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Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence
Q numeration basis
R substitutive

Gaussian int. abstract
C Ostrowski system

Fq [X ] factorial system
β-expansions

vectors continued fractions
of these canonical number sys.

...
...



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A2 = {0, 1}
Q numeration basis
R substitutive rep2(n), n ∈ N, is a

Gaussian int. abstract finite word over A2

C Ostrowski system
Fq [X ] factorial system with X ⊆ N,

β-expansions rep2(X ) is a
vectors continued fractions language over A2

of these canonical number sys.
...

...

Integer base, e.g., k = 2

rep2 : N → {0, 1}∗, n =
∑ℓ

i=0
di 2

i , rep2(n) = dℓ · · · d0
rep2(37) = 100101 and val2(100101) = 37



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A2 = {0, 1}
Q numeration basis
R substitutive rep2(r), r ∈ R, is an

Gaussian int. abstract infinite word over A2

C Ostrowski system
Fq [X ] factorial system with X ⊆ R,

β-expansions rep2(X ) is an
vectors continued fractions ω-language over A2

of these canonical number sys.
...

... maybe several rep.

Integer base, e.g., k = 2 (base-complement for neg. numbers)

rep2 : R → {0, 1}∗ ⋆ {0, 1}ω , {r} =
∑

+∞
i=1

di 2
−i .

The set of representations of 3/2 is 0+1 ⋆ 10ω ∪ 0+1 ⋆ 01ω .



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base AF = {0, 1}
Z linear recurrence
Q numeration basis greedy choice
R substitutive repF (n), n ∈ N, is a

Gaussian int. abstract finite word over AF

C Ostrowski system
Fq [X ] factorial system with X ⊆ N,

β-expansions rep2(X ) is a
vectors continued fractions language over AF

of these canonical number sys.
...

... maybe several rep.

Fibonacci numeration system (Zeckendorf 1972)

. . . , 34, 21, 13, 8, 5, 3, 2, 1 = (Fn)n≥0 and repF (11) = 10100

but valF (10100) = valF (10011) = valF (1111)
Un+2 = Un+1 + Un .



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence Aβ = {0, 1, . . . , ⌈β⌉ − 1}
Q numeration basis
R substitutive β-expansions are

Gaussian int. abstract infinite words over Aβ

C Ostrowski system
Fq [X ] factorial system maybe several rep.

β-expansions
vectors continued fractions β-development is
of these canonical number sys. the lexico. largest

...
...

β-expansions (Rényi 1957, Parry 1960), e.g., β = (1 +
√
5)/2

r ∈ (0, 1), r =
∑

+∞
i=1

ci β
−i β2 = β + 1

dβ(π − 3) = 00001010100100010101010 · · · .



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A = N

Q numeration basis
R substitutive rep(n), n ∈ N, is a

Gaussian int. abstract finite word
C Ostrowski system over an

Fq [X ] factorial system infinite alphabet
β-expansions

vectors continued fractions
of these canonical number sys.

...
...

Factorial numeration system

. . . , 720, 120, 24, 6, 2, 1 = (j !)j≥0, n =
∑ℓ

i=0
di i !,

rep(719) = 54321.

H. Lenstra, Profinite Fibonacci numbers, EMS Newsletter’06



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence A = {0, 1,X ,X + 1}
Q numeration basis finite alphabet
R substitutive

Gaussian int. abstract repB (P), P ∈ F2[X ] is
C Ostrowski system a finite word

Fq [X ] factorial system
β-expansions with T ⊆ F2[X ]

vectors continued fractions repB (T ) is a
of these canonical number sys. language over A

...
...

“Polynomial base”, e.g., B = X 2 + 1, F2 = Z/2Z

P =
∑ℓ

i=0
Ci B

i with degCi < degB ,

X 6 + X 5 + 1 = 1.B3 + (X + 1).B2 + 1.B +X .B0



Sets of Numeration system finite/infinite words
numbers or sequences

N integer base
Z linear recurrence
Q numeration basis
R substitutive

Gaussian int. abstract
C Ostrowski system

Fq [X ] factorial system
β-expansions

vectors continued fractions
of these canonical number sys.

...
...

numbers formal language
arithmetic/ ⇔ theory
algebraic syntactical
properties properties



The Chomsky’s hierarchy :

◮ Recursively enumerable languages (Turing Machine)

◮ Context-sensitive languages (linear bounded T.M.)

◮ Context-free languages (pushdown automaton)

◮ Regular (or rational) languages (finite automaton)

Deterministic Finite Automaton (DFA)

A = (Q , q0,A, δ,F )

◮ A is a finite alphabet,

◮ Q finite set of states, q0 ∈ Q initial state

◮ δ : Q × A → Q transition function

◮ F ⊆ Q set of final (or accepting) states

DFA form the simplest model of computation.



0∗10∗ + 0∗10∗10∗

A B C D

0 0 0 0, 1

1 1 1

a∗b∗

a b a, b

b a



Example (Use in bio-informatics, DNA: a,c,g,t)

a

a

a

a

c

g

g

g,c,t

c,t

g,c,t

c,t

a

g
t a

g,c,t

agata

Example (Use in computer science)

Model checking, program verification,“stringology”, . . .



Sets of integers having a somehow simple description

Definition

A set X ⊂ N is k -recognizable, if repk (X ) is a regular language.

A 2-recognizable set

X = {n ∈ N | ∃i , j ≥ 0 : n = 2i + 2j } ∪ {1}

A B C D

0 0 0 0, 1

1 1 1

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, . . .

1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1100, 10000, 10001, . . .



Prouhet (1851) – Thue (1906) – Morse (1921)

{n ∈ N | s2(n) ≡ 0 mod 2}

1

1

0 0

0, 3, 5, 6, 9, 10, 12, 15, 17, 18, . . .

ε, 11, 101, 110, 1001, 1010, 1100, 1111, 10001, 10010, . . .

The set of powers of 2

rep2({2i | i ≥ 0}) = 10∗

1, 2, 4, 8, 16, 32, 64, . . .



An ultimately periodic set, e.g., 4N+ 3

0

1

2 3
0

1 0
1

0

1

0

1

3, 7, 11, 15, 19, 23, 27, 31, . . .

Exercise

Let k ≥ 2. Show that any arithmetic progression pN+ q is
k -recognizable (and consequently any ultimately periodic set).

B. Alexeev, Minimal dfas for testing divisibility, JCSS’04



Question

Does recognizability depends on the choice of the base ?
Is a 2-recognizable set also 3-recognizable or 4-recognizable ?

Exercise

Let k , t ≥ 2. Show that X ⊂ N is k -recognizable
IFF it is k t -recognizable. 0 7→ 00, 1 7→ 01, 2 7→ 10, 3 7→ 11

Powers of 2 in base 3 :

2, 11, 22, 121, 1012, 2101, 11202, 100111, 200222, 1101221,

2210212, 12121201, 102020102, 211110211, 1122221122, 10022220021,

20122210112, 111022121001, 222122012002, 1222021101011,

10221112202022, 21220002111121, 120210012000012, . . .



Two integers k , ℓ ≥ 2 are multiplicatively independent
if km = ℓn ⇒ m = n = 0, i.e., if log k/ log ℓ is irrational.

Cobham’s theorem (1969)

Let k , ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k -rec. AND ℓ-rec. IFF X is ultimately periodic.

V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, BBMS’94.



Some consequences of Cobham’s theorem from 1969:

◮ k -recognizable sets are easy to describe but non-trivial,

◮ motivates characterizations of k -recognizability,

◮ motivates the study of “exotic” numeration systems,

◮ generalizations of Cobham’s result to various contexts:

multidimensional setting, logical framework, extension to Pisot
systems, substitutive systems, fractals and tilings, simpler
proofs, . . .

B. Adamczewski, J. Bell, G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point, C. Michaux, R. Villemaire, A. Bès,
J. Honkala, S. Fabre, C. Reutenauer, A.L. Semenov, L. Waxweiler, M.-I. Cortez, . . .



A possible application

The set of powers of 2 or the Thue–Morse set are
2-recognizable but NOT 3-recognizable.

X = {x0 < x1 < x2 < · · · } ⊆ N

RX := lim sup
i→∞

xi+1

xi
and DX := lim sup

i→∞
(xi+1 − xi).

Following G. Hansel, first part of the proof of Cobham’s theorem is
to show that X is syndetic, i.e., DX < +∞.

Gap theorem (Cobham’72)

Let k ≥ 2. If X ⊆ N is a k -recognizable infinite subset of N,
then either RX > 1 or DX < +∞.

For instance, {nt | n ≥ 0} is k -recognizable for no k ≥ 2.
S. Eilenberg, Automata, Languages, and Machines, 1974.



• Logical characterization of k -recognizable sets

Büchi (1960) – Bruyère Theorem

A set X ⊂ Nd is k -recognizable IFF it is definable by a first order
formula in the extended Presburger arithmetic 〈N,+,Vk 〉.

Vk (n) is the largest power of k dividing n ≥ 1, Vk(0) = 1.

ϕ1(x ) ≡ V2(x ) = x

ϕ2(x ) ≡ (∃y)(V2(y) = y) ∧ (∃z )(V2(z ) = z ) ∧ x = y + z

ϕ3(x ) ≡ (∃y)(x = y + y + y + y + 3)

Restatement of Cobham’s thm.

Let k , ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k -rec. AND ℓ-rec. IFF X is definable in 〈N,+〉.



Let AN = Aω be the set of “infinite words over A”.
It is a metric space endowed with an ultra-metric distance given by

d(x , y) = 2−|x∧y |

where x ∧ y is the longest common prefix of x and y .

aaa...

aab...

aba...

abb...

baa...

bab...

bba...

bbb...

So we can speak of convergent sequences of infinite words or of a
sequence of finite words converging to an infinite word.



• Automatic characterization of k -recognizable sets

Theorem (Cobham 1972) – Uniform tag sequences

A set X is k -recognizable / k -automatic IFF its characteristic
sequence is generated through an iterated k -uniform morphism
+ a coding.

g :















A 7→ AB

B 7→ BC

C 7→ CD

D 7→ DD

f :















A 7→ 0
B 7→ 1
C 7→ 1
D 7→ 0

g(A) = AB , g2(A) = ABBC , g3(A) = ABBCBCCD , . . .

gω(A) = ABBCBCCDBCCDCDDDBCCDCDDDCDDDDDDD · · ·
w = f (gω(A)) = 01111110111010001110100010000000 · · ·
feed a DFAO with k -ary rep. ,∀n ≥ 0, wn = τ(q0 · repk (n))



The Thue–Morse sequence is 2-automatic

T = {n ∈ N | s2(n) ≡ 0 mod 2}
A B

1

1

0 0

g : A 7→ AB , B 7→ BA, f : A 7→ 1, B 7→ 0

f (gω(A)) = 10010110011010010110100110010110 · · ·

J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence. Sequences and their applications, 1999.

Axel Thue (1863–1922) Marston Morse (1892-1977)



J.-P. Allouche, J. Shallit, Cambridge Univ. Press, 2003.



Multidimensional setting, e.g., k = 2, d = 2

rep2

(

5
35

)

=

(

000101
100011

)

, Alphabet {
(

0
0

)

,

(

0
1

)

,

(

1
0

)

,

(

1
1

)

}

One can easily define k -recognizable subsets of Nd .

Cobham–Semenov’ Theorem (1977)

Let k , ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ Nd is k -rec. AND ℓ-rec. IFF X is definable in 〈N,+〉

Natural extension of ultimate periodicity :

◮ definability in 〈N,+〉,
◮ semi-linear sets,

◮ Muchnik’s local periodicity (TCS’03)



A 2-recognizable/2-automatic set in N2

O. Salon, Suites automatiques à multi-indices, Sém TN Bord., 1986–1987.



Theorem (S. Eilenberg)

A sequence (xn)n≥0 is k -automatic IFF its k -kernel is finite,

K = {(xken+r )n≥0 | ∀e ≥ 0, r < k e}

For the Thue–Morse sequence
(tn)n≥0 = 10010110011010010110100110010110 · · · ,
the 2-kernel contains exactly the two sequences

10010110011010010110100110010110 · · ·

01101001100101101001011001101001 · · ·
because

tn = 1 ⇔ (t2n = 1 ∧ t2n+1 = 0),

tn = 0 ⇔ (t2n = 0 ∧ t2n+1 = 1).



A bit of combinatorics on words

A square : bonbon, Shillalahs, coconut

The easiest result (to attract students)

A (finite) word of length ≥ 4 over a 2-letter alphabet contains a
square.

◮ Over a 2-letter alphabet, what pattern can be avoided ? e.g.,
cubes ?

◮ Over a larger alphabet, can we avoid squares ?



An overlap is a“bit more than a square”: auaua
Balalaika, rococo, alfalfa

Theorem

The Thue-Morse sequence is overlap-free.

Corollary

Over a three-letter alphabet, there exists an infinite word avoiding
squares.



Since the Thue–Morse word has no overlap, it never contains 000.
So it can be uniquely factorized using factors in {1, 10, 100}. Just
look if a 1 is followed by another 1, by one 0 or by two 0’s.

100|10|1|100|1|10|100|10|1|10|100|1|100|10|1| 1 · · ·

g :







1 7→ 100
2 7→ 10
3 7→ 1

The infinite word 123132123213123 · · · has no square,
otherwise the Thue–Morse word would contain an overlap!



◮ Automatic words form a large and well-studied family of
infinite words

◮ Many constructions in combinatorics on words rely on iterated
morphisms

Dejean’s conjecture 1972–2009

One can try to avoid rational powers, entente = ent
2+1/3 is a

7/3-power. The repetitive threshold is the largest possible
exponent e such that there exists no infinite word over a k -letter
alphabet avoiding powers of exponent e or greater.

RT (2) = 2, RT (3) = 7/4, RT (4) = 7/5,

RT (k) = k/(k − 1) ∀k ≥ 5

F. Dejean, N. Rampersad, M. Rao, J. Currie, M. Mohammad-Noori, J. Moulin Ollagnier, J.-J. Pansiot, A. Carpi
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Generalizing numeration systems to...

◮ Have new“recognizable” sets of integers

◮ Obtain a larger family of infinite words,
a generalization of k -automatic sequences, e.g., morphic words

Take a sequence (Un)n≥0 of integers such that

◮ Ui+1 > Ui , non-ambiguity

◮ U0 = 1, any integer can be represented

◮
Ui+1

Ui
is bounded, finite alphabet of digits AU

n =
ℓ

∑

i=0

ci Ui , with cℓ 6= 0 greedy expansion

Any integer n corresponds to a word repU (n) = cℓ · · · c0.
A set X ⊂ N is U -recognizable, if repU (X ) is a regular language.



Generalizing numeration systems to...
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◮ Obtain a larger family of infinite words,
a generalization of k -automatic sequences, e.g., morphic words
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◮
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is bounded, finite alphabet of digits AU

n =
ℓ
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ci Ui , with cℓ 6= 0 greedy expansion

Any integer n corresponds to a word repU (n) = cℓ · · · c0.
A set X ⊂ N is U -recognizable, if repU (X ) is a regular language.



A first natural question

Let U = (Ui )i≥0 be a strictly increasing sequence of integers,

is the whole set N U -recognizable ?

Theorem (Shallit ’94)

If LU = repU (N) is regular, i.e., if N is U -recognizable,
then (Ui )i≥0 satisfies a linear recurrent equation.

Theorem (N. Loraud ’95, M. Hollander ’98)

They give (technical) sufficient conditions for LU to be regular:
“the characteristic polynomial of the recurrence has a special form”.



A first natural question

Let U = (Ui )i≥0 be a strictly increasing sequence of integers,

is the whole set N U -recognizable ?

Theorem (Shallit ’94)

If LU = repU (N) is regular, i.e., if N is U -recognizable,
then (Ui )i≥0 satisfies a linear recurrent equation.

Theorem (N. Loraud ’95, M. Hollander ’98)

They give (technical) sufficient conditions for LU to be regular:
“the characteristic polynomial of the recurrence has a special form”.



Many works on this topic has been done and the“best setting”are
related to Pisot numbers.

◮ V. Bruyère, G. Hansel, Bertrand numeration systems and
recognizability, TCS’97.

◮ Ch. Frougny, Numeration systems, Chap. 7 in M. Lothaire,
Algebraic Combinatorics on Words, CUP 2002.

◮ F. Durand, M. Rigo, On Cobham’s theorem, to appear Handbook of
Automata (AutoMathA project), EMS Pub. House.

◮ Ch. Frougny, J. Sakarovitch, Chap. 2 in Combinatorics, Automata
and Number Theory, CUP 2010.



An abstract numeration system S is a regular language L ⊂ A∗

genealogically ordered where the alphabet A is totally ordered.

Words are ordered first by increasing lengths and then using the
lexicographical ordering induced by the ordering of A.

This ordering is a one-to-one correspondence between N and L.

The (n + 1)th word in L is the S -representation of the integer n.



Example of a prefix-closed language L = {b, ε}{a, ab}∗

0

1 2

3 4 5

6 7 8 9 10

a b

a b a

a b a a b



A non-positional numeration system L = a∗b∗
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A non-positional numeration system L = a∗b∗

�
�
�
�
�
�
�
�

�
�
�
�

#b

#a
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A non-positional numeration system L = a∗b∗
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L = a
∗
b
∗, a < b

ε a b aa ab bb aaa aab abb · · ·
0 1 2 3 4 5 6 7 8 · · · �

�
�
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�
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�
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�
�

�
�
�
�

�
�
�
�

#b

#a

valS(a
pbq) =

1

2
(p + q)(p + q + 1) + q =

(

p + q + 1

2

)

+

(

q

1

)

Katona, Lehmer, Fraenkel, Charlier, R., Steiner, Lew, Morales, . . .

Generalization : valℓ(a
n1

1 · · · anℓ

ℓ ) =

ℓ
∑

i=1

(

ni + · · · + nℓ + ℓ− i

ℓ− i + 1

)

.

∀n ∈ N,∃z1, . . . , zℓ : n =

(

zℓ

ℓ

)

+

(

zℓ−1

ℓ− 1

)

+ · · ·+
(

z1

1

)

with the condition zℓ > zℓ−1 > · · · > z1 ≥ 0



val(apbq) modulo 8



Theorem (P. Lecomte, M.R.)

Let S be an abstract numeration system.
Any ultimately periodic set is S -recognizable.

Theorem (D. Krieger et al. TCS’09)

Let L be a genealogically ordered regular language.
Any periodic decimation in L gives a regular language.
This result does not hold anymore if regular is replaced by
context-free.



Something more general than k-automatic
sequences ?

g :







A 7→ ABCC

B 7→ ε
C 7→ BA

f :







A 7→ 010
B 7→ 1
C 7→ ε

g(A) = ABCC , g2(A) = ABCCBABA,
g3(A) = ABCCBABAABCCABCC , . . .
h(gω(A)) = 01011010101001010101 · · ·

Remark

We can always assume that f is a coding (letter-to-letter) and
g is a non-erasing morphism (in general non-uniform).

A. Cobham, On the Hartmanis-Stearns problem for a class of tag machines, ’68
J.-P. Allouche, J. Shallit, CUP’03 J. Honkala, On the simplification of infinite morphic words, TCS’09



From k -automatic words to . . .morphic/substitutive words

From k -recognizable subsets of N to . . . substitutive sets

f (gω(A)) = 01011010101001010101 · · ·
Easy to generate the characteristic sequence of
the substitutive set {1, 3, 4, 6, 8, 10, 13, . . .}

We still have a notion of “automaticity”:

Maes–R. (JALC 2002)

An infinite word w is morphic IFF there exists an abstract
numeration system S such that w is S -automatic.

P. Lecomte, R., Numeration systems on a regular language, TOCS’01.
P. Lecomte, R., Abstract numeration systems, Chap. 3 in Combinatorics, Automata and Number Theory, CUP
2010.





Transcendence of real numbers

r ∈ (0, 1), k ∈ N \ {0, 1}

r =

+∞
∑

i=1

ci k
−i c1c2c3 · · ·

Factor (or subword) complexity function : pw (n) is the number of
distinct factors of length n occurring in w .

1 ≤ pw (n) ≤ (#A)n and pw (n) ≤ pw (n + 1)

Morse–Hedlund theorem

The following conditions are equivalent:

◮ The word w is ultimately periodic, i.e., w = xyω.

◮ The complexity function pw is bounded by a constant,

◮ There exists m ∈ N such that pw (m) = pw (m + 1).



Transcendence of real numbers

Cobham 1972

If w is k -automatic, then pw is O(n).

Pansiot (LNCS 172, 1984)

If w is pure morphic (no coding) and not ultimately periodic, then
there exist constants C1,C2 such that C1f (n) ≤ pw (n) ≤ C2f (n)
where f (n) ∈ {n,n log n,n log log n,n2}.
J.-P. Allouche, Sur la complexité des suites infinies, BBMS’94,
J. Cassaigne, F. Nicolas, Factor complexity, Chap. 4 in Combinatorics, Automata and Number Theory, CUP 2010.



Transcendence of real numbers

Thue–Morse word

t = 10010110011010010110100110010110 · · ·

pt(n) =























1 if n = 0
2 if n = 1
4 if n = 2

4n − 2 · 2m − 4 if 2 · 2m < n ≤ 3 · 2m
2n + 4 · 2m − 2 if 3 · 2m < n ≤ 4 · 2m

1000 2000 3000 4000

2000

4000

6000

8000

10000

12000

S. Brlek, Enumeration of factors in the Thue-Morse word, DAM’89
A. de Luca, S. Varricchio, On the factors of the Thue-Morse word on three symbols, IPL’88



Transcendence of real numbers

Cobham’s conjecture

Let α be an algebraic irrational real number. Then the k -ary
expansion of α cannot be generated by a finite automaton.

Following this question :

Hartmanis–Stearns (Trans. AMS’65)

Does it exist an algebraic irrational real number computable in
linear time by a (multi-tape) Turing machine? i.e., the first n
digits of the representation computable in O(n) operations.



Transcendence of real numbers

J. P. Bell, B. Adamczewski, Automata in Number Theory, to appear Handbook (AutoMathA project).

Adamczewski–Bugeaud’07

Let k ∈ N \ {0, 1}. The factor complexity of the k -ary expansion w

of an algebraic irrational real number satisfies

lim
n→+∞

pw (n)

n
= +∞.

Let k ≥ 2 be an integer.
If α is an irrational real number whose k -ary expansion w has
factor complexity in O(n), then α is transcendental.
So in particular, if w is k -automatic.



Transcendence of real numbers

Bugeaud–Evertse’08

Let k ≥ 2 be an integer and ξ be an algebraic irrational real
number with 0 < ξ < 1. Then for any real number η < 1/11, the
factor complexity p(n) of the k -ary expansion of ξ satisfies

lim
n→+∞

p(n)

n(log n)η
= +∞.
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Let K be a field, a(n) ∈ KN be a K-valued sequence and
k1, . . . , kd ∈ K. The sequence a(n) satisfies a linear recurrence
over K if

a(n) = k1a(n − 1) + · · ·+ kd a(n − d), ∀n >>

Skolem–Mahler–Lech theorem

Let a(n) be a linear recurrence over a field of characteristic 0.
Then the zero set

Z(a) = {n ∈ N | a(n) = 0} is ultimately periodic.

Remark

If K is a finite field, a(n) (and so Z(a)) is trivially ultimately
periodic.

T. Tao, Effective Skolem–Mahler–Lech theorem in Structure and Randomness, AMS’08.
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If K is an infinite field of positive characteristic. . .

Lech’s example

a(n) := (1 + t)n − tn − 1 ∈ Fp(t).

The sequence a satisfies a linear recurrence, for n > 3

a(n) = (2+2t) a(n−1)+(1+3t+ t2) a(n−2)− (t+ t2) a(n−3).

We have
a(pj ) = (1 + t)p

j − tp
j − 1 = 0

while a(n) 6= 0 if n is not a power of p, and so we obtain that

Z(a) = {1, p, p2, p3, . . .}.
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Derksen’s example

Consider the sequence a(n) in Fp(x , y , z ) defined by

a(n) := (x+y+z )n−(x+y)n−(x+z )n−(y+z )n+xn+yn+zn .

It can be proved that :

◮ The sequence a(n) satisfies a linear recurrence.

◮ The zero set is given by

Z(a) = {pn | n ∈ N} ∪ {pn + pm | n,m ∈ N}.

Z(a) can be more pathological than in characteristic zero
but. . . think about p-recognizable sets !
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Theorem (H. Derksen’07)

Let a(n) be a linear recurrence over a field of characteristic p.
Then the set Z(a) is a p-recognizable set.

Derksen gave a further refinement of this result:
not all p-recognizable sets are zero sets of linear recurrences
defined over fields of characteristic p.
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Theorem (Adamczewski–Bell’2010)

Let K be a field and Γ be a finitely generated subgroup of K∗.
Consider the linear equations

a1X1 + · · ·+ adXd = 1

where a1, . . . , ad ∈ K and look for solutions in Γd .
The set of solutions is a“p-automatic subset of Γd”
(not defined here).

If K is a field of characteristic 0, many contributions due to
Beukers, Evertse, Lang, Mahler, van der Poorten, Schlickewei and
Schmidt.

J.-H. Evertse, H.P. Schlickewei, W.M. Schmidt, Linear equations in variables which lie in a multiplicative group,
Annals of Math. 2002.


