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Abstract - In this paper we present a new tree-based en- troducing the main learning problems, protocols and ter-

semble method called “Extra-Trees”. This algorithm aver- minology and reviewing the main results of research in
ages predictions of trees obtained by partitioning the input- the field while providing some pointers to the relevant lit-
space with randomly generated splits, leading to significant erature. The rest of the paper is composed of three sec-
improvements of precision, and various algorithmic advan- tions describing respectively the Extra-Trees method, and
tages, in particular reduced computational complexity and its use for time-series classification and learning of near
scalability. We also discuss two generic applications of this ~ optimal control strategies, respectively.

algorithm, namely for time-series classification and for the We have made efforts to make the paper self-
automatic inference of near-optimal sequential decision poli- contained. The reader already familiar with automatic
cies from experimental data. learning, be it at an intuitive level, can skip sect®and

part of the introductory material of sectiéhabout stan-
Keywords - Automatic learning, robust supervised dard tree-based methods.
learning methods, time-series classification, learning of

optimal control policies 2 AUTOMATIC LEARNING PER SE

Generally speaking, automatic learning aims at ex-
1 INTRODUCTION ploiting data gathered from observations (or simulations)

Classification and regression trees are well known of a system (or an environment), in order to build mod-
methods used for data interpretation and statistical mod- els explaining the behavior of the system and/or decision
eling. While these non-parametric and nonlinear meth- rules to interact in an appropriate way with it.
ods are intrinsically robust to outliers, scalable to high- In what follows, we first describe the two automatic
dimensional spaces and can cope with very large samplelearning problems of interest in this paper, then we briefly
sizes, their main drawback is imprecision. The main factor discuss the relationship between automatic learning and
of imprecision was found to be the high variance of these classical statistical modeling.
methods, which led, during the eighties and nineties, to
the development of various variance reduction techniques
[1, 2] and in particular so-called ensemble methddl<], The three main types of automatic learning problems
which consist of modeling the sought input-output rela- are so-calledupervised, reinforcemergndunsupervised
tionship with an ensemble of trees whose predictions are learning. We will focus on the two former in this paper and
aggregated by some voting scheme. we will introduce first their probabilistic/statisticalioal-

In this paper we present a new tree-based ensembleization and terminology. We refer the interested reader to
method called “Extra-Trees” (standing for extremely ran- more general textbooks for further information about au-
domized trees). This algorithm averages predictions of tomatic learning theory, its relation to other disciplines
trees obtained by partitioning the input-space with ran- and the precise description of the algorithms to which we
domly generated splitsS], which leads to a significant  refer in this paper§, 9, 10, 11, 12].
improvement of precision, and has various algorithmic ad-
vantages, in particular a reduced computational complex-
ity with respect to classical trees and other ensemble meth-  Given a sample{(z,y*)}Y, of input-output pairs
ods. (wherez® ¢ X andy’ € Y)?!, a supervised learning

We explain how and why the method works, by de- algorithm aims at automatically building an input-output
scribing the supervised learning algorithm and analytical function (or a model, or a predicto)(z) : X — Y to
characterizations of the models it produces. Then we dis- compute approximations of outputs as a function of in-
cuss two generic applications of this algorithm of wide puts. Typically, a supervised learning algorithm searches

2.1 Types of automatic learning problems

2.1.1 Supervised learning problem

practical interest, respectively for time-series clasaffi in a (possibly very large, but restricted) set of candidate
tion [6] and for the automatic inference of near-optimal input-output functions, called the hypothesis spat¢a
sequential decision policies from experimental daia [ subset of the spacéX of all possible input-output func-

To fix ideas, we start the paper with a quick review of tions). For example, decision trees, neural networks, and
what automatic learning and data mining are all about, in- linear regression use different hypothesis spaces.

1we will focus on the case of a Euclidean input spake=£ IR™), and consider the cases where the output spaee IR for regression problems,
andY = {y1,y2,...,ym} for (m-class) classification problems; however, supervised liegrin general, considers arbitrary input and output space
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Denoting the set of all finite size samples by Consequently, the theoretical design of supervised
- learning algorithms also consists essentially of construc
X x V) — X x V)V 1 ing sequences of growing hypothesis spakdesC Hy C
(X xY) U( xY)7, @) Hs ... such that

N=1
adeterministié supervised learning algorithm can thus nlggo Lo, = 17, (7)
formally be stated as a mapping and of defining associated learning algorithes with
AL (X xY) —H @) good convergence properties, i.e. such that
lim L(A;(Is")) = L3, (8)

from (X x Y)* into the hypothesis spad¢. For a given N—oo
samples € (X x Y)* we will denote byA(ls) the model Examples of such hypothesis spaces are given by single-
returned by the algorithm. hidden-layer perceptrons with growing numbers of hidden

The probabilistic formalization of supervised learning neurons, or decision trees with growing numbers of nodes.
considers thatr :  — X andy : Q@ — Y are two In practice, much of the research in supervised learn-

random variables defined over some (unknown) probabil- ing has focused on the design of algorithms scaling well
ity space(f2,&, P). Let Pxy denote their (unknown) in terms of computational requirements with the sample
joint probabiltiy distribution defined oveX x Y and size and with the dimension of the input spacéand to a
{:Y xY — IR" be a non-negative loss function de- lesser extent that of the output spack and using “large”
fined overY x Y, and for anyf € H let us denote by hypothesis spaces able to model complex non-linear input-
output relations. From this research two broad classes of
L(f) = / 0(f(z),y)dPx.y A3) (closely related) algorithms have emerged during the last
XxY ’ fifteen years, based respectively on kernéi [L5] and
the inaccuracy (or average loss) pf The goal of super- on ensembles of treed§, 5], which both automatically
vised learning is the derivation from a learning sample of adapt the size of their hypothesis space to the sample size

a functionf € H which minimizesL(f). and input space dimensions. These two classes of methods
Assuming that sampless™ = {(2%,5")}¥, are are discussed in further detail in sect®below.
drawn according to some sampling distributiBr y~, 2.1.2 Reinforcement learning problem

the sampling process and algorithhinduce a probability
distribution over the hypothesis space and hence a proba-  To avoid confusion with the inpui: of supervised

bility distribution over inaccuracieg (A(lsY)). Let us learning, we denote by, € S the state of a dynamic sys-
denote by tem at timet, by d; € D the control variable, ang, € IR
an instantaneous reward signal. Then, given a sample of
ZX :/ L(A(lsN))dP(X,y)N (4) N system trajectories
(X, Y)N

{(867 67 T(Z)v 5117 e Szhiflv d;zifh T;Li*l’ S;Li)}i:Tl7 (9)
reinforcement learning aims at deriving an approximation
Li, = inf L(f) (5) of an optimal dec!smn strateg¥ (s, t) maximizing sys- _

fen tem performance in terms of a cumulated performance in-

the expected average lossAfor fixed sample sizév, by

the lowest reachable average losgdnand by dex over a certain horizah, defined by

h—1
L*= inf Li (6) Ry, = ; VT, (10)
the lowest possible average loss over all possible input- wherey ¢ (0,1] is a discount factor1[7, 18.
output functions for all possible hypothesis spakes From a theoretical point of view, reinforcement learn-
Besides defining general conditions (&nY, Px y, ing can be formalized within the stochastic dynamic pro-
Pix,yy~, £, H, Aetc.) under which the above introduced gramming framework. In particular, supposing that the
quantities indeed exist, the objective of statistical hazy system obeys to a time-invariant dynamics

theory is to study whether and hoﬁ/ﬁ( and L(A(1sM)) B d 1
converge toL;, [13]. For i.i.d. sampling mechanisriis ser1 = f(st, dey wy), (11)

the essential result of this theory is that such convergence wherew; is a memoryless and time-invariant random pro-
can be guaranteed independently of the unknown proba- cess, and obtains a bounded and time-invariant reward sig-
bility distribution Py y-, provided that/ is not too large nal

(i.e. of finite Vapnik-Chervonenkis-dimensiori)(]]. re = 1(st, dp, wy), (12)

2Below, in SectiorB, we will also consider the more general case of so-calledomizedearning algorithms which, instead of picking a particular
hypothesisA(ls), randomly sample hypotheses from an induced conditionaillision overH given a learning sampleé?4 (h|ls).

SNotice that while, originally in the late seventies and ¢iigh statistical learning theory was developed under ltesical assumption of i.i.d. (inde-
pendent and identically distributed) sampling accordinthedistributionPx y-, i.e. under the assumption tthX’YW = ng, more recent work
aims at weakening this assumption to cases where the samplast éamdependently distributed anymo.[
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over an infinite horizon/{ — oo), one can show that the Further work is focusing on developing tailored al-

two following (Bellman) equations define an optimal de- gorithms well suited to handle specific classes of practi-

cision strategy cal problems, like time-series forecasting, image and text
classification for instance, where the inputs (and/or the

Q(s,d)=E{r(s,d,w)+ymaxgQ(f(s,d,w),d")}, (13) outputs) have specific propertiex] 6].

d*(s) = arg maxy Q(s, d). (14)

Reinforcement learning can thus be tackled by developing 3 EXTREMELY RANDOMIZED TREES

algorithms to solve these equations (or their time-variant

and finite horizon counterparts) approximately when the

sole mformat.lon avallablg about the system dynamics and error loss-function and assume that all input variables are

_rewarq function are p_rowded b_y a sample of system trg— numerical (ie. v € R, {y,y) — (y — o) and

jectories. The theoretical questions that have been studie & = (2,2 #1) € IR™). While our mathematical

in this context concern the statement of conditions on the Lo '

i don the | X lorith -~ analysis is specific to this case, let us however stress the
sampling process and on the learning algorthm ensuring ¢, . ¢ the discussed methods and general ideas extend in
convergence to an optimal policy in asymptotic conditions

. a straighforward way to more general input and/or output
(i.e., whenN; — oo and/orh; — o) g Y g P P

Recent work in the field has allowed to take full advan- —Poce> and to other loss functions (e.g., S¢23)).
tage from state-of-the art supervised learning algorithms 3.1 standard (single) tree-based regression
by defining appropriate frameworks to plug these algo-
rithms in the reinforcement learning protocol. In partic- Standard regression tre€l§ propose a solution to the
ular, model based reinforcement learning methods use thesupervised learning problem when the output space is the
sample to build approximations of the system dynamics real axis,Y = IR, and the loss functionéis the square
and reward function and dynamic programming methods error:
to derive from them an approximation of the optimal de-
cision strategy. On the other hand, fjdearning frame- U(f(x),y) = (f(x) —y)2. (15)
work uses supervised learning in order to construct from
the sample an approximation of thefunction and derive ) . . ) )
from it the decision policy. While the first generation of The gengral idea of regression trees IS to recursively split
Q-learning methods used parametric approximation tech- the Iearnl_ng sample W'Fh bmary_tests in the form< ¢,
niques together with on-line gradient descei®{ the re- wherex; is one of the input vangbles artda threshold.
cently proposed fitted) iteration method allows to fully Both are chosen by thg tree growing prqcedure soastore-
exploit any parametric or non-parametric batch mode su- duce as much as possible the variancg mf.th.e two sub-
pervised learning algorithm in this contes| This latter samples resulting from that split. The splitting procedure

method is further discussed below in Section is applied to the whole learning samgleto define the
root node of the tree and then recursively called on its suc-

2.2 Discussion cessor nodes. It is stopped at terminal nodes either when
the output is constant in this node or some other stopping
criterion is met (e.g., the size of the local subsample goes
below some threshold, or the split is deemed not signifi-
cant according to some statistical test).

For the sake of clarity, we will focus in the present sec-
tion on (supervisedjegressionproblems using a square

As it may be clear from this short overview, automatic
learning tackles essentially classical modeling problems
of statistics. However, while classical statistics has fo-
cused on the analytical study of parameter identification,
by assuming that the functional forms of distributions are To fix ideas, Figurel illustrates this in a simple two-
given, automatic learning has focused on the design of dimensional case, for a tree with four internal (test) nodes
data driven algorithms, which are generally not exploit- and five leaves. Figurga also illustrates the notation that
ing any strong parametric assumptions and hence can inwe use subsequently, and the fact that the tree was grown
principle cope with larger classes of probler@8][ in the top-down and left-to-right order is suggested by the

In automatic learning many algorithms have been orig- numbering of the thresholds at its test nodes, from 1 to 4,
inally designed in a heuristic way and were initially stud- and the numbering of its leaves, from 1 to 5. Obviously,
ied only empirically, by applying them to synthetic or such a tree may be used to predict an output for a given
real-life datasets and comparing their results with thdse o input vectorz = (x4, z2) by following the path from top
other methods. The developments in computer hardware, to bottom along the edges selected by the different tests
the availability of large databases and the good empiri- encountered, and by retrieving the valuattached to the
cal performances of these algorithms made them becomereached leaf. The way the tree partitions the input space
more and more popular in practice. During the last twenty into a set of non-overlapping hyper-rectangular regions is
years, statisticians and theoretical computer scieriists illustrated on Figurelb. Figurelc gives its interpretation
came more strongly interested in this field and they drove as a set of (mutually exclusive) decision rules, and Figure
significant theoretical research allowing to better under- 1d provides its functional expression, in terms of an ad-
stand the behavior of these algorithms, and even improve ditive expansion of the indicator functions of the regions
their design thanks to this new insigi [LO, 13, 16]. attached to its leaves.
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(&) Tree structure o1 <t and where vafry|S} denotes the empirical variance of the

output variabley in .S computed by

2

xo < to x1 < t 1 . 1 .
— varly|si=[s|7" Y [y = IsIT Y] v - (19)
yes v yes o (zt,yt):xtesS (zt yi):xiesS
In the standard procedure, the nodes of the tree are de-
z2 < ta veloped in a greedy fashion, by searching at each test node
Ly Ly L3 the input variable:, together with a threshold maximiz-
91=0.2 §2=0 93=0.5 . . . .
s . ing the above score. This search is done exhaustively by
L; denotes a leaf looking at all possible variables and thresholds, and can
L; also denotes the region of covered byL; be made in the ordet|R|log | R| operations.
4, denotes the value predicted in Ly Ls .
94208 5=1 3.1.2 Leaf labelling procedure

(b) Geometrical interpretation

Once the tree is grown, each le&f is labelled with
a predictiony; defined as the local sample average of the
output variable, given by

1
b= Y. U (19)
L]

(@' g el

where|L,| is the number of learning cases that reach leaf
L;. Note that, for a given tree structure, these label-values
actually minimize the average square prediction error over
the learning sample, defined by

N @) =N > () (20)

(zt,yt)€Els Lj (xt,y'):z'€L;

3.1.3 Kernel interpretation of regression trees

In generalkernel based regressiaonsists of model-
ing the output using the following type of expansion

(c) Logical interpretation fi (x) = Z aik($i7 ), (21)

Li=[z1 <t1)A[z2 <t2):z €Ly = f(z) =791 =0.2 (z,y?)Els
[ ltz€Lls= f(z) =92=0
Ly=[z1 >ti1]A[r1 <t3]:az € Ly = f(z) =93 =0.5
[ ]
]

L2 = [z S ta] Aoz > t2 where k(z,z') is a positive semidefinite kernel defined

over the input space, i.e. a symmetric real-valued func-
2 €La= f(2) =92 =08 tion defined overX x X and that is such that for any
v €ls = fz) =95 =1 and any sampléx?} Y, of inputs, the Gram matri¥ de-
fined by K; ; = k(x, 27) is positive semi-definite. Once
a kernel is defined, the learning algorithm is used in order
to determine the vector of coefficienis= (a1, ..., an),
Figure 1: Two-dimensional regression tree (inspired fram]) typically by optimizing a penalized (or regularized) em-
pirical least squares criterion, e.g. (sé&&])

L4E[:El>t3]/\ T2 <ty
L5E[E1>t3]/\[12 >ty

(d) Functional interpretation
f@) =33 §il(z € Ly)

3.1.1 Node splitting procedure

The score measure used to evaluate and select during "= argmin MTKa+ Y (fia) -y, (22)
tree growing a split = [z; < t] at some node correspond- (zi,y)€ls

ing to a region C X is defined by and using a meta-optimization w.r.t. the choice of kernel

k and regularization paramet&mwhere the generalization

B |R<] |R~ | error is estimated by cross-validation.
Scorg; = var{y|R}— |R| var{y|R<}~ IR var{y| > }, As suggested by equatio21), kernel-based regres-
(16) sion consists of using a hypothesis spatef linear com-

whereR< andR-. are the subsets @t defined bys, and binations of the function®{x = {¢.(:) = k(x,")}sex.
|S| denotes the number of elements of the learning sample This (so-calledyeature-spaces actually a Hilbert space

belonging to anys ¢ X, defined by which scalar product, distance and norm, are obtained by
the extension of the kernel frof x to H by
Is|= Y I@'es) (17) (D Nidusy Y Nidw) =YY NiNjk(i,a)). (23)
(zt,y?)els z;€X zieX i g

RTE-VT workshop, Paris, May 29-30, 2006 4



Depending on the structure of the input spaceand its
kernelk, this space may be finite-dimensional (e.g.Xif
is itself finite) or of infinite dimensich However, for any
finite learning sample of siz&, only a subset of functions
is reached by equatior2), included in the subspace (of
dimension< N) spanned by

Let us now analyze in this framework tree-based mod-
els. Considering a treeover some input spac¥, with
leavesL, ..., Lk, let us show that its input-output func-
tion can be expressed by the following expansion

N

i=1- (24)

flz)= ) aiki(a’,@). (25)
(i yi)Els
where the tree kerné, is defined by
k(e.a’) — ZK: I(z € L) I(z € L;) (26)
, i=1 m m ’
and where the parameters are defined by
a; =y Vi=1,...,N. (27)

Indeed,k;(z,2") = 0 if x andz’ reach different leaves
of t and ky(x,2") = 1/|L,| if they both reach a leaf
L;. Hence, expressior29) thus effectively computes the
arithmetic average of the outputs of the learning subsam-
ple reaching the same node:asNotice that the feature-
space induced by the kern@f) is spanned by the indica-
tor functionsZ;(x); since these latter are orthogonal, the
dimension of this feature-space is equal to the number of
leaves oft. This dimension is upper bounded by the learn-
ing sample size, and typically grows linearly with it.

We can thus view regression tree induction as a pro-

The latter is the center of mass in the leaf and the former
is the average irb of the squared Euclidean distance of
output vectors to the center of mass.

The extension to categorical output variables (classi-
fication problems) is based on the use of an alternative
loss-function (typically the classification error rateflam
different score functions to select splits (typically ey
reduction instead of variance reduction). Furthermore, in
[22] we show how this algorithm may be generalized to
arbitrary output spaces structured by a kernel, which al-
lows to apply the method to the prediction of structured
outputs, such as graphs, text, etc.

Another important extension consists of using a post-
processing stage, where the tree is pruned on the basis of
an independant sample, so as to remove those parts which
overfitthe learning sample.

3.1.5 Main strengths and weaknesses

The main characteristics of (single) tree-based regres-
sion are as follows:

Universal approximation/consistency: the method is in
principle able to arbitrarily well regress any output vari-
able, provided large enough training samples are pro-
vided.

Robustness to outliers: outliers tend to have a very local
effect on the models induced, which makes the method
intrinsically much more robust than parametric linear
or non-linear least squares regression methods.

Computational complexity: tree induction complexity
is typically on the order ofV log N in the training sam-
ple size and linear in the number of input variables. In
other words, the method can cope with very large scale
data mining applications with thousands of input vari-
ables and millions of training samples.

cess where the recursive partitioning step corresponds t0 popystness w.rt. irrelevant/redundant inputs: the tree

the automatic construction of a kernel (and its feature

space), and where the labelling step consists of computing

the weights minimizing the empirical square error, accor-
dining to equationZ2) with A — oc.

3.1.4 Basic extensions

The regression tree induction algorithm can be ex-
tended in various ways. In particular, in the case of mul-
tiple numerical outputs, i.eY” = IR", with the loss func-
tion £(f(z),y) = ||f(z) — y||?, where|| - || denotes the
Euclidean norm inR™, the variance computed ii§) and

the predictions at leaf nodes are simply replaced respec-

tively by
2
var{y|s} = [SI7' Y0 |lui—[SIT Y o[ (28)
(:Ei7yi);a:7'ES ($7",y7’)2$"’€$
go= LTt Y v (29)
(ziyi)aiel;

growing procedure identifies relevant variables among
a (posssible large) set of candidate ones comprising ir-
relevant variables, and is intrinsically robust w.r.t. to
the presence of redundant variables.

Interpretability: Tree-based models highlight in a rather
transparent way the importance of the input variables,
and they are able to explain their reasoning.

High variance: compared to other regression methods,
tree growing is very sensitive to the training samples,
which means that for different samples of identical size
drawn from a same distribution the models induced are
quite different. This variance translates typically into
a low accuracy which is certainly the most important
drawback of the method. This variance is particularly
detrimental when the information is spread over a large
number of input variables. Tree pruning, while aiming
at optimizing the bias/variance tradeoff is typically not
able to reduce this variance significantly.

“In the latter cas@{ consists of the functiong(z) = 3" 9°,\;¢.; of bounded normi.e. suchthap_ ;2 , 2521 Ak (i, ) is finite.
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3.2 Ensemble methods

Ensemble-based supervised learning methods consist

of using a base learning algorithrhand some perturba-
tion mechanism, in order to derive from a learning sam-
ple an ensemblé& = {f1,..., fa} of input-output func-

tions (instead of a single one), and making a prediction

at some point: by combining the elementary predictions
{fi(x),..., fm(z)} in some appropriate fashion. In par-
ticular, in the case of regression, the final prediction is-ge
erally computed as a (generally weighted) average

M
M) = wp ful@) (30)
k=1

where)", w;, = 1. The functionsf; are intended to be

even more for decision) tree induction, bagging was em-
pirically shown to outperform by far (and almost system-
atically) standard tree induction in terms of accuragly [

3.2.2 Bayesian motivation

Another way to motivate the model averaging of en-
semble methods is based on the bayesian interpretation of
statistics. In the context of supervised learning, this ap-
proach consists of defining a prior distributidi{ /) over
the hypothesis spack, and by then using the learning
sample to compute an approximation of the posterior dis-
tribution P(f|ls) and finally, by making predictions ac-
cording to the following integral

Fregs() = /f _J@apgis. @)

complementary, in the sense that their prediction errors This equation may be (finitely) approximated by

are not strongly correlated. The weightg are meant
to be higher for those functiong which are believed to
be more accurate. In particular, if all ensemble terfns

are believed to be equivalent in terms of accuracy, then

wy =1/MNk=1,..., M.

Fiis@) = M7 fi(w), (33)
fi

assuming that the functionf(x) are obtained by sam-
pling from the posterior distributio®( f|/s). Notice that

Ensemble methods have been largely studied in the ye convergence of this approximation may be improved

90’s, and are further investigated at present. The two fol-

lowing interpretations/motivations of this idea are of-par
ticular interest.

3.2.1 \Variance reduction and bagging

Suppose that instead of a single learning sample of

size N, we have at our disposall independent samples
{1s*}M | of size N, and let us denote b}, = A(ls*) the
hypothesis computed by a learning algoritdnusingis®.
One can show (e.g., se8]] that the learning variance of
the algorithmA™ which returns the model

M
M) =M1y fi(e), (31)
k=1

is reduced by a factor a#/ w.r.t. to the learning vari-
ance ofA applied tols*, while its bias is left unchanged.
In other words, if the variance ol is much higher than
its bias, the new algorithm* will be much more accu-
rate on the average thahapplied to a sample of siz¥.
Since the computational load to generate the mgdél
grows linearly withA/, depending on the computational
complexity of A and the speed of its variance decrease
with sample sizeA™ may be a viable alternative the ap-
plication of A to the unionUyls*.

The above analysis inspired the followiragging
(bagging=bootstrap+aggregating) trick in order to im-
prove a learning algorithm: given a single sampieof
sizeN, derive from itA bootstrapcopies (each one is ob-
tained by random samplingy times, with replacement),
derive from these sample® models with algorithmA

by sampling preferentially models which have a high pos-
terior probability, i.e. which fit rather well to the learigin
sample.

3.3 Ensembles of extremely randomized trees

Extra-Trees (seé] for an in depth discussion and sys-
tematic empirical validation) are motivated by the above
two ideas. They consist of averaging predictions of an en-
semble of trees built in a randomized fashion. Each tree is
grown by selecting at each node a numbeiof random
splits (random choice of variable;, and random choice
of thresholdt) and keeping among these the one which
maximizes the score. These trees are grown until all sub-
samples at all leaves are either pure in terms of outputs or
contain less than,,;, learning samples.

If the parameters are set respectivelyko= 1 and
nmin = 2, these trees are totally random (in the sense
that their structure does not depend on the outputs in the
learning sample) and they perfectly fit the learning sample.
Thus, in this case the Extra-Trees method can be viewed
as an approach to sample in a neutral way from the set of
all possible trees perfectly fitting the learning sample.

This tree sampling mechanism may be adjusted (bi-
ased) by using larger values &f, leading to trees prefer-
entially using inputs with higher score values, and/or by
using higher values ot,,;,,, leading to smaller trees, be it
at the expense of a less good fit on the training sample. In
practice, the optimal values of these two parameters are
problem dependent and they may be adjusted automat-
ically using a meta-optimization using cross-validation.
Typically, large values ofX are more appropriate if the

and build a final model by averaging. Because bootstrap problem has a large number of irrelevant variables, while

sampling from a finitds (imperfectly) mimics sampling
from the population, bagging (imperfectly) allows to re-
duce variance ofd, while (imperfectly) keeping bias un-

small values correspond to assuming that the information
is spread evenly over the input variables. On the other
hand, larger values of ,,;,, will be better suited if there is

changed. In particular, in the context of regression (and a lot of noise on the output variable.
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Figure 2: Tree Bagging (top), and Extra-Trees (bottom) on a one-
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dimensional piecewise linear probledV (= 20, nyi, = 2). Left with
M = 100 trees, right with)\/ = 1000 trees (adapted fron®])

3.3.1 Geometric characterization

While regular trees, as well as bagged ensembles of
regular trees (even i/ — oo) yield piecewise con-
stant models, it is shown in5] that Extra-Trees pro-
duce (in asymptotic conditions) a smoother and piece-
wise multilinear model. This is illustrated in the case
of a one-dimensional input space, at Fig@reshowing
that the Extra-Trees model rather quickly converges to
a piece-wise linear model. Since most practical prob-
lems correspond to smooth input-output regressors, this
explains why Extra-Trees are often more accurate than
tree-bagging and other tree-based ensemble methods.

3.3.2 Extra-Trees kernels

As single tree models, ensembles of regression trees
may also be interpreted in the kernel framework. Indeed,
since their prediction is an average of predictions of tree-
based models, straightforwardly their kernel is obtained
by averaging of the individual tree kernels. In particular,
for an ensembl@ = {t1,..., ¢y} of M trees, the kernel-
based model formulation becomes

Figure 3: Robustness to outliers of Extra-Trees vs Linear regression

3.3.3 Main properties of Extra-Trees

The main characteristics of Extra-Trees based regres-

sion are as follows:

Universal approximation/consistency:it carries over

directly from single-tree based methods.

Robustness to outliers: Figure 3 illustrates the robust

behaviour of Extra-Trees w.r.t. gross errors. The un-
derlying problem is a (one-dimensional) linear input-
output relation drawn in blue on Figu@ To train the
models, a set of 30 data points was generated, evenly
spread in the interval € [0;2.9], the outputs being
computed byy = 3z 4+ 0.5. As suggested by the
pink points on the graphic, two outliers were intro-
duced before training by corrupting two datapoints: the
point(1,3.5) was replaced by0, 3.5) and(1.8,5.9) by
(6.8,5.9). On this corrupted dataset, we trained both a
linear regression (green curve) and an ensemble of 100
Extra-Trees (red curvey,;, = 4 and K = 1). The
graphic clearly highlights that, while the linear regres-
sion is strongly and globally affected by the outliers,
the Extra-Trees model is only marginally affected, and
only very locally in the regions where the outliers are
located.

Computational complexity: the complexity is essen-

fT(x) = Z yikT('ria JZ‘), (34)
(zt,y?)€Els
where the ensemble kerrig} is defined by
& (e LRI € LF)
Z M~ Z |Lk (35)

where L¥ denotes theth leaf of thekth tree andty| its
number of leaves. This kernel essentially counts the pro-
portion of trees irf” in which the inputs: andz’ reach the

same terminal node. Notice that while single tree kernels |nterpretability:

are non-smooth (and take at most as many different val-
ues as there leaves in a tree), in the limithéf— oo, the
Extra-Trees ensemble kernel becomes continuous.

The kernel-based reformulation shows that Extra-
Trees are similar to nearest-neighbour types of methods,
where the metric is automatically induced from the learn-

tially proportional toM K N log N, which may be bet-
ter than that of single trees if the numberof input

variables is very large compared . Note that accu-
racy always increases monotonically witlh, but in a

problem dependent way; typical valuesidfare in the
range[10; 100].

Robustness w.r.t. irrelevant/redundant inputs: the tree

growing remains robust to irrelevant variables as long
asK is sufficiently large w.r.tn.

it is strongly reduced because the ran-
domized trees are individually meaningless; neverthe-
less it is possible to compute the importance of input
variables from a set of Extra-Trees.

Very low variance: compared to standard tree-based re-

gression the variance of Extra-Trees is negligible.

ing Samp|e_ Further work aims at Characterizing other EXtenSions/generaIizationS:those extensions that were

properties of these random tree-ensemble kernels (eeg., se
[5] for some indications).
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discussed for standard trees all carry over to Extra-
Trees, with minor adaptations.



4 TIME-SERIES CLASSIFICATION

In this section we consider a supervised learning prob-
lem, where inputs are multidimensional real-valued times-
series (in discrete time) and the output is a discrete class
label. Let us denote by

I [1] T [t]
= T
(1] T [t]

an observation of an-dimensional time-series, whete
denotes its duration and where thél - - - ] € RI** are

the elementary (temporal) input variables. We will denote
by tmin > 1 the minimal duration of any time-series con-
sidered in a particular learning problem. Let us consider a
learning sample of classified time-series, i.e.

Is = {(z'[1--- '],y 37)

such thaty’ € Y = {y1,...,ym} andt’ > t,;,. Notice
that the time in a given time-series of theis interpreted
here as relative time to its initial value, and that the dura-
tions of individual time-series may vary within the learn-
ing sample. Note also that,;,,, if not known a priori, can
be upper bounded hyiinlY_, .

Supervised time-series classification consists of using
an algorithm to derive from such a learning sample a time-
series classifier, or in other words a function mapping any
time-seriese[1 - - - t] of any durationt > ¢,,;, to a value
f(z[1---t]) € Y. One-dimensional time-seriégrecast-
ing would correspond to a similar problem, where= 1
andy = z[t + 1].

(36)

N
i=1»

4.1 Segment and Combine framework

The segment and combine algorithj [ises a stan-
dard (propositional) supervised learning algorithm tddsie
a time-series classifier from learning sample of time-serie
as in equation 37) . It works in the following way

(l < tmin):
Subseries sampling.For j = 1,..., N, choosei; €
{1,...,N} randomly, then choose a subseries offset

t) € {0,...,t% — [} randomly, and create an attribute
vector of lengthn x [

...,a:;j[tg+1],.-~7xf~f[t%+l])

concatenating the values of all temporal attributes
over the time intervat) + 1,...,t) + [. Collect the
samples in a training set of subseries

lslNS = {(acj’l,yif)|j: 1,...,]\]5}.

Classifier training. Use a (propositional) supervised
base learner to build a subseries classifiér[1 - - - 1])
from the subseries sampll€ .

Notice that the “classifier’f!(x[1---1]) is supposed to
return a class-probability vector (each component of
which estimates the probability of one of theclasses

yi €Y).

RTE-VT workshop, Paris, May 29-30, 2006

Time-series classification.For

any new time-series
xz[l---t] extract systematically all its subseries of
lengthi, «[i +1---i +1],Vi € {0,...,t —1}. Use

the learned model to estimate the probability that each
subseries belongs to a signal of each class and clas-
sify the time-series by majority vote over the average
probability estimates of its subseries, i.e. according to

} |

Note that if the base learner retufih)dl class indicators,
the aggregation step merely selects the class receiving
the largest number of votes.

t—1

flz[1---t]) 2 argr&a};fc{;fl(x[i—i- 1---i+1))

4.2 Tree-based times series classification

The above framework is easily combined with tree-
based supervised learning by using in place of the base
learner a tree-based method. In particular, referefite [
studies the use of Extra-Trees in this context and shows
empirically, on a representative sample of non-trivialgim
series classification tasks, that this combination pravide
quite interesting results. Within this context, it is udeu
notice that the averaging effect of the segment and com-
bine approach has itself some capability of variance re-
duction, which allows one to use rather small valueg/bf
(sayM e [10;50]) in the Extra-Trees method, which is at
the benefit of a reduced computational complexity.

4.3 Discussion

The subseries lengthis a parameter of the segment
and combine approach. It may in practice be adjusted to
problem specifics by using a meta-optimization based on
cross-validation. Note that the smaller the valueg tifie
more local and the more time-shift invariant the classifiers
derived by the method are.

Along similar lines, the segment and combine frame-
work combined with Extra-Tress is studied i@1] for
image classification. Referenc23, on the other hand,
provides a more general discussion of this framework for
structured data classification, such as text, images and
time-series.

5 APPLICATION TO OPTIMAL CONTROL

Let us first notice that the Bellman equatidr8) intro-
duced in Sectior2 actually defines a contraction operator
on the Banach space of bounded functions frenx D
to IR. Therefore, this equation has a unique solution and,
starting with an arbitrary initiaf)-function guess),, and
iterating sufficiently many times in the following way

Quy1(s,d)=E{r(s,d, w)+y H};}XQt(f(sv d,w),d")} (38)

will necessarily yield a good approximation of this solu-
tion, from which a good approximation of an optimal in-
finite horizon (and stationary) policy can then be deduced
by equation 14), easily (at least) iD is finite.



Itis also useful to remark that if the iteration is started — Apply a supervised learning algorithm to build
with Qg = 0, the above iteration yields a sequence&)pf Q¢ (2, u) from the learning samplis;.
functions corresponding to finite horizon tail problems. In

other words, the same iterative procedure, if carried out a ® Finalization: ifmax; |Q;(s}:, dy:)—Q:—1(s}:, dy: )| < €
fixed numberh, of times, will allow to determine an opti- ort = tmax, €xtract the approximate optimal decision
mal (and time-varying) control policy for a finite horizon strategyd”(-) from the last functior®, by

of length h. For the sake of simplicity, we nevertheless . .

consider here the time-invariant infinite horizon case of d*(s) = arg max Q¢(s,d).

the optimal control problem, and we refer the interested
reader to 24] for the full presentation in the time-varying
and finite horizon case.

The ADP (approximate dynamic programming) ap-
proach is based on the idea that, instead of computing
these iterations exactly, they can be carried out in an ap- 52 Tree-based batch mode reinforcement learning
proximate fashion by using an approximation architecture o o
(i.e. a hypothesis space) to repres@rtunctions, and by _ If the stat_e and deC|S|on_ spaces are finite _and of rela-
iterating over projections on this hypothesis space. Fur- t|vely'small size, the s_uperwsed qurnlng step in the above
thermore, in order to handle the computationally difficult @lgorithm can be carried out by using a tabular represen-
problem of computing the expectatid®{-} in equation tation of theQ-functions ar?d by s_lmply averaging sample
(39), one may use Monte-Carlo simulation rather than nu- OUtput values correspondl_ng_ to inputs falll_ng in each (;ell
merical integration. of the table. In the case of infinite (say continuous) or sim-

Putting these ideas together, and imposing the con- ply very Iarge input_ and/pr.decision spaces, thi§ idea can
straint that the only available information about the syste  Still be applied by discretizing these spaces a priori.
to be controlled is contained in a set of trajectories, as de- ~ However, in order to yield robust estimates of the
fined in sectior2, leads to the idea of)-learning which functions, the number of cells has to remain smaller than
aims at iterating equatioree) over a hypothesis space the numbeV of SampleS, SpeCia”y in the case of stochas-
of candidateQ-functions, while computing expectations tic problems, which precludes the application of this idea
based only on the available sample of trajectories. The 0 the case of high-dimensional state spaces and/or small
fitted Q iteration algorithm, introduced below, does this samples. Indeed, the requirement that the number of ob-
by exp|oiting in a generic way a batch-mode Supervised servations per cell must be kept above a certain theShO|d,
learning algorithm in the inner loop of this iteration. We leads to a very rapid (exponentially fast) increase of the
will see that' combined with tree-based Supervised learn- coarseness of the discretization with the dimension of the
ing, this leads to a very robust and scalable approach to input/decision spaces, for any finite sample size. This phe-
reinforcement learning as well as for simulation-based ap- Nomenon has been called the curse of dimensionality and

proximate dynamic programming in |arge state spaces. haS, in fact, hindered for many years (actually, since the
early sixties) the application of dynamic programming to

large scale real-life problems.

Remind that the sole information used by reinforce- The tree-based batch mode reinforcement learning ap-
ment algorithms is given by a set 8 observed system  proach consist of using instead a tree-based regression al-
trajectories, as defined in equatid®).( Before applying gorithm in order to fit theQ)-function. With respect to
the fitted( iteration algorithm this sample is flattened into  the use of a tabular approximation architecture this has

Note that the number of iterations necessary to yield con-
vergence varies strongly with problem specifics and is of-
ten increasing withy.

5.1 FittedQ iteration framework

a samplefts of N = ZfV:Tl h; four-tuples, defined by the main advantage to adapt the discretizatioty of U
S automatically to the problem at hand, and with a coarse-
fts = {(sh,dii,ryi, shi ) Hl - (39) ness which is automatically linked to the size of the avail-

able sample. In this respect, ensemble-based methods of-
Notice that in this operation the absolute time references fer the advantage of better accuracy than single trees, and
are lost, but since we consider here a time-invariant sys- within this category the Extra-Trees offer a further advan-
tem, aCtUa”y no relevant information iS |OSt in thIS Way. tage Of Computationai efficiency (remind that the Super-
To exploit this sample of four-tuples, the fittégliter- vised learning algorithm needs to be called several (tens,
ation uses batch-mode supervised learning to yield a se- or hundreds of) times during the fitteg-learning pro-
quence of approximat@,-functions from a sample of tra-  cess). Furthermore, contrary to many other approximation
jectories in the following way: architectures, e.g. linear and generalized linear regres-
o Initialization: Sett = 0 andQy(s, d) = 0. sion, the tree-based methods have the additional feature of
bounded input-output approximation (actually, their pre-

e Basic iteration: - . —
dictions are necessarily a convex combination of the sam-

— Sett=t+1 o ple values), which in the context of the fittégiteration

— Create a learning sample; = {(«*,y")}}Y, of algorithm yields the guarantee of non-divergence (and in
input-output pairs, where' = (sj;,d;;) andy" = some more specific conditions, of convergence) of the it-
7, 4+ ymaxg Qt,l(si,;ﬂ, d). erative fitting procedure.
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5.3 Discussion

The above features, combined with the computational
efficiency (and scalability) and the consistency property
of tree-based supervised learning, yield a new very pow-
erful framework of reinforcement learning, able to address
complex and large scale applications, and to most effi-
ciently exploit available samples of trajectories. We re-
fer the interested reader t@,[24] for further details and
references to related work.

Notice that even when the system dynamics and re-
ward functions are known (or can be simulated), the re-
inforcement learning framework may still be used as an
alternative to direct optimization (e.g., dynamic program
ming or model predictive control), by extracting decision
policies from samples generated automatically by Monte-
Carlo simulation. In this context, the advantages of tree-
based batch mode reinforcement learning are its capability
to exploit efficiently large samples and cope with high-
dimensional non-linear and stochastic problems.

6 CONCLUSION

In this paper, we have presented a new supervised
learning method called Extra-Trees, based on averaging
predictions by randomly generated trees. This method has
been discussed in terms of its intrinsic properties, namely
scalability, robustness, accuracy and flexibility, and we
have analyzed it in the perspective of the so-called kernel-
based methods. We have also discussed two particular
frameworks wrapping this method, namely “segment and
combine” for the classification of time-series, and “Tree-
based batch mode reinforcement learning” for the infer-
ence of optimal control policies from sequential system
performance recordings.

Due to limited space and time, we did not discuss ac-
tual real-world applications of this method, be it in the
context of power systems or more generally. Nevertheless,
we hope that this paper will foster many new applications
in addition to the already existing ones.
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