
Clinical data based optimal STI strategies for HIV:
a reinforcement learning approach

In Proceedings of the 45th IEEE Conference on Decision and Control, 2006

Damien Ernst, Guy-Bart Stan, Jorge Gonçalves, and Louis Wehenkel

Abstract— This paper addresses the problem of computing
optimal structured treatment interruption strategies for HIV
infected patients. We show that reinforcement learning may
be useful to extract such strategies directly from clinical data,
without the need of an accurate mathematical model of HIV
infection dynamics. To support our claims, we report simulation
results obtained by running a recently proposed batch-mode
reinforcement learning algorithm, known as fitted Q iteration,
on numerically generated data.

I. I NTRODUCTION

Human Immunodeficiency Virus (HIV) is a retrovirus
that may lead to the lethal Acquired Immune Deficiency
Syndrome (AIDS). After initial contact and inclusion of
the HIV particle into a cell of the immune system (e.g.
CD4+ T-lymphocytes and macrophages), there is a cascade
of intracellular events leading to the production of massive
numbers of new viral particles, the death of infected cells,
and ultimately the devastation of the immune system.

Since the first identification of such unusual immune
system failure in 1981, many advances have been made in the
design of anti-HIV drugs and treatments. Current anti-HIV
drugs can be roughly grouped into two main categories: Re-
verse Transcriptase Inhibitors (RTI) and Protease Inhibitors
(PI). The action of RTIs is to prevent HIV RNA from being
converted into DNA, thereby blocking the virus replication
process initiated in the infected cell. The protease inhibitors
work at the final stage of viral replication and attempt to
prevent HIV from making new copies of itself by interfering
with the HIV protease enzyme. As a result, the new copies
of HIV are not able to infect new cells.

Typical treatments for acutely infected HIV patients utilize
two or more drugs. Generally, these drug cocktails consist
of one or more RTIs in combination with a PI. Despite
the great success of these drug cocktails in reducing and
maintaining viral loads below the detection limit, their long-
term use yields substantial complications. Patients taking
these drugs experience many common and sometimes highly
undesirable side effects, often leading to poor compliance.
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Furthermore, the HIV mutates into new viral strains that
become with time resistant to current drugs, resulting in
the need to change drugs or even in the inability to find
appropriate pharmaceutical treatments.

Concerns about this long term use of drugs have brought
attention for the need of efficient drug-scheduling strategies.
Idealistically, a drug-scheduling strategy should bring the
immune system into a state that allows it to independently
(without help from any drug) maintain immune control over
the virus. Also, this transfer to a drug-independent viral
control situation should be done with as low as possible
drug-related systemic effects for the patients.

One such strategy, currently receiving a lot of attention,
is structured treatment interruption (STI), in which patients
are cycled on and off drug therapy (Bonhoeffer et al.,
2000; Lisziewicz et al., 2000). STI strategies are often well-
received by patients since they offer them periods of relief
from treatment. During interruptions, viral load set points
typically rebound to a high level, consequently activatingan
adaptive immune response. In some remarkable cases, it has
been reported that repeated STI stimulations have enabled
patients to maintain immune control over the virus in the
absence of treatment (Lisziewicz et al., 1999).

More recently, several authors have addressed the problem
of designing STI treatments by exploiting mathematical
models of HIV infection dynamics (Adams et al., 2004;
Bajaria et al., 2004). These models are usually represented
by a set of Ordinary Differential Equations (ODEs), and
deduction of STI strategies from them is done by using
methods from control theory. Modelling the HIV infection
dynamics is however a complex task. Not only does one have
to select the right parametric system of ODEs, but one must
also fit their parameters to reflect quantitatively biological
observations. An interesting alternative would be to infer
STI strategies directly from clinical data, without havingto
specify and identify a model of the HIV infection dynamics.

Typically, when a patient undergoes a STI treatment,
clinical data representing the time-evolution of the patient’s
state (CD4+ T cell count, systemic costs of drugs, etc.) are
recorded at specific, discrete-time instants. Such clinical data
may be seen as trajectories of the immune system responding
to the treatment.

The problem of inferring from trajectories of a system an
appropriate way to control it has been extensively studied in
control theory and computer science. One way to approach
it is to first state an optimality criterion and then search
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Fig. 1. Determination of optimal STI strategies from clinicaldata by using reinforcement learning algorithms: the overallprinciple.

for control strategies optimizing this criterion. In particular,
the classical approach consists of using the trajectories
to identify an analytical model, and deriving a controller
from this model and from the optimality criterion (Bitmead
et al., 1990). Reinforcement Learning (RL), on the other
hand computes control strategies directly from the measured
trajectories, without the need for identifying a priori a model
of the system dynamics (Sutton & Barto, 1998).

In this paper, we aim at investigating the feasibility of
using RL to determine (close-to-)optimal HIV-STI strategies
from clinical data alone, in other words, without relying on
the identification of an accurate model of the HIV infection
dynamics. In this approach, illustrated in Figure 1, HIV-
infected patients follow during clinical trials various STI
protocols. Their states are monitored everyn days and the
trajectories gathered from this monitoring are processed by
the RL algorithm to compute new STI strategies.

The paper is structured as follows. Section II formalizes
the problem of learning optimal strategies from a set of
trajectories and introduces the algorithms used in our simula-
tions. Section III reports simulation results obtained by using
the RL-based approach to determine optimal STI strategies
from clinical data. Instead of actual clinical data, we have
used synthetic ones obtained from simulations with an ODE
model of the HIV infection dynamics. In Section IV, we
suggest ways to overcome difficulties that may arise when
relying on real-life data rather than numerically generated
ones. Section V concludes and the Appendix gathers infor-
mation about the mathematical model of HIV dynamics used
in the data generation process.

II. L EARNING FROM A SAMPLE OF TRAJECTORIES: THE

RL APPROACH

We start this section by formulating the problem of learn-
ing the solution of an optimal control problem from a sample
of trajectories. We consider deterministic discrete-timeopti-
mal control problems for which the aim is to minimize a
sum of discounted costs over an infinite time horizon. After
formulating the problem, we remind some classical results
from dynamic programming theory and introduce the fittedQ

iteration algorithm. We refer the reader to (Bertsekas, 2000)
for a comprehensive textbook on dynamic programming and
to (Ernst et al., 2005) for a complement of information on
the fittedQ iteration algorithm.

A. Problem formulation

Consider a system having a deterministicdiscrete-time
dynamicsdescribed by:

xt+1 = f(xt, ut), t = 0, 1, · · · (1)

where for all t, xt is an element of the state spaceX and
ut is an element of the action spaceU . Let c(x, u) be a
(real-valued) cost function whose infinite norm is bounded
by some positive constantBc, and γ be a discount factor
(0 ≤ γ < 1).

Given a stationary control strategyµ(·) : X → U , and
assumingx0 = x and xt+1 = f(xt, µ(xt)), forall t, we
define the discounted infinite horizon cost function associated
to µ by

Jµ(x)= lim
N→∞

N−1
∑

t=0

γtc(xt, µ(xt)). (2)

The objective is to find an optimal stationary strategyµ∗, i.e.
a strategy that minimizesJµ for all x.

In order to compute such a strategy, we do not assume
that the system dynamics (1) is known. However, we suppose
available a (finite) set of (finite duration) system trajectories
(in the form (x0, u0, x1, u1, x2, · · · , xT−1, uT−1, xT )) as
well as the cost-functionc(x, u). Reinforcement learning
techniques compute from this kind of information anapprox-
imation µ̂∗ of the optimal stationary strategy since, except
for very special conditions, the exact optimal strategyµ∗ can
not be deduced from such a limited amount of information
on the system dynamics.1

The fitted Q iteration algorithm which we exploit in
this paper, actually relies on a slightly weaker assumption,
namely that a set ofone-stepsystem transitions is given,

1RL actually handles the more general problem when the cost function
is also unknown and replaced by sample values; it also carriesover to
stochastic systems.



each one providing the knowledge of a new sample of
information (xt, ut, xt+1). We denote this set of transitions
by F = {(xl

t, u
l
t, x

l
t+1)}

#F

l=1.

B. Some dynamic programming results

The sequence of functionsQN : X × U → R defined by
the recurrence equation

QN (x, u) = c(x, u) + γ min
u′∈U

QN−1(f(x, u), u′), ∀N > 1

(3)
with Q1(x, u) ≡ c(x, u), converges in infinity norm to the
Q-function, defined as the (unique) solution of the Bellman
equation:

Q(x, u) = c(x, u) + γ min
u′∈U

Q(f(x, u), u′). (4)

A stationary strategyµ∗ that satisfies

µ∗(x) = arg min
u∈U

Q(x, u) (5)

is an optimal strategy.
Let us denote byµ∗

N the stationary strategy

µ∗
N (x) = arg min

u∈U

QN (x, u). (6)

The following bound on the suboptimality ofµ∗
N with

respect toµ∗ holds (see (Ernst et al., 2005)):
∥

∥

∥
Jµ∗

N − Jµ∗

∥

∥

∥

∞

≤
2γNBc

(1 − γ)2
. (7)

C. The fittedQ iteration algorithm

From the set of transitionsF , the fitted Q iteration
algorithm computes the functionŝQ1, Q̂2, · · · , Q̂N which
constitute approximations of the functionsQ1, Q2, · · · , QN

defined by Eqn (3). This computation is done iteratively
by solving a sequence of standard batch-mode supervised
learning problems. The training sample for thekth (k ≥ 2)
supervised learning problem of the sequence is

{(

(xl
t, u

l
t), c(xl

t, u
l
t) + γmin

u∈U
Q̂k−1(x

l
t+1, u)

)}#F

l=1

with Q̂1(x, u) ≡ c(x, u). Based on this training sample,
the supervised learning (regression) algorithm produces the
functionQ̂k that is used to determine the next training sample
and from there, the next function of the sequence. Once
the approximation functionŝQ1, Q̂2, · · · , Q̂N have been
computed, the (sub-optimal) stationary strategy

µ̂∗
N (x) = arg min

u∈U

Q̂N (x, u) (8)

is taken as approximation of the optimal stationary strategy
µ∗(x).

As batch-mode supervised learning algorithm, we have
chosen the Extra-Trees algorithm (Geurts et al., 2006).
This algorithm builds a model in the form of the average
prediction of an ensemble of regressions trees obtained by
randomization. It has three parameters: the numberM of
trees composing the ensemble, the minimum number of
elements required to split a nodenmin and the maximum

number of cut-directions evaluated at each nodeK. These
values have been chosen respectively equal to50, 2 (the trees
are fully developed) and the dimensionality of the input space
(equal to8 (6 state variables + 2 control variables) for the
problem treated in Section III).

III. S IMULATION RESULTS

In this section we present the results we have obtained
by using the RL-based approach on artificially generated
data. We first define the kind of STI strategies we are
looking for, in terms of the class of strategies considered and
their optimality criterion. Then, we describe the simulation
protocol behind the data generation and, finally, we discuss
the obtained STI-strategy. Our work in this section is directly
inspired from (Adams et al., 2004).

A. Kinds of STI strategies targeted

As in (Adams et al., 2004), we consider bi-therapy treat-
ments combining a fixed RTI and a fixed PI. The protocol
allows to revise drug administration every five days based on
clinical measurements, by choosing one of the four possible
on-off combinations for the next five days: RTI and PI on,
only RTI on, only STI on, RTI and PI off. These four
cocktails hence define the set of actionsU of our optimal
control problem.

In terms of optimality criterion, we seek STI strategies that
minimize a sum of discounted instantaneous costs over an
infinite horizon with the instantaneous cost at timet being
given by:

c(xt, ut) = QVt + R1ǫ
2
1t

+ R2ǫ
2
2t

− SEt (9)

where Q = 0.1, R1 = 20000, R2 = 2000, S = 1000,
ǫ1t

= 0.7 (resp.ǫ1t
= 0) if the RTI is cycled on (resp. off)

at time t, and ǫ2t
= 0.3 (resp.ǫ2t

= 0) if the PI is cycled
on (resp. off) at timet. V is the number of free HI viruses
(in copies/ml) andE the number of cytotoxicT -lymphocytes
(in cells/ml). CytotoxicT -lymphocytes constitute the specific
immune response of the body to HI viruses. The decay factor
γ has been chosen equal to0.98, which means that costs
occurring after one year weight for approximately three-
quarter less than costs occurring at instantt = 0.

We refer the reader to (Adams et al., 2004) for a discussion
of rationale behind this cost function.2

2In (Adams et al., 2004), optimal strategies are computed by assuming
that the dynamics of the HIV immune response are known. On the
contrary, here we compute strategies from the sole knowledgeof samples of
transitionsF . Furthermore, we consider an optimal control problem with
infinite time horizon and discounted costs while in (Adams et al., 2004)
a finite horizon and undiscounted costs are considered. As a consequence,
decisions made by strategies derived in our approach depend only on the
current state of a patient. In (Adams et al., 2004) they also depend on the
time elapsed since the beginning of the treatment, which means that patients
presenting exactly the “same medical states” but at differentstages of their
treatment may undergo different STI strategies, which we believe is not
appropriate.



B. Artificial generation of the clinical data

In order to evaluate the ability of RL to compute “good”
STI strategies, we will apply the fitted Q iteration algorithm
described in Section II-C on artificially generated data.

To obtain data which mimic real-life clinical data, we have
used time-domain simulations of the nonlinear ODE model
published in (Adams et al., 2004), which was validated and
identified from real-life clinical data. For ease of reference,
we reproduce the equations and parameter values of the
model in the Appendix. In order to provide insight into
the physical problem that is tackled, we briefly discuss the
main characteristics of this model, before defining the data
generation procedure itself.

The dynamic model has six state variables that represent
respectively the number of healthy CD4+ T-lymphocytes
(referred to asT1), the number of healthy macrophages
(T2), the number of infected CD4+ T-lymphocytes (T ∗

1 ),
the number of infected macrophages (T ∗

2 ), the number of
free virus particles (V ) and the number of HIV-specific
cytotoxic T-cells (E). Note that these variables are assumed
to be measured every five days, in order to select the drug
combination for the next five days.

As shown in (Adams et al., 2004), in the absence of treat-
ment (i.e.ǫ1t

= ǫ2t
≡ 0), the system of ordinary differential

equations exhibits three physical equilibrium points (and
several non physical ones (omitted here) for which one or
more state variables are negative). These equilibrium points
are, respectively, an unstable equilibrium point

(T1, T2, T
∗
1 , T ∗

2 , V, E) = (106, 3198, 0, 0, 0, 10)

which represents an uninfected state, and two locally stable
equilibria corresponding to HIV-infected states. The HIV-
infected equilibria may be categorized as:

1) a “healthy” locally stable equilibrium point

(T1, T2, T
∗

1 , T ∗

2 , V, E) = (967839, 621, 76, 6, 415, 353108)

which corresponds to a small viral load, a high CD4+

T-lymphocytes count and a high HIV-specific cytotoxic
T-cells count,

2) the “non-healthy” locally stable equilibrium point

(T1, T2, T
∗

1 , T ∗

2 , V, E) = (163573, 5, 11945, 46, 63919, 24)

for which T-cells are depleted and the viral load is very
high.

Numerical simulations show that the basin of attraction of
the healthy steady-state is relatively small in comparison
with the one of the non-healthy steady-state. Furthermore,
perturbation of the uninfected steady-state by adding as less
as one single particle of virus perml of blood plasma leads
to asymptotical convergence towards the non-healthy steady-
state.

During the data collection process, we assume that the
(simulated) patients are monitored (and the medication pro-
tocol revised) every five days. The monitoring period for
each patient is assumed to last for1000 days.

The generation procedure of the clinical data is iterative.
At the first iteration, we consider thirty patients in “non-
healthy” steady-state. Every five days, the physiological
data of each of these thirty patients (assumed here to be
summarized by the quantitiesT1, T2, T ∗

1 , T ∗
2 , V , andE) are

recorded and a new type of medication is randomly selected
in U . The monitoring of each patient generates a trajectory
(x0, u0, x1, · · · , x199, u199, x200) from which we can extract
1000/5 = 200 samples(xt, ut, xt+1).

At the second step of the iterative process, we also
consider a set of thirty patients in “non-healthy” steady-
state and, once again, we record their physiological data
every five days. Nevertheless, contrary to the first step, each
five days, the corresponding drug cocktail is not selected
at random anymore. Instead, the medication for these new
thirty patients is determined by the following STI strategy:
in 85% of the cases we use the strategyµ̂∗

400 computed
by the fittedQ iteration algorithm3 applied on the6, 000
element set generated by the monitoring of the previous30
patients, while in the remaining15% cases we use a type of
medication randomly selected inU .

At the third iteration, another set of thirty trajectories are
generated in identical conditions, except that the correspond-
ing STI strategy uses now in85% of the cases a strategŷµ∗

400

inferred from all the samples gathered previously (i.e.12, 000
samples). By repeating this iterative procedure ten times,
we have generated a total of300 trajectories (10 sets of30
patients) to which correspond60, 000 samples(xt, ut, xt+1).

The reader may wonder why we interlaced the generation
of the samples with the computation ofµ̂∗

400 and used this
newly computed strategy to generate additional samples.
There are two main reasons behind this choice. First, we
wanted to simulate a situation in which STI strategies ad-
ministered to patients were not chosen totally at random
but rather benefit, at least partially, from the knowledge
clinicians may already have about “good” STI strategies.
Second, by using some knowledge already acquired about
µ̂∗

400, we tend to gather much more information alongside the
optimal trajectories. As a consequence, with a fairly small
number of clinical trials we can converge rather quickly to
close-to-optimal STI strategies.

C. Results

On Figure 2, we have represented the evolution of the
cell counts, number of free viruses and immune effectors
of a patient treated from “non-healthy” steady-state by the
STI strategy inferred from the set of60, 000 samples by
the fitted Q iteration algorithm. As desired, the computed
(close-to-)optimal STI strategy is able to bring the patient to
the domain of attraction of the “healthy” drug-free steady-
state. On the same figure, trajectories that would have been
observed by putting the patient always on or always off

3In all the simulation results reported in this paper, the fitted Q iteration
algorithm is iterated400 times andµ̂∗

400 is taken as approximation of
the optimal stationary strategŷµ∗. Side simulations have shown that the
computed strategy remained mostly unchanged by increasing thenumber of
iterations.
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Fig. 2. The curves represent the time evolution of the different cells count
(T1, T2, T ∗

1 , T ∗

2 ), of the number of free virus particles (V ) and of the
number of immune effectors (E) for a patient being treated from “non-
healthy” steady-state. The solid curve (−) corresponds to the STI strategy
plotted on Fig. 3 and computed by the reinforcement learning algorithms.
The dashed curves (−−) represent the time evolution of these variables
when there is no interruption in the treatment (i.e.ǫ1t

= 0.7 andǫ2t
= 0.3,

∀t ≥ 0) and the dotted curves (− ·) represent their time evolution when
there is no treatment (i.e.ǫ1t
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Fig. 3. Representation of the STI treatment for a patient treated from early
stage of infection. The STI treatment is computed by the reinforcement
learning algorithms on clinical data generated by300 patients.

both drugs have also been plotted. Compared to these two
strategies, the RL-based STI strategy leads to higher T-cell
counts, lower virus load, and significantly boosts the specific
anti-HIV immune response.

In Figure 3 it can be seen that with the RL computed STI
strategy the patients get active treatment, with some periods
of relief, during approximately380 days and are always put
off both drugs afterwards (definitive treatment interruption
after 380 days).

Usually, the quality of the strategies determined by RL in-
creases with the number of trajectories since each additional

infinite time
horizon cost
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Fig. 4. Influence of the number of patients participating to the clinical trials
on the infinite horizon cost corresponding to the computed STIstrategies.
Data generation follows the protocol described in Section III-B. To compute
the infinite horizon cost associated to a given number of patients, we run
RL on the trajectories generated by these patients and estimate J µ̂∗

400 (x)
obtained when a patient intitially in the “non-healthy” steady-state is treated
by the learned strategy (J µ̂∗

400(x) =
P

∞

t=0 γtc(xt, µ̂
∗

400(xt)) with x =
(T10

, T20
, T ∗

10
, T ∗

20
, E0, V0) = (163573, 5, 11945, 46, 63919, 24)).

trajectory generally provides additional information about the
underlying problem. This is illustrated on Figure 4 where we
have plotted infinite horizon costs associated with strategies
computed by considering an increasing number of patients
in the clinical trials. Note that in this particular case, STI
strategies that put the patient always on (or alway off) both
drugs produce larger costs than those obtained by using the
STI strategy derived from only ten trajectories.

Overall, these results suggest that reinforcement learning
can indeed infer appopriate STI strategies from a sample of
transitions reflecting the instantaneous response of patients
to drug administration at different stages of their treatment,
without explicit knowledge of the underlying dynamics.

IV. FROM NUMERICALLY SIMULATED TO REAL -LIFE

PATIENTS

In the previous section, we have reported some results
obtained by using numerical simulations to reproduce the
clinical evolution of HIV-infected patients. In this section,
we discuss the four main difficulties we expect to face when
dealing with real-life patients.
The HIV/immune system interaction dynamics may be dif-
ferent from one patient to the other.When generating the
clinical data, we have implicitly assumed that the dynamics
of the interaction between HIV and the patients’ immune sys-
tem were the same for every patient. In real life conditions,
these dynamics may substantially vary from one patient to
the other. Some reasons for these discrepancies are: variance
in the patients’ immune systems, existence of different types
of HIV infections, individual differences in the assimilation
of the drugs, etc. We believe that one appropriate approach to
address such a difficulty would be to add to the state vectorx
relevant information about the specifics of each patient’s case
(e.g. general medical condition, type of HIV virus (HIV-1,
HIV-2), presence of drug-resistant HIV strains, etc.).
Proper statement of the optimal control problem.Different
elements need to be defined when stating the optimal control
problem: the time discretization, the cost function and the



decay factor. These elements should be chosen to lead to
desirable optimal trajectories and good learning speed. When
working in a numerical environment, trial-and-error type of
approaches can help to choose these elements. Trial-and-
error approaches can however not be used on real patients.
Thus, we will need to call for medical expertise in order
to state properly the optimal control problem, but we also
believe that some specific tools should be built to help in
this task.
Partial observability.In our example, we have assumed that
all the state variables were directly observable. When dealing
with real patients, such an assumption is not fully realistic
since, among others, it is not possible with current technol-
ogy to distinguish between healthy and non-healthy CD4+

T-lymphocytes and macrophages. It is therefore clear that
some partial observability issues will arise when processing
real-life data. We refer the reader to (Murphy, 2000) for a
survey of solution techniques for partial observable discrete-
time optimal control problems.
Corrupted measurements.Collected clinical data are not
necessarily thorough and accurate. Furthermore, the patients
may not necessarily comply with the prescribed treatment.
This may lead to uncertainties and measurement corruption
which may significantly degrade the quality of the results
obtained. One solution to mitigate the adverse effects of cor-
rupted measurements would be to design some preprocessing
algorithms able to filter out highly corrupted data.

V. CONCLUSIONS

In this paper, we have considered the problem of com-
puting structured treatment interruption strategies for HIV
infected patients from clinical data only. In the envisioned
protocol, the clinical data would be generated by monitoring
at regular time intervals the state of various patients during
their treatment, and these data would be exploited by rein-
forcement learning to determine an optimal drug prescription
strategy.

To investigate the validity of such a purely data driven
approach, we have generated clinical data artificially by re-
lying on a plausible mathematical model of the HIV infection
dynamics. Based on a sufficient amount of simulated data, we
found that reinforcement learning was indeed able to derive
STI therapies which appear as excellent when used to “treat”
simulated patients.

These encouraging results suggest that reinforcement
learning techniques could also help to design effective real-
life STI strategies from actual clinical data. The next step
of this research will be to study more extensively, still by
simulations, various difficulties that could be encountered
when applying this approach in real-life. In particular, we
expect that many problems will arise such as those related
to corrupted data, variance in HIV viruses, inter-individual
differences of the immune responses, and inability to count
specific types of immune cells playing a critical role in the
HIV infection.

Finally, although we target the development of model-
free methods, we would like to stress the usefulness even

in this kind of research of plausible analytical models of
the dynamic response of patients to treatments. While we
believe that it might not be possible to derive accurate
enough dynamic models for the direct derivation of appro-
priate treatment strategies, it is clear that even approximate
or highly simplified models may be very useful to gain
understanding of a problem and to design an appropriate
way to apply reinforcement learning to it. As a matter of
fact, only after extensive “in silico” experiments one will
gain enough confidence to start using this kind of approach
in actual “in vivo” conditions.

APPENDIX

In this section, we introduce the mathematical model that
we have used to artificially generate the clinical data needed
by the reinforcement learning algorithm. This mathematical
model has been taken from the paper (Adams et al., 2004)
to which we refer the reader for further information.

This mathematical model is described by the following set
of ordinary differential equations:

Ṫ1 = λ1 − d1T1 − (1 − ǫ1)k1V T1 (10)

Ṫ2 = λ2 − d2T2 − (1 − fǫ1)k2V T2 (11)

Ṫ
∗

1 = (1 − ǫ1)k1V T1 − δT
∗

1 − m1ET
∗

1 (12)

Ṫ
∗

2 = (1 − fǫ1)k2V T2 − δT
∗

2 − m2ET
∗

2 (13)

V̇ = (1 − ǫ2)NT δ(T ∗

1 + T
∗

2 ) − cV (14)

−[(1 − ǫ1)ρ1k1T1 + (1 − fǫ1)ρ2k2T2]V

Ė = λE +
bE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kb

E (15)

−

dE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kd

E − δEE

whereT1 (T ∗
1 ) denotes the number of non-infected (infected)

CD4+ T-lymphocytes (incells/ml), T2 (T ∗
2 ) the number

of non-infected (infected) macrophages (incells/ml), V
the number of free HI viruses (incopies/ml) and E the
number of cytotoxicT -lymphocytes (incells/ml). ǫ1 andǫ2
represent the values of the control actions corresponding to
the reverse transcriptase inhibitor and the protease inhibitor,
respectively. In each period during which the RTI (resp. the
PI) is administrated to the patient,ǫ1 (resp.ǫ2) is set equal
to 0.7 (resp.0.3). In each period during which the RTI (resp.
the PI) is not administrated, we haveǫ1 = 0 (resp.ǫ2 = 0).

The values of the different parameters of the model are
(taken from (Adams et al., 2004)):λ1 = 10, 000, d1 = 0.01,
k1 = 8.0 ∗ 10−7, λ2 = 31.98, d2 = 0.01, f = 0.34, k2 =
1.0 ∗ 10−4, δ = 0.7, m1 = 1.0 ∗ 10−5, m2 = 1 ∗ 10−5,
NT = 100, c = 13, ρ1 = 1, ρ2 = 1, λE = 1, bE = 0.3,
Kb = 100, dE = 0.25, Kd = 500, δE = 0.1.
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