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Abstract— This paper addresses the problem of computing Furthermore, the HIV mutates into new viral strains that
optimal structured treatment interruption strategies for HIV become with time resistant to current drugs, resulting in

infected patients. We show that reinforcement learning may ne need to change drugs or even in the inability to find
be useful to extract such strategies directly from clinical data, . .
appropriate pharmaceutical treatments.

without the need of an accurate mathematical model of HIV )
infection dynamics. To support our claims, we report simulation Concerns about this long term use of drugs have brought
results obtained by running a recently proposed batch-mode attention for the need of efficient drug-scheduling striat®g

reinforcement learning algorithm, known as fitted Q iteration,  |dealistically, a drug-scheduling strategy should brimg t
on numerically generated data. immune system into a state that allows it to independently
I. INTRODUCTION (without help from any drug) maintain immune control over
the virus. Also, this transfer to a drug-independent viral

Human Immunodeficiency Virus (HIV) is a retrovirus ., o) sjtyation should be done with as low as possible

that may lead to the lethal Acquired Immune Deﬁdenc}ﬁrug-related systemic effects for the patients
Syndrome (AIDS?' Adter initial contgct and inclusion of One such strategy, currently receiving a lot of attention,
the HIV particle into a cell of the immune system (e.g.

; is structured treatment interruption (STI), in which patge
+ T
CD4" T-lymphocytes and macrophages), there is acascaif-;-e cycled on and off drug therapy (Bonhoeffer et al.,

of intracellular events leading to the production of massivzooo. Lisziewicz et al.

numbers of new viral particles, the death of infected Ce”%cei\’/ed by patients s’i

and ultimately the devastation of the immune system.
Since the first identification of such unusual immun

system failure in 1981, many advances have been made in aptive immune response. In some remarkable cases, it has

ge3|gn of %nt"HIVh?rUQS anddt_reatments. _Current a'f‘“'_“é een reported that repeated STI stimulations have enabled
rugs can be roughly groupe Into two main categone_s._ %'atients to maintain immune control over the virus in the
verse Transcriptase Inhibitors (RTI) and Protease Intiit absence of treatment (Lisziewicz et al., 1999)

(P1). The action of RTIS is to prevent HIV R'.\IA from ,be'F‘g More recently, several authors have addressed the problem
converted into DNA, thereby blocking the virus repllcat|onOf designing STI treatments by exploiing mathematical

process initiated in the infected cell. The protease ibibi models of HIV infection dynamics (Adams et al., 2004;

work at the final stage of viral replication and attempt tc]ESajaria et al., 2004). These models are usually represented
prevent HIV from making new copies of itself by interferingb a set of Ordinary Differential Equations (ODEs), and
with the HIV protease enzyme. As a result, the new COpie&Zduction of STI strategies from them is done by ,using
of HIV are not able to infect new cells. . .. methods from control theory. Modelling the HIV infection
Typical treatments for acutely infected HIV patients i .dynamics is however a complex task. Not only does one have
two or more drugs. Geperally, Fhes_e drulg cocktails Con,s"t;gselect the right parametric system of ODESs, but one must
of one or more RTIs in combination W',th a Pl. I:)?ESp'teal o fit their parameters to reflect quantitatively bioladic
the_ gre_za_t success of these drug COCkFa'IS_'n_ redu_cmg ar(ﬁfservations. An interesting alternative would be to infer
maintaining viral loads below the detection limit, theintp STI strategies directly from clinical data, without havitg
term use yields substantial complications. Patients gakirg ecify and identify a model of the HIV infection dynamics.
these drugs experience many common and sometimes highﬁ"l’ypically, when a patient undergoes a STI treatment,

undesirable side effects, often leading to poor compliancg”nical data representing the time-evolution of the pate
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The patients follow some (possibly subgptimal? STI
protocols and are monitored at regular intervals

A pool of

HIV infected The monitoring of each patient generates a trajectory forofftémal STI
patients problem which typically containts the following informatio

state of the patient at tim&,

drugs taken by the patient betweanand ¢, = to + n days

state of the patient at timg;

drugs taken by the patient betweenand t2 = t1 + n days
state of the patient at time,
drugs taken by the patient betweenand t3 = t2 + n days

Processing of the trajectories gives
some (near) optimal STI strategies,
often under the form of a mapping The trajectories are processed

between the state of the patient at a by usingreinforcement learningechniques
given time and the drugs he has to take
till the next time his state is monitored.

Fig. 1. Determination of optimal STI strategies from clinicidta by using reinforcement learning algorithms: the ovematiciple.

for control strategies optimizing this criterion. In pattiar, iteration algorithm. We refer the reader to (Bertsekas,0200
the classical approach consists of using the trajectoriésr a comprehensive textbook on dynamic programming and
to identify an analytical model, and deriving a controllerto (Ernst et al., 2005) for a complement of information on
from this model and from the optimality criterion (Bitmeadthe fitted @ iteration algorithm.
et al.,, 1990). Reinforcement Learning (RL), on the other
hand computes control strategies directly from the mealsur@"
trajectories, without the need for identifying a priori ased ~ Consider a system having a deterministitscrete-time
of the system dynamics (Sutton & Barto, 1998). dynamicsdescribed by:

In this paper, we aim at investigating the feasibility of _ _
using RL to determine (close-to-)optimal HIV-STI straeg)i T = @), t=01, @
from clinical data alone, in other words, without relying onwhere for allt, x; is an element of the state spa&e and
the identification of an accurate model of the HIV infectionu; is an element of the action spa¢é Let ¢(z,u) be a
dynamics. In this approach, illustrated in Figure 1, HIV-(real-valued) cost function whose infinite norm is bounded
infected patients follow during clinical trials various ST by some positive constanB., andy be a discount factor
protocols. Their states are monitored evergays and the (0 <~ < 1).
trajectories gathered from this monitoring are processed b Given a stationary control strategy(-) : X — U, and
the RL algorithm to compute new STI strategies. assumingzy = x and xy1 = f(as, p(ay)), forall ¢, we

The paper is structured as follows. Section Il formalizeslefine the discounted infinite horizon cost function assedia
the problem of learning optimal strategies from a set ofo . by
trajectories and introduces the algorithms used in our lsimu o flte .
tions. Section Ill reports simulation results obtained bing J (x)_]\,linoo Z vie(we, pl@e))- @)
the RL-based approach to determine optimal STI strategies =0
from clinical data. Instead of actual clinical data, we havd he objective is to find an optimal stationary stratedy i.e.
used synthetic ones obtained from simulations with an OD& strategy that minimizeg* for all z.
model of the HIV infection dynamics. In Section IV, we In order to compute such a strategy, we do not assume
suggest ways to overcome difficulties that may arise whethat the system dynamics (1) is known. However, we suppose
relying on real-life data rather than numerically genetateavailable a (finite) set of (finite duration) system trajeiet®

Problem formulation

ones. Section V concludes and the Appendix gathers infofin the form (zo, uo, x1,u1, @2, -+ @01, ur—1,27)) @S
mation about the mathematical model of HIV dynamics usewell as the cost-function:(x,u). Reinforcement learning
in the data generation process. techniques compute from this kind of information approx-

imation 4* of the optimal stationary strategy since, except
Il. LEARNING FROM A SAMPLE OF TRAJECTORIESTHE  for very special conditions, the exact optimal stratggycan
RL APPROACH not be deduced from such a limited amount of information

We start this section by formulating the problem of learnon the system dynamics. _ o
ing the solution of an optimal control problem from a sample The fitted @ iteration algorithm which we exploit in
of trajectories. We consider deterministic discrete-tiopi- ~ this paper, actually relies on a slightly weaker assumption
mal control problems for which the aim is to minimize anamely that a set obne-stepsystem transitions is given,
sum of discounted costs over an infinite time horizon. After | )
formulatina the problem. we remind some classical resul RL actually handles the more general problem V\_/hen the co_smﬁm
g p ! §§ also unknown and replaced by sample values; it also caores to

from dynamic programming theory and introduce the fitied stochastic systems.



each one providing the knowledge of a new sample afumber of cut-directions evaluated at each ndfdeThese
information (z, us, ¢41). We denote this set of transitions values have been chosen respectively equaldt@ (the trees
by F = {(x},ul, xi+1)}fif. are fully developed) and the dimensionality of the inputcgpa
(equal to8 (6 state variables + 2 control variables) for the

B. Some dynamic programming results problem treated in Section I11),

The sequence of functior@y : X x U — R defined by
the recurrence equation

Qn(z,u) = c(z,u) +yminQn 1 (f(z,u),u'), VYN >1
u'ey A3) In this section we present the results we have obtained
with Q1 (z,u) = c(x,u), converges in infinity norm to the by using the RL-based approach on artificially generated

Q-function, defined as the (unique) solution of the Bellma§lata. We first define the kind of STI strategies we are
equation: looking for, in terms of the class of strategies considerad! a

their optimality criterion. Then, we describe the simudati
Q(z,u) = ¢z, u) +yminQ(f(z, u),u’). (4)  protocol behind the data generation and, finally, we discuss
the obtained STI-strategy. Our work in this section is dlyec
inspired from (Adams et al., 2004).

[1l. SIMULATION RESULTS

A stationary strategy.* that satisfies

' (z) = arg minQ(z, u) (5)
uclU

. . A. Kinds of STI strategies targeted
is an optimal strategy.

Let us denote by:}, the stationary strategy As in (Adams et al., 2004), we consider bi-therapy treat-
. . ments combining a fixed RTI and a fixed PIl. The protocol
(@) = argenU“nQN (z,u). (6)  allows to revise drug administration every five days based on

clinical measurements, by choosing one of the four possible
on-off combinations for the next five days: RTI and PI on,
only RTI on, only STI on, RTI and PI off. These four

The following bound on the suboptimality qf}, with
respect tou* holds (see (Ernst et al., 2005)):

Jus _ || < 29N B, 7 cocktails hence define the set of actiarisof our optimal
H - Hoo = (1-y)? (") control problem.
C. The fitted iteration algorithm In terms of optimality criterion, we seek STI strategieg tha

minimize a sum of discounted instantaneous costs over an

From the set of transitions”, the fitted () iteration  jhginite horizon with the instantaneous cost at timbeing

algorithm computes the function@;, Qs, ---, Qx Which given by:
constitute approximations of the functiofs, Qs, - -, Qn
defined by Eqgn (3). This computation is done iteratively (@, ug) = QVt+Rlei +R26§t _ SE, )

by solving a sequence of standard batch-mode supervised
learning problems. The training sample for ¢ (k > 2) where Q = 0.1, Ry = 20000, R, — 2000, S = 1000
supervised learning problem of the sequence is e = 0.7 (resp.;l — 0) if the ,RTI is cycled,on (resp. o,ff)

L L . . #F at timet, ande;, = 0.3 (resp.e;, = 0) if the Pl is cycled
{((%Ut)’ (g, ug) + Wgélll}QkﬂxtHvu))} on (resp. off) at time.. V is the number of free HI viruses
R = (in copies/ml) and? the number of cytotoxi@-lymphocytes
with Qi(z,u) = c(z,u). Based on this training sample, (in cells/ml). CytotoxicT-lymphocytes constitute the specific
the supervised learning (regression) algorithm produbes timmune response of the body to HI viruses. The decay factor
function@y, that is used to determine the next training samplg has been chosen equal 608, which means that costs
and from there, the next function of the sequence. Onagccurring after one year weight for approximately three-
the approximation functions);, ()2, ---, Qn have been quarter less than costs occurring at instast 0.
computed, the (sub-optimal) stationary strategy We refer the reader to (Adams et al., 2004) for a discussion
ik (z) = arg rginQN(a:,u) ) of rationale behind this cost functidn.
ue

is taken as approximation of the optimal stationary styateg ?In (Adams et al., 2004), optimal strategies are computed bynziagu
hat the dynamics of the HIV immune response are known. On the

w (x) ) ) ) contrary, here we compute strategies from the sole knowletigamples of
As batch-mode supervised learning algorithm, we hawveansitionsF. Furthermore, we consider an optimal control problem with

chosen the Exira-Trees algorithm (Geurts et al.. 2006Wfinite time horizon and discounted costs while in (Adams et 2004)

Thi | ithm build del in the f f th “finite horizon and undiscounted costs are considered. Amsequence,
IS algorithm builds a model In the Torm or e averag&yecisions made by strategies derived in our approach depegdon the

prediction of an ensemble of regressions trees obtained byrrent state of a patient. In (Adams et al., 2004) they algiede on the
randomization. It has three parameters: the numbeiof time elapsed since the beginning of the treatment, which méatgatients

. h bl h . b 5tesenting exactly the “same medical states” but at diffeseages of their
trees composing the ensemble, the minimum number atment may undergo different STI strategies, which weebeliis not

elements required to split a nodg,;,, and the maximum appropriate.



B. Atrtificial generation of the clinical data The generation procedure of the clinical data is iterative.

In order to evaluate the ability of RL to compute “good"At the first iteration, we consider thirty patients in “non-
STI strategies, we will apply the fitted Q iteration algonith N€@lthy” steady-state. Every five days, the physiological
described in Section II-C on artificially generated data. data of .each of these thlrty patlen'is (a*ssumed here to be

To obtain data which mimic real-life clinical data, we haveSUmmarized by the quantitiés, 73, 77, 73, V, and E) are

used time-domain simulations of the nonlinear ODE modépcorded and anew type of medi_cation is randomly sglected
published in (Adams et al., 2004), which was validated an U. The monitoring of each patient generates a trajectory
identified from real-life clinical data. For ease of referen \%0> “0,%1," ’m199’|“199’w200) from which we can extract
we reproduce the equations and parameter values of the00/5 = 200 samp es(xt’“t’xtﬂ)' _

model in the Appendix. In order to provide insight into At the second step of the iterative process, we also

the physical problem that is tackled, we briefly discuss thgonsider a set of thi_rty patients in “ngn-heal_thy” _steady-
Sfate and, once again, we record their physiological data

main characteristics of this model, before defining the da X X
generation procedure itself. every five days. Nevertheless, contrary to the first stef) eac

The dynamic model has six state variables that represefme days, the corresponding drug coqkta?l is not selected
respectively the number of healthy CDAT-lymphocytes at random anymore. Instead, the medication for these new
(referred to asT}), the number of healthy macrophages_thirty patients is determined by the following STI strategy

; * 85% of the cases we use the strately,, computed
(T»), the number of infected CD4 T-lymphocytes ), ) X X . . 0400
the number of infected macrophageE;], the number of by the fittedQ iteration algorithn applied on the6, 000

free virus particles () and the number of HIV-specific element set generated by the monitoring of the previiius

cytotoxic T-cells ). Note that these variables are assumefatients, while in the remaining)% cases we use a type of

to be measured every five days, in order to select the drl%edlcatlon.rar.\dom_ly selected . , . )
combination for the next five days. At the third iteration, another set of thirty trajectorie®g a

As shown in (Adams et al., 2004), in the absence of trea_g_enerated in identical conditions, except that the comedp

ment (i.e.c;, = es, = 0), the system of ordinary differential N9 ST! strategy uses now 6% of the cases a strategyj,

equations exhibits three physical equilibrium points (and'fé'réd from all the samples gathered previously (i%000

several non physical ones (omitted here) for which one (ﬁamples). By repeating this iterative procedure ten times,

more state variables are negative). These equilibriumtq;ioinWe have generated a total 880 trajectories {0 sets 0f30

are, respectively, an unstable equilibrium point patients) to which correspori, 000 samples(z, u¢, ve+1)-
The reader may wonder why we interlaced the generation

(Ty, Ty, Ty, Ty, V, E) = (10°,3198, 0,0, 0, 10) of the samples with the computation pf,, and used this
newly computed strategy to generate additional samples.
which represents an uninfected state, and two locally stabipere are two main reasons behind this choice. First, we
equilibria corresponding to HiV-infected states. The HIVyyanted to simulate a situation in which STI strategies ad-
infected equilibria may be categorized as: ministered to patients were not chosen totally at random
1) a “healthy” locally stable equilibrium point but rather benefit, at least partially, from the knowledge
clinicians may already have about “good” STI strategies.
Second, by using some knowledge already acquired about

which corresponds to a small viral load, a high CD4 500, We tend to gather much more information alongside the

T-lymphocytes count and a high HIV-specific cytotoxicoPtimal trajectories. As a consequence, with a fairly small
T-cells count number of clinical trials we can converge rather quickly to

2) the “non-healthy” locally stable equilibrium point ~ Close-to-optimal STI strategies.

(Tv, To, T, T3, V, E) = (967839, 621, 76, 6, 415, 353108)

(Tv, To, TY, T5, V, E) = (163573, 5, 11945, 46, 63919, 24) ~ C. Results
. . . On Figure 2, we have represented the evolution of the

fqr which T-cells are depleted and the viral load is VEDell counts, number of free viruses and immune effectors
h!gh' ) _ _ ) of a patient treated from “non-healthy” steady-state by the
Numerical simulations show that the basin of attraction o§T| strategy inferred from the set @0,000 samples by
the healthy steady-state is relatively small in comparisoghe fitted Q iteration algorithm. As desired, the computed
with the one of the npn—healthy steady-state. FUfthermorﬁzlose-to-)optimal STI strategy is able to bring the patien
perturba’qon of th? unmfegted steady-state by adding s lethe domain of attraction of the “healthy” drug-free steady-
as one single particle of virus pet! of blood plasma leads state. On the same figure, trajectories that would have been
to asymptotical convergence towards the non-healthy gteachhserved by putting the patient always on or always off
state.

During the data collection process, we assume that the®in all the simulation results reported in this paper, thedit@ iteration

(simulated) patients are monitored (and the medication pr@/gerithm is iterated400 times andjij,, is taken as approximation of
the optimal stationary strategy*. Side simulations have shown that the

tocol rev_lsed) every five days. The monitoring perlod f(-)'E:omputed strategy remained mostly unchanged by increasingithbeer of
each patient is assumed to last @00 days. iterations.
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Fig. 4. Influence of the number of patients participating ®dhnical trials
on the infinite horizon cost corresponding to the computed SEtegies.
Data generation follows the protocol described in SectibB.| To compute
the infinite horizon cost associated to a given number of pegtieve run
b RL on the trajectories generated by these patients and estiffaoo ()
)y y obtained when a patient intitially in the “non-healthy” atly-state is treated
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trajectory generally provides additional information abtihe

3, underlying problem. This is illustrated on Figure 4 where we

) have plotted infinite horizon costs associated with stiateg

e computed by considering an increasing number of patients

5 in the clinical trials. Note that in this particular case,|ST
strategies that put the patient always on (or alway off) both

Fig. 2. The curves represent the time evolution of the diffecells count  drugs produce larger costs than those obtained by using the

(T1, To, Ty, T5), of the number of free virus particled’§ and of the i i i
number of immune effectorsK) for a patient being treated from “non- STI strategy derived from Only ten trajectories.

healthy” steady-state. The solid curve)(corresponds to the STi strategy ~ OVerall, these results suggest that reinforcement legrnin
plotted on Fig. 3 and computed by the reinforcement learniggrashms.  can indeed infer appopriate STI strategies from a sample of

The dashed curves—{—) represent the time evolution of these variablesyansitions reflecting the instantaneous response of rgatie
when there is no interruption in the treatment (&g. = 0.7 andea, = 0.3,

vt > 0) and the dotted curves—(-) represent their time evolution when 10 drug administration at different stages of their treattne

log1o(V)
log1o(E)

750 0 250

500 500
days days

there is no treatment (i.e1, = ez, = 0, Vt > 0). without explicit knowledge of the underlying dynamics.
IV. FROM NUMERICALLY SIMULATED TO REAL-LIFE

g on on PATIENTS
-1
2 In the previous section, we have reported some results
%5 % obtained by using numerical simulations to reproduce the
0 = © = .. . . . . .
g2 23 clinical evolution of HIV-infected patients. In this seat,
[ b= . . “ppe .
== &= we discuss the four main difficulties we expect to face when

ff ff . . . .

¢ ? dealing with real-life patients.

° s ° s The HIV/immune system interaction dynamics may be dif-

Fig. 3. Representation of the STI treatment for a patientérerom early ferent from one patient to the othet’hen generating the
stage of infection. The STI treatment is computed by the reieiment clinical data, we have implicitly assumed that the dynamics
learning algorithms on clinical data generatedd) patients. of the interaction between HIV and the patients’ immune sys-
tem were the same for every patient. In real life conditions,
these dynamics may substantially vary from one patient to
both drugs have also been plotted. Compared to these ti other. Some reasons for these discrepancies are: s@rian
strategies, the RL-based STI strategy leads to higherIT-ceh the patients’ immune systems, existence of differenesyp
counts, lower virus load, and significantly boosts the dfeci of HIV infections, individual differences in the assimitat
anti-HIV immune response. of the drugs, etc. We believe that one appropriate appraach t
In Figure 3 it can be seen that with the RL computed STaddress such a difficulty would be to add to the state vector
strategy the patients get active treatment, with some geriorelevant information about the specifics of each patiertigec
of relief, during approximatel$80 days and are always put (e.g. general medical condition, type of HIV virus (HIV-1,
off both drugs afterwards (definitive treatment interrapti HIV-2), presence of drug-resistant HIV strains, etc.).
after 380 days). Proper statement of the optimal control probleBifferent
Usually, the quality of the strategies determined by RL inelements need to be defined when stating the optimal control
creases with the number of trajectories since each additiorproblem: the time discretization, the cost function and the



decay factor. These elements should be chosen to leadimothis kind of research of plausible analytical models of
desirable optimal trajectories and good learning speed.niWhéhe dynamic response of patients to treatments. While we
working in a numerical environment, trial-and-error typfe obelieve that it might not be possible to derive accurate
approaches can help to choose these elements. Trial-aettough dynamic models for the direct derivation of appro-
error approaches can however not be used on real patiemigate treatment strategies, it is clear that even appratém
Thus, we will need to call for medical expertise in orderor highly simplified models may be very useful to gain
to state properly the optimal control problem, but we alsoinderstanding of a problem and to design an appropriate
believe that some specific tools should be built to help iway to apply reinforcement learning to it. As a matter of
this task. fact, only after extensive “in silico” experiments one will
Partial observability.In our example, we have assumed thagain enough confidence to start using this kind of approach
all the state variables were directly observable. When dgali in actual “in vivo” conditions.

with real patients, such an assumption is not fully realisti

since, among others, it is not possible with current technol APPENDIX

ogy to distinguish between healthy and non-healthy €D4 |, yhis section, we introduce the mathematical model that
T-lymphocytes and macrophages. It is therefore clear thifs have used to artificially generate the clinical data neede
some partial observability issues will arise when progessi y, the reinforcement learning algorithm. This mathematica

real-life data. We refer the reader to (Murphy, 2000) for @noqe| has been taken from the paper (Adams et al., 2004)
survey of solution techniques for partial observable @i&er 4 \which we refer the reader for further information.

time optimal control problems. This mathematical model is described by the following set
Corrupted measurementollected clinical data are not of ordinary differential equations:

necessarily thorough and accurate. Furthermore, thenpatie

may not necessarily comply with the prescribed treatment. T = M—dh- (1 —e)kVTh (10)
This may lead to uncertainties and measurement corruption 72 = A2 —d2To = (1= fe))ko VT2 (1)
which may significantly degrade the quality of the results 7 = (I-e)kVIi—0T7 —miETY 12)
obtained. One solution to mitigate the adverse effects bf co 75 = (1- fe)kaVTo — 0T5 — maETS (13)
rupted measurements would be to design some preprocessing vV = (1 —e)Npd(T5 +T5) — cV (14)
algorithms able to filter out highly corrupted data. —[(1 = e)prik1Th + (1 — fer)pokaTa]V

. be(Ty +T13)
V. CONCLUSIONS E = g+ ———— =7
BT T + Ky

In this paper, we have co_nsidereo_l the probl_em of com- dp(TF +T3) b5 E
puting structured treatment interruption strategies fdv H (T HTH+ K. P
infected patients from clinical data only. In the envisidne ) )
protocol, the clinical data would be generated by monitprin WhereZ1 (77) denotes the number of non-infected (infected)
at regular time intervals the state of various patientsruri CP4" T-lymphocytes (incells/ml), T> (13) the number
their treatment, and these data would be exploited by rei@f non-infected (infected) macrophages (nils/mi), V

forcement learning to determine an optimal drug presaripti the number of free HI viruses (inopies/ml) and E' the
strategy. number of cytotoxicl-lymphocytes (incells/ml). e; andesy

To investigate the validity of such a purely data driver]€Present the values of the control actions corresponding t
approach, we have generated clinical data artificially by rdn€ reverse transcriptase inhibitor and the proteaseitohib
lying on a plausible mathematical model of the HIV infectionf®SPectively. In each period during which the RTI (resp. the
dynamics. Based on a sufficient amount of simulated data, Wid) IS administrated to the patient, (resp.¢,) is set equal
found that reinforcement learning was indeed able to deri@ 0-7 (resp.0.3). In each period during which the RTI (resp.
STI therapies which appear as excellent when used to “tredf€¢ P1) is not administrated, we have = 0 (resp.e; = 0).
simulated patients. The values of the different parameters of the model are

These encouraging results suggest that reinforcemeft@ken from (Adams et al., 2004)); = 10,000, d; = 0.01,
learning techniques could also help to design effectivé redit = 8.0 1077, Ay = 31.98, dz = 0.01, f = 0.34, ky =
life STI strategies from actual clinical data. The next step-V * 10740 = 0.7, mp = 1.0%107% my = 11077,
of this research will be to study more extensively, still by’VT = 100, ¢ =13, p1 =1, po = 1, Ap = 1, bp = 0.3,
simulations, various difficulties that could be encourderefSs = 100, dp = 0.25, K4 = 500, o = 0.1.
when applying this approach in real-life. In particular, we
expect that many problems will arise such as those related
to corrupted data, variance in HIV viruses, inter-indialu ~ Damien Ernst gratefully acknowledges the financial sup-
differences of the immune responses, and inability to coumbrt of the FNRS (French acronym for the Belgian National
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