La lactation : rappels physiologiques et induction. Application à l'espèce bovine

C. HANZEN

Faculté de Médecine Vétérinaire U.Lg.
Rue des Vétérinaires 45, 1070 Bruxelles
Chaire d'Obstétrique
et des Troubles de la reproduction

INTRODUCTION

Depuis de nombreuses années déjà on sait que différentes hormones placentaires ovarienes et hypophysaires ont un rôle approprié à jouer dans le développement de la glande mammaire. Nombreuses furent les expériences réalisées tant in vivo qu'in vitro pour tenter d'expliquer les mécanismes inducteurs de la lactation. La reproduction expérimentale de cette induction fut tentée, sans grand succès, avec de nombreuses associations hormonales. En 1973, SMITH et SCHANBACKER (130) mettent au point un traitement inducteur de 7 jours à base d'œstrogènes et de progéstone dont les résultats s'avèrent très encourageants. La compréhension des mécanismes physiologiques mises en jeu est autrement plus ardue que son application devenue aujourd'hui relativement simple.

Une approche de ces mécanismes complexes mérite cependant d'être tentée. Elle aura l'aspect d'un tryptique. Le premier volet sera constitué d'un bref rappel de l'évolution de la glande mammaire à savoir la mammogénèse ou phase de prolifération et de différenciation, la phase de lactation et la phase d'involution mammaire.

Le second traîtera plus particulièrement les différents aspects de la lactation. Le troisième volet sera consacré au problème de l'induction de la lactation.

I. EVOLUTION
DE LA GLANDE MAMMAIRE

A. MAMMOGENESE

Lors de la période embryonnaire les crêtes mammaires d'origine épidermique se fractionnent en corps mammaires primitifs dont la régRESSION se fait en nombre variable selon les espèces. La prolifération des corps mammaires primitifs entraîne la formation de bourgeons épidermiques qui après ramification se creusent en tubules et acini se réunissant au niveau du mammelon par des canaux collecteurs.

De la naissance à la période prépubertaire les changements observés sont minimes. Lors de la période prépubertaire, le développement des conduits mammaires,
faible et limité à la base du téton chez la chatte et la lapine, est par contre plus important chez les ruminants, la souris et le rat.

Cette phase de multiplication s’accélère à la puberté et son importance est fonction du type de cycle sexuel et du développement corporel acquis (23). La glande mammaire est formée de deux grands systèmes : l’un, caniculaire avec le canal du trajon, le sinus galactophore ou bassinet et les canaux galactophores collectant le lait, l’autre, alvéolaire, c’est-à-dire les acini formés de l’ensemble des cellules élaborant le lait. Dans les espèces à cycle court (rat, souris, ruminants) la prolifération mammaire se limite au système caniculaire. Les espèces à cycle long présentent par contre un développement lobulo-alvéolaire semblable à celui induit par un état gestatif.

Lors d’un état gestatif, le développement acquis lors des cycles précédents va se poursuivre : les systèmes caniculaire et surtout alvéolaire se multiplient. Chez les espèces à cycle court, ce développement réduit du système alvéolaire avant tout état gestatif s’expliquerait par une exposition trop brève du tissu mammaire à l’influence progestérionale (36).

Cette multiplication débute près de la citerne c’est-à-dire à la base du trajon et se poursuit vers la périphérie. En général, le parenchyme mammaire termine sa croissance pendant les deux derniers tiers de la gestation. La chèvre ne présente un développement alvéolaire mammaire que pendant la deuxième moitié de la gestation (31) c’est-à-dire entre J 70 et J 100 surtout, une sécrétion étant rarement visible avant J 80 et J 100 de gestation. La brebis pour sa part présente deux phases de croissance l’une avant, l’autre après le 100e jour de gestation. Ces deux phases de prolifération doivent sans doute correspondre à des équilibres endocriniens différents (30). La différenciation en cellules sécrétoires commencée en fin de gestation, se poursuit pendant les premiers temps de la lactation (36). Dans l’espèce bovine, la capacité de synthèse de lait n’est acquise que deux jours avant le part. (2, 57, 117).

B. PHASE DE LACTATION

Elle comprend l’ensemble des phénomènes physiologiques présidant à l’élaboration puis à l’excrétion des constituants du lait. Certains facteurs sont lactogéniques : ils interviennent dans le déclenchement de la lactation. D’autres, de nature hormonale ou alimentaire, sont galactopoïétiques ; ils peuvent augmenter ou entretenir une production laitière déjà en place.

C. PHASE D’INVOLUTION MAMMAIRE

Commencée pendant les premiers stades de la lactation, elle ne deviendra évidente que lors d’arrêt de la traite ou de la succion, c’est-à-dire lors d’une diminution de la stimulation prolactinique. Cette phase de régression et de dégénérescence mammaire en fin de lactation prend en moyenne 6 à 7 semaines (82). La glande a alors l’aspect d’une glande de nullipare mais avec un système caniculaire beaucoup plus ramifié.

II. LA LACTATION

A. RAPPELS GENERAUX

1. Histologie

La cellule mammaire présente une morphologie classique à savoir :

— le noyau qui est le lieu de la synthèse des acides ribo (ARN) et désoxyribo-nucléiques (ADN).
— le cytoplasme qui renferme les enzymes intervenant dans les réactions génératrices des cofacteurs et autres éléments formateurs des protéines, lipides et glucides du lait.

— les mitochondries qui constituent la « génératrice » de l’énergie cellulaire de par l’activité respiratoire qui s’y localise.

— l’appareil de Golgi et le réticulum endoplasmique (R.E.) qui transforment quant à eux les éléments constitutifs (acides aminés, acides gras) en produits finis (protéines, lactose, triglycerides).

Lors de son entrée en fonction, la cellule mammaire va subir différentes modifications :

En pré lactation l’ultrastructure d’une cellule mammaire (Fig. 1) se caractérise par un noyau de forme irrégulière, des mitochondries de taille égale et peu nombreuses, un R.E. et un appareil de Golgi de faible importance, par quelques microvillosités et 1 ou 2 gouttelettes graisseuses au pôle apical de la cellule (57). L’apparition de ces gouttelettes lipidiques est fréquente dans les moments précédents le part (62). Une étude comparée de tissus mammaires prélevés à 1 jour d’intervalle avant le part a mis en évidence l’importante augmentation des alvéoles et des inclusions lipidiques : les tissus épithéiaux adipeux et vasculaires se retrouvent pour leur part en quantités égales (81). Immédiatement avant le part, de profonds remaniements cellulaires sont observa-
bles : hypertrophie du R.E. et de l'appareil de Golgi avec apparition de vésicules renfermant des micelles protéiques, décharge de matériel granuleux dans la lumière cellulaire, augmentation du nombre de gouttelettes graisseuses cytoplasmiques et de microvillosités apicales, augmentation enfin du nombre de mitochondries cellulaires (117).

A J l post-partum (Fig. 2) apparaît une bipolarité (117) : on distingue une zone apicale comprenant l'appareil de Golgi avec des vésicules renfermant des micelles protéiques, une zone basale avec un RE hypertrophié et le noyau.

La glande en lactation présente des acini qui se trouvent à différents stades de développement. Chez la vache, il y a au cours de la lactation, environ 10% d'alvéoles restées immatures. Lors de la phase excrétrice, les gouttelettes lipidiques qui se trouvent au pôle apical de la cellule fusionnent. La cellule mammaire a, à ce moment, une forme pyramidale. Elle s'étête et le matériel lipidique s'échappe dans la lumière alvéolaire.

2. Biochimie

Hydrates de carbone, graisses et protéines constituent les éléments essentiels de la sécrétion lactée. Ils sont synthétisés à partir de l'épithélium glandulaire mammaire ou proviennent directement du sang.

La proportion de ces différents composants varie avec les espèces animales et humaine (Tableau I).

a) Hydrates de carbone.

L'importance de la production du lait est fonction des concentrations sanguines en glucose (91). La glande mammaire de chèvre lactante prélève 60 à 85 % du glucose utilisé par l'organisme (3). La glande mammaire de truie en lactation utilise plus de glucose que le reste du corps (92). Le glucose aura deux destinations essentielles : d'une part sa métabolisation en lactose (chez la vache par exemple, cette transformation vise 50 à 70 % du glucose) (154) et d'autre part son utilisation pour la synthèse des acides

| TABLEAU I. — Pourcentages des principaux composants du lait de différentes espèces (66). |
|----------------|----------------|---------------|----------------|----------------|
| Espèces         | Graisses | Protéines | Lactose | Eau        |
| Cheval          | 1,9      | 2,5      | 6,2      | 88,8       |
| Vache           | 3,7      | 3,4      | 4,8      | 87,3       |
| Homme           | 3,8      | 1,0      | 7,0      | 87,6       |
| Chèvre          | 4,5      | 3,3      | 4,4      | 86,8       |
| Porc            | 6,8      | 4,8      | 5,5      | 81,2       |
| Brebis          | 7,5      | 5,6      | 4,4      | 80,7       |
| Rat             | 10,3     | 8,4      | 2,6      | 79,0       |
| Souris          | 13,1     | 9,0      | 3,0      | 70,7       |
| Ours polaire    | 33,4     | 10,9     | 0,3      | 52,4       |
| Phoque          | 53,2     | 11,2     | 2,6      | 32,3       |
gras à chaîne courte via le cycle des pentoses et le cycle d'Embden - Meyerhoff.

L'importance de ces deux cycles est variable selon les espèces. Ainsi chez les ruminants, la majorité du glucose non transformé en lactose sera métabolisé via le cycle des pentoses générateur du coenzyme nicotinamide- adénine- dinucléotide - phosphate (NADP). Chez les monogastriques par contre, l'utilisation du glucose non transformé en lactose se fera surtout via le cycle d'Embden-Meyerhoff générateur d'acétates (89).

La synthèse de lactose nécessite par ailleurs l'intervention d'une enzyme : la lactose-synthétase dans la constitution de laquelle on retrouve deux protéines (10) : l'\(\alpha\) lactalbumine et la galactosyl-transférase. Alors que la première n'est présente que dans le tissu mammaire, la seconde se retrouve également dans les tissus qui ne synthétisent pas le lactose. La synthèse de ces protéines est modulée d'une part par la prolactine qui a une action stimulatrice et d'autre part par la progestérone qui, à concentration élevée inhibe la synthèse d'\(\alpha\) lactalbumine. Cette influence inhibitrice disparaît à l'approche du part, c'est-à-dire au moment où les concentrations progestéroniques diminuent (146). En témoignent l'augmentation de concentration d'\(\alpha\) lactalbumine et l'activation de la lactose-synthétase 7 jours avant le part environ (102, 101).

b) Acides gras

Chez de nombreuses espèces, 95 % des lipides du lait sont constitués de triglycérides (67). Ces triglycérides sont constitués d'acides gras à courte, moyenne et longue chaîne dont la proportion varie selon les espèces (tableau 2). Leur origine est double (153) : les acides gras à courte chaîne proviennent de la transformation des polysaccharides en acide butyrique et acide acétique par la microflora du rumen ; les acides gras à longue chaîne résultent de la lipolyse dans le tissu adipeux de réserve et de la résorption intestinale sous forme de chylomicrons et de lipoprotéines. 60 % des acides gras du lait sont synthétisés par la glande mammaire (112).

Le métabolisme des triglycérides sanguins par la glande mammaire requiert l'intervention d'une enzyme tissulaire, la lipoprotéine - lipase. En fin de gestation et en début de lactation (100) l'activité de cette enzyme augmente dans la glande mammaire (127) alors qu'elle diminue dans les autres tissus à activité lipogénique (156).

<table>
<thead>
<tr>
<th>TABLEAU 2. — Pourcentage des acides gras entrant dans la composition des triglycérides du lait de différentes espèces.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Acides gras</strong></td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Chaine courte (C₁ - C₆)</td>
</tr>
<tr>
<td>Chaine moyenne (C₇ - C₁₂)</td>
</tr>
<tr>
<td>Chaine longue (C₁₃ - C₂₀)</td>
</tr>
</tbody>
</table>
Cette activité enzymatique est stimulée par la prolactine (156). Inversément l’arrêt de la traite supprime la décharge prolactinique qu’elle provoque normalement entraînant par la-mêmes une diminution de l’activité de la lipoprotéine-lipase dans le tissu mammaire mais une augmentation de l’activité de cette même enzyme dans les autres tissus (49).

Une fois synthétisés les acides gras fusionnent en gouttelettes lipidiques dont la taille va aller sans cesse croissante jusqu’à leur élimination par exocytose dans le canalicule excréteur.

c) Protéines

Elles sont représentées par plusieurs grandes fractions (90)

— les albumines : lactalbumine et serumbalbumine

— les globulines dont font partie les immunoglobulines, la β lactoglobuline et quelques autres protéines

— les caséines et leurs complexes α (s, k) β, γ.

La synthèse de ces protéines est à la fois sous contrôle hormonal et génétique. Une fois synthétisées au niveau du R.E., les protéines migrent vers l’appareil de Golgi (59). Ce dernier forme un compartiment pour la condensation des protéines et leur permet ainsi de se décharger par fusion de la vacuole de Golgi avec la membrane plasmatique apicale (117).

— Enzymes divers

Le métabolisme mammaire requiert de très nombreux enzymes (125). Au niveau de la mamelle leur activité augmente rapidement dans les 2 à 3 semaines précédant le part (127).

3. Aspect clinique : le let-down


B. ELEMENTS INDUCTEURS DE LA LACTATION NATURELLE

De nombreuses études ont montré que ces changements prolifératifs relevaient d’une séquence « temps et d’une séquence hormodépendante ».

I. La séquence « temps-dépendante »

Chaque étape de la multiplication cellulaire mammaire nécessite un certain temps pour développer sa réponse maximale à une stimulation hormonale. La non intervention d’une des hormones lors d’une étape de la multiplication cellulaire bloque la cellule au stade de développement acquis (36).

II. Séquence hormono-dépendante

Le rôle joué par les principaux éléments de ce complexe hormonal est différent
selon les phases de multiplication, différenciation et sécrétion mammaire (tableau 3).
— Plus que d’une hormone de lactation, c’est d’un complexe hormonal qui dépend l’évolution de la glande mammaire (117, 139). De ce complexe font partie les œstrogènes, la progestérone, les corticoïdes, l’insuline, l’hormone placentaire de lactation (12), la prolactine (23, 117, 136), l’ocytocine, l’hormone de croissance (65, 136), les hormones adreno (ACTH) somato (STH) et thyreo (TSH) tropes (108).
— Parmi ces hormones, il faut différencier les hormones dites « permissives » dont la présence est nécessaire mais non suffisante à la lactation (les œstrogènes par exemple) et les trigger-hormones ou hormones de déclencheur de changement de concentration plasmatique déclencherait la lactation (la progestérone notamment). Ainsi lors du part, la chute de la concentration progestéronique (élément déclenchant) et l’augmentation des concentrations plasmatiques en œstrogènes (98, 121) et corticoïdes (éléments permissifs) (141) sont à mettre en relation avec l’action lactogénique de la prolactine à ce moment.
— Il faut tenir compte également de différences d’espèces à espèces. Si chez les ruminants, le rôle galactopoïétique de la prolactine paraît être mineur, il serait beaucoup plus déterminant chez les non ruminants. Le déclenchement de la parturition et de la lactation est donc constitué par deux processus physiologiques étroitement mêlés au cours desquels les variations des concentrations hormonales apparaissent très caractéristiques (Fig. 3). En fin de gestation l’augmentation des œstrogènes entraîne une chute de la concentration relative de la progestérone (I). Deux à trois jours avant le part, en réponse à une stimulation

**TABLEAU 3. — Hormones intervenant au cours du développement et du fonctionnement de la mamelle.**

<table>
<thead>
<tr>
<th>Etat physiologique de l’animal</th>
<th>Puberté</th>
<th>Gestation</th>
<th>Parturition</th>
<th>Lactation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etat physiologique de la mamelle</td>
<td>Mammogénèse</td>
<td>Lactogénèse</td>
<td>Galactopoïèse</td>
<td></td>
</tr>
<tr>
<td>Œstrogènes</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Progestérone</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Corticoïdes</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Insuline</td>
<td>+</td>
<td>—</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hormone placentaire de lactation</td>
<td>+</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Prolactine</td>
<td>+</td>
<td>+</td>
<td>(non ruminants)</td>
<td></td>
</tr>
<tr>
<td>Ocytocine</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hormone de croissance</td>
<td>—</td>
<td>—</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>
encore mal définie, les corticoïdes fœtaux augmentent brutalement (II).

Cela entraîne un pic d'oestrogènes (III) et une chute de la progesterone (IV) par l'action lutéolytique des prostaglandines. La suppression de l'inhibition progéstonique est responsable du rôle lactogénique de la prolactine dont on peut observer l'augmentation de concentration en fin de gestation sous l'effet des oestrogènes (V).

Enfin, en réponse au stress que constitue la parturition corticoïdes et prolactine présentent une augmentation brutale de leurs concentrations (VI).

1. Les oestrogènes

Ils favorisent l'action d'autres composants du complexe hormonal leur rôle est permissif. Ainsi ont-ils été, par exemple, rendus responsables de la libération prolactinique prepartum (98, 121) étant donné leur augmentation suivie d'un pic au moment du part (35, 60, 116, 133). Ils déterminent la prolifération du système canaliculaire et avec la progesterone, le développement lobulo-alvéolaire et la synchronisation des cellules sécrétaires. Il faut cependant noter qu'il existe des différences d'espèce à espèce.

Par ailleurs un parallélisme a été établi entre l'augmentation des oestrogènes en fin de gestation et la mise en activité de différents enzymes.

La dualité de leurs effets galacto-inhibiteurs sur une glande mammaire en lactation et galacto-excitateurs sur une glande mammaire au repos demeure encore mal connue.
2. La progestérone

Elle est en partie responsable du développement observé dans la deuxième moitié de la gestation chez la vache comme en témoigne l'augmentation de sa concentration plasmatique à ce moment (23).

Elle serait d'autre part une hormone de déclic (86, 87) : en fin de gestation en effet la chute de sa concentration provoque une décharge hypophysaire de prolactine, de G.H. et d'A.C.T.H.

Chez certaines espèces, la concentration sérique de cette hormone inhibitrice du déclenchement de la lactation (25, 55) tombe avant l'accouchement : ainsi en est-il chez la vache (133, 135), la truie (97), la chèvre (58), la brebis (134), la lapine (17), le hamster (94). Ceci éclaire la corrélation négative existant entre lactogène et progestérone observée chez ces espèces. Par contre chez la femme (93), le singe (107), le cochon d'Inde (42) les concentrations progestéroniques demeurent fortes élevées jusqu'au moment de l'accouchement.

Par ailleurs chez la lapine (4) et la brebis (73) l'action inhibitrice de la progestérone sur l'activité lactogène de la prolactine a été clairement mise en évidence.

3. L'insuline

Elle favorise l'absorption des éléments indispensables au métabolisme cellulaire et exerce une action mitogène (140).

Une synergie d'action a été constatée avec la prolactine et le cortisol (150).

4. Les corticoïdes

D'une façon générale les glucocorticoïdes semblent être indispensables à la croissance et à la différenciation histologique de la glande mammaire tant chez les ruminants (21) que chez les monogastriques (44, 57).

Leur rôle dans le mécanisme de la lactogénèse est étayé par différents faits expérimentaux :

- des récepteurs spécifiques pour le cortisol et le dexaméthasone ont été identifiés dans la glande mammaire (48, 143).

- Ils peuvent induire la lactation s'ils sont injectés en début de gestation chez la rat (99), le lapin (99) et la souris (105) ou dans sa deuxième moitié chez la vache (144) et la brebis (28).

L'inhibition progestéronique pourrait être levée à ce moment par un pic de corticoïdes ou d'ACTH (21). Ces corticoïdes déplaceraient donc la progestérone de ses récepteurs mammaries.

La spécificité des récepteurs mammaires en fin de gestation serait fonction des concentrations relatives des stéroïdes progestéroniques, corticoïdiens et œstrogéniques (46, 47, 129).

- En cas d'insuffisance sécrétoire en fin de gestation ils diminuent le rôle lactogène de la prolactine chez la brebis (75).

- Lors d'induction du part aux corticoïdes, la lactation se déclenche normalement (124).


5. Hormone de croissance

Alors qu'OXENDER (111) n'a constaté aucune modification caractéristique de sa concentration au cours de la gestation chez la vache, INGALLS et CONVEY
(65) ont signalé une légère augmentation en fin de gestation avec un maximum au moment de l’accouchement.

Par ailleurs, cette hormone s’est révélée galactopoïétique chez la vache (95, 155), la brebis (71) et la chèvre (24) en raison vraisemblablement de son rôle stimulant sur la multiplication et le métabolisme cellulaire de la mamelle. En cours de lactation, des concentrations plus élevées chez le bétail laitier que chez le bétail viandeux (54) ont été signalées.

6. Hormone placentaire de lactation

Trouvant probablement son origine dans les cotylédons (12) cette hormone voit chez la vache ses valeurs sériques rester faibles (moins de 50 ng/ml) pendant les deux premiers mois de la gestation et augmenter ensuite rapidement pour atteindre un plateau entre les 160 et 200 jours de gestation (8).

Les valeurs calculées sont significativement plus élevées chez les races laitières que chez les races à viande pendant le premier trimestre de la gestation. Elles sont en relation avec la production laitière subséquente (8).

Chez la brebis, une hormone placentaire (ovine placental lactogen, OPL) mimant les effets de la prolactine hypophysaire a également été mise en évidence dans le plasma de bêtes gestantes entre le 40e et le 80e jours de gestation (34, 80). Le maximum de sécrétion fut observé vers le 110e-120e jour de gestation ce qui correspond à la seconde phase de croissance mammaire dans cette espèce. Après ce maximum, une décroissance sensible est observée jusqu’à la parturition (34). Chez la brebis, l’hormone placentaire de lactation serait la principale responsable du développement lobulo-alvéolaire (13).

Elle sensibiliseraient les cellules mammaires à l’action de la prolactine pendant leur phase de croissance et en cours de lactation. Tant chez la vache, la chèvre que chez la brebis, une corrélation positive a été établie entre les concentrations sanguines de « placental lactogen » et le nombre de fœtus (8, 34, 80).

7. Prolactine

On lui a imputé de très nombreux effets différents au niveau de divers organes dans de multiples espèces (109). Cela démontre la complexité de son activité et la difficulté d’en interpréter les variations sanguines et les effets réels sur la glande mammaire. Multiples ont été les paramètres envisagés pour expliquer les fluctuations de cette hormone :

- le cycle sexuel a été étudié chez la brebis (11) et la vache (137)
- la saison, les facteurs climatiques et la durée d’ensoleillement journalier exercent une influence certaine non encore complètement élucidée (76, 77, 84, 88, 122, 139)
- le cycle circadien a été envisagé chez la vache (85), l’homme (118), la chèvre (53), le bélier (115)
- la gestation (70, 111)
- le stress (69, 77, 114, 142)

Les résultats des recherches effectuées s’accordent néanmoins sur deux faits :

- la spécificité de la stimulation des tétons vis-à-vis de la décharge prolactinique chez la chèvre la vache et le rat notamment (68, 69, 74, 84, 142). Les tétons peuvent être considérés comme un endroit privilégié des récepteurs extéroceptifs transformant en réponse endocrine les impulsions reçues par l’intermédiaire du système
nerveux central (77). Cela est surtout vrai dans les jours qui suivent l'accouchement ; la réponse prolactinique à une stimulation mammaire diminue en effet au cours du postpartum tant chez la chèvre que chez la vache (70).

Par ailleurs aucune relation n'a pu être établie entre l'importance du pic observé après la traite et la quantité de lait produite (120).

Cette libération prolactinique se fait par l'intermédiaire de l'hormone thyrotrope (TRH (74). Une décharge prolactinique a en effet été constatée après injection de TRH à des taureaux natures (22), des vaches (22, 79, 149), des génisses (149), des veaux (110), des brebis (43) ou des rats (7).

L'ocytocine ne joue aucun rôle dans ce processus (83).

— La concentration prolactinique va croissante dans les 3 à 5 derniers jours de la gestation (21) et présente un maximum au moment du part tant chez la vache (61, 65, 70) que chez la brebis (27, 96) et la chèvre (70).

Ce pic prolactinique serait un symptôme du part plus qu'un élément déterminant. L'inhibition de ce pic ne s'oppose en effet pas à un accouchement normal (123). De plus, ce pic reste associé au part même lorsqu'on commence la traite avant l'accouchement (76).

Des différentes recherches effectuées, il ressort que la prolactine intervient au cours de différentes phases d'évolution de la glande mammaire.

— dans la mammogénèse : la prolactine y joue un rôle essentiel. Elle bénéficie pour ce faire de l'influence favorable des œstrogènes (75) et de la proges-

térone (15). Celle-ci s'opposerait en cours de gestation à l'augmentation du nombre de récepteurs prolactiniques (33) présents au niveau de la cellule mammaire (129).


L'importance de la prolactine dans le déclenchement de la lactation est confirmée par l'utilisation d'un dérivé de l'ergot de seigle connu pour ses effets inhibiteurs sur la sécrétion de prolactine : le bromocryptine. Ainsi après induction de la parturition aux corticoïdes et injection de ce composé le pic prolactinique n'apparaît pas et les productions de lait sont plus faibles (123).

Dans la galactogénèse, le rôle de la prolactine est mineur chez les ruminants tout au moins (78). L'injection de la bromocryptine en cours de lactation inhibe le pic prolactinique de la traite mais les productions laitières restent inchangées ou diminuent légèrement (78). Chez la brebis cependant l'inhibition de la production de lait semble être beaucoup plus nette (72).

Dans cette espèce (27) et chez la chèvre (70), la chute prolactinique postpartum est beaucoup plus lente que chez la vache. Ce fait a été imputé à une fréquence des tétées beaucoup plus élevées (70). La prolactine induit donc la lactation naturelle mais ne l'entretient pas à l'exception de quelques espèces monogastriques (119).
III. L’INDUCTION
DE LA LACTATION

A. APPLICATION A L’ESPECE
BOVINE

L’induction artificielle de la lactation permet de tirer profit des capacités laitieres d’animaux condamnés à être réformés pour cause d’infertilité. Elle peut d’autre part constituer un test de prédiction de la valeur laitière des génisses étant donné l’étroite corrélation existant entre les rendements obtenus en lactation induite et en lactation naturelle (29).

B. METHODES

Nombreux sont depuis une trentaine d’années les procédés appliqués pour induire la lactation. Leur point commun est l’injection d’œstrogènes et de progestérone. Leur principale différence réside dans la longueur du traitement. Ainsi les premiers auteurs (50, 51, 98) prévoyaient dans le cas de génisses nulipares un double traitement. Un premier de 180 jours comportait de faibles doses d’œstrogènes et de progestérone. Ce laps de temps semblait nécessaire pour permettre un développement lobulo-alvéolaire adéquat. Le second traitement qui déclenchait la lactation proprement dite prenait 14 jours pendant lesquels des doses croissantes d’œstrogènes et décroissantes de progestérone étaient injectées.

Pour les auteurs plus récents au contraire (130) la première phase d’injection semble inutile tout au moins dans le cas de génisses de 2 ans ayant déjà eu des cycles sexuels normaux qui ont apporté en quantité suffisante les hormones ovariennes nécessaires au développement de la glande mammaire.

1. Quantités injectées et durée du traitement

Le traitement proposé (130) et maintes fois appliqué (16, 18, 19, 20, 29, 52, 64, 108, 113, 131) consiste en l’injection journalière et pendant 7 jours d’une association d’œstrogènes (0,1 mg/kg/j) et de progestérone (0,2 mg/kg/j). Ces hormones sont mises en solution dans de l’éthanol absolu à raison de 20 mg d’œstrogènes et de 50 mg de progestérone par ml (130).

L’utilisation isolée de benzoate d’œstradiol (0,011 mg/kg/j) pendant 10 jours a également été testée. Les résultats d’une telle méthode d’induction furent meilleurs chez les génisses que chez les vaches (52). Il est conseillé de commencer la série d’injections en phase postœstrale (130, 131). Certains auteurs (16, 19, 20, 29, 52, 64) préconisent d’injecter également des corticoïdes (dexaméthasone 20 mg/jour/animal) aux jours 17, 18 et 19 après le début du traitement inducateur.

Ce recours aux corticoïdes repose sur plusieurs observations.
— le pic présenté par les corticoïdes surrénaïliens en fin de gestation (19, 133).
— l’effet positif qu’ont les corticoïdes in vitro sur la multiplication et la différenciation mammaire (26, 57, 64)
— les productions laitières supérieures obtenues par leur utilisation lors de traitements inducateurs tant chez la vache que chez la brebis (56).

2. La voie d’injection

C’est un paramètre important. La dose journalière est répartie en 2 injections souscutanées en arrière de l’épaule (130).

Le métabolisme des stéroïdes injectés peut se trouver modifié dans certaines
conditions notamment après injection intramusculaire. Cette modification expliquerait en partie les échecs constatés après traitement inducteur (151).

3. Début de la traite

Il est conseillé de commencer la traite 18 à 21 jours après le début du traitement inducteur (130), c’est-à-dire au moment où les concentrations hormonales et les modifications correspondent à un engorgement mammaire clinique jugé idéal.

C. CONSEQUENCE DU TRAITEMENT INDUCTEUR

1. Sur la lactation

La réussite d’un traitement inducteur (50 à 70 %) dépend de différents facteurs : âge, protocole d’injection, état de la mamelle, race, alimentation, nombre de lactations antérieures (16, 18, 130).

La production de lait augmente 10 à 21 jours après la dernière injection et atteint un maximum après 60 jours (40). D’autres auteurs ont relevé ce maximum après 30 jours ou après 30 à 50 jours (18, 39) ou plus tard encore (29). D’une façon générale, le pic de production maximale semble donc être atteint après un délai plus long que celui que l’on observe lors de lactation physiologique (3 à 6 semaines environ). La quantité totale de lait produite pendant 80 à 352 jours selon les cas reste inférieure à celle d’une lactation post-partum (16). L’importance de cette production laitière n’est pas en relation avec la durée de la période de tarissement préalable (20). Une corrélation étroite a été relevée entre la production de lait sur 305 jours et celle enregistrée après 50 jours (18).

En cas d’échec d’induction, un nouveau traitement peut être mis en place après une période de repos mammaire de un mois environ (16).

2. Sur les capacités reproductrices des animaux induits

Pendant les 30 jours suivant le début du traitement inducteur, l’animal présente des manifestations œstrales plus ou moins importantes et prolongées (40, 16). La reprise d’une activité cyclique normale survient après 2 mois (18) ou plus tardivement encore (29, 40, 130).

Le risque d’apparition de troubles ovariens (kystes, notamment) n’est pas à négliger (18, 29, 40, 52).

3. Sur la croissance mammaire

Elle reste après un traitement inférieure à celle observée pendant le dernier mois de gestation (20, 26, 57, 106). La plupart des processus cellulaires mammaires apparaissent entre le 7e et le 14e jour suivant la dernière injection (26, 29, 131). Malgré de larges variations individuelles le stade de cellule sécrétoire déterminé par le moment d’apparition du lactose (102) est observé 16 jours (20, 26) environ après le début du traitement inducteur. Cette croissance est poursuivie jusqu’au moment où est atteint le pic de lactation (131). L’histologie mammaire lors d’induction s’apparente davantage à l’histologie d’une glande d’avant le part (64). Le développement mammaire ne se poursuit que grâce aux stimulations que constituent les traitements successives.

4. Sur l’état hormonal

La figure 4 schématise les variations des concentrations hormonales que l’on constate après un traitement inducteur.
La séquence hormonale observée devrait idéalement pouvoir être mise en parallèle avec celle relevée avant l’accouchement à savoir : augmentation des œstrogènes et de la prolactine, chute de la progestérone et augmentation brutale des corticoïdes. Certains échecs d’induction peuvent s’expliquer par des concentrations anormales de l’une ou l’autre hormone à des moments déterminés :

- de faibles valeurs plasmatiques en progestérone et œstrogènes au début de la phase d’induction apparaissent déterminante (I) (39). Ces quantités d’œstrogènes nécessaires à l’induction sont donc fonction des valeurs progestéroniques au moment de la première injection (36). Cela explique pourquoi certains états physiologiques ovariens sont compatibles avec la mise en place d’un traitement inducteur (kyste ovarien, anœstrus, postœstrus) alors que d’autres par contre le sont beaucoup moins (diœstrus, corps jaune persistant) (130, 13).

- une insuffisance du déclin progestéronique en fin de traitement inducteur (II) constitue une seconde cause d’échec (36, 39), la progestérone inhibant, on le sait, l’augmentation de la prolactine et le déclenchement de la lactation (151)

- les concentrations en prolactine restent faibles pendant la durée des injections d’œstrogènes et de progestérone puis augmentent quand ces dernières sont relativement basses c’est-à-dire 15 jours après le début du traitement inducteur (III) (16, 39, 41, 104, 151).
Une augmentation insuffisante de la concentration prolactinique à ce moment peut constituer une autre explication d'échec (16, 19). Pour pallier à cette insuffisance, plusieurs auteurs ont utilisé des composés stimulant la prolactine. Citons, par exemple, les prostaglandines, (45), le TRH (145), la sérotonine, les dérivés psychoactifs, la résépine (19, 113).

L'injection de cette dernière substance aux J. 13, 14, 15 et 16 à raison de 5 mg par jour augmente les chances de succès d'une induction.

— des concentrations élevées en corticoïdes favorisent la réponse des cellules mammaires à la prolactine (36) (IV).

5. Sur la présence des œstrogènes et de la progestérone dans le lait

Au moment où la traite commence, ces deux stéroïdes se retrouvent en quantité non significative dans le lait (39). Chez les bovins, la plus grande partie des œstrogènes et de la progestérone s'élimine dans les matières fécales et les urines (38, 103, 151, 152, 37).

BIBLIOGRAPHIE


(3) ANNISON E.F., LINZLL J.L. The oxidation and utilisation of glucose and acetate by the mammary gland of the goat in relation to their over-all metabolism and to milk formation. J. Physiol., Lond., 1964, 175, 372.


(7) BLAKE C.A. Stimulation of pituitary prolactin and TSH release in lactating


(27) DAVIS SL., REICHERT L.E., NISWENDER G.D. Serum levels of prolactin in sheep as measured by radioimmunoassay. Biology of reproduction, 1971, 4, 145.


(64) HOWE J.E., HEALD C.W., BIBB T.L. Histology of induced bovine lactogenesis. J. Dairy Sci., 1975, 58, 853.


(78) KARG H., SCHAMS D., REINHARDT V. Effects of 2 Br α ergocryptine on plasma prolactin level and milk yield in cows. Experientia, 1972, 28, 574.


(81) KINSELLA J.E., HEALD C.W. Na I C sterase and Na 24 C acetate metabolism and morphological analysis of late prepartum bovine mammary tissue. J. Dairy Sci., 1972, 55, 1085.


(136) SUKAROA J., BILEK J. Response of mammary tissue from pregnant goats to prolactin and growth hormone in organ culture. *J. Endocr.*, 1975, 67, 129.


(45) FIELDS M.C., GOW, Dowell. Artificial induction of lactation with progestandins F2a. Theriogenology, 1977, 8 (4), 133.


(53) HART J.C. Basal levels of prolactin in goat blood measured throughout a 24 h period by a rapid double antibody solid phase radioimmunoassay. J. Dairy. Res., 1973, 40, 235.


(82) KLEIN J.W., WOODWARD T.E. Influence of length of dry period on the quantity of milk produced in the subsequent lactation. J. Dairy Sci., 1943, 26, 705.


(107) NEIL J.D., JOHANSON E.D., KNOBL. E. Patterns of circulating progesteron concentrations during the fertile menstrual cycle and the remainder of gestation in the rhesus monkey. Endocrinology, 1969, 84, 45.


(116) ROBERTSON H.A. Changes in the concentration of unconjugated oestrone 17 a, 17 β in the maternal plasma of the pregnant cow in the relation to the injection of parturition and lactation. J. Reprod. Fert., 1974, 36, 1.


(123) SCHAMS D., REINHARDT V., KARG H. Effects of Br 2α ergocryptine on plasma prolactin levels during parturition and onset of lactation in cows. Experientia, 1972, 28, 697.


