

ICEBO Manchester 23-26 October 2012

SIMULATION-ASSISTED EVALUATION OF POTENTIAL ENERGY SAVINGS: APPLICATION TO AN ADMINISTRATIVE BUILDING IN FRANCE

François Randaxhe
Research Engineer, PhD student
Energy System Research Unit, Thermodynamics Laboratory
University of Liège

GENERAL PURPOSE OF THE STUDY

- Feasibility studies for improving energy and environmental efficiency of administrative buildings in France and Belgium
- Study split in 2 phases:
 - + In the first phase for each building, analysis of the operation of the buildings
 - + In the second phase for each building, feasibility studies to determine the concrete possibilities of adaptation of the building and its systems to reduce energy needs

PARTNERS IN THE PROJECT

- Project is conducted by OTE/TTE, private consulting firms from France/Belgium
- University of Liege team has participated to the study in term of Building Energy Simulation modeling:
 - + 1st Phase: Calibration of the model
 - + 2nd Phase: Use calibrated building model to simulate various individual technical solutions or ECOs at first, and then some overall concept scenarios.

BUILDING DESCRIPTION

- Situated in France
- × Built in the 80s
- ★ Floor area of 19,000 m²
- × 11 levels
- Curtain walls façade made of aluminum and glass.

* Houses offices, a few conference rooms that can accommodate around hundred people, bathrooms and a nursery.

25 Oct 2012

BUILDING HVAC DESCRIPTION

- Main HVAC production system is composed of reversible geothermal heat pumps:
 - + Produce hot and chilled water simultaneously, when needed, to satisfy
 - × the cooling needs of IT rooms all year and
 - × heating and/or cooling of all other spaces throughout the seasons
- Meeting rooms and the other large volumes are only served by CAV air handling units
- Office spaces are served by CAV air handling units and fan coil terminal units

BUILDING HVAC DESCRIPTION (GEOHP)

20 Oct 2011 6

BUILDING HVAC DESCRIPTION (GEOHP)

- Production of HW/CW fully provided by 3 similar geothermal heat pumps on groundwater (2005)
- Machine composed of 2 screw compressors with refrigerant R134a
- Nominal performances in winter and summer mode listed below:

Condenser				
Heating capacity	Water in-out temperature	EER "hot"		
758 kW	50/40°C	<u>4.10</u>		
Evaporator				
Cooling capacity	Water in-out temperature	EER "cold"		
582 kW	6/11°C	3.15		

Condenser				
Heating capacity	Water in-out temperature	EER "hot"		
772 kW	20/30°C	5.68		
Evaporator				
Cooling capacity	Water in-out temperature	EER "cold"		
643 kW	6/11°C	4.73		

Winter mode

Summer mode

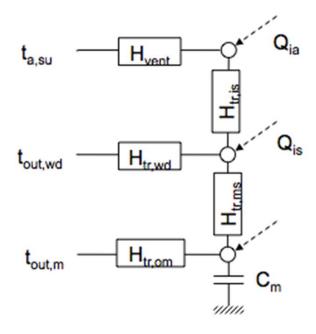
BUILDING HVAC DESCRIPTION (AHU)

- × 17 AHUs: approx. 200 000 m³/h (supply air)
 - + 16 of them are running since 1987
 - + some allow partial recirculation
 - + some other are equipped with heat pipe energy
 - recovery systems
 - From inspection, in poor shape or even removed from AHUs

OCCUPANCY AND OPERATING PROFILES

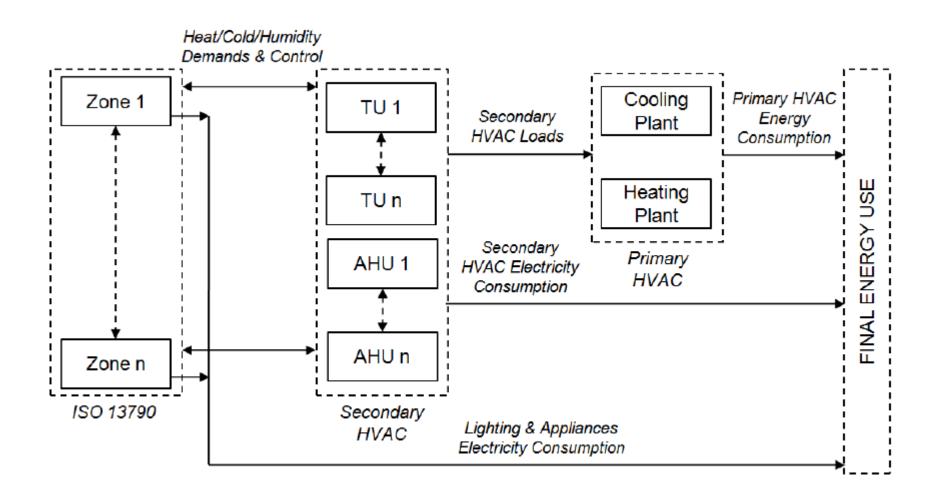
- Administrative building with atypical occupancy and operating profiles
- Number of occupant can vary from 135 to more than 600 depending on the period:
 - + work period (WP),
 - + pre-work period (PrP)
 - + post-work period (PoP)
- Major challenge in term of potential savings especially during the PrP and PoP (20% normal occupancy)

OCCUPANCY AND OPERATING PROFILES


- S AHUs and the fan coils are working from 6am to 11pm only during WP, are shut off during PoP and restarted during the week of PrP.
- The 12 others (about 75% of the total supply air) are working round the clock during the WP.
 - + 7 of those 12 even run round the clock during PrP and PoP,
 - + the 5 other being started during the PrP week and stop at the end of the WP.

CONTROL STRATEGY

- From inspection a first observation can be made regarding the control strategy:
 - →Building management systems BMS is poorly utilize!
- Indoor setpoint fixed 21°C in winter and 22°C in summer (in theory during occupation hours)
 - →Each office is equipped with potentiometer on terminal units allowing a -3°C or +3°C deviation of the setpoint
 - →No inoccupation hour's setpoint were found during inspection (in as-built 16°/28°C in theory)
 - → Mobile electric heater were in 1/3 of the office (winter)


SIMPLIFIED BES MODEL: SIMAUDIT

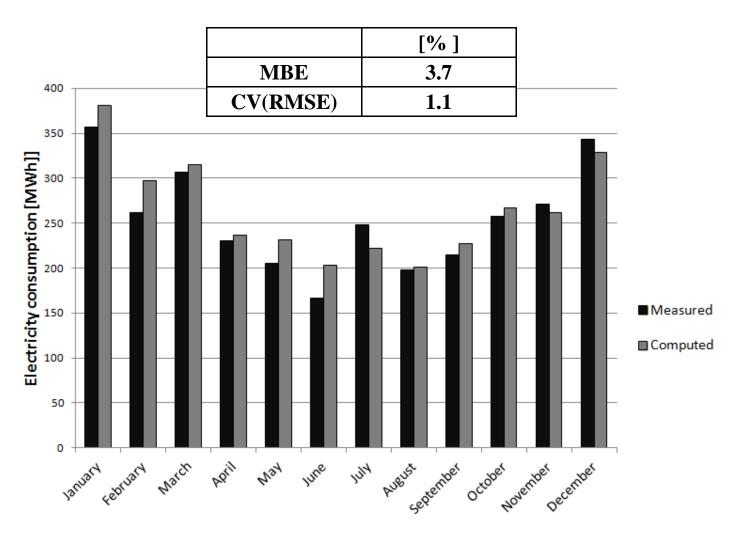
- Simple multizone building model (simple hourly method ISO/EN 13790), by S. Bertagnolio
- Moisture balance: Water capacitance method
- Secondary HVAC system
 - + All Air (CAV+RH/VAV+RH)
 - + Air / Water (CAV+TU)
 - + All Water (TU)
- Primary HVAC system
 - + Hot water boiler
 - + Air or water cooled chillers
 - + Heat rejection devices

Sensible thermal zone model

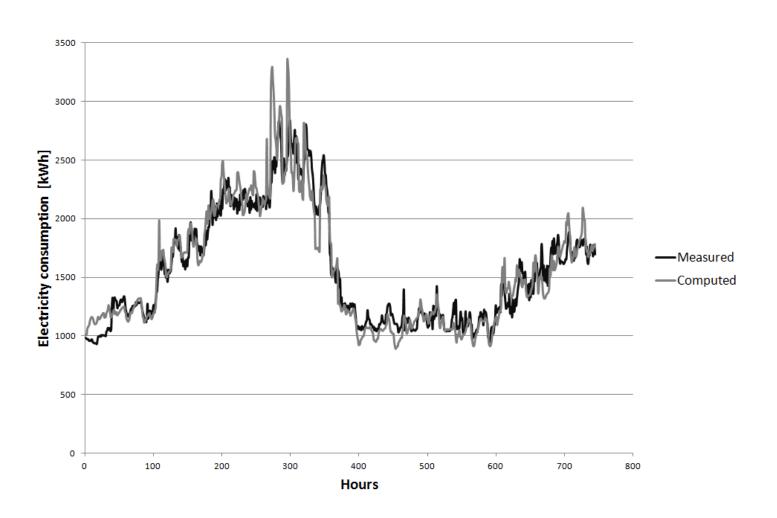
SIMAUDIT MODEL

CALIBRATION CRITERION

- × 2 criterion were used to define calibration quality:
 - + "Mean Bias Error"

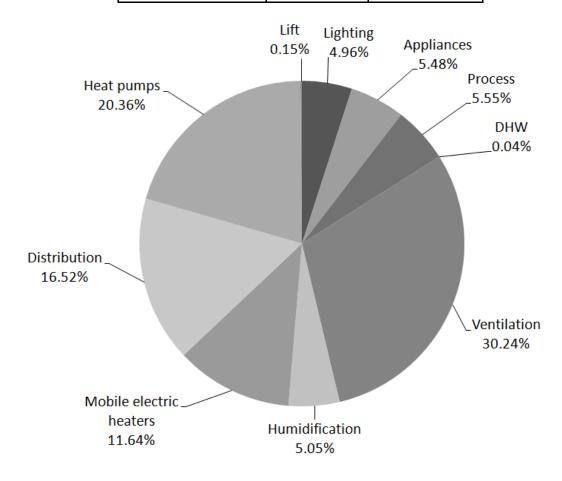

$$MBE = \frac{\sum_{i=1}^{n} (Q_{pred,i} - Q_{data,i})}{n \ Q_{data}}$$

+ "Coefficient of Variation of the Root Mean Square Error"


$$CV(RMSE) = \frac{\sqrt{\sum_{i=1}^{n} (Q_{pred,i} - Q_{data,i})^{2}}}{\frac{n}{Q_{data}}}$$

In the case of an assessment on a monthly basis, ASHRAE recommends limits of +/- 5% for MBE and +/- 15% for the CV(RMSE)

CALIBRATED MODEL AND RESULTS



HOURLY COMPARISON (JANUARY)

ANNUAL ELECTRICITY CONSUMPTION

	MWh	kWh/m²
Total per year	3172	166

RETROFIT OPTIONS SIMULATION (1)

- Implementation of energy efficient schedule, fresh air rate and new setpoint for air handling units and fan coils into the BMS:
 - + New indoor setpoint (occ 20°C/24°C and nocc 16°/26°C)
 - + Lowering fresh air percentage in supply air especially during PrP and PoP when
 - + Automatic schedule for all AHU and fan coils implemented in BMS based on WP and PrP/PoP

RETROFIT OPTIONS SIMULATION (2)

→ Allow a significant reduction of energy especially for the PrP and PoP where some of the HVAC systems were still working 24/7.

	Unit	Reference	Solution	Relative Gain
Total electricity consumption	MWh	3 770.18	2972.74	21.2%
High peak electricity consumption	MWh	180.49	140.08	22.4%
Winter peak electricity consumption	MWh	1 042.33	842.35	19.2%
Winter off-peak electricity consumption	MWh	730.57	531.28	27.3%
Summer peak electricity consumption	MWh	1 098.85	904.61	17.7%
Summer off-peak electricity consumption	MWh	717.94	554.41	22.8%

OVERALL SCENARIO

- The scenario presented here is the last scenario asked by the private consultant to model. It regroups an important amount of retrofit options like
 - + Adapt indoor setpoints depending on occupation and WP
 - + Replace over 25 years old AHU
 - + Adapt BMS schedule for AHU and TU
 - + Change some of the lightings equipments
 - + Optimize office organization in term of PrP/PoP occupation regrouping
 - + Other more small or specific ECO solution

OVERALL SCENARIO (2)

	Unit	Reference	Solution	Relative Gain
Total electricity consumption	MWh	3 770.18	1 932.64	48.7%
High peak electricity consumption	MWh	180.49	92.36	48.8%
Winter peak electricity consumption	MWh	1 042.33	538.50	48.3%
Winter off-peak electricity consumption	MWh	730.57	309.28	57.7%
Summer peak electricity consumption	MWh	1 098.85	661.26	39.8%
Summer off-peak electricity consumption	MWh	717.94	331.25	53.9%

CONCLUSION

- The most sensitive point in this type of study is the calibration of the BES Model and therefore the quality and the quantity of data needed
- It is important when you see such results to improve energy performance rules and certification
- Continuous monitoring of the main consumers in a building could serve such purpose of "preinspection" and highlight possible ECO

THANK YOU FOR YOUR ATTENTION!