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Abstract—We introduce in this paper a new approach for joint strategy space. With such a characterization, thélpro

efficiently identifying Nash equilibria for games composedof of finding a sample Nash equilibrium is transformed into a

large numbers of players having discrete and not too .Iarg.e pure combinatorial optimization problem:
strategy spaces. The approach is based on a characterizatio

of Nash equilibria in terms of minima of a function and relies u* = arg minD(u) (1)
on stochastic optimization algorithms to find these minima.The welU

approach is applied to compute Nash equilibria of some elegtity i . .
markets and, based on the simulation results, its performaces WhereD is a cost function and’ the joint strategy space. Solv-

are discussed. ing such a combinatorial problem by simple enumeration has
Index Terms—Electricity market, Nash equilibrium computa-  still a complexity which grows exponentially with the nunmbe
tion, combinatorial optimization of players. However, by writing the NE search problem under
this form, one can exploit state-of-the-art stochastié¢roizg-
|. INTRODUCTION tion algorithms, such as genetic algorithms [12], simulate

Game theory studies decisions that are made in an envir@fn€aling [1], ant colony optimization [10], tabu search] [dr
ment where various players interact. The most widely "solfested partitioning [19], to curb this exponential comfiotel
tion concept” in game theory is called Nash Equilibrium (NE)rowth with the number of actors.
after Nobel Laureate in economics and mathematician JohnVe have used Genetic Algorithms (GAs) to solve the com-
Nash. A Nash equilibrium in games represents a joint Styategmatonal pr_oblems and validated the approach on a problem
with the property that no player can benefit by changing h#d computation of NEs for an electrical spot market modeled
strategy while the other players keep their strategy ungban as & normal-form game.

This concept of Nash equilibrium has been vastly adopted&mulatlons results hz_:tve_shown that, even when th_e number
to analyze electricity markets. In particular, referenggls ©Of Power producers bidding to the spot market is large,
5], [7], I8, 9], [13], [15], [16], [18], [20], [21] are ony the app_roagh is still abl_e to identify NEs within reas_onal:_)le
a small sample of the scientific papers which rely on sonf@mputing times. In particular, we have been able to idgntif
NE concepts to model the behavior of the different actors ¥fithin a few minutes of computation time, NEs for a spot
an electricity market. market composed o8B0 power producers and where each

We address in this paper the problem of computation of pUp@Wer producer can choose between at lezstdifferent

Nash equilibria for electricity markets having a large nemb Pidding strategies o . ,
of players and for which the players have a discrete set ofWhile this alternative characterization of NEs is not urgqu

strategies. Identification of pure NE in such type of games ci this paper (see e.g. [17] where several alternative char-
be done in principle by relying on an exhaustive search mocécterizations of Nash equilibria are proposed), this paper
which consists of checking whether every single joint sggt hgwever the fl_rst one V.\IhIC.h uses th_ls characterization hmget
corresponds to a Nash equilibrium. However, the number Bfth stochastic optimization algorithms. Also, to our best
operations that are required for identifying with such acess knowledge, this characterization of NEs as the minima of a

the NEs of a game grows exponentially with the numbdynction has not been exploited before in the electricitykat
of players, making such an approach rapidly computatignalt€rature.

|mpracycal. ) o 1This leads to a space of combined strategies composed of thrag02°
In this paper, we introduce a new approach for efficientblements !
identifying Nash equilibria for such type of games. The_i Anna Minoia works for an electrlmty_ trading company andl_a:bbrated
his b d lternative characterization diEse with the other authors for this work. This paper does not ssagly reflect
approach is based on an a v Izall the viewpoint of her company. Any error or omission is theeselsponsibility

of a game in terms of minima of a function defined over the the authors.



The paper is organized as follows. In the next sectiome suggest to adopt for identifying multiple NEs an approach
(Section I1), we introduce in the context of normal-form gamwhich interlaces the resolution of combinatorial optintiaa
a characterization of Nash equilibria in terms of minima of problems with appropriate penalization of the functiéh
function and describe a methodology, built upon this charaach time a Nash equilibria* is found by the optimization
terization, to identify multiple Nash equilibria of a gama. algorithm, a neighborhood/ of v* is defined and strategies
Section Ill, we describe the stochastic combinatorial algm in this neighborhood are penalized by adding a large pesitiv
used in our simulations. Section IV gathers the simulatioralue penalty to the function D (i.e., if v € N then
results. We underline that this section will only presesufes D(u) «— D(u) + penalty). Once the functionD has been
related to the computation of one Nash equilibrium of a gamgenalized, the combinatorial optimization algorithm isnru
Finally, Section V concludes and gives directions for faturagain. Similar penalization schemes could also been used to
research. mitigate the effects of local minima. Since the number of NEs
is usually not known, we could for example stop the NE search
Il. GAME THEORY AND NASH EQUILIBRIUM process when the genetic algorithms converge several times
A. The classical definition of a pure Nash equilibrium a raw to non-zero values of the functidn

We consider a normal-form ganiéwhose description is the
following. The game is composed of players{1,2,..., N}. . _ _ _ _
Each playet can play a strategy, € U; whereU; is supposed ~ We will in our simulation result section rely on some genetic

Ill. GENETIC ALGORITHM

to be a finite set. Let: = (uy, us,...,uy) € U denote the glgori?hms to solve the optimization problem (1) whépéu)
players’ combined strategy anti(v) the payoff of a playes is defined by Eqn (3).
if the combined action: is played. The first paragraph of this section gives a general desoripti

In such a context, the classical definition of a pure NadH the genetic algorithms. The subsequent paragraphs define
equilibrium for G is: specific elements associated with the genetic algorithrad us
The combined strategy* = (u?,...,u}) is a Nash equilib- in our simul_ations._Thgse are the fitness _function, the genet
rium for G if for all i € {1,2,..., N} and for allu; € U; we representanon which is also called coding scheme and the
have genetic operators.

Ji(ul, ... uy) > Ji(ul, .. upqgug, iy g, uy) o (2) A. General description

Genetic algorithms are a class of heuristic search methods
and computational models of adaptation and evolution based
B. Nash equilibrium as the minimum of a function on natural selection. They became a widely recognized opti-
¢ Mization method as a result of the work of John Holland in
ighe early 1970s [14].
Genetic algorithms are implemented as a computer simula-
tion in which a population of abstract representationsi¢dal
chromosomes or the genotype or the genome) of candidate

We introduce hereafter a functiaD defined over the join
strategy spacé/ which, as shown later in Theorem 2.1,
always positive whem, € U is not a NE and zero otherwise.

The functionD(u) : U — R* is defined as follows:

D(u) = (3) solutions (called individuals, creatures, or phenotygesin
Zf\f:l[max Ji(g, .o iy, U Ui, - un) — Ji(w)] optimization problem evolves iteratively toward bettetuso
u;€U; tions.
We have the following theorem: At each iteration, one uses three main operators (repro-

Theorem 2.1:The function D is strictly positive if the duction, crossover and mutation) to create a new population
combined strategy: is not a Nash equilibrium and equal toof candidate solutions whose performances are, in priecipl

zero otherwise. better that those of the previous one.
The proof of Theorem 2.1 follows directly from the classical A typical genetic algorithm requires three things to be
definition of a Nash equilibrium. defined:
As direct consequence of this theorem, we can say that, ine a genetic representation of the elements of the search
the presence of NEs, the functidn has a number of global domain
minima equal to the number of NEs. « a fitness function to evaluate the individuals of a popula-
tion

C. A methodology for identifying multiple NEs in a game

In principle, by using a combinatorial algorithm able to ) .
identify all the minima of the functiorD, we could compute B- Genetic representation of an elemene U
all the NEs of the generic gam@. However, when using In our simulations, we have used as representation of an
genetic algorithms as optimization algorithms, we found oelement of the search domain a string of bits of lengthn,
by carrying simulations on our benchmark test problem that, which is the standard representation [6].
the presence of multiple Nash equilibria, they were conmgrg Each component of a joint actiom € U corresponds to a
with a high probability to the same equilibrium. Thereforesegment of the string of bits. Such a segment is named gene

« the genetic operators



and its length is equal téength_gene. Since an element of was such thatfitness(s) = 0, — that is whenC~1(s) is a

u hasN components, the number of players in the game, Wiéash equilibrium of the game.

have thereforein = N x length_gene. 1) Reproduction operator: The reproduction operator se-
Let s denote a binary string of lengtln and s, the bth lects with replacementbrerroduction individuals from P(t).

component of this string. Le$' denote the set of all binary This operator is such that the chances that an individual

strings of lengthm. has to be selected grow with its fitness valygtfess(s)).
Let C be the binary coding function ar@d—! the decoding More specifically, the operator will repeabrerroduction the

function. More specifically(u) gives the binary string which following sequence of instructions: (i) select an indivatlin

codesu and C~1(s) gives the element of/ to which the P(t) such that the probability of selecting is equal to

binary strings corresponds. We assume that: _ .

fitness(s?)

ZsEP(t) fitness(s)
In our test problems, every componentotorresponds to (i) copy this individual and add it to the populatidi(t +1).

an integer. We have chosen as coding functivm standard  In our simulationspb erreduction s always chosen equal
approach for coding an integer into a string of bits. Morto 2 if K is an even number antl otherwise.

p(s’) = @)

CHCw)=u YueUl. (4)

specifically, we have chosen as a function'® defined by: 2) Crossover operator: The crossover operator performs a
partial exchange of characteristics (genetic materiaijveen
(C ()i = (5)  two individuals selected randomly from the current popatat
length_genexi _ and create from this exchange a ’'new’ individual which
> sp x 207 1-length_genex (i=1) inherits the characteristics of both 'parents’.
b=1+length_genex (i—1) This operator repeatabc °ss°v¢" times the following in-

. . structions: (i) draw with replacement two strings and s2
vi € {1,2,...,N}. From Eqn (5) one can deduce in g P(t) according to the probability distribution defined by

stralghtforward vyaﬁ by exploiting Eqn (4). Eqn (7) (ii) build two new stringsr(s1, ns2) according to the
In our simulations, every component of u corresponds following rule:

to a price equal to an integer number of dollars and this price

has been coded by using7abit string (ength_gene = 7).

nsl = s1(1,cp) ® s2(cp + 1,m)

ns2 = s2(1,cp) ® sl(cp + 1,m)
. o . . . nsl = sl } with probability T — pe,

The fitness function is a function defined ovét and gives ns2 = s2

'the quality’ of an individuals of the population. We have (®)

chosen this function equal to:

} with probability p.,
C. Fitness function

wherecp is the crossing point selected at random and with
fitness(s) = —D(C~*(s)) (6) uniform probability in {1,2,...,m}, ® is a concatenation
operator between strings and, the 'crossover probability’
With such a choice, the "fitter’ an individual, the 'closet’ i (jii) add these two individuals intd(t + 1).
stands from a Nash equilibrium, at least if we assume that then our simulations, we have modified in a straightforward
notion of distance between a element U and its closest way step (ii) in order to have crossover points which stand

Nash equilibrium is given byD(u). only in between genes represented here by groupshifs.
The crossover probability., is equal t00.8 in our sim-
D. The operators ulations while the value ofb®?*°v¢" is chosen equal to
~_ireproduction
Let us denote byP(¢) the population at iteration The size %

of the population remains constant whatever the iteratiand ~ 3) Mutation operator: The mutation operator introduces
can therefore be described throughout the iterations byt a Eghdom modifications in the population. These modifications
of K individuals {s',s2,...,s%}. help to preserve the diversity and prevent the algorithrmfro
The genetic algorithm starts with an initial populatiB0). Premature convergence. The mutation operator is the last
Each element of this population is the binary representatigPerator to be used at iteratign For every individuals of
of an element; chosen at random i#. P(t+1), except thexb eProduction individuals generated by the
At iteration ¢ > 0, the algorithm creates an empty seféproduction operator, the algorithm chooses with prdtipbi
P(t+ 1) and uses sequentially the reproduction operator, the.o Whether to apply a mutation to the individuadf P(+1).
crossover operator and the mutation operator to fill this sétyes it selects at random a bit of the stringand changes
with K new individuals. Usually, the quality of the individualsits value.
tends to increase with — that is the fitness of individuals of , o L . )
. hen In our simulation results section Wlthout entering into the details, it can be shown that_ |fa|hk$ee_d exists,
P(t) increase whe grows.. o E then with the operators we have adopted, our GA algorithrhidehtify with
we stopped only the algorithm when an individsabf P(t) probability one a Nash equilibrium.



i Qrer | OM; U;
[o[t1[1]of1]rm=>[o]1]0]0]1] MW] | [$/MWh] [$/MWHh]
Gen.1 | 200 25 125,26,...,50]
Fig. 1. Mutation operator. Gen.2 300 30 {25,26,...,50}
TABLE |

GENERATION DATA AND PRICE STRATEGY SPACE

In our simulations we wanted to ensure that after applying a
mutation to an individual, the individual was still corresyul-
ing to an element of/. To do so, rather than to select at
random a bit, we selected at random a gémmrresponding ~ This process of interaction between the two generators
to the actionu;. Then, we selected an element at random #irough the spot market can be modelled as a normal form
U;, we converted it into a string by using the functic-) game. The functionD (see Eqn (3)) associated with this
and, finally, we replaced the gendy this string. normal form game is drawn of Fig. 2. As we may observe,

The value ofp,.., is chosen equal t6.2 in our simulations. this function has seven global minima. The functibru) is
equal to0 whenw corresponds to one of these global minima.

IV. SIMULATION RESULTS They correspond therefore, by virtue of Theorem 2.1, to Nash
We assess in this section the performances of our approagfuilibria.

when applied to the computation of one Nash equilibrium
of an electricity market. We stress that, as explained in
Section II-C, the approach can in principle be applied to the
computation of several Nash equilibria of a game by using
appropriate penalization schemes. However, since we found
out that the penalization schemes we developed were not yet
mature enough, we preferred to focus in this section on the
computation of only one Nash equilibrium.

The first paragraph of this section details the application o
our approach to the computation of one Nash equilibrium of
a market having only two power producers and has mainly a
didactic purpose.

In the second paragraph, we study for an electricity market
whose number of generators depends on a paramétehe
performances of our approach.

A. An illustrative example Fig. 2. A plot of the functionD defined by Eqn (3).

We illustrate our approach on a problem of computation of o ]
one Nash equilibrium for a spot market where two generatorsSINC€ the joint strategy space is here rather smadl(
(generatorl and generato) bid strategically to maximize 26 eI(_aments), there |s_certa|nly no need to use combinatorial
their profits. a!gont_hms for computing the minima _dT)(-). However, for _
Both generators have a constant marginal production c&ifactic purpose, we have run on this example the genetic
and a limited production capacity. These values are defined®/90rithm with a population of ten individuals. The evobrti

Table | where the symbal’M; denotes the marginal produc-Of the population in the joint strategy spaces drawn on Fig.
tion cost of generatoi and Q%" its maximum production 3. As we observe, all the individuals coincide at iteratit
K3

capacity. with an element: = (u1,u2) = (27,36) which is actually a
We assume a uniform-price spot market with a price C£%ash equilibrigm. Actually, this Nash equilibrium was ai(g/
of 50$/MWh and an elastic load. The equati®,ne,re: = found before iteratiory2 by our approach and the algorithm

~0.083% Q100 458.33 gives the amount of powed,, the load c0Uld therefore have been stopped earlier.

is ready to buy at a price per MWh equal®®,,,,-1.:. Bids are
submitted in the form of “price per MWh”-"quantity” pairs.
For the sake of simplicity, we consider here that the genesat
always bid their full capacity. The strategy spadés and We now evaluate the performances of our approach when
Us, which are defined in Table I, are therefore composed applied to markets having many actors.

B. Performances of the approach for markets with large joint
strategy spaces

elements which correspond to prices per MWh. First, we have set up a procedure which takes as input
The profit (or payoff) of a generatéris computed by using the number of actorsV and defines automatically the data
the following expression: of a uniform-price spot market which ha$ generators that

_ can bid strategically. We note that the market is cleared by

Ji(u) = Qi X Prmarker — Qi x CM; ©) computing the intersection between the supply and the déman
where Pr.q ket 1S the market clearing price an@; the curves. Then, we have by using this procedure generated
electrical power the generatéiis scheduled to produce. markets of various sizes and run our algorithm to compute
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bidding price - generatorl Fig. 4. Some typical elastic load demand curves and supphesu
Fig. 3. Representation of the populatidi(t) at different iterationg (1, 5 o
10, 15, 20, 72). values of N smaller or equal td. Determining the number of
NEs for larger values oV was leading to too high computing
times.
a Nash equilibrium for every of these markets. Finally, we Column Ill: CPU time needed to carry out this exhaustive
have analyzed the different runs of our algorithm. search. The number between brackets reports the valuesof thi

Procedure used to generate the data of & actor electricity CPU time divided by the number of NEs in the game. This
market. The marginal cost (maximum producti@"**) of number can in some sense be seen as the average time needed
a generator is determined by drawing at random and witho compute a NE by relying on an exhaustive search process.
uniform probability a value in the sef20,21,22,...,30}  Column IV: Average CPU time needed by the genetic
({100,110,...,500}). Its strategy spacé/; is set equal to algorithm to find a minimum ofD(-), i.e. to find a NE. The
{CM;,CM; + 1,...,price_cap} where price_cap is the genetic algorithm has been run with a population dize- 40.

value of the market price cap. This value is chosen equal tocolumn V: Average number of iterations needed by the

50 $/MWh. genetic algorithm to find a minimum ab(-).
The market has an elastic load demand which responds torhe values of Columns IV and V have been computed by
the following equation: averaging the results obtained ovér runs of our algorithm.
Proarier = k1 X Qpor + b1 (10) Analysis of the simulation results. Different observations

can be drawn from Figure 5. At first, one should note that the
where Pro,. ket 1S the market price@:,: is the quantity of number of NEs grows with the number of generatdrs At
power the load is ready to buy for a pridr,...ket, k1 is second, one should observe that the time required to find the
a parameter chosen equal t60.11 and b1 is a parameter NEs by exhaustive search grows extremely rapidly with
whose value depends on the total installed capacity. Thisking this approach rapidly too computationally demagdin
dependence has been introduced to have an elastic ledtenNV increases. Moreover, an analysis of the fourth column
demand which is correlated with the size of the generatiaf this table shows that the average CPU time for finding a
park. More specifically, we have chosen this coefficieht NE with our approach does not grow 'too rapidly’ with.

equal to—k1 x 0.8 X Qins: WhereQine: = ST, QUor. This allows us to tackle much larger problems than with the
Figure 4 represents for several valuesfsome typical exhaustive search approach. It should be noted that thetlyrow
elastic load demand curves and supply curves. in CPU times is the combination of two factors: (i) the in@ea

Simulation results. By using the procedure described previwith N of the CPU time required to carry out one iteration
ously, we have generated for various values\othe data of of our algorithm (ii) the growing number of iterations thata
different markets and run on each of this market our algorithneeded for identifying a NE whelV increases, as illustrated

to compute a Nash equilibrium. Figure 5 reports the simatati in the last column of the table.

results obtained by this procedure as well as those obtéiyped It is clear that the performances of our approach depend on
an approach relying on an exhaustive search process to fihd different parameters of the GA algorithm. For example,

all the Nash equilibria of the system. we found out that by usingd = 10 rather thankK = 40,
We explain hereafter the content of this figure. the algorithm was performing better for small values of
Column I: Number of generators in the markeV). This However, whenN was greater than0, it was preferable

number ranges frora to 30. to work with K = 40. Numerous papers have addressed

Column II: Total number of NEs in the market. These NE¢he problem of fine tuning of some stochastic optimization
have been found by relying on an exhaustive search proceslgorithms (see, e.qg. [2], [4]). We refer the reader to them f
We note that the total number of NEs is only reported fa complement of information about this subject.



Number Number| CPU Time for finding Average CPU Average number of
of GENs (V) | of NEs every (a) NE for finding a NE iter. for finding a NE
by exhaustive search (GA based approach) (GA based approach)
2 3 85.78 (28.60) 12.058 14.3
3 6 5025.42 (837.57) 19.948 14.667
4 16 296102.31 (18506.39 13.579 14.8
5 / / 24.15 17.5
10 / / 33.297 18.1
20 / / 133.858 16.5
30 / / 2234.415 53.5

Fig. 5.

An analysis of the performances of an exhaustivechkeapproach which computes every Nash equilibrium and ofGAebased approach which

computes a Nash equilibrium by finding a zeroof-). The CPU times are given in seconds on an Intel Pentium 4 2H9 @ocessor.

V. CONCLUSIONS [3]

We have proposed and evaluated in this paper a new
approach for computing Nash equilibria for games having &
large number of actors. While standard approaches to this
problem rely on some best-response type strategies, the pro
posed methodology was reformulating the problem as a stafs]
dard minimization problem and using stochastic optimaati
algorithms to solve this problem. In principle, the methiogdy
is also able to identify every equilibrium of the game by gsin
an iterative scheme together with a proper penalizatiomef t 71
cost function.

We validated our approach on electricity markets having
an elastic load demand and found out that the approadl
was able to identify with 'reasonable computing times’ a
Nash equilibrium of a game, even when dealing with a larg®]
number of power producers. Some side simulations showed
us that designing an appropriate penalization scheme for
identifying multiple Nash equilibria was however challéngy [10]
Therefore, we propose as first research direction to design
well-performing penalization schemes able to identify m &y
efficient way every Nash equilibrium of a game or at least a
high percentage of them. (12]

As second research direction, we suggest to extend Qi

(6]

C.A. Berry, B.F. Hobbs, W.A. Meroney, and R.P. O’Neillnderstanding
how market power can arise in network competition: a gameréie
approach.Utility Policy, 8(3):139-158, September 1999.

M. Blesa and F. Xhafa. Using parallelism in experimegtiand fine
tuning of parameters for metaheuristics. @@mputational science -
ICCS 2004 volume 3036 ofLecture Notes in Computer Sciengages
429-432. Springer Berlin / Heidelberg, 2004.

D. Chattopadhyay. Multicommodity spatial sournot miofie generator
bidding analysisIEEE Transactions on Power System9(1):267-275,
February 2004.

M. Coli, G. Gennuso, and P. Palazzari. A New Crossoverrétpe for
Genetic Algorithms.Proceeding of the IEEE International Conference
on Evolutonary Computation ICEC 9fages 201-206, May 1996.

J. Contreras, M. Klusch, and J. B. Krawczyk. Numericalusons to
Nash Cournot equilibria in coupled constraint electrigitarkets.|EEE
Transactions on Power System®(1):195-206, February 2004.
Pedro F. Correia, Thomas J. Overbye, and lan A. Hiskerearching
for noncooperative equilibria in centralized electricityarkets. IEEE
Transactions on Power Systemis(4):1417-1424, November 2003.
Lance B. Cunningham, Ross Baldick, and Martin L. Baughman
empirical study of applied game theory : transmission cairstd
Cournot behavior. IEEE Transactions on Power Systemis(1):166—
172, February 2002.

M. Dorigo, V. Maniezzo, and A. Colorni. The ant systenptimization
by a colony of cooperating agent&EE Transactions on Systems, Man,
and Cybernetics - Part B26(1):26—-41, 1996.

F. Glover. Tabu search - part iDRSA Journal on Computin@:4-32,
1990.

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning Addison-Wesley, 1989.

R. Green and D. M. Newbery. Competition in the Britiseatticity spot

approach to games where the actors have strategy spaces de-market. Journal of Political Economy100(5):929-953, October 1992.

scribed by continuous or mixed integer-continuous vaesbl [14]
While the philosophy behind the extension is straightfotya ;5
we expect that state-of-the art optimizers may run into -diffi
culties when solving the corresponding minimization pewil
since it is, among others, generally non-convex.

Finally, we underline that it would be pertinent to compare
the performances of our approach with those of some otH&f!
approaches for computing Nash equilibria. In this respict,
would certainly be interesting for the power system comrnyuni[18]
to define a library of benchmarks for problems of computation
of Nash equilibria for electricity markets, something werfid 19,
out was missing.

[16]
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