Relationship matrices
and
Iterative construction of their inverses

Pierre Faux & Nicolas Gengler
University of Liège, Gembloux Agro-Bio Tech, Belgium
AFR Beneficiary (FNR)
Summary

• Theoretical measurement of similarity between related

• Construction of the matrix A

• Direct creation of the inverse of A

• Iterative construction of inverses using the inverse factorization

• Application to the case of the inverse of G
Theoretical measurement of similarity between related individuals
(“Génétique Quantitative”, Gengler, 2012)
Relationships and Similarity

- When observing phenotypes:
 - A son has a certain similarity with his father
- Relationships might help while predicting unknown animals
- How to scale this similarity? Theoretical view:
 - What is similarity at a molecular level?
 - How to express this similarity from molecular to individual level?
Relationship Measurement

• Let us have a biallelic gene (either yellow or red)

• 2 possible configurations
 – Homozygous (identical)

 – Heterozygous (non-identical)
• Homozygosity is imputed to the same common ancestor
• The « allele’s pathway » is known
IBD at a molecular level …

… is expressed as inbreeding at the individual level

– Inbreeding coefficient \((F) = P(\text{IBD}) \), is function of \(d \)
– Inbreeding coefficient = ½ of relationship coefficient \((a_{X,Y}) \) between parents,
– Relationship coefficient is only **additive part** of relationship
How to assess P(IBD) for animal Z?

Different gene configurations:

Thus, \(P(\text{IBD}) = \frac{2}{16} = 0.125 = F_Z \)

And \(a_{X,Y} = 2 \times 0.125 = 0.25 \)
Easier method to assess $P(\text{IBD})$

- Count n, lowest number of steps to join X to Y through each of x common ancestors
- Relationship coefficient between X and Y:
 \[a_{X,Y} = (2^{-n})_1 + (2^{-n})_2 + ... + (2^{-n})_x \]

- Halfsibs: $2^{-2} = 0.25$
- Sibs: $2^{-2} + 2^{-2} = 0.5$
- Child to parent: $2^{-1} = 0.5$
- Grandchild to grandparent: $2^{-2} = 0.25$
• May ease more complicated cases
 – Example: various common ancestors at various levels

- $a_{K,J} = 2^{-5} + 2^{-3} + 2^{-3} = 0.28125$

- $= \frac{1}{32} + \frac{1}{8} + \frac{1}{8} = \frac{9}{32}$
Construction of the additive genetic relationship matrix
Tabular Method: Views

• The previous method needs to be streamlined
 – May be executed iteratively
 – Use of a symmetric matrix \(n\times n \) (noted \(A \)) that will content relationships between all individual

• Requires to re-organize pedigree data
 – A given animal always needs to appear after both parent

• Proceeds by filling successive squares
 – From square 1*1 to square \(n\times n \)
 – For animal \(i \), firstly row \(i \) from 1 to \(i \), including element \((i,i) \), secondly column \(i \) from 1 to \(i-1 \) (using symmetry)
 – At each row, sum of weighted contributions from sire, dam, and animal himself
Tabular Method: Rules

1. For a given population of \(n \) individuals (sorted by generation order), define a square matrix of size \(n \)

2. At line \(j \), for all \(i \) younger than \(j \), the relationship between \(i \) and \(j \) is equal to the sum of the half of the relationship of known parents of \(j \) with \(i \)

3. At line \(j \), diagonal element equal 1, plus half of the relationship between parents of \(j \)

4. At line \(j \), paste line \(j \) (from 1 to \(i \)) in column \(j \)

5. Go back to point 2.
Tabular Method: Iterative process

- For animal i, firstly row i from 1 to i, including element $\left(i, i\right)$, secondly column i from 1 to $i-1$.
Tabular Method: Example

• Numbered pedigree:

<table>
<thead>
<tr>
<th>Animal</th>
<th>Père</th>
<th>Mère</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>H</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>I</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>J</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>K</td>
<td>I</td>
<td>H</td>
</tr>
<tr>
<td>L</td>
<td>J</td>
<td>K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Animal</th>
<th>Père</th>
<th>Mère</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
Tabular Method: Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0,5</td>
<td>0,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Tabular Method: Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5*</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>+ 0.5*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>+ 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1+0*1/2</td>
</tr>
</tbody>
</table>

= 7 | 0 | 0.5 | 0.5 | 0 | 0 | 0.25 | 1 |
Tabular Method: Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>1/2</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td>3/16</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
<td></td>
<td>1</td>
<td>1/4</td>
<td>1/2</td>
<td>1/8</td>
<td>1/8</td>
<td>5/16</td>
<td>7/32</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
<td>1/4</td>
<td>1</td>
<td>1/8</td>
<td>1/2</td>
<td>1/2</td>
<td>5/16</td>
<td>13/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1/4</td>
<td>1/4</td>
<td>1/2</td>
<td></td>
<td>1/2</td>
<td>1/8</td>
<td>1</td>
<td>1/16</td>
<td>1/16</td>
<td>17/32</td>
<td>19/64</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1/4</td>
<td>1/4</td>
<td>1/2</td>
<td>1/8</td>
<td>1/2</td>
<td>1/16</td>
<td>1</td>
<td>1/2</td>
<td></td>
<td>17/32</td>
<td>33/64</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1/4</td>
<td>1/4</td>
<td></td>
<td>1/8</td>
<td>1/2</td>
<td>1/16</td>
<td>1/2</td>
<td>1</td>
<td>9/32</td>
<td>41/64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1/8</td>
<td>1/4</td>
<td>1/8</td>
<td>1/4</td>
<td>1/4</td>
<td>5/16</td>
<td>5/16</td>
<td>17/32</td>
<td>17/32</td>
<td>33/32</td>
<td>42/64</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1/16</td>
<td>1/4</td>
<td>3/16</td>
<td>1/8</td>
<td>3/8</td>
<td>7/32</td>
<td>13/32</td>
<td></td>
<td></td>
<td>41/64</td>
<td>73/64</td>
<td></td>
</tr>
</tbody>
</table>
Direct creation of the inverse of the matrix A
• Additive genetic relationship matrix A will structure the covariance of breeding values of animals in a related population.

• Used in the LHS of the MME for an animal model:

\[
\begin{bmatrix}
X'X & X'Z \\
Z'X & Z'Z + \lambda \cdot A^{-1}
\end{bmatrix}
\]
Factorization of A

• Root-free Cholesky factorization of matrix A
 \[A = TDT' \]

• Structures of matrices T and D:
 - T: for any animal i, with sire s and dam d, the row is filled in with the same rules as for A:
 \[T_i = 0.5T_s + 0.5T_d ; \quad T_{i,i} = 1 \]
 - D: for any animal i, only one element, equal to
 \[D_{i,i} = \begin{cases}
 1 & | \quad 0.75 - 0.25(F_p) \quad | \quad 0.5 - 0.25(F_s + F_d)
 \end{cases} \]
Inverse of the factorization of A

- Factorization of the inverse of A
 \[A^{-1} = (T^{-1})' D^{-1} T^{-1} \]

- Structures of matrices T^{-1} and D^{-1}:
 - T^{-1}: for any animal i, with sire s and dam d, only 3 elements are filled in
 \[T^{i,s} = -0.5 \quad ; \quad T^{i,d} = -0.5 \quad ; \quad T^{i,i} = 1 \]
 - D^{-1}: for any animal i, inverse of $D_{i,i}$
Inverse of the factorization of A

- Structure of matrix T^{-1}:

 d, s are parents of i
• Inverse of A can be viewed as a sum of sparse matrix:

$$A^{-1} = (A^{-1})_1 + (A^{-1})_2 + \ldots + (A^{-1})_n$$

• Each sparse matrix is created as:

$$(T^i)' \times D_{i,i} \times T^i$$

• Max. 3 non-zeros entries in T^i, each sparse matrix is thus a block of max 9 non-zeros entries (with known positions: animal, sire, dam)

• Time for creation is thus linearly related to size of the population
Direct creation of the inverse of A

- Three possible configurations (when no inbreeding)
 - 0:
 \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 -0.5 \\
 1 \\
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1/3 & -2/3 \\
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1 \n \end{bmatrix}
 \]
 - 1:
 \[
 \begin{bmatrix}
 1 & 4/3 & -0.5 & 1 \\
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1 & -2/3 & 4/3 \\
 \end{bmatrix}
 \]
 - 2:
 \[
 \begin{bmatrix}
 -0.5 & 2 & -0.5 & -0.5 & 1 \\
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1/2 & 1/2 & -1 \\
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 1/2 & 1/2 & -1 \\
 \end{bmatrix}
 \]
 \[
 \begin{bmatrix}
 -1 & -1 & 2 \\
 \end{bmatrix}
 \]
Iterative construction of inverses using the inverse factorization
Alternative way of direct creation

- Let us define:
 - \(Z_j = A \), from row 1 to \(i \) and from column 1 to \(i \)
 - \(y_j = A \), from row 1 to \(i \), at column \(j \)
 - \(b_j = (Z_j)^{-1} y_j \)

- For this particular case, computation of \(b_j \) is trivial

- Link with tabular method!
Alternative way of direct creation

• Let us now define Z_k and $(Z_k)^{-1}$, $(k=j+1)$

$$Z_k = \begin{bmatrix} Z_j & y_j \\ y'_j & a_{jj} \end{bmatrix} \Rightarrow (Z_k)^{-1} = \begin{bmatrix} (Z_j)^{-1} + \alpha_j b_j b'_j & -\alpha_j b_j \\ -\alpha_j b'_j & \alpha_j \end{bmatrix}$$

where: $\alpha_j = (a_{jj} - b'_j y_j)^{-1}$

• Relation between $(Z_k)^{-1}$ and $(Z_k)^{-1}$

$$(Z_k)^{-1} = (Z_j)^{-1} 0 + \alpha_j \begin{bmatrix} -b_j \\ 1 \end{bmatrix} \begin{bmatrix} -b'_j & 1 \end{bmatrix}$$
As you can see ...

\[b_j = - T^{-1} \text{ (at row } j, \text{ from column } 1 \text{ to } i) \]

Situation is very trivial for the case of \(A \)

For other matrices, the aim is thus to determine a set of \(b_j \) with as much advantages as in \(A \):

- easy to determine
- involving few computations
- sparse
- having linear computation cost with size of matrix
Application to the case of the inverse of G
(Faux, Gengler and Misztal, 2012)
The genomic relationship matrix

- A few words about genomic relationship...
 - Observed (or, at least, sampled) vs. expected
 - Some introduction with Bömcke and Gengler (2009)

\[
\begin{align*}
f_{M_{x,y;l}} &= \frac{1}{4} \left(S_{ac} + S_{ad} + S_{bc} + S_{bd} \right) ; \quad T_{A_{x,y;l}} = 2 f_{M} \\
T_{A_{x,y}} &= \frac{1}{m} \sum_{l=1}^{m} T_{A_{x,y;l}} ; \quad T_{A} = \begin{bmatrix}
T_{A_{1,1}} & \cdots & T_{A_{1,1}} \\
\vdots & \ddots & \vdots \\
T_{A_{1,1}} & \cdots & T_{A_{1,1}}
\end{bmatrix}
\end{align*}
\]
The genomic relationship matrix

• When working with a SNP matrix \((\mathbf{M}; n \times m)\):

\[
\mathbf{M} = \begin{bmatrix}
1 & 2 & 1 & 1 & 0 & \ldots \\
0 & 0 & 1 & 1 & 0 & \ldots \\
1 & 2 & 0 & 1 & 1 & \ldots \\
\end{bmatrix}; \quad \mathbf{Z} = \mathbf{M} - 1
\]

\[
\mathbf{T} \mathbf{A} = \frac{\mathbf{Z} \mathbf{Z}^\prime + \mathbf{m}}{\mathbf{m}}
\]

• Van Raden’s \(\mathbf{G}\):

\[
\mathbf{f} = \begin{bmatrix}
\text{MAF}_1 & \ldots & \text{MAF}_m
\end{bmatrix}; \quad \mathbf{d} = 2 \cdot \mathbf{f}^\prime \cdot (\mathbf{1} - \mathbf{f})
\]

\[
\mathbf{P} = \begin{bmatrix}
1 \\
\vdots \\
1
\end{bmatrix} \otimes \begin{bmatrix}
2f_1 - 1 & \ldots & 2f_m - 1
\end{bmatrix}; \quad \mathbf{Z}_g = \mathbf{M} - \mathbf{P} \quad \mathbf{G} = \frac{\mathbf{Z} \mathbf{Z}^\prime}{\mathbf{d}}
\]
Approximation of the inverse of the factorization of G

- **Purpose**: decrease computation time
- **Solution**: create the b_j using **OLS on close-related**
- **Why?** Go back to tabular method...

... Model used in tabular method is back in the inverse decomposition!

- **Why?** It ensures D to be diagonal:

\[
A^{-1} = (T^{-1})'D^{-1}T^{-1} \quad \Rightarrow \quad D = T^{-1}A(T^{-1})'
\]
Approximation of the inverse of the factorization of G

- Solutions are computed by OLS using a simple model:

$$
G \approx \begin{bmatrix}
 s & \ldots & d & \ldots & a & \ldots \\
 s & & & & & \\
 \ldots & & & & & \\
 d & & & & & \\
 \ldots & & & & & \\
 a & & & & & \\
 \ldots & & & & & \\
\end{bmatrix} \cdot \begin{bmatrix}
 1 \\
 1 \\
 1 \\
 1 \\
 1 \\
\end{bmatrix} = \begin{bmatrix}
 b \\
\end{bmatrix} = y
$$
Approximation of the inverse of the factorization of G

• Solutions are computed by OLS using a simple model:

$$b = (Z'Z)^{-1}Z'y$$

$$b = (Z)^{-1}(Z)^{-1}(Z)y$$

$$\Rightarrow b = (Z)^{-1}y$$
Approximation of the inverse of the factorization of G

- Solutions are computed by OLS using a simple model:

$$b = (Z'Z)^{-1}Z'y$$
$$b = (Z)^{-1}(Z)^{-1}(Z)y$$
$$\Rightarrow b = (Z)^{-1}y$$

- Restriction to the close-family (Ω) of an animal
 - p is a « genomic » threshold that defines close-family

$$\Omega_i = \{k : k<i, g_{ik} \geq p\}$$
Computation of D^{-1} and G^{-1}

- Use of the “backward” equation to get D:

$$D = T^{-1}G(T^{-1})'$$
Computation of D^{-1} and G^{-1}

- Use of the “backward” equation to get D:
 \[D = T^{-1}G(T^{-1})' \]

- Next? 2 options:
 1) Take a diagonal element of D and invert it
 2) Recursively process the remaining D as G

- Final equation:
 \[G^{-1} = (T^{-1})'D^{-1}T^{-1} \]
Acknowledgements

• Dr. G. Gorjanc (UL), Dr. F. Colinet and Mr. J. Vandenplas (ULg)
• Wallonie-Bruxelles International (WBI)
• Government of Republic of Slovenia

• Fonds National de la Recherche Luxembourg (FNR)
• Host institution: Gembloux Agro-Bio Tech - University of Liège
• Collaborating institutions:
 • CONVIS s.c. (Luxembourg)
 • UGA, Animal and Dairy Science Department (USA)