Congélation d’embryons suivie de transfert chez les bovins : première utilisation des paillettes

A. MASSIP, B. JACQUELOT, F. ECTORS, R. DE COSTER, G. DIETEREN *, C. HANZEN, J. DERIVAUX

Faculté de Médecine Vétérinaire,
Chaire d’Obstétrique,
* Chaire de Chirurgie,
Rue des Vétérinaires 45,
B - 1070 Bruxelles.

RESUME

62 embryons de bovins récoltés entre les jours 7 et 8 du cycle ont été congelés par la méthode rapide de Willadsen et al. (1978a).

13 morulas retardées ont été cultivées jusqu’au stade de blastocyste avant d’être congelées. Aucun des blastocystes ainsi obtenus n’a survécu après décongélation.

49 embryons (34 jeunes blastocystes ou blastocystes et 15 morulas avancées) ont été congelés aussitôt après la récolte : 38 en ampoules de pyrex, 11 en minipaillettes Cassou.

Le taux de survie globale est de 53,2 % ; 45 % des embryons transplantés se sont développés en fœtus ce qui représente 18,4 % de l’ensemble des embryons congelés. 7 receveuses sur 19 (36,8 %) sont gestantes (diagnostic effectué par dosage de la progéstone à 21 jours et confirmé par fouiller rectal à 60 jours).

La congélation des embryons en minipaillettes donne des résultats encourageants.

(1) Travaillé réalisé sous les auspices de l’I.R.
S.I.A., rue de Crayer, 6, 1050, Bruxelles.
Manuscrit déposé le 19 juillet 1978.
INTRODUCTION


MATERIEL ET METHODES

Les donneuses et receveuses utilisées sont des génisses de diverses races (Frisonne, Blanc-Bleu Belge), âgées d’environ 2 ans et pesant en moyenne 400 kg.

A) Superovulation

La technique de superovulation employée est celle préconisée par Trounson et al. (1976b) à savoir :

a) injection intramusculaire de 2 000 UI de PMSG (Folligon Intervet) entre le 9e et le 12e jour du cycle (Jour 0 = jour de l'œstrus),

b) 48 heures plus tard, injection intramusculaire de PGF2α synthétique (1 mg d’Estrumate I.C.I.),

c) inséminations répétées par sperme congelé 2 à 3 fois à 12 heures d’intervalle lors des chaleurs qui surviennent généralement 48 heures après l’injection de prostaglandines.

Les embryons sont récoltés entre les jours 7 et 8 du cycle par la méthode chirurgicale de Rowson et al. (1969), et en utilisant le milieu PBS de Wittingham (1971).

Au moment de la récolte les œufs fécondés se trouvent à divers stades de développement : les uns sont encore au stade de morula, les autres ont atteint le stade blastocytique.

L’expérimentation fut poursuivie suivant deux modalités :

Expérience 1 :

a) les embryons au stade blastocytique sont soumis directement à la congélation ;

b) les embryons au stade morula sont placés en culture dans le milieu B2 (Ménézo, 1976), à 37 °C, sous atmosphère gazeuse. Le stade de blastocyste atteint, ces embryons sont congelés.

Expérience 2 :

congélation directe des embryons quel que soit leur stade de développement (morula ou blastocyste).

B) Technique de congélation

(Willadsen et al. 1978a, expérience B)

1. passage des embryons, à température ambiante, dans 3 bains successifs de PBS additionné de DMSO aux concentrations suivantes : 0,5M, 1M, 1,5M. Le séjour dans chacun de ces bains est de 10 minutes pour les 2 premiers et de 30 à 40 minutes pour le troisième.

2. les embryons sont ensuite répartis, à raison de 2, soit en ampoules de pyrex (0,5 × 5 cm) ainsi que le font Willadsen et al. (1978a), ou en minipaillettes de Cassou (technique personnelle). Ampoules et paillettes renferment 0,25 ml du milieu PBS + DMSO à la concentration de 1,5M. Les ampoules sont scellées à la flamme tandis que les paillettes sont obturées avec de la poudre d’alcool polyvinylique.

3. après répartition, refroidissement de la température ambiante jusqu’à – 6, – 7 °C à raison de 1 °C/min dans un appareil à congélation programmée (Air Liquide). L’induction de la cristallisation entre – 6 et – 7 °C est obtenue par refroidissement local de la paroi de l’ampoule ou de la paillette à l’aide d’une pince préalablement plongée dans l’azote liquide.

4. le refroidissement est ensuite poursuivi à raison de 0,3 °C/min de – 7 °C à – 30 °C, puis de 0,1 °C/min de – 30 °C à – 33 °C, après quoi ampoules et paillettes sont directement plongées dans l’azote liquide.
TABLEAU 1. — Résultats des essais de congélation et transfert chirurgical d’embryons de bovins publiés jusqu'à présent.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Auteurs</th>
<th>Agent cryoprotecteur</th>
<th>Nombre d'embryons</th>
<th>Développés en fœtus veaux vivants (%)</th>
<th>Nombre de receveuses gestantes/Nombre de receveuses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angleterre</td>
<td>Wilmut et Rowson 1973</td>
<td>2,0 M DMSO</td>
<td>33</td>
<td>21</td>
<td>1(4,8)° (3)°°</td>
</tr>
<tr>
<td></td>
<td>Willadsen et al 1976</td>
<td>1,5 M DMSO</td>
<td>61</td>
<td>32</td>
<td>11(34,4) (18)</td>
</tr>
<tr>
<td></td>
<td>Willadsen et al 1977</td>
<td>1,5 M DMSO</td>
<td>39</td>
<td>23</td>
<td>13(56,5) (33,3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,5 M DMSO</td>
<td>10</td>
<td>9</td>
<td>6(66,7) (60)</td>
</tr>
<tr>
<td></td>
<td>Willadsen, Polge et Rowson 1978</td>
<td>1,5 M DMSO</td>
<td>42</td>
<td>36</td>
<td>11(30,6) (26,2)</td>
</tr>
<tr>
<td>Australie</td>
<td>Bilton et Moore 1977</td>
<td>1,5 M DMSO</td>
<td>15</td>
<td>8</td>
<td>1(12,5) (6,7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,0 M glycérol</td>
<td>9</td>
<td>8</td>
<td>4(50) (44,4)</td>
</tr>
<tr>
<td>Canada</td>
<td>Shea, Ollis et Jacobson 1977</td>
<td>1,5 M DMSO</td>
<td>16</td>
<td>16</td>
<td>3(18,7) (18,7)</td>
</tr>
<tr>
<td>Danemark</td>
<td>Lehn-Jensen et Greve 1978</td>
<td>1,5 M DMSO</td>
<td>36</td>
<td>17</td>
<td>7(41,2) (19,4)</td>
</tr>
</tbody>
</table>

° % calculé par rapport au nombre d’embryons transplantés

°° % calculé par rapport au nombre d’embryons congelés
5. la durée de stockage a varié entre 1 et 49 jours. Une fois retirées de l’azote, ampoules ou paillettes sont réchauffées brusquement en les plongeant dans l’eau à 25 °C.

6. les embryons sont ensuite transférés dans du PBS additionné de DMSO à la concentration 1,5M, exécuté de manière préparée, puis passés successivement, à raison chaque fois de 10 minutes, dans des bains de concentration décroissante en DMSO (1,5M, 1,25M, 1M, 0,75M, 0,5M, 0,25M et finalement dans le PBS pur).

Une fois dans le PBS, ils sont examinés au microscope (100 ×) pour apprécier leur aspect morphologique.

Ceux qui ont conservé une morphologie normale sont utilisés immédiatement pour le transfert ; les autres, quel que soit leur aspect, sont mis en culture à 37 °C soit dans du PBS additionné de 20 % de sérum de veau fœtal décomplémenté, soit dans le milieu B2 (Ménozo 1976) en appliquant la méthode de la cellule étanche (Mulnard 1965). sous atmosphère gazeuse (N2 : 90 % - CO2 : 5 % - O2 : 5 %) et transplantés s’ils reprennent un aspect normal.

La transplantation s’opère suivant la méthode chirurgicale décrite par Rowson et al. (1969) ; ils sont déposés dans la corne latérale du corps jaune à quelques 5-6 cm de la jonction utéro-tubaire. Les receveuses se trouvent, à 1/2 jour près, au même stade du cycle qu’était la donneuse.

RESULTATS

Expérience 1 : Embryons au stade morula cultivés jusqu’au stade de blastocyste avant congélation

13 embryons récoltés au stade de morula ont atteint le stade de blastocyste après 20 à 24 heures de culture et furent ensuite congelés. Aucun d’eux ne survivait après décongélation.

Expérience 2 : Congélation directe

49 embryons, dont 34 au stade de jeune blastocyste ou de blastocyste et 15 au stade de morula avancée, ont été congelés immédiatement après la récolte suivant la technique décrite ; 47 ont été récupérés après décongélation. Les taux de survie et de développement après décongélation et transfert figurent dans le tableau 2.

De ces 47, un a été perdu au cours des manipulations, 18 ont été considérés comme normaux et immédiatement utilisés tandis que les 28 autres ont été mis en culture. De ces 28 embryons, 7 seulement se sont développés, les autres ont dégénéré. La figure 3 montre un jeune blastocyste transplanté avec succès après 5 heures de culture dans du milieu PBS + 20 % de sérum fœtal de veau. Les critères d’appréciation de normalité et de viabilité ont été les suivants :

a) pour les blastocystes : retour à l’aspect morphologique existant avant la congélation (fig. 1) et mise en évidence d’un bouton embryonnaire bien distinct. Il est intéressant de signaler que la congélation contracte le blastocyste (fig. 2) et que l’aspect normal ne réapparaît qu’après passage dans les divers bains successifs de DMSO et dans le PBS.

b) pour les morulas, le critère de normalité réside dans la présence d’une masse cellulaire homogène et compacte avec blastomères au contour net et précis et le critère de viabilité dans la formation d’une cavité blastocoelique.

Il arrive que la zone pellucide soit fendue ou absente, cette anomalie n’altère pas le développement ultérieur. Dans
TABLEAU 2. — Résultats de nos essais de congélation et transfert.

<table>
<thead>
<tr>
<th></th>
<th>Nombre d'embryons</th>
<th></th>
<th>Nombre de receveuses gestantes/Nombre de receveuses (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Congelés</td>
<td>Récupérés (%)</td>
<td>Considérés comme normaux après décongélation (%)</td>
</tr>
<tr>
<td>Ampoules de verre</td>
<td>38</td>
<td>36</td>
<td>14 (38,9)</td>
</tr>
<tr>
<td>Paillettes</td>
<td>11</td>
<td>11</td>
<td>4 (36,4)</td>
</tr>
<tr>
<td>Total</td>
<td>49</td>
<td>47 (95)</td>
<td>18 (38,3)</td>
</tr>
</tbody>
</table>

° % calculé par rapport au nombre d'embryons transplantés

°° % calculé par rapport au nombre d'embryons congelés
Fig. 1. — 2 jeunes blastocystes avant congélation (× 250).

Fig. 2. — Les mêmes blastocystes après décongélation. Celui du dessus a la pellucide fendue et a été mis en culture, celui du dessous a été transplanté directement.
Fig. 3. — Blastocyste de la figure 2 avec pellicide cassée, après 5 h de culture dans du PBS + 20% de sérum de veau fœtal décomplété.

Fig. 4. — 2 blastocystes dégénérés après décongélation.
notre cas, 25,5 % des embryons présen-
tent cette anomalie.

La dégénérescence se traduit par la
présence d'un amas cellulaire foncé, ré-
tracté, totalement ou partiellement gra-
nuieux, désorganisé et n'occupant que 25
to 30 % de l'espace délimité par la zone
pellucide (fig. 4).

Nous devons signaler que la reprise du
développement se produit au cours des
12 à 18 premières heures de la mise en
culture ; passé ce délai, tous les embryons
récupérés étaient dégénérés quel que soit
le milieu utilisé.

Ainsi donc des 47 embryons récupérés
après décongélation, 18 (38,3 %) étaient
directement utilisables et 7 le sont deve-
nus après culture ; le taux de survie glo-
bale obtenu est donc de 25 sur 47 soit
53,2 %.

20 de ces embryons ont été transplan-
tés à savoir les 18 considérés d'embrée
comme normaux après décongélation et
2 obtenus respectivement après 5 et 24
heures de culture.

19 receveuses ont été utilisées ; chez
18 la transplantation fut simple, la dix-
neuvième a reçu 2 embryons. 7 rece-
veuses sur 19 (36,8 %) ont été reconnues
gestantes d'abord par la mise en applica-
tion du test à la progestérone réalisé aux
jours 21, 25 et 42 et ensuite par la
technique du fouiller rectal à 60 jours.
Le retour en chaleurs des non gestantes
s'est opéré, pour 7 d'entre elles à la date
normale et pour 4 après des délais respec-
tifs de 33, 37, 55 et 58 jours. Il est
vraisemblable que ces retours tardifs cor-
respondent soit à un cycle prolongé soit
à un état gestatif interrompu par la mor-
talité embryonnaire ou fœtale.

DISCUSSION

Expérience 1

Bien que portant sur un échantillon
relativement réduit, les résultats de notre
première expérience suggèrent certaines
réflexions ou conclusions.

Les blastocystes issus de morulas cul-
tivées pendant 24 heures paraissent
inaptes à la congélation.

Deux explications pourraient être
trouvées à ce phénomène : a) la viabilité
intrinsèque plus faible de l'embryon, b)
une moindre résistance au refroidisse-
ment.

Willadsen et al. (1978a) ont déjà si-
gnala que des morulas de 5 jours ou de
jeunes blastocystes ne survivent généra-
lement pas à la congélation alors que des
morulas plus âgées ou des blastocystes de
6 1/2 à 7 1/2 jours supportent bien la
congélation et le réchauffement. La ré-
sistance acquise par l'embryon au cours
des jours 6 et 7 du développement se-
rait donc particulièrement importante.

Trounson et al. (1976a) avaient déjà
montré que le comportement de l'em-
byron in vitro est fortement influencé par
son stade de développement lors de la
récolte ; Renard et al. (1978) aboutissent
daes conclusions du même ordre après
étude portant sur des embryons récoltés
au jour 10 et classés par stades de déve-
loppement. D'après ces derniers, le faible
tax de survie après transfert d'embryons
cultivés ne relèverait pas d'une moindre
viabilité de l'embryon mais d'un asyn-
chronisme entre le stade réel de dévelop-
pe ment de celui-ci et le stade physiolo-
gique de la receveuse au moment du
transfert. L'embryon mis en culture ne
se développe pas de même manière qu'en
milieu naturel. Il a été montré notam-
ment par des numérotations cellulaires faites après fixation et coloration des embryons cultivés que, pour un même état de développement, le nombre de cellules est toujours moindre chez les embryons cultivés que chez les embryons frais de même taille. A ces modifications morphologiques sont sans doute associées des modifications physico-chimiques responsables de ce comportement différent au cours de la congélation des embryons cultivés. Par ailleurs la réadaptation au milieu utérin est meilleure pour les embryons frais, prélevés entre le 5ᵉ et le 7ᵉ jour et congelés que pour des embryons de même âge soumis à culture. Trounson et al. (1976a) obtiennent un taux de survie de 60 % avec des blastocystes de 6 à 7 jours non cultivés contre 38,5 % pour des blastocystes obtenus après culture de morulas de même âge pendant 24 heures, puis refroidis et stockés 48 heures à 0 °C.

Expérience 2

En 1978, Willadsen et al. (1978a) communiquaient les résultats des expérimentations poursuivies in vitro à partir de la technique mise au point suite aux travaux de 1977 (Willadsen, 1977) et que nous avons utilisée. Ils signalaient qu'à partir de cette technique le taux de survie embryonnaire, observé après 24 heures de culture dans un mélange de PSB + 20 % de sérum de mouton était de 76,2 %. Ils ajoutaient que la plus grande partie des embryons survivants renfermaient un certain pourcentage de cellules dégénérées sans pouvoir préciser cependant quelle était la proportion tolérable de cellules dégénérées pour que l'embryon puisse garder sa viabilité. Pour eux, la meilleure preuve de survie de l'embryon, à la fin de la période de culture, est la présence du disque embryonnaire. Willadsen et al. (1976) avaient démontré antérieurement qu'il existait, notamment pour les embryons bovins, une très bonne corrélation entre la survie in vitro et la viabilité après transfert ce qui, du point de vue pratique, est certainement le plus important. Nous avons donc décidé d'utiliser cette méthode suivant les modalités énoncées à savoir : étude in vitro et transfert direct.

a) Etude in vitro

Des 28 morulas ou jeunes blastocystes congelés directement et remis en culture pendant 24 heures, 7 soit 25 % se sont développés. Si nous posons qu'en principe, les 18 embryons considérés d'embâlée comme normaux et utilisés comme tels auraient subi un développement identique, cela porterait à 53,2 % le taux de survie globale (25/47). Ce pourcentage reste inférieur à celui obtenu par Willadsen et al. (1978a). La raison peut en être recherchée dans les conditions différentes de culture et dans le fait que l'addition de sérum de mouton au milieu PBS paraît préférable à l'addition de sérum fœtal de veau. On peut également invoquer les critères de sélection des embryons avant congélation. Nous avons constaté l'absence de survie après 24 heures de culture ; ce phénomène, comme nous le rappelions précédemment, peut s'expliquer soit par une forte proportion de cellules dégénérées, soit par les conditions mêmes de la culture in vitro, bien différentes des conditions de développement en milieu utérin.

b) Transfert

18 embryons ont été transplantés directement après décongélation et retrait du DMSO ; 2 embryons transplantés provenaient d'une remise en culture de 5 et 24 heures.
De ces 20 transplantations, ayant porté sur 19 bêtes, 7 gestations (36,8 %) sont actuellement confirmées à 60 jours.

Les résultats obtenus par cette méthode de congélation sont inférieurs à ceux obtenus par d'autres auteurs, à partir de méthodes plus élaborées et qui figurent dans le tableau 1. Nous constatons également, comme l'ont signalé Willadsen et al. (1978a) que le réchauffement rapide à 25 °C donne un taux de survie appréciable et que dès lors le réchauffement lent et progressif n'a pas l'importance qui lui avait été reconnue précédemment. L'un de nous (Massip : observation non publiée) a par ailleurs observé, en travaillant sur des embryons de souris, que la technique de congélation lente en minipaillettes, suivie d'un réchauffement rapide (température ambiante) est aussi compatible avec la survie embryonnaire.

Nous ajouterons que pour la première fois, du moins à notre connaissance, la congélation a été faite en minipaillettes et qu'elle fut couronnée de succès puisque un état gestatif s'est développé chez 2 des 5 animaux transplantés.

Si l'on examine le tableau I on observe que les résultats les plus favorables enregistrés jusqu'ici suite à la transplantation d'embryons ayant subi la congélation sont ceux rapportés par Willadsen et ses collaborateurs. Le fait peut être attribué à la maîtrise particulière que ces auteurs ont acquise de cette technique dont ils sont les pionniers. On pourrait cependant s'étonner que les résultats publiés en 1978 (Willadsen et al. 1978b) soient inférieurs à ceux obtenus précédemment. L'explication réside dans le fait que Willadsen a apporté diverses variantes à sa technique pour juger de leur influence sur les conditions de conservation et dès lors du transfert. Personnellement nous n'avons pas tenu compte de ces variantes dans l'énoncé global des résultats consignés dans le tableau. Ces expériences lui ont permis de tirer les conclusions suivantes :

— l'élimination du DMSO est indispensable avant le transfert des embryons (d'20 embryons transplantés sans enlever le DMSO, un seul s'est développé).

— le transfert doit s'opérer sans délai dès le retrait du DMSO : sur 11 embryons transplantés dans les 2 heures de l'enlèvement du DMSO, 8 se sont développés contre 2 sur 5 pour un transfert après 12 heures.

Ces expérimentations montrent également que les embryons congelés-décongelés supportent moins bien le stockage que les embryons frais.

Diverses explications peuvent également être trouvées à la variabilité des résultats publiés jusqu'ici sur la transplantation à partir d'embryons bovins ayant subi la congélation :

— les méthodes employées,

— la maîtrise des expérimentateurs sur le plan technique et notamment leur pouvoir d'appréciation de la qualité des embryons,

— l'équipement utilisé,

— la qualité des donneuses et des receveuses. La qualité des embryons varie suivant les donneuses (Trounson et al. 1976a).

CONCLUSION

La mise au point de la conservation des œufs de bovins à basse température marque des progrès limités mais constants. La méthode proposée par Wil-
ladsen et al. (1978a,B) et que nous avons appliquée nous paraissait intéressante par sa simplicité, sa rapidité et l’excellent taux de survie enregistré in vitro. Cependant nos résultats après transfert ainsi que les essais effectués sur le terrain (Polge et Willadsen : communication personnelle) ne semblent pas répondre à ces espoirs.

Elle nous a permis personnellement de montrer la possibilité de la conservation en paillettes, ce qui devrait favoriser un recours plus fréquent à la transplantation non chirurgicale.

Il reste toutefois divers problèmes à résoudre notamment celui de la survie limitée des embryons décongelés et remis en culture et celui plus important, parce que fondamental, d’obtenir de manière régulière un nombre suffisant d’œufs de bonne qualité.

REFERENCES


SUMMARY

Deep-freezing of cattle embryos in French straws followed by transfer.

Department of Obstetrics and Surgery,
Rue des Vétérinaires, 45,
1070, Brussels, Belgium.

62 cattle embryos collected on days 7-8 after the onset of oestrus have been frozen using the « two-step » freezing procedure of Willadsen and al. (1978a).

13 were blastocysts obtained after in vitro culture of late morulae for 24 hours. None was surviving after thawing.

49 (34 early blastocysts or blastocysts and 15 advanced morulae) were frozen soon after surgical recovery either in glass ampoules or French straws. The overall survival rate was 53,2%. 45% of surgically transfered embryos developed into fetuses, i.e. 18,4% of frozen embryos. The pregnancy rate was 36,8%.

Use of plastic straws appears to be promising for the future.