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Abstract. In this paper, we address the problem of computing interpretable solu-
tions to reinforcement learning (RL) problems. To this end, we propose a search
algorithm over a space of simple closed-form formulas that are used to rank ac-
tions. We formalize the search for a high-performance policy as a multi-armed
bandit problem where each arm corresponds to a candidate policy canonically
represented by its shortest formula-based representation. Experiments, conducted
on standard benchmarks, show that this approach manages to determine both ef-
ficient and interpretable solutions.
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1 Introduction

Reinforcement learning refers to a large class of techniques that favor a sampling-based
approach for solving optimal sequential decision making problems. Over the years,
researchers in this field have developed many efficient algorithms, some of them coming
with strong theoretical guarantees, and have sought to apply them to diverse fields such
as finance [17], medicine [22] or engineering [24].

But, surprisingly, RL algorithms have trouble to leave the laboratories and become
used in real-life applications. One possible reason for this may be the black-box nature
of policies computed by current state-of-the-art RL algorithms. Indeed, when the state
space is huge or continuous, policies are usually based on smart approximation struc-
tures, such as neural networks, ensembles of regression trees or linear combinations of
basis functions [6]. While the use of such approximation structures often leads to algo-
rithms providing high-precision solutions, it comes with the price of jeopardizing the
interpretability by human experts of their results.

In real-world applications, interpretable policies are preferable to black-box poli-
cies for several reasons. First, when addressing a sequential decision making problem,
people may be uncertain about their system model. In such a case, even an algorithm
coming with strong theoretical guarantees may produce doubtful results. This lack of
trust could to some extend be eluded, or reduced, if one could at least “understand”
the policy. Second, in many fields, the step of formalizing the problem into an optimal
sequential decision making problem involves arbitrary choices that may be somewhat
disconnected from reality. The aim is then essentially to exploit techniques among the
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optimal sequential decision making technology that are supposed to lead to policies
having desirable properties. Such properties are generally much harder to establish with
black-box policies than with interpretable ones. Third, when applied in vivo, decisions
suggested by a policy may involve extra-engineering issues (ethical, ideological, polit-
ical,...) which may impose the decision process to be understandable by humans. This
is especially the case in the context of medical applications involving patients’ health
[22, 13, 30].

Despite a rich literature in machine learning, the notion of interpretability has not
yet received a satisfactory and broadly accepted formal definition. Besides this, a sig-
nificant body of work has been devoted to the definition of algorithmic complexity (e.g.
Kolmogorov complexity [18], its application to density estimation in [5], and the ques-
tion of defining artificial intelligence in general [16]) and its implications in terms of
the consistency of machine learning algorithms, but this complexity notion is language-
dependent and is therefore not systematically transposable as a measure of interpretabil-
ity by human experts of a hypothesis computed by a machine learning algorithm.

Given this situation, we propose in this paper a “pragmatic” three step approach for
the design of interpretable reinforcement learning algorithms. The first step consists of
choosing a human-readable language to represent the policies computed by an algo-
rithm: we propose to this end a simple grammar of formulas using a restricted number
of operators and terminal symbols that are used to express action-ranking indexes. The
second step consists of defining a complexity measure of these formulas: to this end we
use the number of nodes of the derivation tree that produces a formula from the chosen
grammar. The third step consists of measuring the (non)interpretability of a policy by
the complexity of its shortest representation in the formula language and by formulating
a policy search problem under bounded complexity in this sense.

The rest of this paper is organized as follows. Section 2 formalizes the problem ad-
dressed in this paper. Section 3 details a particular class of interpretable policies that are
implicitly defined by maximizing state-action dependent indices in the form of small,
closed-form formulas. Section 4 formalizes the search of a high-performance policy in
this space as a multi-armed bandit problem where each arm corresponds to a formula-
based policy. This defines a direct policy search scheme for which Section 5 provides
an empirical evaluations on several RL benchmarks. We show that on all benchmarks,
this approach manages to compute accurate and indeed interpretable policies, that often
outperform uniform planning policies of depth 10. Section 6 proposes a brief review of
the RL literature dealing with the notion of interpretability and Section 7 concludes.

2 Problem formalization

We consider a stochastic discrete-time system whose dynamics is described by a time-
invariant equation

Ti+1 pr(.|l't,’ll,t) t:()vla
where for all ¢, the state x; is an element of the dy—dimensional state space X, u; is

an element of the finite (discrete) dy,—dimensional action space U = {uV), ... u(™}
(m € Np) and ps(.) denotes a probability distribution function over the space X. A
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stochastic instantaneous scalar reward

Ty~ pp(-lxta Ut)

is associated with the action u; taken while being in state z;, where p,(-) denotes a
probability distribution over rewards. Let II be the set of stochastic stationary policies,
i.e. the set of stochastic mappings from & into U/ . Given a policy m € II, we denote by
m(x¢) ~ pr(.|x¢) a stochastic action suggested by the policy 7 in the state ;. Given a
probability distribution over the set of initial states py(.), the performance of a policy 7
can be defined as:
™ ™

7= e 1 )
where R7 (xg) is the stochastic return of the policy 7 when starting from x. The return
that is often used is the infinite discounted sum of rewards:

R™(x0) = Y _'re
t=0

where 7 ~ p,(.|ze, T(24)), Tep1 ~ pp(|xe, w(2e)), (@) ~ pa(.|ze) VE € N and
v < 1. Note that one can consider other criteria to evaluate the return of a trajectories,
such as finite-time horizon sum of rewards, or more sophisticated criteria such as value-
at-risk. An optimal policy 7* is a policy such that

Vrell, JF<J" .

In most non-trivial RL problems, such as those involving a continuous state space
X, the policy space II cannot be represented explicitly in a machine. What RL algo-
rithms do to overcome this difficulty is to consider a subset of policies from II that can
be compactly represented, such as parametric policies or value function-based policies.
In this paper, we additionally expect the policies from such a subset to be interpretable
by humans.

We use the ideas of Kolmogorov complexity theory to express the interpretability
of a policy 7 relative to a given description language. We say that a policy is inter-
pretable, in the selected description language, if it can be described in this language by
using few symbols. This notion is rather general and can be applied to several descrip-
tion languages, such as decision lists, decision trees, decision graphs or more general
mathematical formulas.

Given a policy 7, we denote D, () the set of descriptors of 7 in the chosen descrip-
tion language L. Formally, the Kolmogorov complexity of 7 is the number of symbols
taken by the shortest description in Dy, (7):

L (ﬂ—) B dEIBILI%ﬂ')|d|.
The remainder of this paper proposes a policy description language in the form of
mathematical formulas and addresses the problem of finding the best policy whose
Kolmogorov complexity is no more than K € Ny in this language:

Ty = argmax  J".
{rel|rL(r)<K}
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3 Building a space of interpretable policies

We now introduce index-based policies and define the subset of low Kolmogorov com-
plexity index-based policies that we focus on in this paper.

3.1 Index-based policies

Index-based policies are policies that are implicitly defined by maximizing a state-
action index function. Formally, we call any mapping [ : X x U — R a state-action
index function. Given a state-action index function / and a state z € X, a decision
7r(x) can be taken by drawing an action in the set of actions that lead to the maximiza-
tion of the value I(z,u):

Vo e X,m(z) € argmax  I(z,u).
ueU

Such a procedure defines a class of stochastic policies'. It has already been vastly used
in the particular case where state-action value functions are used as index functions?.

3.2 Formula-based index functions

We move on the problem of determining a subclass of low Kolmogorov complexity
index functions. To this purpose, we consider index functions that are given in the form
of small, closed-form formulas. Closed-form formulas have several advantages: they
can be easily computed, they can formally be analyzed (e.g. differentiation, integration)
and, when they are small enough, they are easily interpretable.

Let us first explicit the set of formulas [F that we consider in this paper. A formula
FeTFis:

— either a binary expression F' = B(F’, F"), where B belongs to a set of binary
operators B and F and F" are also formulas from F,

— or a unary expression F' = U(F") where U belongs to a set of unary operators U
and F' € T,

— or an atomic variable /' = V, where V' belongs to a set of variables V,

— or a constant F' = C, where C' belongs to a set of constants C.

In the following, we consider a set of operators and constants that provides a good
compromise between high expressiveness and low cardinality of . The set of binary
operators considered in this paper B includes the four elementary mathematic opera-
tions and the min and max operators: B = {+, —, X, =+, min, max} . The set of unary
operators U contains the square root, the logarithm, the absolute value, the opposite and
the inverse: U = {,/;,In(.),|.|,—., 2} . The set of variables V gathers all the avail-
able variables of the RL problem. In this paper, we consider two different settings: in
the lookahead-free setting, we consider that index functions only depend on the current

! Ties are broken randomly in our experiments.
2 State-action value functions map the pair (x, ) into an estimate of the expected return when
taking action u in state « and following a given policy afterwards.
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state and action (¢, u:). In this setting, the set of variables V contains all the compo-
nents of x; and u;:

V=Vip= {x%l),...7x§dX),u,(51)7...,u£d”)} )

In the one-step lookahead setting, we assume that the probability distributions p(.) and
p,(.) are accessible to simulations, i.e., one can draw a value of z;41 ~ pr(.|ze, )
and 7 ~ p,(.|x¢, uy) for any state-action pair (z¢,u;) € X x U. To take advantage of
this, we will consider state-action index functions that depend on (¢, u;) but also on
the outputs of the simulator (r¢, z;y1). Hence, the set of variables V contains all the
components of x4, uz, 7, and z41:

V=Vor = {a:gl),...,xid)(),ugl),...,uid”),rt,a:g_)l,...,x&iﬁ)} )

The set of constants C has been chosen to maximize the number of different num-
bers representable by small formulas. It is defined as C = {1, 2, 3,5, 7}. In the follow-
ing, we abusively identify a formula with its associated index function, and we denote
by 7 the policy associated with the index function defined by the formula F'. In other
words, the policy 7 is the myopic greedy policy w.r.t. ', where F' act as a surrogate
for the long-term return.

3.3 Interpretable index-based policies using small formulas

Several formulas can lead to the same policy. As an example, any formula F' that rep-
resents an increasing mapping that only depends on r; defines the greedy policy.

Formally, given a policy m, we denote Dp(mw) = {F € Flrp = w} the set of
descriptor formulas of this policy. We denote | F'| the description length of the formula
F, i.e. the total number of operators, constants and variables occurring in F. Given
these notations, the Kolmogorov complexity of 7 such that D () # () is

k(M) = min |F|.
FeDp(m)

Let K € N be a fixed maximal length. We introduce our set of interpretable policies
ITX, as the set of formula-based policies whose Kolmogorov complexity is lower or

equal than K:
1%, = {x|Dp(m) # 0 and () < K} .

4 Direct policy search in a space of interpretable policies

We now focus on the problem of finding a high-performance policy mp- € ITX

. For
,_ nt
computational reasons, we approximate the set I, by a set IIX, using a strategy

detailed in Section 4.1. We then describe our direct policy search scheme for finding a

high-performance policy in the set 1T K in Section 4.2.

wm
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4.1 Approximating ITX

int

Except in the specific case where the state space is finite, computing the set ITX, is not
trivial. We propose instead to approximately discriminate between policies by compar-
ing them on a finite sample of state points. More formally, the procedure is as following:

— we first build FX, the space of all formulas such that |F| < K,

— given a finite sample of S state points S = {si}le, we clusterize all fomulas from
FX according to the following rule: two formulas F and F’ belong to the same
cluster if

Vs € {81,...,85},

argmax F(s,u,r,y) = argmax F'(s,u,r,y)
ueU ueld

for some realizations 7 ~ p,(.|s,u) and y ~ ps(.|s,u) (in the lookahead-free
setting, the previous rule does not take 7 and y into account). Formulas leading
to invalid index functions (caused for instance by division by zero or logarithm of
negative values) are discarded;

— among each cluster, we select one formula of minimal length;

— we gather all the selected minimal length formulas into an approximated reduced
set formulas FX and obtain the associated approximated reduced set of policies:

ﬁ{flt = {7TF|F S ]FK}

In the following, we denote by N the cardinality of the approximate set of policies
nE, = {r Try }
int Fis--sNFn S-

4.2 Finding a high-performance policy in 1T iIflt

An immediate approach for determining a high-performance policy 7p« € II K. would
be to draw Monte Carlo simulations in order to identify the best policies. Such an ap-
proach could reveal itself to be time-inefficient in case of spaces IT K. of large cardinal-
1ty.

We propose instead to formalize the problem of finding a high-performance policy
in IT/S, as a N—armed bandit problem. To each policy 7z, € ITX, (n € {1,...,N}),
we associate an arm. Pulling the arm n means making one trajectory with the policy
7, on the system, i.e., drawing an initial state 2o ~ po(.) and applying the decisions
suggested by the policy 75, until stopping conditions are reached.

Multi-armed bandit problems have been vastly studied, and several algorithms have
been proposed, such as for instance all UCB-type algorithms [3, 2]. New empirically

efficient approaches have also recently been proposed in [19].

S5 Experimental results

We empirically validate our approach on several standard RL benchmarks: the “Linear
Point” benchmark (LP) initially proposed in [15], the “Left or Right” problem (LOR)
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Table 1. Benchmark characteristics: state space and action space dimensions, number of actions,
stochasticity of the system, number of variables in the lookahead-free and one-step lookahead
settings, discount factor and horizon truncation.

BENCHMARK LP LoR CAR ACR B HIV
dx 2 1 2 4 5 6

du 1 1 1 1 2 2

m 2 2 2 2 9 4
Stoch. no yes no no yes no
#Vrp 3 2 3 5 7 8
#Vor 6 4 6 10 13 15

5y 9 75 .95 .95 .98 .98
T 50 20 1000 100 5e4 300
Rand. 3.881 36.03 -0.387 0.127e-3 -0.17 2.193e6
LA(1) 3.870 60.34 -0.511 0 -0.359 1.911e6
LA(5) 5.341 60.39 -0.338 0 -0.358 2.442¢9
LA(10) 5.622 60.45 -0.116 0.127e-3 - 3.023e9
FQI* - 64.3 0.29 44.7e-3 0 4.16e9

[8], the “Car on the Hill” problem (CAR) [21], the “Acrobot Swing Up” problem (ACR)
[29], the “Bicycle balancing” problem (B) [23] and the HIV benchmark (HIV) [1]. The
choice of these benchmarks was made a priori and independently of the results obtained
with our methods, and no benchmark was later excluded.

We evaluate all policies using the same testing protocol as in [8]: the performance
criterion is the discounted cumulative regret averaged over a set of problem-dependent
initial states Py (see Appendix A), estimated through Monte Carlo simulation, with 10%
runs per initial state and with a truncated finite horizon 7.

Table 1 summarizes the characteristics of each benchmark, along with baseline
scores obtained by the random policy and by uniform look-ahead (LA) planning poli-
cies. The LA(1) policy (resp. LA(5) and LA(10)) uses the simulator of the system to
construct a look-ahead tree uniformly up to depth 1 (resp. 5 and 10). Once this tree
is constructed, the policy returns the initial action of a trajectory with maximal return.
Note that LA(1) is equivalent to the greedy policy w.r.t. instantaneous rewards.

When available, we also display the best scores reported in [8] for Fitted Q Iteration
(FQD)*.

5.1 Protocol

In the present set of experiments, we consider two different values for the maximal
length of formulas: K = 5 and K = 6. For each value of K and each benchmark, we

3 Note that, while we use the same evaluating protocol, the scores relative to FQI should be
taken with a grain of salt: FQI relies on the “batch-mode” RL setting, in which the trainer only
has access to a finite sample of system transitions, whereas, our direct policy search algorithm
can simulate the system infinitely many times. By using more simulations, the scores of FQI
could probably by slightly higher than those reported here.
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first build the set F. We then consider a set of test points S that we use to extract I7 K,
according to the procedure described in Section 4.1. When the state space is bounded
and the borders of the state space are known, the set S is obtained by uniformly sam-
pling 100 points within the domain. Otherwise, for unbounded problems, we refer to
the literature for determining a bounded domain that contains empirical observations of
previous studies. The probability distribution of initial states po(.) used for training is
also chosen uniform. Appendix A details the domains used for building /T K. and those
used for pg(.).

For solving the multi-armed bandit problem described in Section 4.2, we use a re-
cently proposed bandit policy that has shown itself to have excellent empirical prop-
erties [19]. The solution works as follows: each arm is first drawn once to perform
initialization. The N arms are then associated with a time-dependent index A,, ;. At
each time step t € {0, ...,T}}, we select and draw one trajectory with the policy 7p,
whose index:

An,t = fn,t + %

is maximized (7, ; denotes the empirical average of all the returns that have been re-
ceived when playing policy 7, , and 0,, ; denotes the number of times the policy 7r,
has been played so far). The constant & > 0 allows to tune the exploration/exploitation
trade-off and the parameter 7} represents the total budget allocated to the search of a
high-performance policy. We performed nearly no tuning and used the same values of
these parameters for all benchmarks: o = 2, T, = 10% when K = 5 and T;, = 107
when K = 6. At the end of the T} plays, policies can be ranked according to the empir-
ical mean of their return. To illustrate our approach, we only report the best performing
policies w.r.t. this criterion in the following. Note that to go further into interpretability,
one could not only analyze the best performing policy but also the whole top-list of
policies for better extracting common characteristics of good policies.

5.2 A typical run of the algorithm

In order to illustrate the behavior of the algorithm, we compute and plot in Figure 1,
every 1000 iterations, the performance of the policy having the best average empirical
return in the specific case of the LP benchmark in both lookahead-free and one-step
lookahead settings with K = 5.

In the lookahead-free setting, we have N = 907 candidate policies, which means
that all policies have been played at least once after 1000 iterations. This explains some-
how why the red curves starts almost at its best level. The one-step lookahead setting
involves a much larger set of candidate policies: N = 12214. In this case, the best pol-
icy starts to be preferred after 10° iterations, which means that, in average, each policy
has been experienced ~ 8 times.

We performed all experiments with a 1.9 Ghz processor. The construction of the
space II K is quite fast and takes 4s and 11s for the lookahead-free and one-step looka-
head settings, respectively. The computation of mp« (and the evaluation every 1000
iterations) requires about one hour for the LP benchmark in the case K = 5 and 14
hours when K = 6 (both in the one-step lookahead setting). Our most challenging con-
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Fig. 1. Score of the best policy with respect to the iterations of the search algorithm on the LP
benchmark.

Table 2. Results with K = 5.

lookahead-free one-step lookahead
#F° N JE F* #F° N JE F*
LP | 106856 907 4.827 |v — al 224939 12214 5642 |1/(y+ )|

LOR| 78967 513 6404  (x—2)u | 140193 3807 6427 1/vVz—u
CAR| 106856 1106 0.101  w/(2—s) | 224939 13251  0.248 Vr+s
ACR| 179410 3300 0.127e-3 1 (random) | 478 815 43946 0.127e-3 1 (random)
B | 277212 11534 -1.07e-3 &/(0+T) | 756666 94 621 0 (@ —d))e
HIV| 336661 5033 5.232e6 (Ty —Ts)er| 990020 82944 3.744e9 E'/In(TY)

figuration is the B benchmark in the one-step lookahead setting with K = 6, for which
learning requires about 17 days.

5.3 Results

We provide in this section the results that have been obtained by our approach on the six
benchmarks. In Table 2, we give the performance of the obtained formulas in both the
lookahead-free and one-step lookahead settings using K = 5. Table 3 reports the results
when using K = 6. For each setting, we provide the cardinality #FX of the original
set of index functions based on small formulas, the cardinality /V of the reduced search
space bij K, the score J7F* of the high-performance policy 7+ and the expression of

the formula F*, using the original variable names detailed in Appendix A (primes ’
indicate next state variables).
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Table 3. Results with K = 6.

lookahead-free one-step lookahead

#F° N JrEr F* # O N Jrr* F*

LP [1533456 8419 5642 (—y—v)a |3562614 130032 5642 o —|y+ |
LOR|[1085742 3636 6428 wu/(z—+/5)|2088018 31198 6432 wu/(x—+/7)
CAR|[1533456 10626 0.174  u(V/7—5) |3562614 136026 0282 r— L
ACR [2 760 660 36240 0.238¢-3 max(6/u, v2)| 8 288 190 548 238 15.7¢-3  6|04] — u
B [4505112 132120 -0.36e-3 6 — |d| (13740516 1204809 0 1/(7—6'/o')
HIV [5559386 40172 5.217e6 1/(e; — £2)|18 452520 798 004 3.744e9 E'/In(TY)

Ty

Cardinaly of I7/S,. The cardinality N of IT[, is lower than the cardinality of F
up to three or four orders of magnitude. This is due to (i) the elimination of non-valid
formulas, (ii) equivalent formulas and (iii) approximation errors that occur when S does

not enable to distinguish between two nearly identical policies.

Formula length and impact of lookahead. For a fixed length K, results obtained in
the one-step lookahead setting are better than those obtained in the lookahead-free set-
ting, which was expected since V. C V1. Similarly, for a fixed setting (lookahead-
free or one-step lookahead), we observe that results obtained in the case K = 6 are
better than those obtained in the case K = 5. This result was also expected since, for a
fixed setting, F> C .

Comparison with baseline policies. For all the benchmarks, both settings with K = 6
manage to find interpretable policies outperforming the LA(10) baseline. For the B
benchmark, we discover optimal policies (0 is the best possible return for this problem)
for both one-step lookahead settings. The fact that very small index formulas enable
to outperform large look-ahead trees containing m'% nodes is quite impressive and re-
veals an aspect that may have been under-estimated in past RL research: many complex
control problems accept simple and interpretable high-performance policies.

All our interpretable policies outperform the random policy and greedy policy (LA(1)),
though, in some cases, K = 5 is not sufficient to outperform LA(10). As an example,
consider the HIV benchmark in the lookahead-free setting: it seems impossible in this
case to incorporate information on both the state and the two action dimensions using
only 5 symbols. Since only one of the two action variables appears in the best formula
(€1), the corresponding policy is not deterministic and chooses the second action vari-
able (e2) randomly, which disables reaching high performance on this benchmark.

Comparison with FQI. Except for the B benchmark, for which we discovered in-
terpretable optimal policies, g~ policies are generally outperformed by FQI policies.
This illustrates the antagonism between performance and interpretability, a well-known
phenomenon in machine learning. Although our policies are outperformed by FQI, their
interpretability is much higher, which may be a decisive advantage in real-world appli-
cations.

Interpretability of obtained policies. We first provide an illustration on how the ana-
lytical nature of formulas can be exploited to interpret the behavior of the corresponding
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policies. We consider the best formula obtained for the LP problem in Table 3:
F*=(-y—v)a=—-a(y +v).
Since a is either equal to —1 or 1, we can straightforwardly compute a closed-form of
the policy mp~:
mp+(y,v) = —sign(y +v).

In other terms, the policy selects a = —1 when y > —v and a = 1 otherwise, which is
extremely interpretable.
We now focus on the formula obtained for the HIV benchmark:

Y]
~ (@)

This policy depends on both the concentration £ of cytotoxic T-lymphocytes (in cells/ml)
and on the concentration 7} of non-infected CD4 T-lymphocytes (in cells/ml) (both
taken at the subsequent stage). The first category of cells corresponds to the specific
immunological response to the HIV infection whereas the second category of cells is
the main target of HIV. Maximizing the formula amounts in boosting the specific im-
munological response against HIV without increasing too much the concentration 77
which favors the HIV replication. We believe that such kind of results may be of major
interest for the medical community.

6 Related work

While interpretability is a concern that has raised a lot of interest among the machine
learning community (e.g. [28, 26]), it has surprisingly not been addressed so much in the
RL community. However, works dealing with feature discovery [11], variable selection
[14, 9, 7] or dimensionality reduction in RL [4] can indeed be considered as first steps
towards interpretable solutions.

The work proposed in this paper is also related to approaches aiming to derive op-
timization schemes for screening policy spaces, such as gradient-free techniques using
cross-entropy optimization [25, 20], genetic algorithms [12] and more specifically re-
lated to our work, genetic programming algorithms [27, 10].

Finally, our approach is closely related to the work of [19] which proposes to auto-
matically discover efficient indices - given in the form of small formulas - for solving
multi-armed bandit problems.

7 Conclusions

In this paper, we have proposed an approach for inferring interpretable policies to RL
problems. We have focused on the case where interpretable solutions are provided by
index-based policies computed from small, closed-form formulas. The problem of iden-
tifying a high-performance formula-based policy was then formalized as a multi-armed
bandit problem. Although promising empirical results have been obtained on standard
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RL benchmarks, we have also experienced the antagonism between optimality and in-
terpretability, a well known problem in machine learning.

In this paper, we have focused on a very specific class of interpretable solutions
using small formulas expressed in a specific grammar. But one could also imagine
searching in other types of interpretable policy spaces based on simple decision trees or
graphs. Another direct extension of this work would be to consider RL problems with
continuous actions. In this case, we could try to directly search for formulas computing
the values of the recommended actions.
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A Parameters py(.), S and Py

Table 4 details for each benchmark, the original name of the state and action variables,
the domain S used for discriminating between formulas when building the set IT/<,,
the domain defining the uniform training distribution po(.) and the set of testing initial
states Py. The first problem LP is formally defined in [15] and Py is uniform grid over
the domain. We use the LOR, ACR, CAR and B benchmarks as defined in the appendices
of [8], with the same testing initial states Py as them. The HIV benchmark is formally
defined in [1] and we use a single testing initial state, known as the “unhealthy locally

stable equilibrium point”.
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Table 4. Domains

State var. Name S po(.) Po \Action var. Name u
Linear Point (LP)
=@ y  [-1,1] [-1,1] (-1.-0s.....1y | u® a {-1,1}
2 v [—2,2] [—2,2] {-2,-1.6,..., 2}
Left or Right (LoR)
Dz [0,10] [0,10] {0,1,...,10} [ u® u {-2,2}
Car on the Hill (Car)
z® p [-1,1] [-1,1] {-1,-0.875,...,1} u® U {—4,4}
z® S [73,3] [73,3] {—3,-2.625,...,3}
Acrobot Swing Up (Acr)
z@ 01 [—m, 7] [—2,2] {—2,-1.9,..., 2} u™ U {-5,5}
@ 6 [-10,10] {0} {o}
e® 0y [-mm] {0} {0}
@ 6y [~10,10] {o} {0}
Bicycle balancing (B)
P w & E] {0} {0} u™ d {-0.02,0,0.02}
@ o [=10,10] {0} {0} u® T {-2,0,2}
S {0} {0}
z® 6 [-10,10] {0} {0}
z® v o[-, [—m, 7] {—m, —3Z,. .., m}
HIV
DT [1,10% [13000,20000]  {163573} u® €1 {0,0.7}
@ T 1,109 4, 6] {5} u® € {0,0.3}
«® T [1,10°]  [9500,14500] {11945}
@ T [1,10° [37, 55] {46}
+® vV [1,10° [51000,77000] {76702}
+®  E 1,109 [19, 29] {24}




