NUMERATION SYSTEMS: A LINK BETWEEN NUMBER THEORY AND FORMAL LANGUAGE THEORY

Michel Rigo

http://www.discmath.ulg.ac.be/
http://orbi.ulg.ac.be/

28th November 2012

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Sets of	Numeration system	finite/infinite words
numbers		or sequences
\mathbb{N}	integer base	
\mathbb{Z}	linear recurrence	
\mathbb{Q}	numeration basis	
\mathbb{R}	substitutive	
Gaussian int.	abstract	
\mathbb{C}	Ostrowski system	
$\mathbb{F}_q[X]$	factorial system	
-	eta-expansions	
vectors	continued fractions	
of these	canonical number sys.	
:	÷	

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Numeration system	finite/infinite words
	or sequences
integer base	
linear recurrence	$A_2 = \{0, 1\}$
numeration basis	
substitutive	$\operatorname{rep}_2(n)$, $n\in\mathbb{N}$, is a
abstract	finite word over A_2
Ostrowski system	
factorial system	with $X \subseteq \mathbb{N}$,
eta-expansions	$\operatorname{rep}_2(X)$ is a
continued fractions	language over A_2
canonical number sys.	
:	
	Numeration system integer base linear recurrence numeration basis substitutive abstract Ostrowski system factorial system β -expansions continued fractions canonical number sys. :

Integer base, e.g., k = 2

$$\begin{split} \operatorname{rep}_2 : \mathbb{N} &\to \{0,1\}^*, \ n = \sum_{i=0}^{\ell} d_i \, 2^i, \ \operatorname{rep}_2(n) = d_{\ell} \cdots d_0 \\ \operatorname{rep}_2(37) &= 100101 \quad \text{and} \quad \operatorname{val}_2(100101) = 37 \end{split}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Sets of	Numeration system	finite/infinite words
numbers		or sequences
\mathbb{N}	integer base	
\mathbb{Z}	linear recurrence	$A_2 = \{0, 1\}$
\mathbb{Q}	numeration basis	
\mathbb{R}	substitutive	$\operatorname{rep}_2(r)$, $r\in\mathbb{R}$, is an
Gaussian int.	abstract	infinite word over A_2
\mathbb{C}	Ostrowski system	
$\mathbb{F}_q[X]$	factorial system	with $X\subseteq \mathbb{R}$,
_	eta-expansions	$\operatorname{rep}_2(X)$ is an
vectors	continued fractions	ω -language over A_2
of these	canonical number sys.	
÷	:	maybe several rep.

<u>Integer base</u>, e.g., k = 2 (base-complement for neg. numbers)

$$\begin{split} \operatorname{rep}_2: \mathbb{R} \to \{0,1\}^* \star \{0,1\}^{\omega}, \ \{r\} &= \sum_{i=1}^{+\infty} d_i \, 2^{-i}. \end{split}$$
 The set of representations of 3/2 is $0^+1 \star 10^{\omega} \cup 0^+1 \star 01^{\omega}. \end{split}$

Sets of	Numeration system	finite/infinite words
numbers		or sequences
\mathbb{N}	integer base	$A_F = \{0, 1\}$
\mathbb{Z}	linear recurrence	
\mathbb{Q}	numeration basis	greedy choice
\mathbb{R}	substitutive	$\operatorname{rep}_F(n)$, $n\in\mathbb{N}$, is a
Gaussian int.	abstract	finite word over A_F
\mathbb{C}	Ostrowski system	
$\mathbb{F}_q[X]$	factorial system	with $X \subseteq \mathbb{N}$,
_	eta-expansions	$\operatorname{rep}_2(X)$ is a
vectors	continued fractions	language over A_F
of these	canonical number sys.	
:	:	maybe several rep.

Fibonacci numeration system (Zeckendorf 1972)

..., 34, 21, 13, 8, 5, 3, 2, $1 = (F_n)_{n \ge 0}$ and $\operatorname{rep}_F(11) = 10100$ but $\operatorname{val}_F(10100) = \operatorname{val}_F(10011) = \operatorname{val}_F(1111)$ $U_{n+2} = U_{n+1} + U_n.$

Sets of	Numeration system	finite/infinite words
numbers		or sequences
\mathbb{N}	integer base	
\mathbb{Z}	linear recurrence	$A_{\beta} = \{0, 1, \dots, \lceil \beta \rceil - 1\}$
\mathbb{Q}	numeration basis	
\mathbb{R}	substitutive	eta-expansions are
Gaussian int.	abstract	infinite words over A_eta
\mathbb{C}	Ostrowski system	
$\mathbb{F}_q[X]$	factorial system	maybe several rep.
	eta-expansions	
vectors	continued fractions	eta-development is
of these	canonical number sys.	the lexico. largest
:		

 β -expansions (Rényi 1957, Parry 1960), e.g., $\beta = (1 + \sqrt{5})/2$

 $r \in (0,1), r = \sum_{i=1}^{+\infty} c_i \beta^{-i} \qquad \beta^2 = \beta + 1$ $d_{\beta}(\pi-3) = 00001010100100010101010\cdots$

Sets of	Numeration system	finite/infinite words
numbers		or sequences
\mathbb{N}	integer base	
\mathbb{Z}	linear recurrence	$A = \mathbb{N}$
\mathbb{Q}	numeration basis	
\mathbb{R}	substitutive	$\operatorname{rep}(n)$, $n\in\mathbb{N}$, is a
Gaussian int.	abstract	finite word
\mathbb{C}	Ostrowski system	over an
$\mathbb{F}_q[X]$	factorial system	infinite alphabet
	eta-expansions	
vectors	continued fractions	
of these	canonical number sys.	
÷		

Factorial numeration system

..., 720, 120, 24, 6, 2, $1 = (j!)_{j \ge 0}$, $n = \sum_{i=0}^{\ell} d_i i!$, rep(719) = 54321.

H. Lenstra, Profinite Fibonacci numbers, EMS Newsletter'06

Sets of	Numeration system	finite/infinite words
numbers		or sequences
\mathbb{N}	integer base	
\mathbb{Z}	linear recurrence	$A = \{0, 1, X, X + 1\}$
\mathbb{Q}	numeration basis	finite alphabet
\mathbb{R}	substitutive	
Gaussian int.	abstract	$\operatorname{rep}_B(P)$, $P \in \mathbb{F}_2[X]$ is
\mathbb{C}	Ostrowski system	a finite word
$\mathbb{F}_q[X]$	factorial system	
	eta-expansions	with $\mathcal{T} \subseteq \mathbb{F}_2[X]$
vectors	continued fractions	$\mathrm{rep}_B(\mathcal{T})$ is a
of these	canonical number sys.	language over A
÷		

"Polynomial base", e.g., $B = X^2 + 1$, $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$

$$\begin{split} P &= \sum_{i=0}^{\ell} C_i \, B^i \text{ with } \deg C_i < \deg B, \\ X^6 &+ X^5 + 1 = 1.B^3 + (X+1).B^2 + 1.B + X.B^0 \end{split}$$

Sets of	Numeration system	finite/infinite words
numbers		or sequences
\mathbb{N}	integer base	
\mathbb{Z}	linear recurrence	
\mathbb{Q}	numeration basis	
\mathbb{R}	substitutive	
Gaussian int.	abstract	
\mathbb{C}	Ostrowski system	
$\mathbb{F}_q[X]$	factorial system	
	eta-expansions	
vectors	continued fractions	
of these	canonical number sys.	
÷	: :	
numbers		formal language
arithmetic/	\Leftrightarrow	theory
algebraic		syntactical
properties		properties

The Chomsky's hierarchy :

- Recursively enumerable languages (Turing Machine)
- Context-sensitive languages (linear bounded T.M.)
- Context-free languages (pushdown automaton)
- Regular (or rational) languages (finite automaton)

DETERMINISTIC FINITE AUTOMATON (DFA)

 $\mathcal{A} = (Q, q_0, A, \delta, F)$

- A is a finite alphabet,
- Q finite set of states, $q_0 \in Q$ initial state
- $\delta: Q \times A \rightarrow Q$ transition function
- $F \subseteq Q$ set of final (or accepting) states

DFA form the simplest model of computation.

$0^*10^* + 0^*10^*10^*$

 a^*b^*

・ロト・日本・日本・ 日本・ 日本・ 日本

EXAMPLE (USE IN BIO-INFORMATICS, DNA: a,c,g,t)

EXAMPLE (USE IN COMPUTER SCIENCE)

Model checking, program verification, "stringology", ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sets of integers having a somehow simple description

Definition

A set $X \subset \mathbb{N}$ is *k*-recognizable, if $\operatorname{rep}_k(X)$ is a regular language.

A 2-RECOGNIZABLE SET

 $X = \{n \in \mathbb{N} \mid \exists i, j \ge 0 : n = 2^i + 2^j\} \cup \{1\}$

 $1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, \ldots$

 $1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1100, 10000, 10001, \ldots$

 $0, 3, 5, 6, 9, 10, 12, 15, 17, 18, \ldots$

 ε , 11, 101, 110, 1001, 1010, 1100, 1111, 10001, 10010, ...

The set of powers of 2

 $\operatorname{rep}_2(\{2^i \mid i \ge 0\}) = 10^*$ $1, 2, 4, 8, 16, 32, 64, \dots$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An ultimately periodic set, e.g., $4\mathbb{N}+3$

 $3, 7, 11, 15, 19, 23, 27, 31, \ldots$

EXERCISE

Let $k \ge 2$. Show that any arithmetic progression $p\mathbb{N} + q$ is *k*-recognizable (and consequently any ultimately periodic set).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

B. Alexeev, Minimal dfas for testing divisibility, JCSS'04

QUESTION

Does recognizability depends on the choice of the base ? Is a 2-recognizable set also 3-recognizable or 4-recognizable ?

EXERCISE

Let $k, t \ge 2$. Show that $X \subset \mathbb{N}$ is k-recognizable IFF it is k^t -recognizable. $0 \mapsto 00, 1 \mapsto 01, 2 \mapsto 10, 3 \mapsto 11$

Powers of 2 in base 3:

2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221,

2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021, 20122210112, 111022121001, 222122012002, 1222021101011, 10221112202022, 21220002111121, 120210012000012, . . .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two integers $k, \ell \ge 2$ are *multiplicatively independent* if $k^m = \ell^n \Rightarrow m = n = 0$, i.e., if $\log k / \log \ell$ is irrational.

COBHAM'S THEOREM (1969)

Let $k, \ell \geq 2$ be two multiplicatively independent integers. A set $X \subseteq \mathbb{N}$ is k-rec. AND ℓ -rec. IFF X is ultimately periodic.

V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and *p*-recognizable sets of integers, BBMS'94.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some consequences of Cobham's theorem from 1969:

- ► *k*-recognizable sets are easy to describe but non-trivial,
- motivates characterizations of k-recognizability,
- motivates the study of "exotic" numeration systems,
- generalizations of Cobham's result to various contexts: multidimensional setting, logical framework, extension to Pisot systems, substitutive systems, fractals and tilings, simpler proofs, ...
- B. Adamczewski, J. Bell, G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point, C. Michaux, R. Villemaire, A. Bès, J. Honkala, S. Fabre, C. Reutenauer, A.L. Semenov, L. Waxweiler, M.-I. Cortez, ...

A D N A 目 N A E N A E N A B N A C N

A POSSIBLE APPLICATION

The set of powers of 2 or the Thue–Morse set are 2-recognizable but NOT 3-recognizable.

$$X = \{x_0 < x_1 < x_2 < \cdots\} \subseteq \mathbb{N}$$

$$\mathbf{R}_X := \limsup_{i \to \infty} \frac{x_{i+1}}{x_i} \text{ and } \mathbf{D}_X := \limsup_{i \to \infty} (x_{i+1} - x_i).$$

Following G. Hansel, first part of the proof of Cobham's theorem is to show that X is *syndetic*, i.e., $D_X < +\infty$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

GAP THEOREM (COBHAM'72)

Let $k \geq 2$. If $X \subseteq \mathbb{N}$ is a k-recognizable infinite subset of \mathbb{N} , then either $\mathbf{R}_X > 1$ or $\mathbf{D}_X < +\infty$.

For instance, $\{n^t \mid n \ge 0\}$ is k-recognizable for no $k \ge 2$.

S. Eilenberg, Automata, Languages, and Machines, 1974.

• Logical characterization of k-recognizable sets

Büchi (1960) – Bruyère Theorem

A set $X \subset \mathbb{N}^d$ is k-recognizable IFF it is definable by a first order formula in the extended Presburger arithmetic $\langle \mathbb{N}, +, V_k \rangle$.

 $V_k(n)$ is the largest power of k dividing $n \ge 1$, $V_k(0) = 1$.

$$\varphi_1(x) \equiv V_2(x) = x$$
$$\varphi_2(x) \equiv (\exists y)(V_2(y) = y) \land (\exists z)(V_2(z) = z) \land x = y + z$$
$$\varphi_3(x) \equiv (\exists y)(x = y + y + y + y + 3)$$

RESTATEMENT OF COBHAM'S THM.

Let $k, \ell \geq 2$ be two multiplicatively independent integers. A set $X \subseteq \mathbb{N}$ is k-rec. AND ℓ -rec. IFF X is definable in $(\mathbb{N}, +)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $A^{\mathbb{N}} = A^{\omega}$ be the set of "infinite words over A". It is a metric space endowed with an ultra-metric distance given by

$$d(x,y) = 2^{-|x \wedge y|}$$

where $x \wedge y$ is the longest common prefix of x and y.

So we can speak of *convergent* sequences of infinite words or of a sequence of finite words converging to an infinite word.

• Automatic characterization of k-recognizable sets

Theorem (Cobham 1972) – Uniform tag sequences

A set X is k-recognizable / k-automatic IFF its characteristic sequence is generated through an iterated k-uniform morphism + a coding.

$$g: \left\{ \begin{array}{cccc} A & \mapsto & AB \\ B & \mapsto & BC \\ C & \mapsto & CD \\ D & \mapsto & DD \end{array} \right. \qquad f: \left\{ \begin{array}{cccc} A & \mapsto & 0 \\ B & \mapsto & 1 \\ C & \mapsto & 1 \\ D & \mapsto & 0 \end{array} \right.$$

 $g(A) = AB, g^2(A) = ABBC, g^3(A) = ABBCBCCD, \dots$

 $g^{\omega}(A) = ABBCBCCDBCCDCDDDBCCDCDDDDDDDD\cdots$

 $w = f(g^{\omega}(A)) = 0111111011101000111010001000000 \cdots$

feed a DFAO with $k\text{-}{\rm ary}$ rep. , $\forall n\geq 0, \ w_n=\tau(q_0\cdot {\rm rep}_k(n))$

The Thue–Morse sequence is 2-automatic

J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence. Sequences and their applications, 1999.

Marston Morse (1892-1977) - 🗇 🕨 🗸 🚊 🕨 🛓 🖉 🔍 🔿 🔍 (~

J.-P. Allouche, J. Shallit, Cambridge Univ. Press, 2003.

ヘロト 人間 と 人間 と 人間 とう

$$\operatorname{rep}_2\begin{pmatrix}5\\35\end{pmatrix} = \begin{pmatrix}000101\\100011\end{pmatrix}, \quad \text{Alphabet } \{\begin{pmatrix}0\\0\end{pmatrix}, \begin{pmatrix}0\\1\end{pmatrix}, \begin{pmatrix}1\\0\end{pmatrix}, \begin{pmatrix}1\\1\end{pmatrix}\}$$

One can easily define k-recognizable subsets of \mathbb{N}^d .

COBHAM-SEMENOV' THEOREM (1977)

Let $k, \ell \geq 2$ be two multiplicatively independent integers. A set $X \subseteq \mathbb{N}^d$ is k-rec. AND ℓ -rec. IFF X is definable in $\langle \mathbb{N}, + \rangle$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Natural extension of ultimate periodicity :

- definability in $\langle \mathbb{N}, + \rangle$,
- semi-linear sets,
- Muchnik's local periodicity (TCS'03)

A 2-recognizable/2-automatic set in \mathbb{N}^2

O. Salon, Suites automatiques à multi-indices, Sém TN Bord., 1986-1987.

THEOREM (S. EILENBERG)

A sequence $(x_n)_{n>0}$ is k-automatic IFF its k-kernel is finite,

$$\mathcal{K} = \{ (x_{k^e n + r})_{n \ge 0} \mid \forall e \ge 0, r < k^e \}$$

For the Thue–Morse sequence $(t_n)_{n\geq 0} = 10010110011010010110010110010110\cdots$, the 2-kernel contains exactly the two sequences

 $10010110011010010110100110010110\cdots$

 $01101001100101101001011001101001\cdots$

because

$$t_n = 1 \Leftrightarrow (t_{2n} = 1 \land t_{2n+1} = 0),$$

$$t_n = 0 \Leftrightarrow (t_{2n} = 0 \land t_{2n+1} = 1).$$

A square : bonbon, Shil<u>lala</u>hs, <u>coco</u>nut

THE EASIEST RESULT (TO ATTRACT STUDENTS)

A (finite) word of length ≥ 4 over a 2-letter alphabet contains a square.

Over a 2-letter alphabet, what pattern can be avoided ? e.g., cubes ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Over a larger alphabet, can we avoid squares ?

An overlap is a "bit more than a square": auauaBalalaika, rococo, alfalfa

THEOREM

The Thue-Morse sequence is overlap-free.

COROLLARY

Over a three-letter alphabet, there exists an infinite word avoiding squares.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Since the Thue–Morse word has no overlap, it never contains 000. So it can be uniquely factorized using factors in $\{1, 10, 100\}$. Just look if a 1 is followed by another 1, by one 0 or by two 0's.

$$g: \left\{ \begin{array}{l} 1 \mapsto 100\\ 2 \mapsto 10\\ 3 \mapsto 1 \end{array} \right.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ■ ● ●

The infinite word $123132123213123\cdots$ has no square, otherwise the Thue–Morse word would contain an overlap!

- Automatic words form a large and well-studied family of infinite words
- Many constructions in combinatorics on words rely on iterated morphisms

Dejean's conjecture 1972–2009

One can try to avoid rational powers, $entente = ent^{2+1/3}$ is a 7/3-power. The *repetitive threshold* is the largest possible exponent e such that there exists no infinite word over a k-letter alphabet avoiding powers of exponent e or greater.

$$RT(2) = 2, RT(3) = 7/4, RT(4) = 7/5,$$

$$RT(k) = k/(k-1) \quad \forall k \ge 5$$

F. Dejean, N. Rampersad, M. Rao, J. Currie, M. Mohammad-Noori, J. Moulin Ollagnier, J.-J. Pansiot, A. Carpi

・ロト・日本・日本・日本・日本・日本

- Automatic words form a large and well-studied family of infinite words
- Many constructions in combinatorics on words rely on iterated morphisms

Dejean's conjecture 1972–2009

One can try to avoid rational powers, $entente = ent^{2+1/3}$ is a 7/3-power. The *repetitive threshold* is the largest possible exponent e such that there exists no infinite word over a k-letter alphabet avoiding powers of exponent e or greater.

$$RT(2) = 2, RT(3) = 7/4, RT(4) = 7/5,$$

$$RT(k) = k/(k-1) \quad \forall k \ge 5$$

F. Dejean, N. Rampersad, M. Rao, J. Currie, M. Mohammad-Noori, J. Moulin Ollagnier, J.-J. Pansiot, A. Carpi

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Generalizing numeration systems to...

- Have new "recognizable" sets of integers
- Obtain a larger family of infinite words, a generalization of k-automatic sequences, e.g., morphic words

Take a sequence $(U_n)_{n\geq 0}$ of integers such that

- $U_{i+1} > U_i$, non-ambiguity
- $U_0 = 1$, any integer can be represented
- $\frac{U_{i+1}}{U_i}$ is bounded, finite alphabet of digits A_U

$$n = \sum_{i=0}^{\ell} c_i \ U_i,$$
 with $c_\ell
eq 0$ greedy expansion

Any integer n corresponds to a word $\operatorname{rep}_U(n) = c_\ell \cdots c_0$. A set $X \subset \mathbb{N}$ is *U*-recognizable, if $\operatorname{rep}_U(X)$ is a regular language. Generalizing numeration systems to...

- Have new "recognizable" sets of integers
- Obtain a larger family of infinite words, a generalization of k-automatic sequences, e.g., morphic words

Take a sequence $(U_n)_{n\geq 0}$ of integers such that

- $U_{i+1} > U_i$, non-ambiguity
- $U_0 = 1$, any integer can be represented
- $\frac{U_{i+1}}{U_i}$ is bounded, finite alphabet of digits A_U

$$n = \sum_{i=0}^{\ell} c_i \ U_i,$$
 with $c_\ell
eq 0$ greedy expansion

Any integer n corresponds to a word $\operatorname{rep}_U(n) = c_\ell \cdots c_0$. A set $X \subset \mathbb{N}$ is *U*-recognizable, if $\operatorname{rep}_U(X)$ is a regular language.

A FIRST NATURAL QUESTION

Let $U = (U_i)_{i \ge 0}$ be a strictly increasing sequence of integers,

is the whole set \mathbb{N} *U*-recognizable ?

Theorem (Shallit '94)

If $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ is regular, i.e., if \mathbb{N} is *U*-recognizable, then $(U_i)_{i\geq 0}$ satisfies a linear recurrent equation.

Theorem (N. Loraud '95, M. Hollander '98)

They give (technical) sufficient conditions for \mathcal{L}_U to be regular: "the characteristic polynomial of the recurrence has a special form".

A FIRST NATURAL QUESTION

Let $U = (U_i)_{i \ge 0}$ be a strictly increasing sequence of integers,

is the whole set \mathbb{N} *U*-recognizable ?

THEOREM (SHALLIT '94)

If $\mathcal{L}_U = \operatorname{rep}_U(\mathbb{N})$ is regular, i.e., if \mathbb{N} is *U*-recognizable, then $(U_i)_{i\geq 0}$ satisfies a linear recurrent equation.

THEOREM (N. LORAUD '95, M. HOLLANDER '98)

They give (technical) sufficient conditions for \mathcal{L}_U to be regular: "the characteristic polynomial of the recurrence has a special form". Many works on this topic has been done and the "best setting" are related to Pisot numbers.

- V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability, TCS'97.
- Ch. Frougny, Numeration systems, Chap. 7 in M. Lothaire, Algebraic Combinatorics on Words, CUP 2002.
- F. Durand, M. Rigo, On Cobham's theorem, to appear Handbook of Automata (AutoMathA project), EMS Pub. House.
- Ch. Frougny, J. Sakarovitch, Chap. 2 in Combinatorics, Automata and Number Theory, CUP 2010.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ■ ● ●

An abstract numeration system S is a regular language $L \subset A^*$ genealogically ordered where the alphabet A is totally ordered.

Words are ordered first by increasing lengths and then using the lexicographical ordering induced by the ordering of A.

This ordering is a one-to-one correspondence between \mathbb{N} and L.

The (n + 1)th word in L is the S-representation of the integer n.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ■ ● ●

Example of a prefix-closed language $L = \{b, \varepsilon\}\{a, ab\}^*$

(日) (日) (日) (日) (日)

э

#b

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

#b

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

$L = a^* b^*, \ a < b$

Katona, Lehmer, Fraenkel, Charlier, R., Steiner, Lew, Morales, ...

Generalization :
$$\operatorname{val}_{\ell}(a_1^{n_1}\cdots a_{\ell}^{n_{\ell}}) = \sum_{i=1}^{\ell} \binom{n_i+\cdots+n_{\ell}+\ell-i}{\ell-i+1}.$$

$$\forall n \in \mathbb{N}, \exists z_1, \dots, z_\ell : n = \begin{pmatrix} z_\ell \\ \ell \end{pmatrix} + \begin{pmatrix} z_{\ell-1} \\ \ell - 1 \end{pmatrix} + \dots + \begin{pmatrix} z_1 \\ 1 \end{pmatrix}$$

with the condition $z_\ell > z_{\ell-1} > \cdots > z_1 \ge 0$

 $\operatorname{val}(a^p b^q) \mod 8$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ● ●

THEOREM (P. LECOMTE, M.R.)

Let S be an abstract numeration system. Any ultimately periodic set is S-recognizable.

THEOREM (D. KRIEGER et al. TCS'09)

Let L be a genealogically ordered regular language. Any *periodic decimation* in L gives a regular language. This result does not hold anymore if regular is replaced by context-free.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Something more general than k-automatic sequences ?

$$g: \left\{ \begin{array}{ccc} A & \mapsto & ABCC \\ B & \mapsto & \varepsilon \\ C & \mapsto & BA \end{array} \right. \qquad f: \left\{ \begin{array}{ccc} A & \mapsto & 010 \\ B & \mapsto & 1 \\ C & \mapsto & \varepsilon \end{array} \right.$$

$$g(A) = ABCC, \ g^2(A) = ABCCBABA,$$

$$g^3(A) = ABCCBABAABCCABCC, \dots$$

$$h(g^{\omega}(A)) = 0101101010101010101\dots$$

Remark

We can always assume that f is a coding (letter-to-letter) and g is a non-erasing morphism (in general non-uniform).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, '68 J.-P. Allouche, J. Shallit, CUP'03 J. Honkala, On the simplification of infinite morphic words, TCS'09

From k-automatic words to ... morphic/substitutive words From k-recognizable subsets of \mathbb{N} to ... substitutive sets

 $f(g^{\omega}(A)) = 01011010101010101010101$

Easy to generate the characteristic sequence of the substitutive set $\{1, 3, 4, 6, 8, 10, 13, \ldots\}$

We still have a notion of "automaticity":

MAES-R. (JALC 2002)

An infinite word w is morphic IFF there exists an abstract numeration system S such that w is S-automatic.

P. Lecomte, R., Numeration systems on a regular language, TOCS'01.
 P. Lecomte, R., Abstract numeration systems, Chap. 3 in Combinatorics, Automata and Number Theory, CUP 2010.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Encyclopedia of Mathematics and Its Applications 135

COMBINATORICS, AUTOMATA AND NUMBER THEORY

Edited by Valérie Berthé and Michel Rigo

CAMBRIDGE

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

TRANSCENDENCE OF REAL NUMBERS

 $r\in(0,1),\;k\in\mathbb{N}\setminus\{0,1\}$

$$r = \sum_{i=1}^{+\infty} c_i k^{-i} \qquad c_1 c_2 c_3 \cdots$$

Factor (or subword) complexity function : $p_w(n)$ is the number of distinct factors of length n occurring in w.

$$1 \le p_w(n) \le (\#A)^n$$
 and $p_w(n) \le p_w(n+1)$

Morse-Hedlund Theorem

The following conditions are equivalent:

- The word w is ultimately periodic, i.e., $w = xy^{\omega}$.
- ▶ The complexity function p_w is bounded by a constant,
- There exists $m \in \mathbb{N}$ such that $p_w(m) = p_w(m+1)$.

Совнам 1972

If w is k-automatic, then p_w is $\mathcal{O}(n)$.

PANSIOT (LNCS 172, 1984)

If w is pure morphic (no coding) and not ultimately periodic, then there exist constants C_1, C_2 such that $C_1f(n) \le p_w(n) \le C_2f(n)$ where $f(n) \in \{n, n \log n, n \log \log n, n^2\}$.

J.-P. Allouche, Sur la complexité des suites infinies, BBMS'94,

J. Cassaigne, F. Nicolas, Factor complexity, Chap. 4 in Combinatorics, Automata and Number Theory, CUP 2010.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thue-Morse word

$t = 10010110011010010110100110010110 \cdots$

S. Brlek, Enumeration of factors in the Thue-Morse word, $\mathsf{DAM}'89$ A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, $\mathsf{IPL}'88$

COBHAM'S CONJECTURE

Let α be an algebraic irrational real number. Then the k-ary expansion of α cannot be generated by a finite automaton.

Following this question :

HARTMANIS-STEARNS (TRANS. AMS'65)

Does it exist an algebraic irrational real number computable in linear time by a (multi-tape) Turing machine? i.e., the first n digits of the representation computable in O(n) operations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

TRANSCENDENCE OF REAL NUMBERS

J. P. Bell, B. Adamczewski, Automata in Number Theory, to appear Handbook (AutoMathA project).

Adamczewski-Bugeaud'07

Let $k \in \mathbb{N} \setminus \{0, 1\}$. The factor complexity of the k-ary expansion w of an algebraic irrational real number satisfies

$$\lim_{n \to +\infty} \frac{p_w(n)}{n} = +\infty.$$

Let $k \geq 2$ be an integer.

If α is an irrational real number whose k-ary expansion w has factor complexity in $\mathcal{O}(n)$, then α is transcendental. So in particular, if w is k-automatic.

BUGEAUD-EVERTSE'08

Let $k \geq 2$ be an integer and ξ be an algebraic irrational real number with $0 < \xi < 1$. Then for any real number $\eta < 1/11$, the factor complexity p(n) of the k-ary expansion of ξ satisfies

$$\lim_{n \to +\infty} \frac{p(n)}{n(\log n)^{\eta}} = +\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Positive view on k-recognizable sets 1/5

Let \mathbb{K} be a field, $a(n) \in \mathbb{K}^{\mathbb{N}}$ be a \mathbb{K} -valued sequence and $k_1, \ldots, k_d \in \mathbb{K}$. The sequence a(n) satisfies a *linear recurrence* over \mathbb{K} if

$$a(n) = k_1 a(n-1) + \dots + k_d a(n-d), \quad \forall n >>$$

SKOLEM-MAHLER-LECH THEOREM

Let a(n) be a linear recurrence over a field of characteristic 0. Then the zero set

 $\mathcal{Z}(a) = \{n \in \mathbb{N} \mid a(n) = 0\}$ is ultimately periodic.

Remark

If \mathbb{K} is a finite field, a(n) (and so $\mathcal{Z}(a)$) is trivially ultimately periodic.

Positive view on k-recognizable sets 2/5

If $\mathbb K$ is an infinite field of positive characteristic. . .

LECH'S EXAMPLE

$$a(n) := (1+t)^n - t^n - 1 \in \mathbb{F}_p(t).$$

The sequence a satisfies a linear recurrence, for n > 3

$$a(n) = (2+2t) a(n-1) + (1+3t+t^2) a(n-2) - (t+t^2) a(n-3).$$

We have

$$a(p^{j}) = (1+t)^{p^{j}} - t^{p^{j}} - 1 = 0$$

while $a(n) \neq 0$ if n is not a power of p, and so we obtain that

$$\mathcal{Z}(a) = \{1, p, p^2, p^3, \ldots\}.$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

DERKSEN'S EXAMPLE

Consider the sequence a(n) in $\mathbb{F}_p(x, y, z)$ defined by

 $a(n):=(x+y+z)^n-(x+y)^n-(x+z)^n-(y+z)^n+x^n+y^n+z^n.$

It can be proved that :

- ▶ The sequence *a*(*n*) satisfies a linear recurrence.
- The zero set is given by

 $\mathcal{Z}(a) = \{ p^n \mid n \in \mathbb{N} \} \cup \{ p^n + p^m \mid n, m \in \mathbb{N} \}.$

 $\mathcal{Z}(a)$ can be *more pathological* than in characteristic zero but...think about *p*-recognizable sets !

THEOREM (H. DERKSEN'07)

Let a(n) be a linear recurrence over a field of characteristic p. Then the set $\mathcal{Z}(a)$ is a *p*-recognizable set.

Derksen gave a further refinement of this result: not all *p*-recognizable sets are zero sets of linear recurrences defined over fields of characteristic *p*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

THEOREM (ADAMCZEWSKI-BELL'2010)

Let $\mathbb K$ be a field and Γ be a finitely generated subgroup of $\mathbb K^*.$ Consider the linear equations

$$a_1X_1 + \dots + a_dX_d = 1$$

where $a_1, \ldots, a_d \in \mathbb{K}$ and look for solutions in Γ^d . The set of solutions is a "*p*-automatic subset of Γ^{d} " (not defined here).

If $\mathbb K$ is a field of characteristic 0, many contributions due to Beukers, Evertse, Lang, Mahler, van der Poorten, Schlickewei and Schmidt.

J.-H. Evertse, H.P. Schlickewei, W.M. Schmidt, Linear equations in variables which lie in a multiplicative group, Annals of Math. 2002.