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1. Introduction

The Optimal Power Flow (OPF) [1] is a static, nonlinear, non-
convex, large-scale optimization problem with continuous and
discrete variables. The Security-Constrained Optimal Power Flow
(SCOPF) is a generalization of the OPF problem that ensures addi-
tionally the system security with respect to a set of postulated
contingencies [2]. OPF is nowadays an essential tool in power sys-
tems planning, operational planning and real-time operation.

Due to critical environmental issues, nowadays most power
systems have to accommodate a significant level of penetration
of renewable intermittent generation. This requires smarter ways
of control in real-time according to the principles: just-in-time,
just-in-place, and just-in-context [3]. Since a classical day-ahead
preventive SCOPF approach would be not anymore sustainable, we
foresee that the need for using an automatic adaptive optimal con-
trol scheme, and in particular a (SC)OPF in real-time, is more and
more stringent. This raises the same old concerns regarding mostly
the reliability and speed of such an approach [4,5]. Furthermore,
in Europe there is a trend to check the security and propose coor-
dinated control actions for a large interconnection, composed by
independent power systems, in a broader way [6], which calls for
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tools able to deal with very large scale optimization problems, with
up to hundreds of millions of variables and constraints.

IPM [7,8] has been successfully applied for nearly two decades
to various OPF problems [9-13]. The main advantages of the IPM
are: (i) ease of handling inequality constraints by logarithmic bar-
rier functions, (ii) speed of convergence, and (iii) a strictly feasible
initial point is not required. The drawbacks of the IPM are: (i) the
heuristic to decrease the barrier parameter, (ii) the required pos-
itivity of slack variables and their corresponding dual variables at
every iteration (which may drastically shorten the Newton step
length), and (iii) it does not warmstart well.

Confidentiality of large scale real-life power systems data
deprives the power systems community of realistic benchmarks
at least in the field of OPF and prevents researchers from repor-
ting OPF results obtained in realistic conditions and thereby the
fair assessment of existing OPF methods on various different prob-
lems. Until recently, when a large 2746-bus model of the Polish
power system became freely available [14], the largest test bed for
the OPF/SCOPF programs was an IEEE system of 300 buses [15].

The large-scale! NLP OPF problems tackled by IPM reported in
the literature involve power systems of 2098 buses [16,17], 2256
buses [18,19], 2423 buses [9], 2746 buses [20], 2935 buses [21],
3012 buses [22], and 3467 buses [10]. Other alternative algorithms
have been also used for large-scale OPF, e.g. Newton method was

1 We arbitrarily consider a power system as “large” if it contains more than 2000
buses.
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applied to a 2436-bus grid [23], a non-interior point complemen-
tarity method was applied to a 2098-bus system [16,24], a modified
barrier Lagrangian function was applied to a 2111-bus system [25],
a modified barrier approach was applied to a 2256-bus system
[26], and a trust-region based augmented Lagrangian method was
applied to network models of 2935 buses [21] and 3012 buses [22].
Furthermore, although several commercial NLP SCOPF packages
are available from various vendors [27-29], and are routinely used
by many system operators, the scientific literature reporting on
experiments using SCOPF solvers on large-scale systems is quite
limited except of the following works: [30] uses an SLP approach
for a model of 12,965 buses, [29] relies on an interior-point solver
for a 2351-bus network, [31] employs a conic programming for a
2383-bus Polish system, [32] relies on the IPM for a 2746-bus Polish
system, [22] applies IPM to a 3012-bus grid, [33] uses a SLP for the
3551 buses UK system, and [34] uses a method combining IPM and
conjugate gradient for a 15,000 bus European system.

Motivated by the fact that these works present generally only
one example of a successful application of a given algorithm to
a given OPF/SCOPF problem, the main contribution of this paper
lies in the transparent report of extensive results with a non-
commercial IPM-based OPF program, developed by the authors for
research purposes[35], on severely constrained large-scale OPF and
SCOPF problems. The challenges of these computations are related
to: (i) the size of our 8387-bus system, which models a large part of
Europe, is roughly three times larger than previously reported IPM-
based NLP OPFs, (ii) the complexity of data (e.g. coexistence of many
very long lines, stemming from some network equivalents, and very
short lines), (iii) the toughness of the optimization problems con-
sidered compared to the literature (e.g. often more than thousand
constraints are binding at the optimum), and (iv) the number and
variety of control variables (e.g. few thousands control variables
for the control of both active and reactive powers are considered
together). The paper also discusses in a transparent way reliability
and speed issues of the IPM.

The paper is organized as follows. Section 2 introduces the OPF
problems while Section 3 briefly describes the interior-point algo-
rithm used for solving them. Section 4 provides numerical results
obtained with the IPM for several OPF and SCOPF problems. Section
5 concludes.

2. Formulation of the Optimal Power Flow problem

For the sake of facilitating the reader’ interpretation of our
results as well as to make the paper self-contained we describe
in this section the formulation of two classical OPF problems.

2.1. Notations

Let us denote by: n, g, ¢, b, |, t, 0, a, and s the respective num-
bers of: buses (1), generators (g), loads (c), branches (b), lines (1),
all transformers (t), transformers with controllable taps (o), phase
shifters (a), and shunt elements (s), respectively.

We formulate the OPF problem with complex voltages
expressed in rectangular coordinates [12,35]:

!i:ei+1ﬁ7 i:11~-~7n1

where e; and f; are its real and imaginary part, respectively, the
voltage magnitude being:

Vl‘:Q/Eiz-i-fiz.

G By, Lirg
i — —
Gsk Bsk‘ Gsk BSk

Fig. 1. Model of a generic branch.

We model any branch k as a symmetrical quadruple in 7 in
series with an ideal transformer with complex ratio 1/r;, (seeFig. 1),
where:

Ty =T +jra. k=1,...,b,

2_ .2 2 _
T =T +Tn k=1,...,b.

A transformer with tap-changer is a particular case where r; =0
while a line is a particular case where 1,y =1 and ry; =0.

2.2. Objective functions

In this paper we deal with two classical objectives namely min-
imum generation deviation with respect to the base case (MD):

g
MD = min » (Pgi — PSY, (1)
i=1
and minimum active power losses (MPL):
b V2
MPL = min » Gy V2 + GS"%
k=1

rei(eiej + fif;) + ro(eif; — fief)
7
K

V2
+Gy vf+ri2—2 , (2)

k

where Py; and Pgi is the active power and base case active power of

generator i, G, (respectively G ) is the conductance (respectively
half shunt conductance) of the branch k linking buses i and j.

2.3. Control variables

We consider the following control variables: generator active
power, generator reactive power, controllable transformer ratio,
shunt reactance and phase shifter angle.

2.4. Equality constraints

Equality constraints mainly involve nodal active and reactive
power balance equations, which, for the ith bus (i=1, ..., n), take
on the form:

Pgi = Pei — (€2 +2)) (Goe + Gi)
keB;

+Z[(eiejk +fif5 X1 G + 12 Bre) — (fiej, — eiffy NriaGr — 1By )] = 0,
keB;

Qqi — Qui + (€7 +fA)[Bsi + Z(Bsk + By)]

keB;

(3)

+ Z[(eiejk +fifi, X112 Gre = 111 Bre) + (fiej, — eif, Nrk1 Gy + TiaBy) = 0,
keBi

(4)
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where Pg; and Qg; are the active and reactive powers of the generator
connected at busi, P;; and Q; are the active and reactive demands of
the load connected at busi, By; is the shunt susceptance connected at
bus i, B; denotes the set of branches connected to bus i (and Vk € B;,
Jjk denotes the other bus to which branch k is connected), G, and By
(respectively Gy, and By, ) are the longitudinal (respectively shunt)
conductance and susceptance of the kth branch connected to bus i.

Additional equality constraints may exist, as for example the
setting of a phase shifter ratio to a specified reference ryq:

2 2 2
T +To —Tw =0, k=1,...,q, (5)
or the setting of generator voltage to a specified reference:

+ff-(v¥y¥ =0, i=1,....g (6)
2.5. Inequality constraints

The operational limits on (longitudinal) branches current and
voltages magnitude take on the form:

rri(eie; +fify) + ria(eif; — fie;)

V2
J
(G} +BY) Vi2+r—2—2 ;" <
k k
k=1,...,b (7)
(Vrim? < e? +f2 < (VM i=1,...,n. (8)

Physical limits of power system devices can be expressed as:

Pginngingax, i=1,...,8 (9)
ng;lfangiS mxcoj=1,...,8 (10)
I <y < i=1,... 0, (11)
BMM < By <BI"X, i=1,...,s, (12)

tan @M < %2 _tan P,
1

where for the ith generator Pgl?i", Pg;a" (respectively Qg';”'", Qg",?"" )are

its active (respectively reactive) output limits, for the ith control-

lable transformer r{" and r{}® are bounds on its ratio, for the ith

shunt B"" and B"™ are bounds on its susceptance, and for the ith

phase shifter /™" and ¢["** are bound on its angle.

i=1,...,qa, (13)

3. Multiple centrality corrections interior-point algorithm

We solve the above OPF problems using the multiple central-
ity corrections (MCC) interior-point algorithm [17,35,36], that the
authors found after extensive experiments over the years as the
most reliable IPM algorithm. In order to make the paper self-
contained we briefly describe this algorithm in this section and
refer the interested reader to [35] for further implementation
details.

3.1. Optimality conditions in the IPM

The OPF formulations of the previous section can be compactly
written as a general nonlinear programming problem:

min f(x), (14)
s.t. g(x)=0, (15)
h(x) > 0, (16)

where f{x), g(x) and h(x) are assumed to be twice continuously
differentiable, x is a (dim(C) + 2n)-dimensional vector that encom-
passes both control variables (vector of size dim(C)) and state
variables (real and imaginary part of voltage at all buses), g is a
p-dimensional vector of functions and h is a g-dimensional vector
of functions.

The Lagrangian associated with this NLP problem within the IP
framework can be defined as:

q
Lu(y) = fx) = £y In's; = N g(x) — =" [h(x) ],
i=1

where s=[sq, ..., sq]" is the vector of slack variables, N and & are
the vectors of Lagrange multipliers (also called dual variables), i1 is
a positive scalar called barrier parameter, and y=[s @ A x]T groups
all variables.

The perturbed KKT first order necessary optimality conditions
are obtained by setting to zero the derivatives of the Lagrangian
with respect to all unknowns [8]:

Vslu(y) -pe+S
VaLu(y) _ —h(x)+s Y (17
VaLu(y) ~8(x)
Vilu) VF(%) = Jg(x)' X~ Jp(x)" 7
where S is a diagonal matrix of slack variables, e=[1, ..., 1]T, Vf{x)

is the gradient of f, Jg(x) is the Jacobian of g(x) and J,(x) is the
Jacobian of h(x). Note that in order to facilitate the presentation
we have rewritten the complementarity slackness constraints as
pe+Sm=0 but a proper implementation should rely on the con-
straints u/s+ =0 so as to preserve the symmetry of the Hessian.

The pure primal-dual IP algorithm consists in solving iteratively
the linearized KKT conditions for the Newton direction Ay* while
decreasing the barrier parameter X gradually to zero as iterations
progress:

Ask uke — Sk
Atk h(xk) — sk
HY | | = ) (18)
AN g(x")
Axk —VA(xK) + J ()TN 4 gy (xF) ek

where H(y¥) is the Hessian matrix (of second derivatives)
(0%L,(y*)/dy?). We denote by dim(KKT) the size of this Hessian.

3.2. The MCC algorithm

We briefly outline the MCC algorithm to solve the KKT optimal-
ity conditions (17):

I. Initialization.

Set the iteration count k= 0. Chose «° > 0. Initialize y°, taking
care that slack variables and their corresponding dual variables
are strictly positive (s?, w9)>0.

II. The predictor step.
(a) Solve the system (18) for the affine-scaling direction,
obtained by neglecting u in its right-hand side:

Asgf Sk 7k
Ak h(Xk) _sk
1f
H(y") cl= .
ANy 8(x*)

Ang —Vf(xk)-i-]g(xk)T)\k+]h(xk)T1T"
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(b) Compute the affine complementarity gap pgf:

ke = (s* + ok Ask ) (mh + o ATy
where a’;f € (0, 1] is the step length which would be taken

along the affine scaling direction if the latter was used (19).
(c) Estimate the barrier parameter for the next iteration:

2
k k

P, P
k _ i af af
Hqp = min F ,0.2 ) —

where pk = (s¥)T7rk denotes the complementarity gap at the
current iterate.
[Il The corrector step.

(a) Compute a trial> point §* =yk +6:kAy"§f, where &k =
min(a’gf + 84, 1) with the desired improvement on the step
length 8, =0.2.

(b) Compute the complementarity products at the trial point
v =85k,

(¢) Identify components of V¥ that do not belong to the interval
[ﬂmmu’éf, ,Bmaxu.’;f], called outlier complementarity prod-
ucts, where B, =0.1 and Bmax =10.

(d) Because the corrector step effort focuses on correcting
the outliers only in order to improve the centrality of the
next iterate, some target complementary products (f/k ) are
defined:

ﬂminﬂgfs ifﬁi’< < IBminM’gf
W) =4 Bmaxttly, i > Braxitly

A otherwise

(e) The corrector direction Ay¥, is obtained as the solution of
the following linear system:
Ask,

(vk )[ _ f]k
Ak,
Hy ) | =] °
ANE 0
AxK, 0

where the nonzero components of the right-hand-side cor-
respond to the outlier complementarity products only.

(f) Update3 the new search direction:
Ayk = Ayléf + Ay,c<o

(g) Choice of the step length.

Determine the maximum step length a’I; € (0, 1] (respec-
tively a’é € (0, 1])in the primal (respectively dual) variables
space along the Newton direction Ay¥ such that sk*1>0
(respectively 7w%*1 > 0):

_gk _ -k
k : : i k : LT
ap = min 1, y min " Qy = min 1, y min 7
As§<<0 AS,- Arrlk<0 AJTI-

(19)

where y €(0, 1) is a safety factor aiming to ensure strict
positiveness of slack variables and their corresponding dual
variables. A typical value of the safety factor is y =0.99995.

(h) Update solution:
k1 _ gh kA gk k1 _ ek o ok k

s =8+ ogAst w = w L oA

XK1 = xk 4 ok Axk Nl £\ a’éA)\k

2 Note that at this point some slack variables and/or their corresponding dual
variables may violate the strict positivity conditions (s, 7%)>0.

3 The corrector step can be applied several times. In such a case, the current
direction Ay* becomes the predictor for a new corrector.

Table 1
Test system summary.

n g c b l t o a s

8387 1865 4669 14, 561 12,474 2087 589 84 178

(i) Repeat the corrector step a pre-defined number of times as
long as the improvement in the step length is satisfactory
but inferior to 1.
(IV) Check convergence.

A (locally) optimal solution is found and the optimization
process terminates when: primal feasibility, scaled dual fea-
sibility, scaled complementarity gap and objective function
variation from an iteration to the next fall below some tol-
erances [9,10,12]:

max{miax{—h,-(x")}, Ig(XK) 1o} < €1 (20)

IVFxK) = Jg(xK)TN — I (k) 7)1

. <6 (21)
14 1%k + N1z + [75K11
ok
€ 22
11kl 2 (22)
[F(xK) — f(xk-1)]
T C @ 23

where usually €;=10"% and €, =105,
If convergence was not achieved set k < k+1 and go to step
IL.

4. Numerical results
4.1. Description of the power system model

We use a 8387-bus modified model* of the interconnected EHV
European power system which spans from Portugal and Spain to
Ukraine, Russia and Greece. Notice that in this model the real
parameters of the individual power system components (e.g. lines,
transformers, etc.), the network topology, as well as the limits on
generators active/reactive powers, transformers ratio and angle,
voltages, and branch currents have been biased. Nevertheless, this
model is representative for the European interconnection in terms
of system size and complexity.

In order to assess the robustness of our tool we have chosen very
tight operational limits and physical bounds over controls. As a con-
sequence the base case is quite constrained, e.g. many generators
have narrow physical active/reactive power limits, many voltage
limits are very tight, the angle range of several phase shifters is very
small, 6 lines are loaded at more than 90%, etc. These data contain
many very short lines (e.g. 98 lines have their reactance lower than
0.0002 pu) and many artificial lines, stemming from some network
equivalents, with very large impedance values, which lead to rel-
atively ill-conditioned problems. For instance for this data set the
ratio between the maximum impedance and minimum impedance
over all branches is around 408,854, while for the IEEE 118 sys-
tem [15] (respectively the Poland 2746-bus model [14]) this ratio
is around 51 (respectively 15,516). In addition, this data set con-
tains 743 branches with a larger ratio than the maximum ratio of
the Poland 2746-bus model.

A summary of the characteristics of this test systems is given in
Table 1.

4 More comprehensive data sets of this system are available upon request from
the project PEGASE web-page: www.fp7-pegase.eu.
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Table 2
Problems definition.
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Problem Base case Obj. Control variables Inequality constraints
P, P A r B a P, ps Q. r Bs a 1% I
P1 A MPL x X X
PZ A MPL X X X X X X X X
P3 A MPL X X X X X X X X
P4 A MD x x x x
P5 A MD X X X X X
P6 A MD X X X X X X X x X
P7 A MD X X X X X X X X X X X
P8 A MD x x X X x x x x X x
P9 A MD X X X X X X X X X X X X
P10 B MD X X X X X X
P11 B MD X X X X X X X X X X
P12 B MD X X X X x X X x x X X
4.2. Simulation assumptions Table 4
Number and type of active constraints for problem P3.
We consider in our simulations two base cases denoted as A Active constraints Total
and B. In the base case A some voltage limits are not met. The base Qg | v B B
. . . . 1 s
case B is the same as A except that the flow limit of a line has been
330 18 1064 83 63 1558

decreased to create a thermal congestion.

Unless otherwise specified, we use the default settings of the
MCC algorithm [35] in all computations to enable a fair assessment
of the performances of the algorithm.

All tests have been performed on a PC of 2.8-GHz and 4-GB RAM,
using the IPM-based NLP OPF program, developed for research pur-
poses by the authors in C++within the Cygwin environment [35].

4.3. OPF problems definition

In order to test the robustness and efficiency of the IPM, several
OPF problems have been solved involving different combinations
of objectives, controls and constraints, as shown in Table 2. In this
table Pg, P§, Vg, Qg, 1, Bs, a, I, and V refer to generator active power,
slack generator active power, generator terminal voltage, generator
reactive power, controllable transformer ratio, shunt susceptance,
phase shifter angle, branch current, and bus voltage magnitude,
respectively, while symbol “x” means that the variable/constraint
is considered in the OPF.

In all problems the equality constraints are the power-flow
equations and sometimes phase shifter angles (e.g. in P7, P9, and
P12) and generators voltages (e.g. in P4 to P7).

4.4. Observations about the OPF results

Table 3 provides for each problem the size dim(C) of the
set of control variables, the size dim(KKT) of the full system of
KKT optimality constraints (17), and the number of iterations to

Table 3

Problems size and convergence details.
Problem dim(C) dim(KKT) Iter. Time (s)
P1 1825 76,221 43 16.0
P2 2592 80,056 45 16.8
P3 2592 105,004 65 47.4
P4 1250 72,204 9 5.0
P5 1250 105,752 10 8.1
P6 2017 109,587 14 10.7
P7 2185 110,175 13 10.0
P8 4413 114,109 9 8.3
P9 4581 114,697 9 7.2
P10 3646 110,274 17 121
P11 4413 114,109 14 10.6
P12 4581 114,697 16 50.8

convergence as well as the corresponding CPU times® (in seconds).
Furthermore, in general the larger the number of active constraints
the larger the number of iterations to convergence and hence the
computational time. Notice that the convergence is achieved within
a reasonable CPU time for all problems in spite of the large size of
the system and all the computational challenges mentioned pre-
viously. The average computational effort per iteration generally
increases with the problem size while the overall computing time
seems to be rather more influenced by the problem size than by the
number of control variables.

Table 4 shows the number and the type of active constraints at
the optimum of problem P3.

The very large number of 1558 active constraints confirms the
extreme difficulty of the problem. The algorithm’s ability to effec-
tively coordinate 18 active line current constraints (and 3 other
lines loaded above 96%) together with 1064 V limits is remarkable.
Notice that most NLP OPF test scenarios of the literature, and in
particular for IPM-based OPFs, rarely have more than a few active
line-current constraints and a few hundred of other active con-
straints (see however [30], a work on SLP-based SCOPF, where 23
line current constraints are active).

4.5. OPF failure on a very tough problem

We now focus on problem P8 but minimize the overall active
power generation and hence replace the quadratic objective (1) by
the linear one:

g
L = min Zpg,'.
i=1

For this problem the MCC algorithm gets stuck on an infeasible
non-optimal point. Furthermore, the convergence is not restored
even after trying few classical heuristic techniques (e.g. differ-
ent initial values for the barrier parameter u, smaller values of
the safety parameter y, and different initializations of variables)
[16,40]. However, by using another IPM algorithm, namely the
predictor-corrector (that we generally found slightly less reliable
than the MCC algorithm) a locally optimal solution is found. Table 5

(24)

5 CPU time concerns the optimization process only.
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Table 5
Number and type of active constraints for the modified problem P8.
Active constraints Total
P, Q, I 1% r Bs
828 379 76 510 58 80 1931
Table 6
SCOPF statistics for problem P2.
Number contingencies dim(C) dim(KKT) Iter. Time (s)
0 2592 80,056 45 16.8
1 4417 158,101 53 78.5
2 6242 236,146 55 155.0
3 8067 314,191 75 389.0
Table 7
SCOPF statistics for problem P8.
Number contingencies dim(C) dim(KKT) Iter. Time (s)
0 4413 114,109 9 8.3
1 6238 217,100 10 30.2
2 8063 320,091 15 93.0
3 9888 423,082 11 140.9
4 11,713 526,673 10 204.3

provides the number and the type of active constraints at this opti-
mum. The choice of this linear objective leads, as expected, to a
high number of active power generator constraints active at the
optimum. The very large total number of 1931 active constraints,
as well as the large number of 76 active branch current constraints
(plus 11 lines loaded above 95% at the optimum), indicate again the
toughness of this test scenario as compared with those from the
literature.

4.6. SCOPF solutions

In order to further assess how the IPM scales with problem size
we consider the problems P2 and P8 solved by a SCOPF in pre-
ventive only mode [2]. The latter consists in duplicating base case
constraints (3)-(13) for each contingency included in the SCOPF
and assumes that control variables have the same value in both
base case and contingency states. This SCOPF is augmented with
one contingency at the time.

Tables 6 and 7 provide for each problem the size of the set
of control variables, the size of the full system of KKT optimality
constraints, the number of iterations to convergence and the CPU
times. One can observe that for both problems the computational
effort increases much more than linearly with the size but still
remains reasonable given the problem size. Furthermore, as in pre-
vious examples, we observe that the size of the problem has a more
significant impact on the computational effort than the number of
control variables.

4.7. Comparison with available solvers

In this section we perform a comparison with the two most
efficient alternative available solvers for large scale systems on
MATPOWER Version 4.1 running under Matlab 7.13 [22], namely
the Matlab Interior Point Solver (MIPS) and the Primal Dual Inte-
rior Point Method (PDIPM). Although MATPOWER possesses several
interesting less conventional model features, the current version
does not allow modelling any among our twelve more classical OPF
problems in terms of objective function and control variables. In
order to enable an as fair as possible comparison, we consider only
the OPF objective function of minimum generation cost/deviation,
generators active/reactive powers as control variables, and

Table 8

OPF comparison with MATPOWER.
Base case Obj. Our solver MIPS PDIPM

it/time it/time it/time

A L 97/71.9 66/31.8 76/37.8
A-PST L 346/252 Failed Failed
A Q 13/10.7 47/22.1 Failed
A-PST Q 20/15.7 32/17.8 42/20.6

constraints on branch currents, voltage magnitude and physical
limits on generators’ active/reactive powers. Still there remain two
slight modelling differences concerning the transformer transver-
sal susceptance and the handling of current constraints, as our
solver implements only constraints on longitudinal branch currents
(7), whereas MATPOWER solvers implement such constraints at both
ends of each branch. Furthermore, PDIPM implements only MVA
flow constraints. However, as the main computational burden in
IPM is the factorization of a linear system of equations [12], we
notice that as MATPOWER solvers rely on the “reduced KKT system”
[10,21], the number of inequality constraints does not affect the
size of this system, contrary to our implementation which uses the
full KKT system (17).

Table 8 presents the results of our experiments for four feasi-
ble OPF problems, where “L” denotes the linear objective® function
(24), “Q” denotes the quadratic objective function MD (1), and the
base case A-PST has been obtained from the base case A by setting
to zero the angle of all 84 phase shifters and using as starting point
the load flow solution of case A.

The results show that both MIPS and PDIPM solvers have a lower
computational effort per iteration than our solver, which is cer-
tainly due to the use of the reduced KKT system and possibly the
library used to solve this system. However, our solver converges
in reasonable time and is both faster and needs a lower number
of iterations for the quadratic objective. The results also indicate
that, similarly to the failure of our solver for the problem described
in Section 4.5, other excellent solvers may also occasionally fail,
especially on very tough optimization problems as in case A-PST.
In the latter case the very large number of iterations of our solver to
convergence is not satisfactory and could be practically considered
as a case of failure, e.g. if a maximum running time was required.
We presume that by running again the solver with different sets of
parameters [16] the convergence of failed cases could be restored.
A comprehensive comparison concerning the relative reliability of
these solvers is out of the scope of the paper, as it should consider
many different OPF problems under varied operating conditions.
We only underline the need to improve the reliability of IPM codes
for very tough large scale OPF problems.

Takinginto account the slight modeling differences and the large
number of 84 branch current binding constraints, we assessed that
in all cases MIPS and our solver converged practically to the same
solution.

4.8. SCOPF solutions on a 3012-bus system

We consider a model of the Poland power system which OPF
data are available on MATPOWER web-site [22]. The system com-
prises 3012 buses, 3371 lines, 201 transformers, and 298 generators
(obtained after aggregating coexisting generators at the same
bus).

We consider the problem of minimizing generation cost solved
by a SCOPF in corrective mode [37]. We use 292 generators active

6 Notice that for this objective function our solver failed for a more complex OPF
problem in terms of controls and constraints (see Section 4.5).
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Table 9
SCOPF results for the Poland system.
Number contingencies dim(C) dim(KKT) Iter. Time (s)
0 480 33,640 35 6.7
1 960 68,446 38 244
2 1440 103,252 37 60.1
3 1920 138,058 42 1223
4 2400 172,864 41 177.2
5 2880 207,670 41 68.7
6 3360 242,476 39 76.0
7 3840 277,282 40 88.2
8 4320 312,088 46 113.8
9 4800 346,894 47 129.0
10 5280 381,700 47 1449
11 5760 416,506 47 158.1
12 6540 451,312 48 176.3

power and 188 generators reactive power as control variables, and
constraints on branch currents, voltages, physical limits on genera-
tors’ active/reactive powers, and active power re-dispatch of 292
generators as corrective actions.

Table 9 shows the results obtained with our solver for increasing
numbers of contingencies included in the SCOPF. Except maybe for
the cases where the number of contingencies included in the SCOPF
ranges from 1 to 4, the algorithm scales very well.

These results show that the SCOPF solution for this already quite
large system is reasonably fast and can be envisaged even close to
real-time. Furthermore, comparing SCOPF results of Tables 7 and 9
for problems of close sizes one can observe that, the average
computational effort per iteration for the 3012-bus system is con-
siderably faster than for the 8387-bus system, which we explain
by the much worse numerical conditioning of the latter system, as
already discussed in Section 4.1.

5. Discussion, conclusions and perspectives

This paper has presented extensive numerical results with IPM
for large scale OPF/SCOPF problems, with the goal of advancing the
state of the knowledge about this method in terms of robustness
and scalability.

Our results show that nowadays, even without using the most
powerful computers available on the market, it is certainly feasi-
ble to run an NLP OPF for a large system in real-time provided that
a reliable solver is used. Furthermore, we prove that our SCOPF
code is practical on a 3012-bus system. On the other hand, for
the poorly conditioned 8387-bus grid, computer memory limita-
tions prevented us from including more than few contingencies
(using the full network model) into the SCOPF, and therefore to
assess how the computational effort further scales with the prob-
lem size. However, even assuming sufficient computer memory,
as one could foresee that for such a system few tens of contin-
gencies might be binding at the optimum, our solver could not
comply with close to real-time requirements, while it could pos-
sibly still be used in day-ahead operational planning. For such
large-scale systems, in order to render the SCOPF tractable in real-
time applications one will have to adopt approximate models for
post-contingency states [27,34] or resort to Benders decomposition
[37].

As the factorization of the Hessian matrix is by far the most
expensive computational task of an interior-point algorithm itera-
tion the choice of a suitable library for the solution of a symmetric,
very sparse, and very ill-conditioned system of linear equations
is paramount. In our implementation we used the sparse object-
oriented library SPOOLES [38] which has several options, and
we could experiment the strong dependence of performance vs.
robustness tradeoffs on the particular options chosen.

Furthermore, in our implementation, for the sake of facilitat-
ing the programming effort, we solve at each iteration the full
system of KKT optimality conditions whereas most authors rec-
ommend the use of the “reduced system” only [10], which may
break-down the size of the system up to around 30% by appropriate
elimination of the complementarity slackness and inequality con-
straints. Although the complementarity slackness constraints are
trivial equations and therefore should not pose additional prob-
lems to a smart library, a further decrease of the computational
time should be expected if one relies on the “reduced system” only.

Our study also shows that the IPM algorithms proposed in
the power systems literature may lead to convergence problems
on very hard optimization problems. The main cause of conver-
gence problems of the IPM is that the iterations becomes stuck
at a non-optimal point if one approaches too early the feasibility
boundary and therefore the slack variables prematurely go to 0,
a phenomenon called jamming [39]. Fortunately, there are some
well-known remedies to restore the convergence of an IPM (e.g.
changing the initial value of some parameters and especially the
barrier parameter, using a less aggressive decrease of the bar-
rier parameter, using an alternative interior-point algorithm, etc.)
[16,40], but they take additional computational effort without guar-
anteeing solution restoration.

We envisage to improve the reliability of our IPM implementa-
tion by focusing on three aspects: the use of anti-jamming remedies
[39], regularization (or to ensure the smoothness of the solution
by augmenting the problem with penalty functions to better deal
with anill-posed Hessian matrix) [41], and use of merit functions to
ensure that joint progress is made both towards a local minimizer
and towards feasibility (this progress is achieved by shortening the
step-length along the Newton search direction) [42].

A sensible solution to mitigate reliability issues, beyond using
appropriate libraries for the solution of linear systems of equa-
tions, would be to embed a robust and fast generic NLP solver in
the OPF [34]. Nowadays there exist indeed several mature generic
NLP solvers (e.g. KNITRO, IPOPT, LOQO, CONOPT, SNOPT, MINOS,
etc.) that proved excellent performances on generic problems as
well as for some power system problems modeled in AMPL [43] or
GAMS [44].

Using OPF/SCOPF in real-time involves among others the suc-
cessive solutions of closely related NLP problems. The IPM does not
naturally warm start well and hence cannot directly take advan-
tage of the solutions gotten at the previous time-steps. Although
the current speed of IPM is satisfactory since, as with any Newton-
based method the number of iterations generally scales acceptably
with the problem size, any improvement of its warm start abil-
ity (or, more generally, of its learning ability) is welcome. We look
forward to assess on SCOPF problems the improvements reported
for generic NLPs (see e.g. [41]). Furthermore, recent results [45]
show that methods supposed to warm start well (e.g. SQP) may fail
on large scale problems with a very large number of binding con-
straints at the optimum: in particular, it was found that for NLP OPFs
with equilibrium constraints (in which equilibrium constraints are
modeled by RNS functions) the warm start of KNITRO (with SQP
option) failed while the SQP solver SNOPT did not perform faster
than the cold start of KNITRO (with IPM option); also, the SQP solver
SNOPT failed on cold start on most problems, while KNITRO (with
IPM option) was found the most reliable among the solvers tested
[45].

Finally, the present paper focused on NLP aspects of the OPF
problem, but the impact on the overall reliability and speed of the
OPF process of other key features (e.g. handling of discrete vari-
ables, use of limited numbers of control actions, etc.) remain also
to be carefully assessed [4,5,46,47]. In addition, improved ways to
analyze and visualize the results of large-scale OPF, e.g. in case of
grid congestion, should be devised [30].
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