
Ensembles of extremely randomized trees and some generic applications

Louis Wehenkel, Damien Ernst, Pierre Geurts
Department of Electrical Engineering and Computer Science

University of Liège - Sart-Tilman B28 - B-4000 Liège
Correspondence:L.Wehenkel@ulg.ac.be

Abstract - In this paper we present a new tree-based en-
semble method called “Extra-Trees”. This algorithm aver-
ages predictions of trees obtained by partitioning the input-
space with randomly generated splits, leading to significant
improvements of precision, and various algorithmic advan-
tages, in particular reduced computational complexity and
scalability. We also discuss two generic applications of this
algorithm, namely for time-series classification and for the
automatic inference of near-optimal sequential decision poli-
cies from experimental data.

Keywords - Automatic learning, robust supervised
learning methods, time-series classification, learning of
optimal control policies

1 INTRODUCTION

Classification and regression trees are well known
methods used for data interpretation and statistical mod-
eling. While these non-parametric and nonlinear meth-
ods are intrinsically robust to outliers, scalable to high-
dimensional spaces and can cope with very large sample
sizes, their main drawback is imprecision. The main factor
of imprecision was found to be the high variance of these
methods, which led, during the eighties and nineties, to
the development of various variance reduction techniques
[1, 2] and in particular so-called ensemble methods [3, 4],
which consist of modeling the sought input-output rela-
tionship with an ensemble of trees whose predictions are
aggregated by some voting scheme.

In this paper we present a new tree-based ensemble
method called “Extra-Trees” (standing for extremely ran-
domized trees). This algorithm averages predictions of
trees obtained by partitioning the input-space with ran-
domly generated splits [5], which leads to a significant
improvement of precision, and has various algorithmic ad-
vantages, in particular a reduced computational complex-
ity with respect to classical trees and other ensemble meth-
ods.

We explain how and why the method works, by de-
scribing the supervised learning algorithm and analytical
characterizations of the models it produces. Then we dis-
cuss two generic applications of this algorithm of wide
practical interest, respectively for time-series classifica-
tion [6] and for the automatic inference of near-optimal
sequential decision policies from experimental data [7].

To fix ideas, we start the paper with a quick review of
what automatic learning and data mining are all about, in-

troducing the main learning problems, protocols and ter-
minology and reviewing the main results of research in
the field while providing some pointers to the relevant lit-
erature. The rest of the paper is composed of three sec-
tions describing respectively the Extra-Trees method, and
its use for time-series classification and learning of near
optimal control strategies, respectively.

We have made efforts to make the paper self-
contained. The reader already familiar with automatic
learning, be it at an intuitive level, can skip section2 and
part of the introductory material of section3 about stan-
dard tree-based methods.

2 AUTOMATIC LEARNING PER SE

Generally speaking, automatic learning aims at ex-
ploiting data gathered from observations (or simulations)
of a system (or an environment), in order to build mod-
els explaining the behavior of the system and/or decision
rules to interact in an appropriate way with it.

In what follows, we first describe the two automatic
learning problems of interest in this paper, then we briefly
discuss the relationship between automatic learning and
classical statistical modeling.

2.1 Types of automatic learning problems

The three main types of automatic learning problems
are so-calledsupervised, reinforcement,andunsupervised
learning. We will focus on the two former in this paper and
we will introduce first their probabilistic/statistical formal-
ization and terminology. We refer the interested reader to
more general textbooks for further information about au-
tomatic learning theory, its relation to other disciplines,
and the precise description of the algorithms to which we
refer in this paper [8, 9, 10, 11, 12].

2.1.1 Supervised learning problem

Given a sample{(xi, yi)}N
i=1 of input-output pairs

(wherexi ∈ X and yi ∈ Y)1, a supervised learning
algorithm aims at automatically building an input-output
function (or a model, or a predictor)f(x) : X → Y to
compute approximations of outputs as a function of in-
puts. Typically, a supervised learning algorithm searches
in a (possibly very large, but restricted) set of candidate
input-output functions, called the hypothesis spaceH (a
subset of the spaceY X of all possible input-output func-
tions). For example, decision trees, neural networks, and
linear regression use different hypothesis spaces.

1We will focus on the case of a Euclidean input space (X = IRn), and consider the cases where the output spaceY = IR for regression problems,
andY = {y1, y2, . . . , ym} for (m-class) classification problems; however, supervised learning, in general, considers arbitrary input and output spaces.

RTE-VT workshop, Paris, May 29-30, 2006 1

mailto:L.Wehenkel@ulg.ac.be

Denoting the set of all finite size samples by

(X × Y)∗ =
∞
⋃

N=1

(X × Y)N , (1)

a deterministic2 supervised learning algorithmA can thus
formally be stated as a mapping

A : (X × Y)∗ → H (2)

from (X × Y)∗ into the hypothesis spaceH. For a given
samplels ∈ (X ×Y)∗ we will denote byA(ls) the model
returned by the algorithmA.

The probabilistic formalization of supervised learning
considers thatx : Ω → X and y : Ω → Y are two
random variables defined over some (unknown) probabil-
ity space(Ω, E , P). Let PX,Y denote their (unknown)
joint probabiltiy distribution defined overX × Y and
ℓ : Y × Y → IR+ be a non-negative loss function de-
fined overY × Y , and for anyf ∈ H let us denote by

L(f) =

∫

X×Y

ℓ(f(x), y)dPX,Y (3)

the inaccuracy (or average loss) off . The goal of super-
vised learning is the derivation from a learning sample of
a functionf ∈ H which minimizesL(f).

Assuming that sampleslsN = {(xi, yi)}N
i=1 are

drawn according to some sampling distributionP(X,Y)N ,
the sampling process and algorithmA induce a probability
distribution over the hypothesis space and hence a proba-
bility distribution over inaccuraciesL(A(lsN)). Let us
denote by

L
N

A =

∫

(X,Y)N

L(A(lsN))dP(X,Y)N (4)

the expected average loss ofA for fixed sample sizeN , by

L∗
H = inf

f∈H
L(f) (5)

the lowest reachable average loss inH, and by

L∗ = inf
H⊂Y X

L∗
H (6)

the lowest possible average loss over all possible input-
output functions for all possible hypothesis spacesH.

Besides defining general conditions (onX,Y, PX,Y ,
P(X,Y)N , ℓ, H, A etc.) under which the above introduced
quantities indeed exist, the objective of statistical learning

theory is to study whether and howL
N

A andL(A(lsN))
converge toL∗

H [13]. For i.i.d. sampling mechanisms3,
the essential result of this theory is that such convergence
can be guaranteed independently of the unknown proba-
bility distribution PX,Y , provided thatH is not too large
(i.e. of finite Vapnik-Chervonenkis-dimension) [10].

Consequently, the theoretical design of supervised
learning algorithms also consists essentially of construct-
ing sequences of growing hypothesis spacesH1 ⊂ H2 ⊂
H3 . . . such that

lim
n→∞

L∗
Hn

= L∗, (7)

and of defining associated learning algorithmsAi with
good convergence properties, i.e. such that

lim
N→∞

L(Ai(ls
N)) = L∗

Hi
. (8)

Examples of such hypothesis spaces are given by single-
hidden-layer perceptrons with growing numbers of hidden
neurons, or decision trees with growing numbers of nodes.

In practice, much of the research in supervised learn-
ing has focused on the design of algorithms scaling well
in terms of computational requirements with the sample
size and with the dimension of the input spaceX (and to a
lesser extent that of the output spaceY), and using “large”
hypothesis spaces able to model complex non-linear input-
output relations. From this research two broad classes of
(closely related) algorithms have emerged during the last
fifteen years, based respectively on kernels [14, 15] and
on ensembles of trees [16, 5], which both automatically
adapt the size of their hypothesis space to the sample size
and input space dimensions. These two classes of methods
are discussed in further detail in section3 below.

2.1.2 Reinforcement learning problem

To avoid confusion with the inputx of supervised
learning, we denote byst ∈ S the state of a dynamic sys-
tem at timet, by dt ∈ D the control variable, andrt ∈ IR
an instantaneous reward signal. Then, given a sample of
NT system trajectories

{(si
0, d

i
0, r

i
0, s

i
1, . . . s

i
hi−1, d

i
hi−1, r

i
hi−1, s

i
hi

)}NT

i=1, (9)

reinforcement learning aims at deriving an approximation
of an optimal decision strategŷd∗(s, t) maximizing sys-
tem performance in terms of a cumulated performance in-
dex over a certain horizonh, defined by

Rh =

h−1
∑

t=0

γtrt, (10)

whereγ ∈ (0, 1] is a discount factor [17, 18].
From a theoretical point of view, reinforcement learn-

ing can be formalized within the stochastic dynamic pro-
gramming framework. In particular, supposing that the
system obeys to a time-invariant dynamics

st+1 = f(st, dt, wt), (11)

wherewt is a memoryless and time-invariant random pro-
cess, and obtains a bounded and time-invariant reward sig-
nal

rt = r(st, dt, wt), (12)
2Below, in Section3, we will also consider the more general case of so-calledrandomizedlearning algorithms which, instead of picking a particular

hypothesisA(ls), randomly sample hypotheses from an induced conditional distribution overH given a learning sample,PA(h|ls).
3Notice that while, originally in the late seventies and eighties, statistical learning theory was developed under the classical assumption of i.i.d. (inde-

pendent and identically distributed) sampling according tothe distributionPX,Y , i.e. under the assumption thatP(X,Y)N = P N
X,Y , more recent work

aims at weakening this assumption to cases where the samples arenot independently distributed anymore [9].

RTE-VT workshop, Paris, May 29-30, 2006 2

over an infinite horizon (h → ∞), one can show that the
two following (Bellman) equations define an optimal de-
cision strategy

Q(s, d)=E{r(s, d, w)+γ maxd′Q(f(s, d, w), d′)}, (13)

d∗(s) = arg maxd Q(s, d). (14)

Reinforcement learning can thus be tackled by developing
algorithms to solve these equations (or their time-variant
and finite horizon counterparts) approximately when the
sole information available about the system dynamics and
reward function are provided by a sample of system tra-
jectories. The theoretical questions that have been studied
in this context concern the statement of conditions on the
sampling process and on the learning algorithm ensuring
convergence to an optimal policy in asymptotic conditions
(i.e., whenNT → ∞ and/orhi → ∞)

Recent work in the field has allowed to take full advan-
tage from state-of-the art supervised learning algorithms
by defining appropriate frameworks to plug these algo-
rithms in the reinforcement learning protocol. In partic-
ular, model based reinforcement learning methods use the
sample to build approximations of the system dynamics
and reward function and dynamic programming methods
to derive from them an approximation of the optimal de-
cision strategy. On the other hand, theQ-learning frame-
work uses supervised learning in order to construct from
the sample an approximation of theQ-function and derive
from it the decision policy. While the first generation of
Q-learning methods used parametric approximation tech-
niques together with on-line gradient descent [19], the re-
cently proposed fittedQ iteration method allows to fully
exploit any parametric or non-parametric batch mode su-
pervised learning algorithm in this context [7]. This latter
method is further discussed below in Section5.

2.2 Discussion

As it may be clear from this short overview, automatic
learning tackles essentially classical modeling problems
of statistics. However, while classical statistics has fo-
cused on the analytical study of parameter identification,
by assuming that the functional forms of distributions are
given, automatic learning has focused on the design of
data driven algorithms, which are generally not exploit-
ing any strong parametric assumptions and hence can in
principle cope with larger classes of problems [20].

In automatic learning many algorithms have been orig-
inally designed in a heuristic way and were initially stud-
ied only empirically, by applying them to synthetic or
real-life datasets and comparing their results with those of
other methods. The developments in computer hardware,
the availability of large databases and the good empiri-
cal performances of these algorithms made them become
more and more popular in practice. During the last twenty
years, statisticians and theoretical computer scientistsbe-
came more strongly interested in this field and they drove
significant theoretical research allowing to better under-
stand the behavior of these algorithms, and even improve
their design thanks to this new insight [9, 10, 13, 16].

Further work is focusing on developing tailored al-
gorithms well suited to handle specific classes of practi-
cal problems, like time-series forecasting, image and text
classification for instance, where the inputs (and/or the
outputs) have specific properties [21, 6].

3 EXTREMELY RANDOMIZED TREES

For the sake of clarity, we will focus in the present sec-
tion on (supervised)regressionproblems using a square
error loss-function and assume that all input variables are
numerical (i.e. yi ∈ IR, ℓ(y, y′) = (y − y′)2, and
xi = (xi

1, x
i
2, . . . , x

i
n) ∈ IRn). While our mathematical

analysis is specific to this case, let us however stress the
fact that the discussed methods and general ideas extend in
a straighforward way to more general input and/or output
spaces and to other loss functions (e.g., see [5, 22]).

3.1 Standard (single) tree-based regression

Standard regression trees [1] propose a solution to the
supervised learning problem when the output space is the
real axis,Y = IR, and the loss functionsℓ is the square
error:

ℓ(f(x), y) = (f(x) − y)2. (15)

The general idea of regression trees is to recursively split
the learning sample with binary tests in the formxi ≤ t,
wherexi is one of the input variables andt a threshold.
Both are chosen by the tree growing procedure so as to re-
duce as much as possible the variance ofy in the two sub-
samples resulting from that split. The splitting procedure
is applied to the whole learning samplels to define the
root node of the tree and then recursively called on its suc-
cessor nodes. It is stopped at terminal nodes either when
the output is constant in this node or some other stopping
criterion is met (e.g., the size of the local subsample goes
below some threshold, or the split is deemed not signifi-
cant according to some statistical test).

To fix ideas, Figure1 illustrates this in a simple two-
dimensional case, for a tree with four internal (test) nodes
and five leaves. Figure1a also illustrates the notation that
we use subsequently, and the fact that the tree was grown
in the top-down and left-to-right order is suggested by the
numbering of the thresholds at its test nodes, from 1 to 4,
and the numbering of its leaves, from 1 to 5. Obviously,
such a tree may be used to predict an output for a given
input vectorx = (x1, x2) by following the path from top
to bottom along the edges selected by the different tests
encountered, and by retrieving the valueŷ attached to the
reached leaf. The way the tree partitions the input space
into a set of non-overlapping hyper-rectangular regions is
illustrated on Figure1b. Figure1c gives its interpretation
as a set of (mutually exclusive) decision rules, and Figure
1d provides its functional expression, in terms of an ad-
ditive expansion of the indicator functions of the regions
attached to its leaves.

RTE-VT workshop, Paris, May 29-30, 2006 3

(b) Geometrical interpretation

x1

x2

y

ŷi denotes the value predicted inLi

Li also denotes the region ofX covered byLi

Li denotes a leaf

(a) Tree structure

ŷ4=0.8
L5

ŷ5=1
L4

L3L2L1

(c) Logical interpretation

(d) Functional interpretation

ŷ2=0 ŷ3=0.5ŷ1=0.2

f(x) =
∑

5

i=1
ŷiI(x ∈ Li)

L1 ≡ [x1 ≤ t1] ∧ [x2 ≤ t2] : x ∈ L1 ⇒ f(x) = ŷ1 = 0.2

L2 ≡ [x1 ≤ t1] ∧ [x2 > t2] : x ∈ L2 ⇒ f(x) = ŷ2 = 0

L4 ≡ [x1 > t3] ∧ [x2 ≤ t4] : x ∈ L4 ⇒ f(x) = ŷ4 = 0.8

L5 ≡ [x1 > t3] ∧ [x2 > t4] : x ∈ L5 ⇒ f(x) = ŷ5 = 1

L3 ≡ [x1 > t1] ∧ [x1 ≤ t3] : x ∈ L3 ⇒ f(x) = ŷ3 = 0.5

x1 ≤ t3

noyes

yes yes

yes

no no

no

x2 ≤ t4

t3

t1

t4

t2

0.5

0

1

0.2

0.8

x2 ≤ t2

x1 ≤ t1

Figure 1: Two-dimensional regression tree (inspired from [11])

3.1.1 Node splitting procedure

The score measure used to evaluate and select during
tree growing a splits = [xi ≤ t] at some node correspond-
ing to a regionR ⊂ X is defined by

ScoresR = var{y|R}−
|R≤|

|R|
var{y|R≤}−

|R>|

|R|
var{y|R>},

(16)
whereR≤ andR> are the subsets ofR defined bys, and
|S| denotes the number of elements of the learning sample
belonging to anyS ⊂ X, defined by

|S| =
∑

(xi,yi)∈ls

I(xi ∈ S), (17)

and where var{y|S} denotes the empirical variance of the
output variabley in S computed by

var{y|S}=|S|
−1

∑

(xi,yi):xi∈S



yi − |S|
−1

∑

(xi,yi):xi∈S

yi





2

. (18)

In the standard procedure, the nodes of the tree are de-
veloped in a greedy fashion, by searching at each test node
the input variablex∗ together with a thresholdt∗ maximiz-
ing the above score. This search is done exhaustively by
looking at all possible variables and thresholds, and can
be made in the ordern|R| log |R| operations.

3.1.2 Leaf labelling procedure

Once the tree is grown, each leafLj is labelled with
a predictionŷj defined as the local sample average of the
output variable, given by

ŷj =
1

|Lj |

∑

(xi,yi):xi∈Lj

yi, (19)

where|Lj | is the number of learning cases that reach leaf
Lj . Note that, for a given tree structure, these label-values
actually minimize the average square prediction error over
the learning sample, defined by

N−1
∑

(xi,yi)∈ls

(yi−f(xi))2 = N−1
∑

Lj

∑

(xi,yi):xi∈Lj

(yi−̂yj)
2. (20)

3.1.3 Kernel interpretation of regression trees

In general,kernel based regressionconsists of model-
ing the output using the following type of expansion

fk
α(x) =

∑

(xi,yi)∈ls

αik(xi, x), (21)

wherek(x, x′) is a positive semidefinite kernel defined
over the input space, i.e. a symmetric real-valued func-
tion defined overX × X and that is such that for anyN
and any sample{xi}N

i=1 of inputs, the Gram matrixK de-
fined byKi,j = k(xi, xj) is positive semi-definite. Once
a kernel is defined, the learning algorithm is used in order
to determine the vector of coefficientsα = (α1, . . . , αN),
typically by optimizing a penalized (or regularized) em-
pirical least squares criterion, e.g. (see [11])

α∗=arg min
α







λαTKα +
∑

(xi,yi)∈ls

(fk
α(xi) − yi)2







, (22)

and using a meta-optimization w.r.t. the choice of kernel
k and regularization parameterλ where the generalization
error is estimated by cross-validation.

As suggested by equation (21), kernel-based regres-
sion consists of using a hypothesis spaceH of linear com-
binations of the functionsHX = {φx(·) = k(x, ·)}x∈X .
This (so-called)feature-spaceis actually a Hilbert space
which scalar product, distance and norm, are obtained by
the extension of the kernel fromHX toH by

〈
∑

xi∈X

λiφxi
,

∑

x′

i
∈X

λ′
iφx′

i
〉 =

∑

i

∑

j

λiλ
′
jk(xi, x

′
j). (23)

RTE-VT workshop, Paris, May 29-30, 2006 4

Depending on the structure of the input spaceX and its
kernelk, this space may be finite-dimensional (e.g., ifX
is itself finite) or of infinite dimension4. However, for any
finite learning sample of sizeN , only a subset of functions
is reached by equation (21), included in the subspace (of
dimension≤ N) spanned by

{φxi(·) = k(xi, ·)}N
i=1. (24)

Let us now analyze in this framework tree-based mod-
els. Considering a treet over some input spaceX, with
leavesL1, . . . , LK , let us show that its input-output func-
tion can be expressed by the following expansion

ft(x) =
∑

(xi,yi)∈ls

αikt(x
i, x). (25)

where the tree kernelkt is defined by

kt(x, x′) =

K
∑

i=1

I(x ∈ Li)
√

|Li|

I(x′ ∈ Li)
√

|Li|
, (26)

and where the parametersαi are defined by

αi = yi,∀i = 1, . . . , N. (27)

Indeed,kt(x, x′) = 0 if x andx′ reach different leaves
of t and kt(x, x′) = 1/|Lj | if they both reach a leaf
Lj . Hence, expression (25) thus effectively computes the
arithmetic average of the outputs of the learning subsam-
ple reaching the same node asx. Notice that the feature-
space induced by the kernel (26) is spanned by the indica-
tor functionsLi(x); since these latter are orthogonal, the
dimension of this feature-space is equal to the number of
leaves oft. This dimension is upper bounded by the learn-
ing sample size, and typically grows linearly with it.

We can thus view regression tree induction as a pro-
cess where the recursive partitioning step corresponds to
the automatic construction of a kernel (and its feature
space), and where the labelling step consists of computing
the weights minimizing the empirical square error, accor-
dining to equation (22) with λ → ∞.

3.1.4 Basic extensions

The regression tree induction algorithm can be ex-
tended in various ways. In particular, in the case of mul-
tiple numerical outputs, i.e.Y = IRn, with the loss func-
tion ℓ(f(x), y) = ||f(x) − y||2, where|| · || denotes the
Euclidean norm inIRn, the variance computed in (16) and
the predictions at leaf nodes are simply replaced respec-
tively by

var{y|S} = |S|−1
∑

(xi,yi):xi∈S

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

yi − |S|−1
∑

(xi,yi):xi∈S

yi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(28)

ŷj = |Lj |
−1

∑

(xi,yi):xi∈Lj

yi. (29)

The latter is the center of mass in the leaf and the former
is the average inS of the squared Euclidean distance of
output vectors to the center of mass.

The extension to categorical output variables (classi-
fication problems) is based on the use of an alternative
loss-function (typically the classification error rate) and on
different score functions to select splits (typically entropy
reduction instead of variance reduction). Furthermore, in
[22] we show how this algorithm may be generalized to
arbitrary output spaces structured by a kernel, which al-
lows to apply the method to the prediction of structured
outputs, such as graphs, text, etc.

Another important extension consists of using a post-
processing stage, where the tree is pruned on the basis of
an independant sample, so as to remove those parts which
overfitthe learning sample.

3.1.5 Main strengths and weaknesses

The main characteristics of (single) tree-based regres-
sion are as follows:

Universal approximation/consistency: the method is in
principle able to arbitrarily well regress any output vari-
able, provided large enough training samples are pro-
vided.

Robustness to outliers:outliers tend to have a very local
effect on the models induced, which makes the method
intrinsically much more robust than parametric linear
or non-linear least squares regression methods.

Computational complexity: tree induction complexity
is typically on the order ofN log N in the training sam-
ple size and linear in the number of input variables. In
other words, the method can cope with very large scale
data mining applications with thousands of input vari-
ables and millions of training samples.

Robustness w.r.t. irrelevant/redundant inputs: the tree
growing procedure identifies relevant variables among
a (posssible large) set of candidate ones comprising ir-
relevant variables, and is intrinsically robust w.r.t. to
the presence of redundant variables.

Interpretability: Tree-based models highlight in a rather
transparent way the importance of the input variables,
and they are able to explain their reasoning.

High variance: compared to other regression methods,
tree growing is very sensitive to the training samples,
which means that for different samples of identical size
drawn from a same distribution the models induced are
quite different. This variance translates typically into
a low accuracy which is certainly the most important
drawback of the method. This variance is particularly
detrimental when the information is spread over a large
number of input variables. Tree pruning, while aiming
at optimizing the bias/variance tradeoff is typically not
able to reduce this variance significantly.

4In the latter caseH consists of the functionsf(x) =
∑

∞

i=1λiφxi
of bounded norm, i.e. suchthat

∑

∞

i=1

∑

∞

j=1 λiλjk(xi, xj) is finite.

RTE-VT workshop, Paris, May 29-30, 2006 5

3.2 Ensemble methods

Ensemble-based supervised learning methods consist
of using a base learning algorithmA and some perturba-
tion mechanism, in order to derive from a learning sam-
ple an ensembleF = {f1, . . . , fM} of input-output func-
tions (instead of a single one), and making a prediction
at some pointx by combining the elementary predictions
{f1(x), . . . , fM (x)} in some appropriate fashion. In par-
ticular, in the case of regression, the final prediction is gen-
erally computed as a (generally weighted) average

fM (x) =
M
∑

k=1

wkfk(x) (30)

where
∑

k wk = 1. The functionsfi are intended to be
complementary, in the sense that their prediction errors
are not strongly correlated. The weightswk are meant
to be higher for those functionsfi which are believed to
be more accurate. In particular, if all ensemble termsfi

are believed to be equivalent in terms of accuracy, then
wk = 1/M,∀k = 1, . . . ,M .

Ensemble methods have been largely studied in the
90’s, and are further investigated at present. The two fol-
lowing interpretations/motivations of this idea are of par-
ticular interest.

3.2.1 Variance reduction and bagging

Suppose that instead of a single learning sample of
sizeN , we have at our disposalM independent samples
{lsk}M

k=1 of sizeN , and let us denote byfk = A(lsk) the
hypothesis computed by a learning algorithmA usinglsk.
One can show (e.g., see [5]) that the learning variance of
the algorithmAM which returns the model

fM (x) = M−1
M
∑

k=1

fk(x), (31)

is reduced by a factor ofM w.r.t. to the learning vari-
ance ofA applied tolsk, while its bias is left unchanged.
In other words, if the variance ofA is much higher than
its bias, the new algorithmAM will be much more accu-
rate on the average thanA applied to a sample of sizeN .
Since the computational load to generate the modelfM

grows linearly withM , depending on the computational
complexity of A and the speed of its variance decrease
with sample size,AM may be a viable alternative the ap-
plication ofA to the union∪klsk.

The above analysis inspired the followingbagging
(bagging=bootstrap+aggregating) trick in order to im-
prove a learning algorithm: given a single samplels of
sizeN , derive from itM bootstrapcopies (each one is ob-
tained by random samplingN times, with replacement),
derive from these samplesM models with algorithmA
and build a final model by averaging. Because bootstrap
sampling from a finitels (imperfectly) mimics sampling
from the population, bagging (imperfectly) allows to re-
duce variance ofA, while (imperfectly) keeping bias un-
changed. In particular, in the context of regression (and

even more for decision) tree induction, bagging was em-
pirically shown to outperform by far (and almost system-
atically) standard tree induction in terms of accuracy [3].

3.2.2 Bayesian motivation

Another way to motivate the model averaging of en-
semble methods is based on the bayesian interpretation of
statistics. In the context of supervised learning, this ap-
proach consists of defining a prior distributionP (f) over
the hypothesis spaceH, and by then using the learning
sample to compute an approximation of the posterior dis-
tribution P (f |ls) and finally, by making predictions ac-
cording to the following integral

fH|ls(x) =

∫

f∈H

f(x)dP (f |ls). (32)

This equation may be (finitely) approximated by

f̂M
H|ls(x) =

∑

fi

M−1fi(x), (33)

assuming that the functionsfi(x) are obtained by sam-
pling from the posterior distributionP (f |ls). Notice that
the convergence of this approximation may be improved
by sampling preferentially models which have a high pos-
terior probability, i.e. which fit rather well to the learning
sample.

3.3 Ensembles of extremely randomized trees

Extra-Trees (see [5] for an in depth discussion and sys-
tematic empirical validation) are motivated by the above
two ideas. They consist of averaging predictions of an en-
semble of trees built in a randomized fashion. Each tree is
grown by selecting at each node a numberK of random
splits (random choice of variablexi, and random choice
of thresholdt) and keeping among these the one which
maximizes the score. These trees are grown until all sub-
samples at all leaves are either pure in terms of outputs or
contain less thannmin learning samples.

If the parameters are set respectively toK = 1 and
nmin = 2, these trees are totally random (in the sense
that their structure does not depend on the outputs in the
learning sample) and they perfectly fit the learning sample.
Thus, in this case the Extra-Trees method can be viewed
as an approach to sample in a neutral way from the set of
all possible trees perfectly fitting the learning sample.

This tree sampling mechanism may be adjusted (bi-
ased) by using larger values ofK, leading to trees prefer-
entially using inputs with higher score values, and/or by
using higher values ofnmin, leading to smaller trees, be it
at the expense of a less good fit on the training sample. In
practice, the optimal values of these two parameters are
problem dependent and they may be adjusted automat-
ically using a meta-optimization using cross-validation.
Typically, large values ofK are more appropriate if the
problem has a large number of irrelevant variables, while
small values correspond to assuming that the information
is spread evenly over the input variables. On the other
hand, larger values ofnmin will be better suited if there is
a lot of noise on the output variable.

RTE-VT workshop, Paris, May 29-30, 2006 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y

True function
Learning sample

TB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

True function
Learning sample

TB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y

x

True function
Learning sample

ET

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x

True function
Learning sample

ET

Figure 2: Tree Bagging (top), and Extra-Trees (bottom) on a one-
dimensional piecewise linear problem (N = 20, nmin = 2). Left with
M = 100 trees, right withM = 1000 trees (adapted from [5])

3.3.1 Geometric characterization

While regular trees, as well as bagged ensembles of
regular trees (even ifM → ∞) yield piecewise con-
stant models, it is shown in [5] that Extra-Trees pro-
duce (in asymptotic conditions) a smoother and piece-
wise multilinear model. This is illustrated in the case
of a one-dimensional input space, at Figure2, showing
that the Extra-Trees model rather quickly converges to
a piece-wise linear model. Since most practical prob-
lems correspond to smooth input-output regressors, this
explains why Extra-Trees are often more accurate than
tree-bagging and other tree-based ensemble methods.

3.3.2 Extra-Trees kernels

As single tree models, ensembles of regression trees
may also be interpreted in the kernel framework. Indeed,
since their prediction is an average of predictions of tree-
based models, straightforwardly their kernel is obtained
by averaging of the individual tree kernels. In particular,
for an ensembleT = {t1, . . . , tM} of M trees, the kernel-
based model formulation becomes

fT (x) =
∑

(xi,yi)∈ls

yikT (xi, x), (34)

where the ensemble kernelkT is defined by

kT (x, x′) =

M
∑

k=1

M−1

|tk|
∑

i=1

I(x ∈ Lk
i)I(x′ ∈ Lk

i)

|Lk
i |

, (35)

whereLk
i denotes theith leaf of thekth tree and|tk| its

number of leaves. This kernel essentially counts the pro-
portion of trees inT in which the inputsx andx′ reach the
same terminal node. Notice that while single tree kernels
are non-smooth (and take at most as many different val-
ues as there leaves in a tree), in the limit ofM → ∞, the
Extra-Trees ensemble kernel becomes continuous.

The kernel-based reformulation shows that Extra-
Trees are similar to nearest-neighbour types of methods,
where the metric is automatically induced from the learn-
ing sample. Further work aims at characterizing other
properties of these random tree-ensemble kernels (e.g., see
[5] for some indications).

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

First outlier (x=0.0 instead of 1.0)

In blue,
the true input output function

In green, least squares linear regression

In red, Extra−Trees model (M=100)

(x=6.1 instead of 1.8)

Second big outlier

��

�
�
�
�

Figure 3: Robustness to outliers of Extra-Trees vs Linear regression

3.3.3 Main properties of Extra-Trees

The main characteristics of Extra-Trees based regres-
sion are as follows:

Universal approximation/consistency: it carries over
directly from single-tree based methods.

Robustness to outliers:Figure 3 illustrates the robust
behaviour of Extra-Trees w.r.t. gross errors. The un-
derlying problem is a (one-dimensional) linear input-
output relation drawn in blue on Figure3. To train the
models, a set of 30 data points was generated, evenly
spread in the intervalx ∈ [0; 2.9], the outputs being
computed byy = 3x + 0.5. As suggested by the
pink points on the graphic, two outliers were intro-
duced before training by corrupting two datapoints: the
point(1, 3.5) was replaced by(0, 3.5) and(1.8, 5.9) by
(6.8, 5.9). On this corrupted dataset, we trained both a
linear regression (green curve) and an ensemble of 100
Extra-Trees (red curve,nmin = 4 andK = 1). The
graphic clearly highlights that, while the linear regres-
sion is strongly and globally affected by the outliers,
the Extra-Trees model is only marginally affected, and
only very locally in the regions where the outliers are
located.

Computational complexity: the complexity is essen-
tially proportional toMKN log N , which may be bet-
ter than that of single trees if the numbern of input
variables is very large compared toK. Note that accu-
racy always increases monotonically withM , but in a
problem dependent way; typical values ofM are in the
range[10; 100].

Robustness w.r.t. irrelevant/redundant inputs: the tree
growing remains robust to irrelevant variables as long
asK is sufficiently large w.r.t.n.

Interpretability: it is strongly reduced because the ran-
domized trees are individually meaningless; neverthe-
less it is possible to compute the importance of input
variables from a set of Extra-Trees.

Very low variance: compared to standard tree-based re-
gression the variance of Extra-Trees is negligible.

Extensions/generalizations:those extensions that were
discussed for standard trees all carry over to Extra-
Trees, with minor adaptations.

RTE-VT workshop, Paris, May 29-30, 2006 7

4 TIME-SERIES CLASSIFICATION

In this section we consider a supervised learning prob-
lem, where inputs are multidimensional real-valued times-
series (in discrete time) and the output is a discrete class
label. Let us denote by

x[1 · · · t] =







x1[1] . . . x1[t]
...

...
xn[1] . . . xn[t]






, (36)

an observation of ann-dimensional time-series, wheret
denotes its duration and where thexi[1 · · · t] ∈ IR[1···t] are
the elementary (temporal) input variables. We will denote
by tmin ≥ 1 the minimal duration of any time-series con-
sidered in a particular learning problem. Let us consider a
learning sample of classified time-series, i.e.

ls = {(xi[1 · · · ti], yi)}N
i=1, (37)

such thatyi ∈ Y = {y1, . . . , ym} andti ≥ tmin. Notice
that the time in a given time-series of thels is interpreted
here as relative time to its initial value, and that the dura-
tions of individual time-series may vary within the learn-
ing sample. Note also thattmin, if not known a priori, can
be upper bounded byminN

i=1 ti.
Supervised time-series classification consists of using

an algorithm to derive from such a learning sample a time-
series classifier, or in other words a function mapping any
time-seriesx[1 · · · t] of any durationt ≥ tmin to a value
f(x[1 · · · t]) ∈ Y . One-dimensional time-seriesforecast-
ing would correspond to a similar problem, wheren = 1
andy = x[t + 1].

4.1 Segment and Combine framework

The segment and combine algorithm [6] uses a stan-
dard (propositional) supervised learning algorithm to yield
a time-series classifier from learning sample of time-series
as in equation (37) . It works in the following way
(l ≤ tmin):

Subseries sampling.For j = 1, . . . , Ns chooseij ∈
{1, . . . , N} randomly, then choose a subseries offset
tj0 ∈ {0, . . . , tij − l} randomly, and create an attribute
vector of lengthn × l

xj,l =
(

x
ij

1 [tj0 + 1], . . . , x
ij

1 [tj0 + l], . . .

. . . , xij
n [tj0 + 1], . . . , xij

n [tj0 + l]
)

concatenating the values of alln temporal attributes
over the time intervaltj0 + 1, . . . , tj0 + l. Collect the
samples in a training set of subseries

lsl
Ns

=
{

(xj,l, yij)
∣

∣ j = 1, . . . , Ns

}

.

Classifier training. Use a (propositional) supervised
base learner to build a subseries classifierf l(x[1 · · · l])
from the subseries samplelsl

Ns
.

Notice that the “classifier”f l(x[1 · · · l]) is supposed to
return a class-probability vector (each component of
which estimates the probability of one of them classes
yi ∈ Y).

Time-series classification.For any new time-series
x[1 · · · t] extract systematically all its subseries of
length l, x[i + 1 · · · i + l],∀i ∈ {0, . . . , t − l}. Use
the learned model to estimate the probability that each
subseries belongs to a signal of each class and clas-
sify the time-series by majority vote over the average
probability estimates of its subseries, i.e. according to

f(x[1 · · · t])
△
= arg max

y∈Y

{

t−l
∑

i=0

f l(x[i + 1 · · · i + l])

}

.

Note that if the base learner returns0/1 class indicators,
the aggregation step merely selects the class receiving
the largest number of votes.

4.2 Tree-based times series classification

The above framework is easily combined with tree-
based supervised learning by using in place of the base
learner a tree-based method. In particular, reference [6]
studies the use of Extra-Trees in this context and shows
empirically, on a representative sample of non-trivial time-
series classification tasks, that this combination provides
quite interesting results. Within this context, it is useful to
notice that the averaging effect of the segment and com-
bine approach has itself some capability of variance re-
duction, which allows one to use rather small values ofM
(sayM ∈ [10; 50]) in the Extra-Trees method, which is at
the benefit of a reduced computational complexity.

4.3 Discussion

The subseries lengthl is a parameter of the segment
and combine approach. It may in practice be adjusted to
problem specifics by using a meta-optimization based on
cross-validation. Note that the smaller the values ofl, the
more local and the more time-shift invariant the classifiers
derived by the method are.

Along similar lines, the segment and combine frame-
work combined with Extra-Tress is studied in [21] for
image classification. Reference [23], on the other hand,
provides a more general discussion of this framework for
structured data classification, such as text, images and
time-series.

5 APPLICATION TO OPTIMAL CONTROL

Let us first notice that the Bellman equation (13) intro-
duced in Section2 actually defines a contraction operator
on the Banach space of bounded functions fromS × D
to IR. Therefore, this equation has a unique solution and,
starting with an arbitrary initialQ-function guessQ0, and
iterating sufficiently many times in the following way

Qt+1(s, d)=E{r(s, d, w)+γ max
d′

Qt(f(s, d, w), d′)} (38)

will necessarily yield a good approximation of this solu-
tion, from which a good approximation of an optimal in-
finite horizon (and stationary) policy can then be deduced
by equation (14), easily (at least) ifD is finite.

RTE-VT workshop, Paris, May 29-30, 2006 8

It is also useful to remark that if the iteration is started
with Q0 ≡ 0, the above iteration yields a sequence ofQt-
functions corresponding to finite horizon tail problems. In
other words, the same iterative procedure, if carried out a
fixed numberh of times, will allow to determine an opti-
mal (and time-varying) control policy for a finite horizon
of lengthh. For the sake of simplicity, we nevertheless
consider here the time-invariant infinite horizon case of
the optimal control problem, and we refer the interested
reader to [24] for the full presentation in the time-varying
and finite horizon case.

The ADP (approximate dynamic programming) ap-
proach is based on the idea that, instead of computing
these iterations exactly, they can be carried out in an ap-
proximate fashion by using an approximation architecture
(i.e. a hypothesis space) to representQ-functions, and by
iterating over projections on this hypothesis space. Fur-
thermore, in order to handle the computationally difficult
problem of computing the expectationE{·} in equation
(38), one may use Monte-Carlo simulation rather than nu-
merical integration.

Putting these ideas together, and imposing the con-
straint that the only available information about the system
to be controlled is contained in a set of trajectories, as de-
fined in section2, leads to the idea ofQ-learning which
aims at iterating equation (38) over a hypothesis space
of candidateQ-functions, while computing expectations
based only on the available sample of trajectories. The
fitted Q iteration algorithm, introduced below, does this
by exploiting in a generic way a batch-mode supervised
learning algorithm in the inner loop of this iteration. We
will see that, combined with tree-based supervised learn-
ing, this leads to a very robust and scalable approach to
reinforcement learning as well as for simulation-based ap-
proximate dynamic programming in large state spaces.

5.1 FittedQ iteration framework

Remind that the sole information used by reinforce-
ment algorithms is given by a set ofNT observed system
trajectories, as defined in equation (9). Before applying
the fittedQ iteration algorithm this sample is flattened into
a samplefts of N =

∑NT

i=1 hi four-tuples, defined by

fts = {(si
ti , di

ti , ri
ti , si

ti+1)}
N
i=1. (39)

Notice that in this operation the absolute time references
are lost, but since we consider here a time-invariant sys-
tem, actually no relevant information is lost in this way.

To exploit this sample of four-tuples, the fittedQ iter-
ation uses batch-mode supervised learning to yield a se-
quence of approximateQt-functions from a sample of tra-
jectories in the following way:

• Initialization: Sett = 0 andQ̂0(s, d) ≡ 0.

• Basic iteration:

– Sett = t + 1
– Create a learning samplelst = {(xi, yi)}N

i=1 of
input-output pairs, wherexi = (si

ti , di
ti) andyi =

ri
ti + γ maxd Q̂t−1(s

i
ti+1, d).

– Apply a supervised learning algorithm to build
Q̂t(x, u) from the learning samplelst.

• Finalization: ifmaxi |Qt(s
i
ti , di

ti)−Qt−1(s
i
ti , di

ti)| ≤ ǫ
or t = tmax, extract the approximate optimal decision
strategyd̂∗(·) from the last functionQ̂t by

d̂∗(s) = arg max
d

Q̂t(s, d).

Note that the number of iterations necessary to yield con-
vergence varies strongly with problem specifics and is of-
ten increasing withγ.

5.2 Tree-based batch mode reinforcement learning

If the state and decision spaces are finite and of rela-
tively small size, the supervised learning step in the above
algorithm can be carried out by using a tabular represen-
tation of theQ-functions and by simply averaging sample
output values corresponding to inputs falling in each cell
of the table. In the case of infinite (say continuous) or sim-
ply very large input and/or decision spaces, this idea can
still be applied by discretizing these spaces a priori.

However, in order to yield robust estimates of theQ-
functions, the number of cells has to remain smaller than
the numberN of samples, specially in the case of stochas-
tic problems, which precludes the application of this idea
to the case of high-dimensional state spaces and/or small
samples. Indeed, the requirement that the number of ob-
servations per cell must be kept above a certain theshold,
leads to a very rapid (exponentially fast) increase of the
coarseness of the discretization with the dimension of the
input/decision spaces, for any finite sample size. This phe-
nomenon has been called the curse of dimensionality and
has, in fact, hindered for many years (actually, since the
early sixties) the application of dynamic programming to
large scale real-life problems.

The tree-based batch mode reinforcement learning ap-
proach consist of using instead a tree-based regression al-
gorithm in order to fit theQ-function. With respect to
the use of a tabular approximation architecture this has
the main advantage to adapt the discretization ofS × U
automatically to the problem at hand, and with a coarse-
ness which is automatically linked to the size of the avail-
able sample. In this respect, ensemble-based methods of-
fer the advantage of better accuracy than single trees, and
within this category the Extra-Trees offer a further advan-
tage of computational efficiency (remind that the super-
vised learning algorithm needs to be called several (tens,
or hundreds of) times during the fittedQ-learning pro-
cess). Furthermore, contrary to many other approximation
architectures, e.g. linear and generalized linear regres-
sion, the tree-based methods have the additional feature of
bounded input-output approximation (actually, their pre-
dictions are necessarily a convex combination of the sam-
ple values), which in the context of the fittedQ iteration
algorithm yields the guarantee of non-divergence (and in
some more specific conditions, of convergence) of the it-
erative fitting procedure.

RTE-VT workshop, Paris, May 29-30, 2006 9

5.3 Discussion

The above features, combined with the computational
efficiency (and scalability) and the consistency property
of tree-based supervised learning, yield a new very pow-
erful framework of reinforcement learning, able to address
complex and large scale applications, and to most effi-
ciently exploit available samples of trajectories. We re-
fer the interested reader to [7, 24] for further details and
references to related work.

Notice that even when the system dynamics and re-
ward functions are known (or can be simulated), the re-
inforcement learning framework may still be used as an
alternative to direct optimization (e.g., dynamic program-
ming or model predictive control), by extracting decision
policies from samples generated automatically by Monte-
Carlo simulation. In this context, the advantages of tree-
based batch mode reinforcement learning are its capability
to exploit efficiently large samples and cope with high-
dimensional non-linear and stochastic problems.

6 CONCLUSION

In this paper, we have presented a new supervised
learning method called Extra-Trees, based on averaging
predictions by randomly generated trees. This method has
been discussed in terms of its intrinsic properties, namely
scalability, robustness, accuracy and flexibility, and we
have analyzed it in the perspective of the so-called kernel-
based methods. We have also discussed two particular
frameworks wrapping this method, namely “segment and
combine” for the classification of time-series, and “Tree-
based batch mode reinforcement learning” for the infer-
ence of optimal control policies from sequential system
performance recordings.

Due to limited space and time, we did not discuss ac-
tual real-world applications of this method, be it in the
context of power systems or more generally. Nevertheless,
we hope that this paper will foster many new applications
in addition to the already existing ones.

ACKNOWLEDGMENTS

Damien Ernst and Pierre Geurts acknowledge the support of
the Belgian FNRS (Fonds National de la Recherche Scientifique)
where they are scientific research workers.

REFERENCES

[1] L. Breiman, J. Friedman, R. Olsen, and C. Stone,Classi-
fication and Regression Trees. Wadsworth International,
1984.

[2] L. Wehenkel, “Discretization of continuous attributes for
supervised learning: variance evaluation and variance re-
duction,” in Proceedings of the International Fuzzy Sys-
tems Association World Congress, 1997, pp. 381–388.

[3] L. Breiman, “Bagging predictors,”Machine Learning,
vol. 24, no. 2, pp. 123–140, 1996.

[4] E. Bauer and R. Kohavi, “An empirical comparison of vot-
ing classification algorithms : bagging, boosting, and vari-
ants,”Machine Learning, vol. 36, pp. 105–139, 1999.

[5] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely random-
ized trees,”Machine Learning Journal (advance access:
DOI 10.1007/s10994-006-6226-1), pp. 1 – 40, 2006.

[6] P. Geurts and L. Wehenkel, “Segment and combine ap-
proach for non-parametric time-series classification,” in
Proceedings of the 9th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases
(PKDD), October 2005.

[7] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch
mode reinforcement learning,”Journal of Machine Learn-
ing Research, vol. 6, pp. 503–556, April 2005.

[8] S. Russel and P. Norvig,Artificial Intelligence: a Modern
Approach. Prentice Hall, 1994.

[9] M. Vidyasagar,A Theory of Learning and Generalization:
with Applications to Neural Networks and Control Systems.
Springer, 1997.

[10] V. Vapnik,Statistical Learning Theory. Wiley, New York,
1998.

[11] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of
Statistical Learning: Data Mining, Inference and Predic-
tion. Springer, 2001.

[12] R. Duda, P. Hart, and D. Stork,Pattern Classification,
2nd ed. John Wiley & Sons, Inc., 2001.

[13] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, “Gen-
eral conditions for predictivity in learning theory,”Nature,
vol. 428, pp. 419–422, 2004.

[14] B. Scholkopf, C. Burges, and A. Smola,Advances in Ker-
nel Methods: Support Vector Learning. MIT Press, Cam-
bridge, MA, 1999.

[15] C. Cristianini and J. Shawe-Taylor,An Introduction to Sup-
port Vector Machines. MIT Press, Cambridge, MA, 2000.

[16] L. Breiman, “Random forests,”Machine learning, vol. 45,
pp. 5–32, 2001.

[17] D. Bertsekas and J. Tsitsiklis,Neuro-Dynamic Program-
ming. Belmont, MA: Athena Scientific, 1996.

[18] R. Sutton and A. Barto,Reinforcement Learning. An Intro-
duction. MIT Press, 1998.

[19] C. Watkins, “Learning from Delayed Rewards,” Ph.D. dis-
sertation, Cambridge University, England, 1989.

[20] L. Breiman, “Statistical modeling: the two cultures,”Sta-
tistical Science, vol. 16, no. 3, pp. 199–231, 2001.

[21] R. Maŕee, P. Geurts, J. Piater, and L. Wehenkel, “Random
subwindows for robust image classification,” inProceed-
ings of the IEEE International Conference on Computer
Vision and Pattern Recognition, CVPR 2005, vol. 1, 2005,
pp. 34–40.

[22] P. Geurts, L. Wehenkel, and F. d’Alché Buc, “Kernelizing
the output of tree-based methods,” inProc. of International
Conference on Machine Learning, to appear, 2006.

[23] P. Geurts, R. Maŕee, and L. Wehenkel, “Segment and com-
bine: a generic approach for supervised learning of invari-
ant classifiers from topologically structured data,” inMa-
chine Learning Conference of Belgium and The Nether-
lands (Benelearn), 2006.

[24] L. Wehenkel, M. Glavic, P. Geurts, and D. Ernst, “Auto-
matic learning of sequential decision strategies for dynamic
security assessment and control,” inProc. of IEEE PES
General Meeting, 2006, p. 6.

RTE-VT workshop, Paris, May 29-30, 2006 10

	INTRODUCTION
	AUTOMATIC LEARNING PER SE
	Types of automatic learning problems
	Supervised learning problem
	Reinforcement learning problem

	Discussion

	EXTREMELY RANDOMIZED TREES
	Standard (single) tree-based regression
	Node splitting procedure
	Leaf labelling procedure
	Kernel interpretation of regression trees
	Basic extensions
	Main strengths and weaknesses

	Ensemble methods
	Variance reduction and bagging
	Bayesian motivation

	Ensembles of extremely randomized trees
	Geometric characterization
	Extra-Trees kernels
	Main properties of Extra-Trees

	TIME-SERIES CLASSIFICATION
	Segment and Combine framework
	Tree-based times series classification
	Discussion

	APPLICATION TO OPTIMAL CONTROL
	Fitted Q iteration framework
	Tree-based batch mode reinforcement learning
	Discussion

	CONCLUSION

