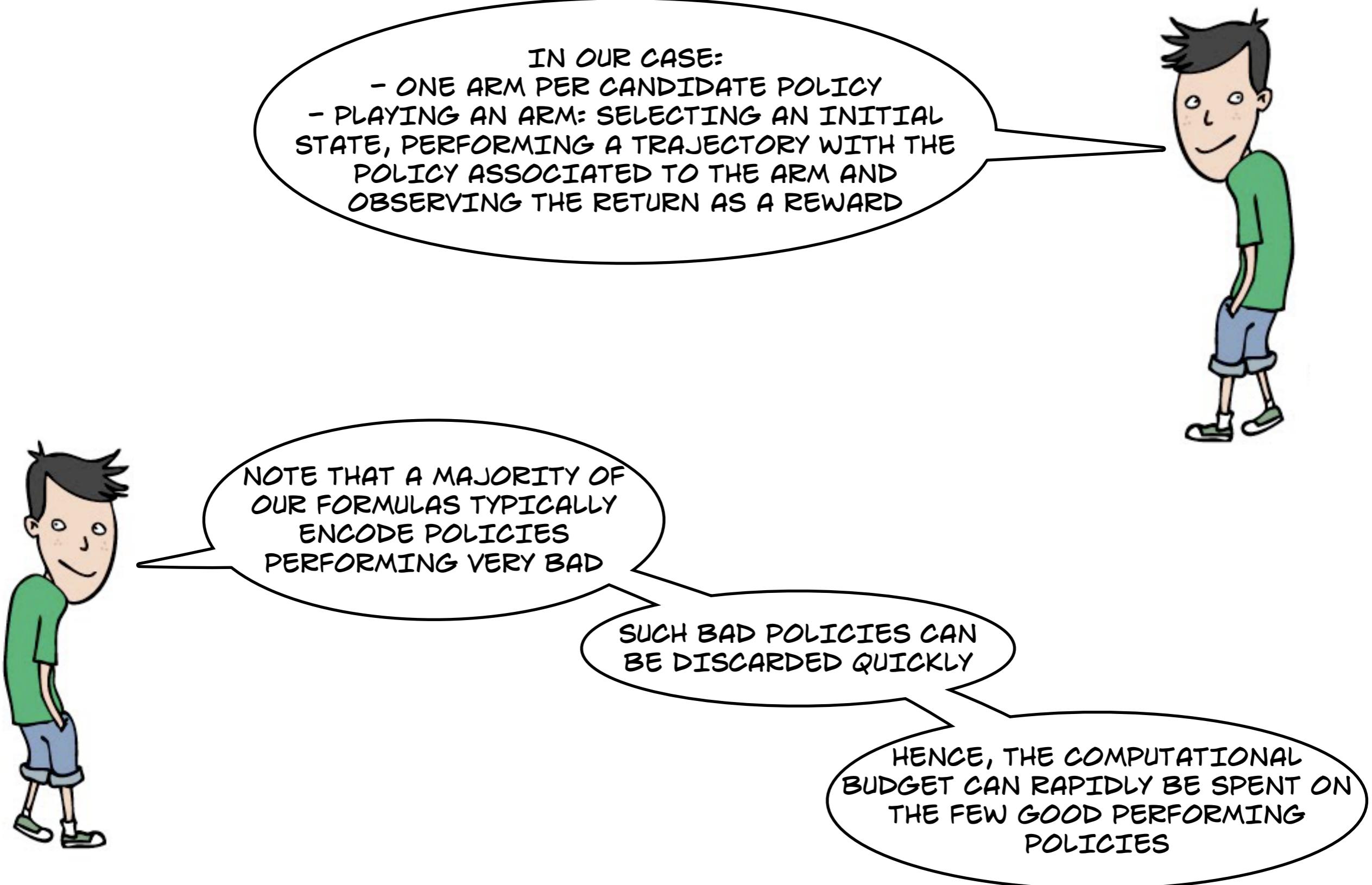
- BEST ARM IDENTIFICATION: WITHIN A FINITE NUMBER OF STEPS T , SELECT WHICH ARMS TO PLAY SO AS TO IDENTIFY THE ARM WHICH PERFORMS BEST ON AVERAGE

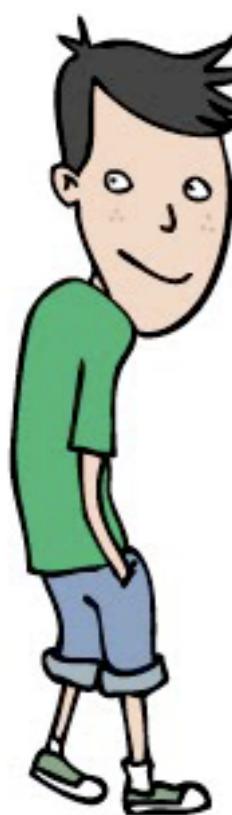
=> EXPLORATION / EXPLOITATION DILEMMA

EXPLORATION:
TRYING ARMS THAT MAY POTENTIALLY BE GOOD

EXPLOITATION:
FOCUSING ON ARMS THAT WE ALREADY KNOW TO BE GOOD

A GOOD MULTI-ARMED BANDIT STRATEGY BALANCES EXPLORATION AND EXPLOITATION





HERE IS OUR POLICY LEARNING ALGORITHM

SINCE IT RELIES ON DIRECT EVALUATION OF POLICY RETURNS, IT IS AN INSTANCE OF "DIRECT POLICY SEARCH"

1. CONSTRUCT THE APPROXIMATE SET OF CANDIDATE POLICIES

$$\tilde{\Pi}_{int}^K = \{\pi_{F_1}, \dots, \pi_{F_N}\}$$

2. PLAY EACH ARM ONCE (= DRAW ONE TRAJECTORY PER CANDIDATE POLICY)

3. WHILE THERE IS TRAINING TIME:

A) SELECT THE ARM WHICH MAXIMIZES $A_{n,t} = \bar{r}_{n,t} + \frac{\alpha}{\theta_{n,t}}$

WHERE $\bar{r}_{n,t}$ IS THE EMPIRICAL MEAN OF RETURNS ASSOCIATED TO π_{F_n}

$\theta_{n,t}$ IS THE NUMBER OF TIMES π_{F_n} HAS BEEN PLAYED

$\alpha > 0$ IS AN EXPLORATION/EXPLOITATION TRADEOFF CONSTANT

B) DRAW AN INITIAL STATE, PERFORM ONE TRAJECTORY WITH π_{F_n} AND OBSERVE THE RETURN

C) UPDATE $\bar{r}_{n,t}$ AND $\theta_{n,t}$

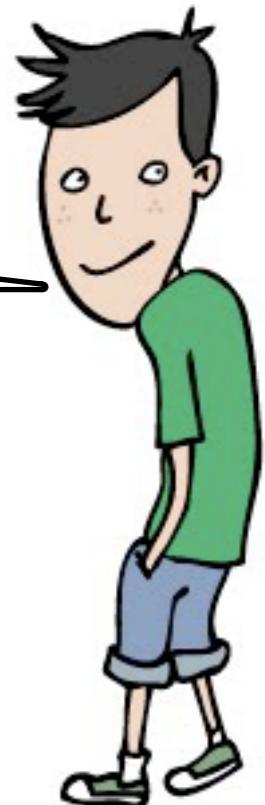
4. RETURN THE POLICY (OR POLICIES) THAT MAXIMIZE(S) $\bar{r}_{n,t}$

EXPERIMENTS

WE EXPERIMENT OUR APPROACH ON SIX CLASSICAL BENCHMARKS

WE COMPARE THE LOOKAHEAD-FREE AND ONE-STEP LOOKAHEAD VARIANTS...

... AGAINST "NON-INTERPRETABLE" RL TECHNIQUES



OUR BENCHMARKS: LINEAR POINT, LEFT OR
RIGHT, CAR ON THE HILL, ACROBOT SWING UP,
BICYCLE BALANCING, HIV THERAPY

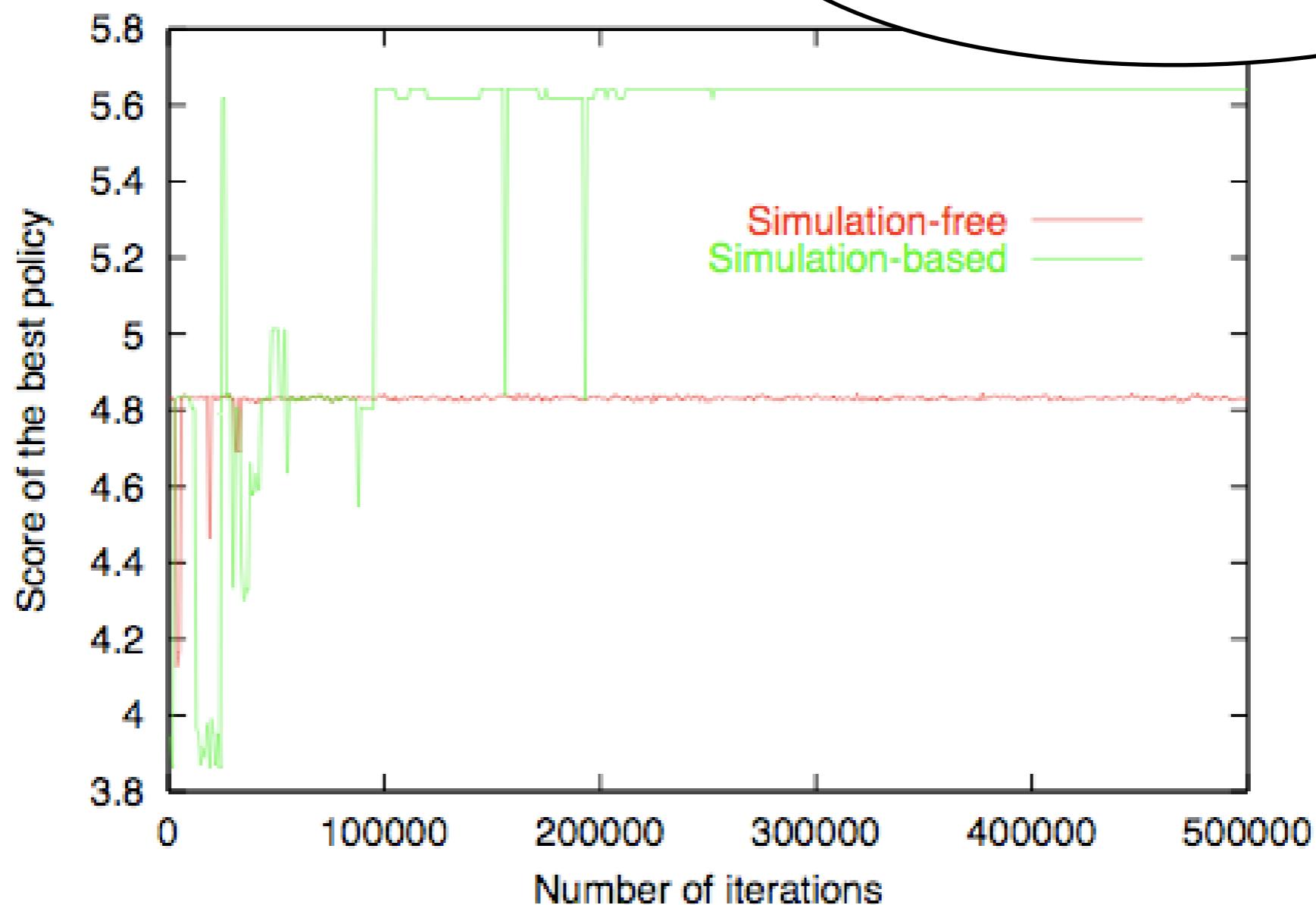
BENCHMARK	LP	LoR	CAR	ACR	B	HIV
d_x	2	1	2	4	5	6
d_u	1	1	1	1	2	2
m	2	2	2	2	9	4
Stoch.	no	yes	no	no	yes	no
$\#\mathbb{V}_{LF}$	3	2	3	5	7	8
$\#\mathbb{V}_{OL}$	6	4	6	10	13	15
γ	.9	.75	.95	.95	.98	.98
T	50	20	1000	100	5e4	300

THIS TABLE REPORTS THE DIMENSIONALITY
OF THE STATE AND ACTION SPACES, THE NUMBER OF
ACTIONS, STOCHASTICITY, NUMBER OF VARIABLES IN OUR
TWO SETTINGS, DISCOUNT FACTOR AND
THE HORIZON USED FOR LEARNING

	CANDIDATE FORMULAS	CANDIDATE POLICIES
$K=5$, LOOKAHEAD-FREE	80,000 - 340,000	500 - 11,500
$K=5$, ONE-STEP LOOKAHEAD	140,000 - 990,000	3,800 - 95,000
$K=6$, LOOKAHEAD-FREE	1,000,000 - 5,500,000	3,600 - 132,000
$K=6$, ONE-STEP LOOKAHEAD	2,100,000 - 18,500,000	31,000 - 1,200,000

THIS FIGURE SHOWS A TYPICAL RUN OF THE ALGORITHM (K=5, LINEAR POINT BENCHMARK)

IN THIS SETTING, WE HAVE 907 (RESP. 12,214) CANDIDATE POLICIES IN THE LOOKAHEAD FREE (RESP. ONE-STEP LOOKAHEAD) SETTING

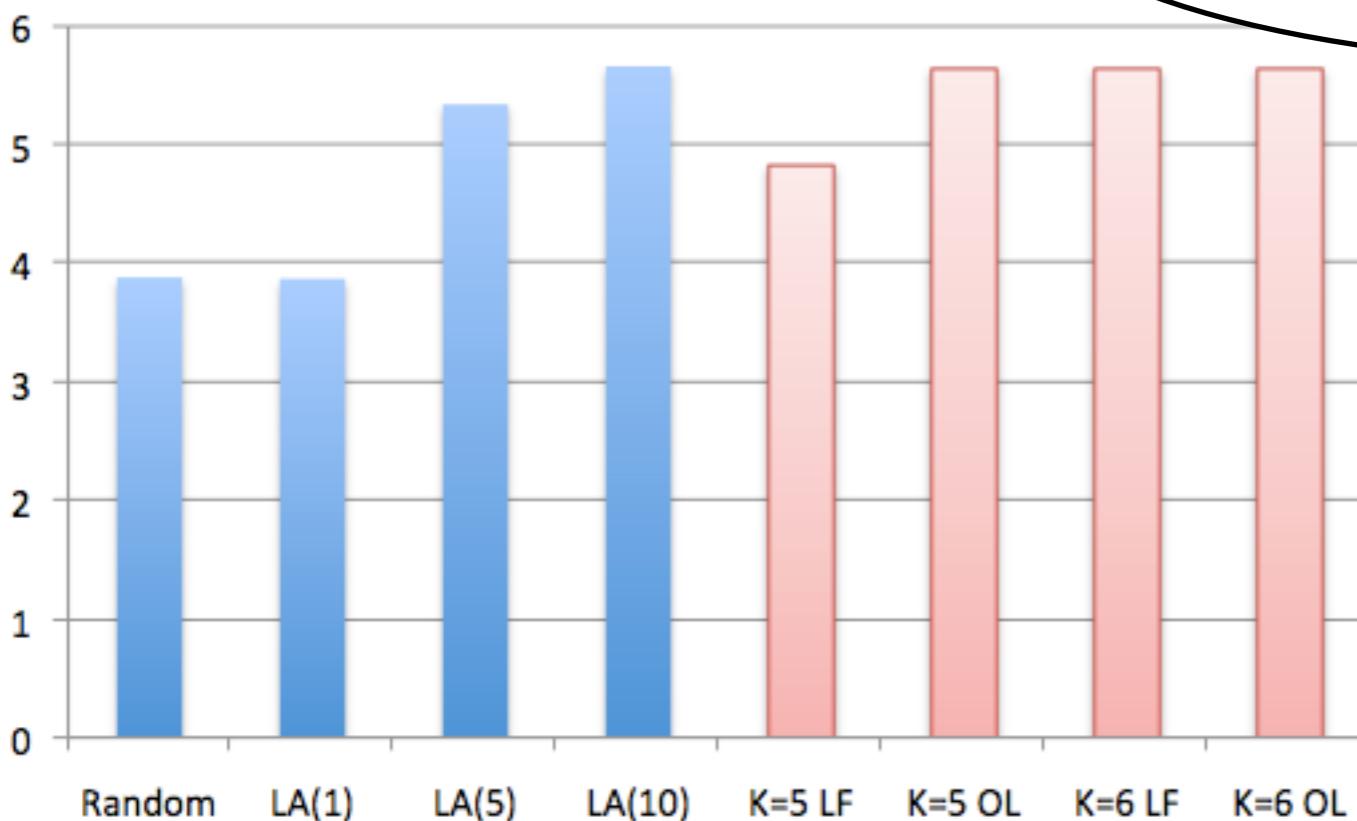


IN THREE CASES, WE FIND AS GOOD POLICIES AS THE LOOKAHEAD POLICY OF DEPTH 10

THE "K=6 LF" DISCOVERED FORMULA IS: $F^* = (-y - v)a$

WHERE y AND v ARE THE STATE VARIABLES AND a IS THE ACTION VARIABLE

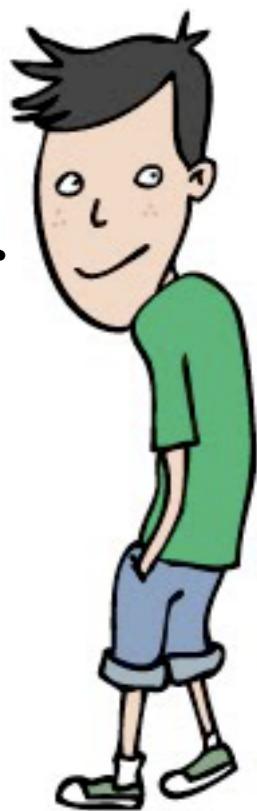
SINCE THE ACTION a IS EITHER -1 OR +1, THE POLICY CAN BE TERMED AS: "CHOOSE -1 WHEN $y > -v$ AND +1 OTHERWISE"



OUR BEST INTERPRETABLE POLICY PERFORMS NEARLY AS WELL AS FQI (0.282 VS 0.29)

THE K=6 OL DISCOVERED FORMULA IS:

$$r = \frac{1}{\max(p', s')}$$

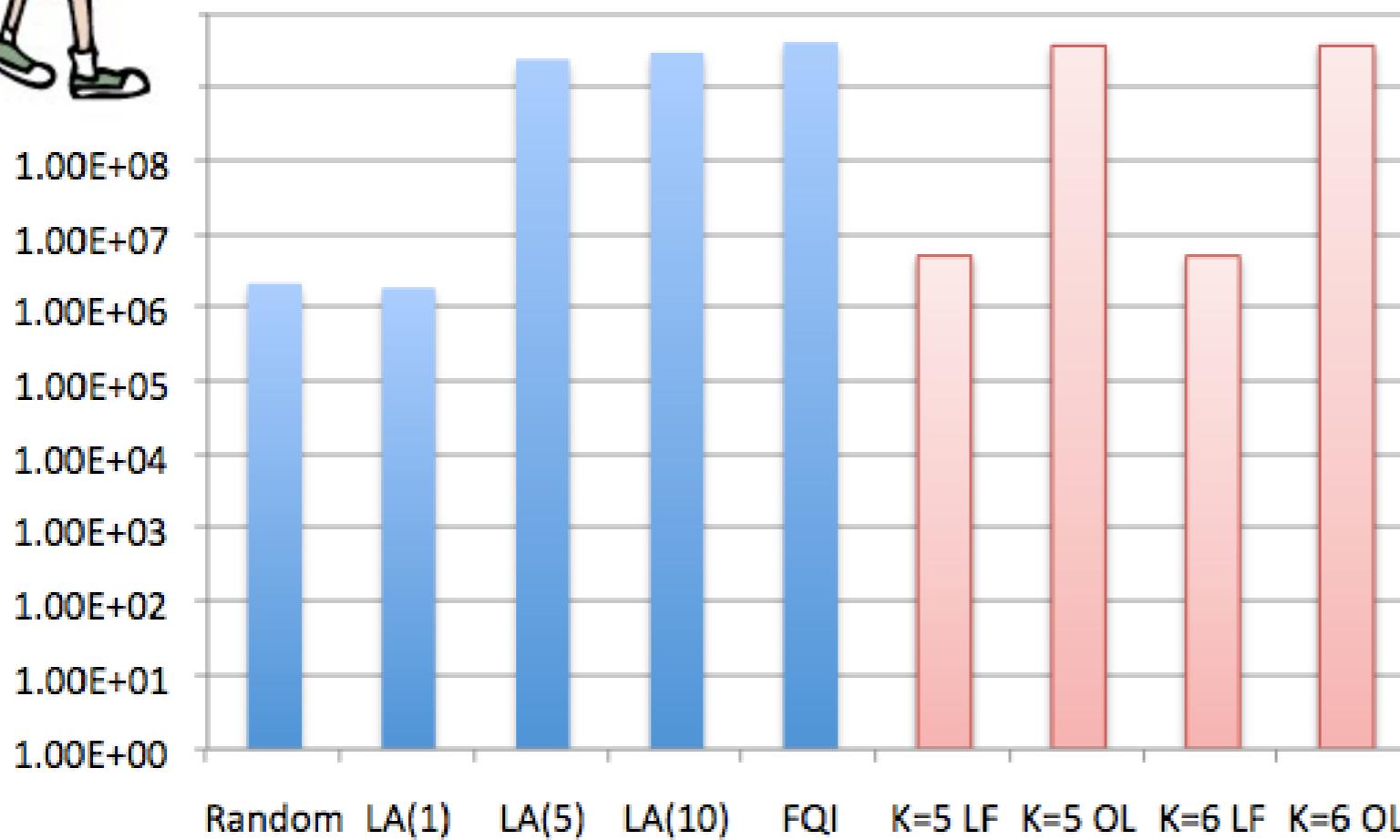




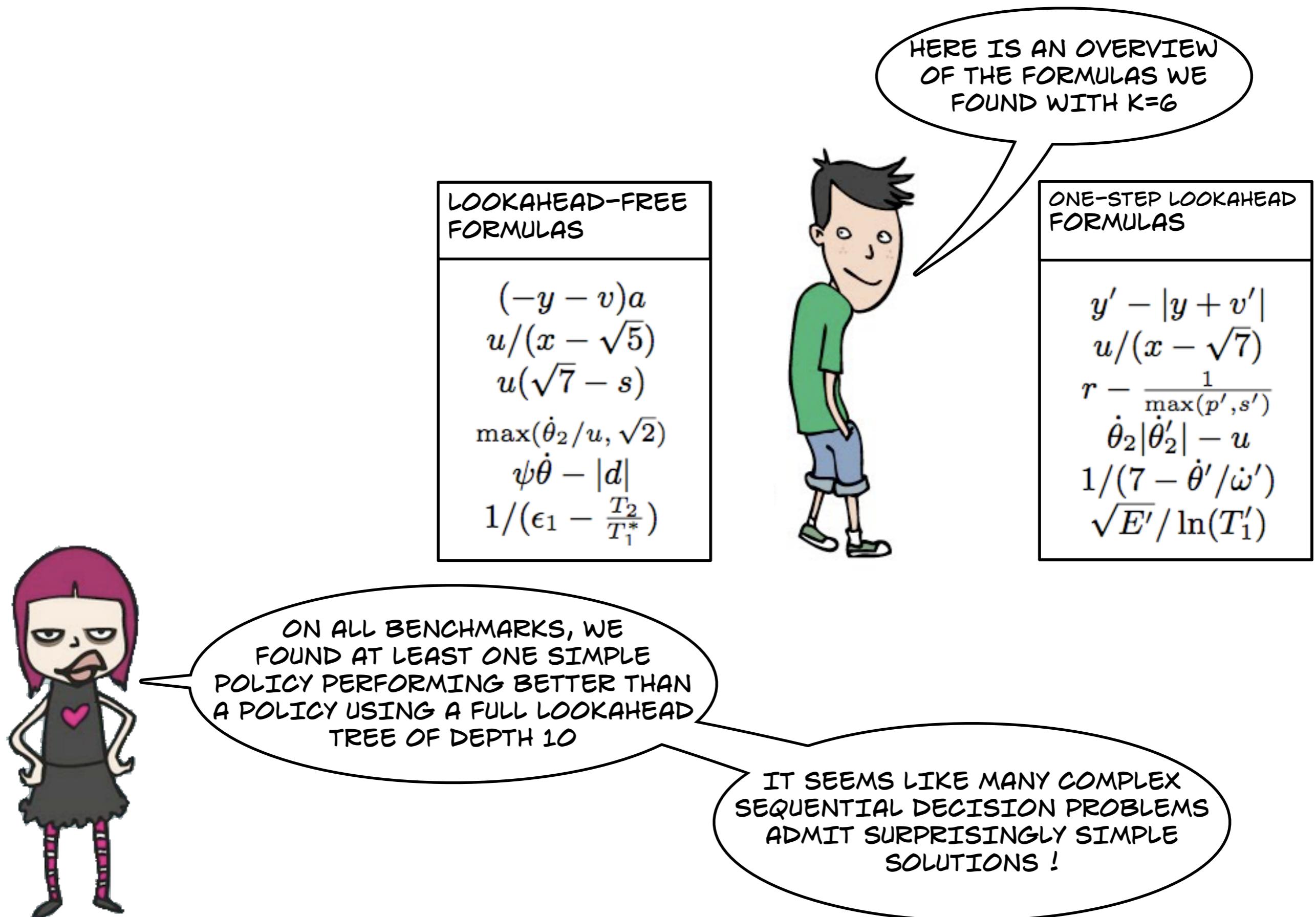
AGAINST ALL OUR EXPECTATIONS, WE DISCOVERED A SIMPLE GOOD PERFORMING POLICY FOR THE HIV BENCHMARK:

$$F^* = \frac{\sqrt{E'}}{\ln(T'_1)}$$

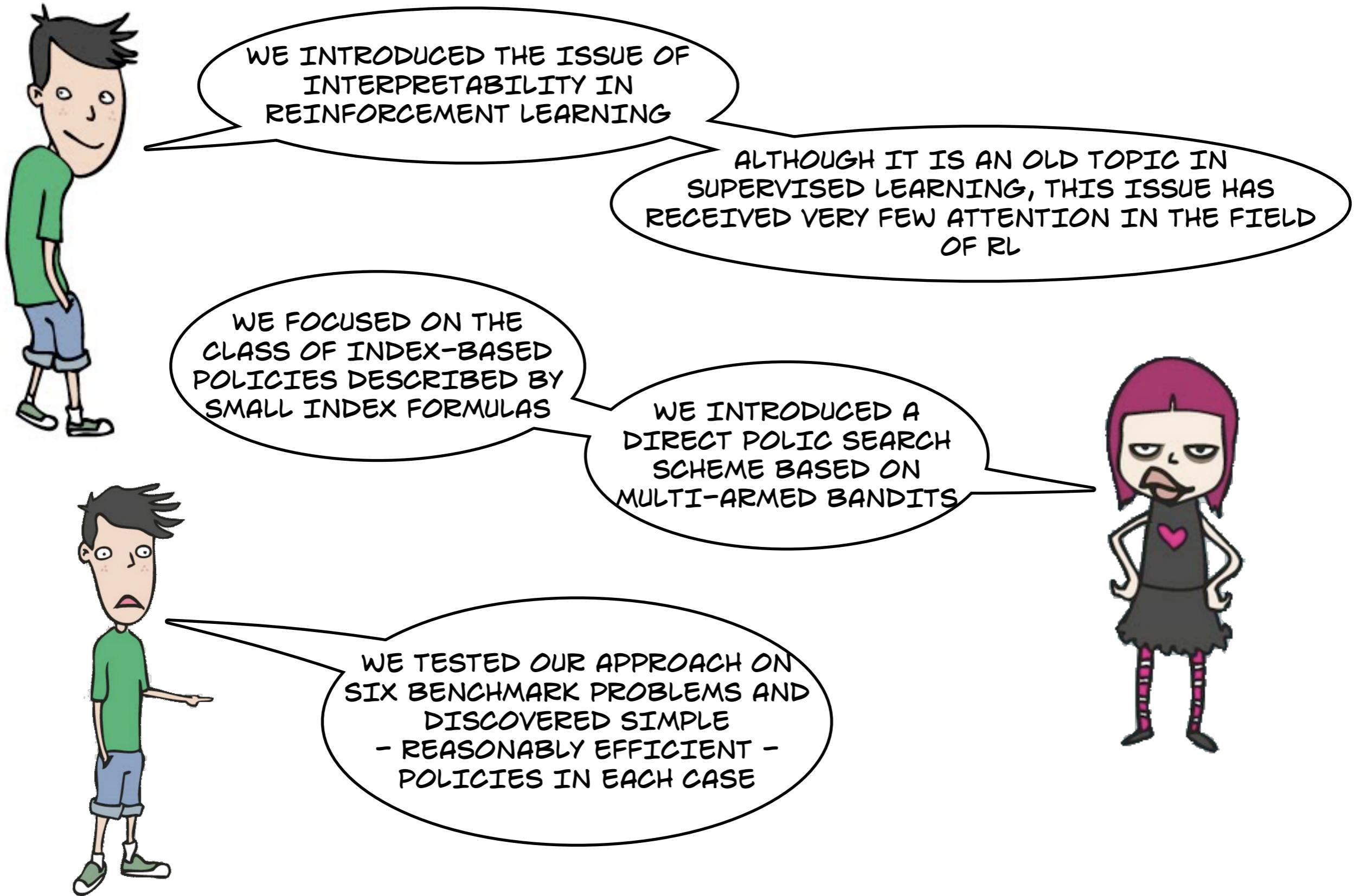
THIS POLICY OBTAINS AN AVERAGE RETURN SLIGHTLY BELOW FQI (3.744E9 VS 4.16E9) HOWEVER, THE POLICY FOUND BY FQI REQUIRED 2GB OF MEMORY TO BE STORED



E IS THE CONCENTRATION OF CYTOTOXIC T-LYMPHOCYTES (IN CELLS/ML) AND T1 IS THE CONCENTRATION OF NON-INFECTED CD4 T-LYMPHOCYTES (IN CELLS/ML)



CONCLUSIONS

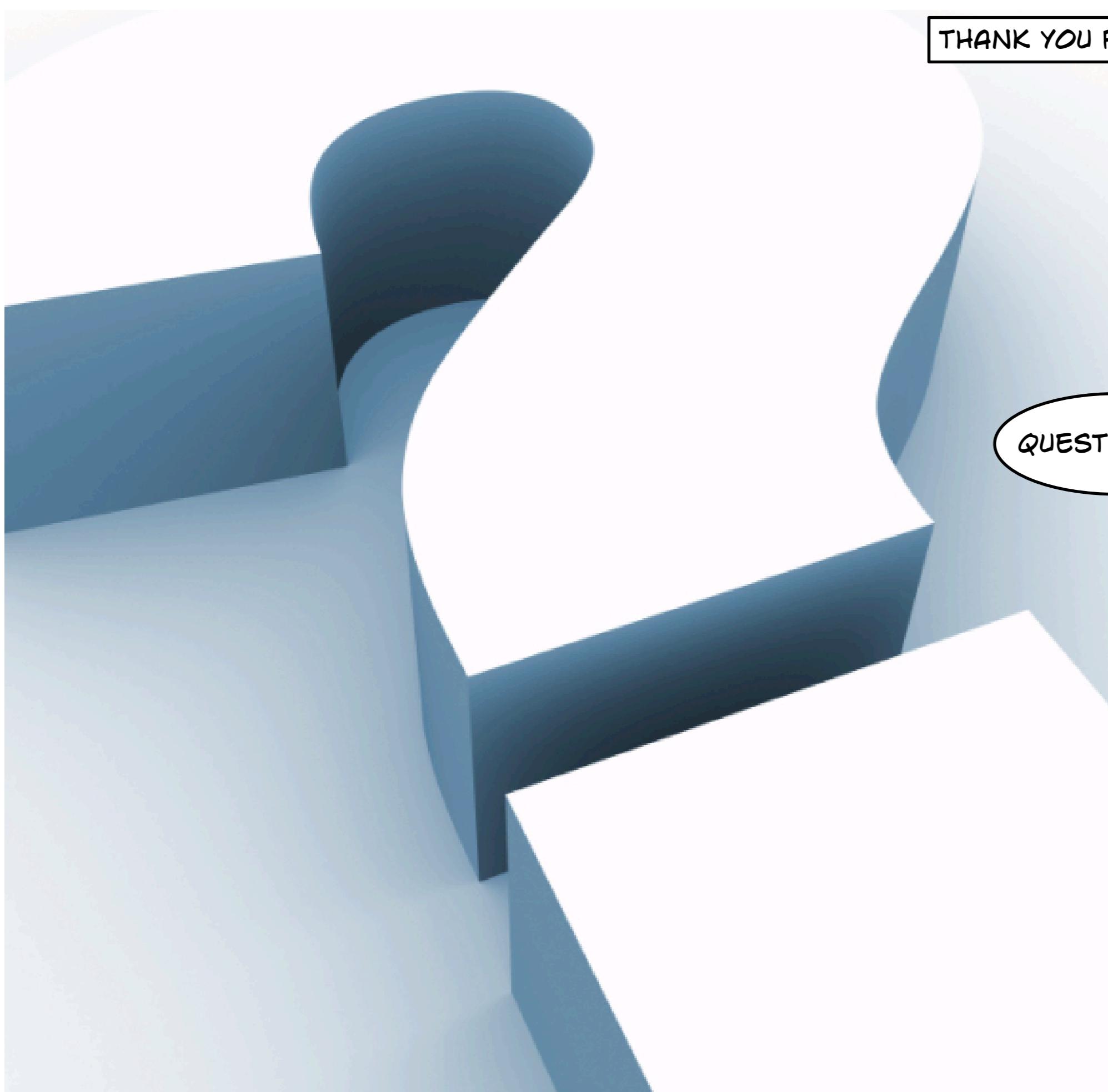


WE EXPERIENCED THE INTERPRETABILITY / EFFICIENCY TRADEOFF: MORE INTERPRETABLE POLICIES DO NOT REACH THE PERFORMANCE OF NON-INTERPRETABLE ONES

HOWEVER, ON ALL THE SIX DOMAINS, THE PERFORMANCE WE OBTAIN IS STILL REASONABLE AND OUR APPROACH ENABLES TO OBTAIN USEFUL INSIGHTS ON THE PROBLEMS

THIS WORK IS ONLY ONE EXAMPLE OF INTERPRETABLE RL. MANY OTHER APPROACHES COULD BE INVESTIGATED (E.G. BASED ON DECISION TREES OR DECISION GRAPHS)

THANK YOU FOR YOUR ATTENTION !



QUESTIONS ?

SEE ALSO ...

[Monte Carlo Search Algorithm Discovery for One Player Games](#). Francis Maes, David Lupien St-Pierre and Damien Ernst.

[Meta-Learning of Exploration/Exploitation Strategies: The Multi-Armed Bandit Case](#). Francis Maes, Louis Wehenkel and Damien Ernst.

[Learning exploration/exploitation strategies for single trajectory reinforcement learning](#). Michael Castronovo, Francis Maes, Raphael Fonteneau and Damien Ernst. In 10th European Workshop on Reinforcement Learning (EWRL'12), Edinburgh, Scotland, June 2012.

[Automatic discovery of ranking formulas for playing with multi-armed bandits](#). Francis Maes, Louis Wehenkel and Damien Ernst. In 9th European workshop on reinforcement learning (EWRL'11), Athens, Greece, September 2011.