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Abstract A simplified model for the prediction of the steady-state outflow through a breach
in an inland dike is presented. It consists in the application of the mass and momentum
conservation principles to a macroscopic control volume. A proper definition of the shape
of the control volume enables to take the main characteristics of the flow into account and
thus to compensate for the extreme simplification of the spatial representation of the model.
At the breach, a relation derived from the shallow-water equations is used to determine the
direction of the flow. Developments have been guided by numerical simulations and results
have been compared to experimental data. Both the accuracy and the domain of validity of
the simplified model are found satisfactory.
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1 Introduction

The failure of inland flood defence installations such as dikes and (mobile) protection walls
can bring about considerable damage in the floodplain of a river. Such damage arises either
from the dynamic impact of the flood wave or from the static impact of the submerging
water [11, 12]. Both impacts depend on the discharge and water depth in the river and on
the location and size of the breach. As the predictions of all these parameters are affected
by uncertainties, a risk assessment can not rely on a single scenario but must take into
account the probabilistic nature of the problem. With this requirement, the use of numerical
models based on the shallow-water equations (SWE) to compute flooding events implies
high computational costs.

This paper focuses on the static impact, i.e. the extent, of the flood induced by the failure
of a flood defence installation (referred to as a ‘dike-break induced flow’ in the following).
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As this static impact depends on the discharge entering the floodplain, the computation of the
discharge distribution at a point in the river network where a breach has formed in a dike is
the basic hydraulic problem to be solved. The use of a simplified model instead of a classical
SWE-based model to compute this distribution greatly reduces the computational time. The
derivation of such a simplified model is made easier by two legitimate assumptions: at the
timescale of a whole flood event, the first transient phase during which the breach widens is
short [1, 14] and the discharge through the breach tends to a steady value [11, 12].

Simplified models have already been developed for similar configurations but they do
not apply in this case. For instance, a one-dimensional approach has been developed for
side-weirs [6, 7], but we suppose here that the breach has developed on the entire height
of the dike, which results in a different behaviour (see Section 5). Moreover, both empir-
ical formulae (e.g. [9]) and simplified models based on macroscopic control volumes [10]
have been derived for channel bifurcations, but in the case of a dike break, the flow leaving
the main channel is not confined by lateral walls but can spread in all directions. There is
therefore a need for a simplified model designed for the specific case of dike-break induced
flows, all the more so because general empirical formulae (e.g. [8]) are difficult to derive.

The simplified model presented in this paper has been developed in the frame of a scale
model described in Section 2; numerical simulations, described in Section 3, have provided
some insight into the characteristics of the flow; Section 4 presents the conceptual model;
Sections 5 and 6 then focus on the flow conditions at the breach; the final system of equations
is given in Section 7; results are finally compared to experimental data in Section 8 and the
domain of validity of the model is discussed.

2 Experimental data

A scale model built at the University of Aachen has been used to study the transient phase
[11] and steady state [12, 13] of dike-break induced flows, using both experimental data
and numerical simulations.Steady-state discharges through the breach (Qb) measured on
the scale model are used here to assess the performance of the simplified model (results
presented in Section 8).

The scale model, presented in Fig. 1a, takes into account the boundary conditions of a
dike break, yet with a simple geometry, without bottom slope and with low friction so as to
focus on the influence of three parameters:

– the breach width Bb (0.30, 0.50 or 0.70 m – the channel width Bc is constant and equal
to 1 m);

– the inflow discharge Qi (0.100, 0.200 or 0.300 m3/s);
– the initial water depth h∗ in the channel (0.25 to 0.50 m), which depends on the height

hw of the weir at the end of the downstream reach.

The initial state refers to the steady flow in the channel with a closed breach. The experi-
mental set-up is comprehensively described by Briechle [2] and Roger et al. [12].

3 Numerical simulations

In the work of Roger et al. [12], numerical simulations were run to reproduce experimental
data measured on the scale model described above. They were based mostly on the finite
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(a) (b)

Fig. 1 a) Scale model set-up (adapted from Ref. [2]) - b) Control volume of the simplified model (inset:
breach section enlargement)

volume model WOLF 2D (University of Liege), which has also been used here to expand the
set of simulated configurations.

WOLF 2D solves the SWE, which are obtained by depth-averaging the equations of
mass and momentum conservation. The derivation of the standard form of the SWE relies
on two main assumptions, i.e. low vertical velocity (leading to hydrostatic pressure) and
uniform flow velocities over the depth. This mathematical model is solved by a finite volume
scheme applied on multi-block Cartesian grids. Limited linear variable reconstruction at cell
interfaces is used to achieve second-order accuracy in space. Computation of fluxes at cell
interfaces is based on a flux vector splitting method [3, 4]. Time integration is performed
by means of a dissipative three-step first-order accurate explicit Runge-Kutta algorithm,
suitable for the computation of steady flows.

In accordance with Roger et al. [12], the Cartesian grid involved 0.02 by 0.02 m cells.
However, for configurations with breach widths of 50 and 30 cm, a refined mesh with 0.01
by 0.01 m cells has been used near the breach. Boundary conditions (inflow discharge, weir
equation and free overflow) matched the actual ones as described in Fig. 1a. In particular,
the weir equation at the end of the downstream reach required appropriate calibration [12].

In the specific case of the scale model described in Section 2, it was shown that neither
bed nor wall friction, nor even turbulence models have a substantial impact on the steady
discharge through the breach [12]. As a consequence, and in accordance with the ‘base
simulations’ of Roger et al. [12], present simulations rely on a Manning formula for bed
friction (Manning coefficient of 0.015 s/m1/3) but neither wall friction nor turbulence model.

4 Conceptual model

We suggest a model based on the integration of mass and momentum conservation on a
macroscopic control volume located across the channel near the breach (Fig. 1b). The con-
trol volume shows distinctive characteristics which are justified in Sections 5 and 6.
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The equations used throughout this paper are the steady-state SWE on a horizontal and
smooth bottom: 

∂x (qcosθ)+∂y (qsinθ) = 0
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(q2

h
cos2

θ +
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2

)
+∂y

(q2
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)
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h
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)
= 0

(1)

The coordinate system is shown in Fig. 1b. In Eq. (1), h (m) is the water depth, q (m2/s) is
the magnitude of the unit discharge and θ ∈ ]− ; ] is the flow direction defined by Eq. (2), qx
and qy being the unit discharges in x and y directions respectively:{

qx = qcosθ

qy = qsinθ
(2)

Each line of Eq. (1) can be written as ∂x f + ∂yg = 0. This system is integrated on the
domain A of the control volume, and Green’s theorem is applied so as to get a system of
equations in which the unknowns are water depths and unit discharges along the boundary
F+ of the control volume (F+ is oriented anticlockwise):∫∫

A
(∂x f +∂yg)dA = 0 ⇔

∮
F+

f dy−gdx = 0 (3)

Basic unknowns of the problem are chosen as water depths and magnitude of unit dis-
charges along the ‘inflow’ (hi and qi), ‘outflow’ (ho and qo) and ‘breach’ (hb and qb) bound-
aries of the control volume (Fig. 1b and Table 1). Definition of the distribution of these
unknowns along the boundaries of the control volume is straightforward, since positions
and shapes of the inflow, outflow and breach boundaries, shown in Fig. 1b, ensure constant
water depths and magnitude of unit discharge along each of them, as deduced from results
of 2D numerical simulations. These numerical results also show that flow directions are
parallel to the x axis at the inflow and outflow sections.

Table 1 Unknowns and boundary conditions

Boundary Location Unknowns Boundary condition

‘Inflow’ Across upstream reach hi, qi qi (prescribed value)
‘Outflow’ Across downstream reach ho, qo ho = ho(qo)
‘Breach’ Across breach hb, qb hb = hb(qb)

Integration of Eq. (1) on the control volume and application of Eq. (3), leads to following
system (coefficients χ and ζ are defined hereafter):
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(4)
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Coefficient χb links the mass flux at the breach to the unknown qb. Coefficients χbx
and χby link the advective fluxes at the breach along x and y directions to the ratio q2

b/hb.
These coefficients take into account the curved shape of the boundary, through the angle
φ ∈ ]− /2;/2[ (defined in inset of Fig. 1b), and the varying flow direction (angle θ ). They
can be expressed as follows, where ξ = x/Bb:

χb =
∫ 1

0

sin(θ −φ)

cosφ
dξ (5)

χbx =
∫ 1

0
cosθ

sin(θ −φ)

cosφ
dξ (6)

χby =
∫ 1

0
sinθ

sin(θ −φ)

cosφ
dξ (7)

Section 6 details how they can be evaluated.
Coefficients ζk, where subscript k refers to one of the three wall boundaries of the control

volume, denote uneven pressure fluxes along a given boundary. They are defined by:

ζk =
2

gh2
ref,kBk

∫
Bk

gh2

2
dx (8)

According to 2D numerical results, the choice of a control volume with a total length of
2Bc + 2ξintBb centered on abscissa x = 2ξintBb ensures constant coefficients ζk. ξint is a
parameter describing the shape of the critical section, as detailed in Section 6. Table 2 gives
the values of length Bk and reference water depth href,k for each wall boundary along with
coefficients ζk deduced from 2D numerical results.

Table 2 Definition of factors involved in Eq. (8)

Wall Subscript k h2
ref,k Bk ζk

Right r h2
ref,r = (h2

i +h2
o)/2 Br = 2Bc +2ξintBb 1,00

Left - upstream lu h2
ref,lu = h2

i Blu = Bc 0,95
Left - downstream ld h2

ref,ld = h2
o Bld = Bc− (1−2ξint)Bb 1,00

Eq. (4) is made up of three equations which involve six unknowns. A closed problem
can however be obtained thanks to three boundary conditions, as indicated in Table 1.

5 Characteristics of the flow near the breach

The presence of a breach in one of the side walls of the channel results in a very complex
flow in its vicinity. Nevertheless, this flow shows distinctive characteristics, of which the
simplified model takes advantage.

5.1 Critical section located across the breach

The set-up of the scale model ensures that the flow in the channel is subcritical (i.e. Froude
number F= q/

√
gh3 < 1), while it becomes supercritical (F> 1) when flowing through the

breach [12]. The simplified model is developed based on these observations.
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The flow at the breach becomes critical as a result of a minimum in its cross-sectional
area and not a maximum in the bottom geometry as in the side-weir problem [5]. This Ven-
turi flume behaviour can easily be deduced from the sketch of the separation line between
the flow leaving through the breach and the flow remaining in the channel (Fig. 2a). The
flow undergoes a lateral contraction if

qb > qi ⇔ χb
Bb

Bc
<

Qb

Qi
, (9)

i.e. if the breach width Bb is not too large compared to the channel width Bc and the percent-
age of flow deviated through the breach Qb/Qi is high enough. Eq. (9) shows that χb acts as
a contraction coefficient.

When there is no transcritical flow at the breach, the simplified model is not valid. This
is discussed in Section 8.

(a) (b)

Fig. 2 Characteristics of the flow near the breach - a) Schematic view of the separation line between the flow
that leaves the channel and the flow that does not, as deduced from numerical results (dotted line), and main
flow directions (arrows) - b) Critical sections obtained by interpolation of 2D numerical results in different
configurations

5.2 Properties of the critical section deduced from numerical results

The computed critical section across the breach takes a distinctive S-shape [12]. Results
of 2D numerical simulations plotted in Fig. 2b show that when this shape is drawn in the
dimensionless coordinate system (ξ ,η) defined as{

ξ = x/Bb
η = y/Bb

, (10)

it is observed to depend essentially on the momentum of the main flow in the channel, i.e.
on the ‘mean’ Froude number of this flow:

Fm =
1
2
(Fi +Fo) =

1
2

( qi√
gh3

ı
+

qo√
gh3

o

)
(11)

Beside this distinctive shape, numerical results also indicate that the water depth and the
magnitude of the unit discharge are almost constant along the critical section (standard de-
viations less than 1%). This justifies the choice of the critical section as a boundary of the
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control volume for deriving the simplified model. The only flow parameter which varies
along this section is the flow direction. Its distribution can be deduced from the SWE, as
shown below.

5.3 Properties of the critical section deduced from the shallow-water equations

Consider Eq. (1), in which partial derivatives have been developed and mass conservation
has been used to simplify the momentum equations. Dividing by gh enables to obtain:

cosθ∂xq+ sinθ∂yq−q(sinθ∂xθ − cosθ∂yθ) = 0(
1−F2 cos2 θ

)
∂xh−F2 sinθ cosθ∂yh−hF2∂yθ = 0(

1−F2 sin2
θ
)

∂yh−F2 sinθ cosθ∂xh+hF2∂xθ = 0

(12)

For F= 1, these equations become
cosθ∂xq+ sinθ∂yq = 0

∂xθ =
1
h

cosθ (sinθ∂xh− cosθ∂yh)

∂yθ =
1
h

sinθ (sinθ∂xh− cosθ∂yh)

(13)

To interpret these relations, let e1 = cosθex + sinθey be the unit vector in the direction of
the flow and let e2 =−sinθex + cosθey be the unit vector in the normal direction. Eq. (13)
can then be rewritten in two vectorial equations:

∇q · e1 = 0 (14)

∇θ =−
(

∇h
h
· e2

)
e1 (15)

The stationary SWE state that, for a continuous critical flow on a horizontal frictionless
bottom,

– the gradient of the magnitude of the unit discharge is either nil or normal to the flow
direction;

– the gradient of the flow direction is parallel to the flow direction and its magnitude is
given by the projection of the water depth gradient in the direction normal to the flow.

6 Modelling of the flow through the breach

At the breach, the boundary of the control volume follows the critical section. This choice
offers several advantages. First, 2D numerical simulations show that q is constant along the
critical section, which is consistent with Eq. (14). Since F = 1 everywhere on the critical
section, a constant q implies a constant h along the same section. Moreover, the distribution
of θ can be derived from Eq. (15) and the critical regime can be used as a boundary condition
(see Table 1). However, this approach implies a modelling of the dimensionless shape of the
critical section, which is Froude dependent.
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(a) (b)

Fig. 3 Modelling of the parameters of the critical section: a) ηmin and ηmax as functions of ξint - b) ξint as a
function of Fm

6.1 Modelling of the critical section

The dimensionless shape of the critical section can be described by two parabolae charac-
terized by only three parameters: ξint, ηmin and ηmax, as shown in the inset of Fig. 1b). Two
relations between them can be deduced from 2D numerical results (Fig. 3a):

ηmin = ξ
2
int (16)

ηmax =
1
4
(
1−ξ

2
int
)

(17)

Based on 2D numerical results, parameter ξint may be related to the mean Froude number
Fm of the flow in the channel as follows (Fig. 3b):

ξint = Fm (18)

The two parabolae which define the shape of the critical section give the angles φ needed
to define coefficients χb, χbx and χby in Eqs. (5)-(7). Flow directions are still to be defined,
as detailed in next subsection.

6.2 Distribution of flow directions along the critical section

Eq. (15) can be used to calculate the profile of the flow directions by finite differences
starting from a point where θ is known. For this purpose, Eq. (15) is projected on the critical
section, i.e. in the direction given by angle φ . As h is constant along the critical section, ∇h
is perpendicular and the projection gives:

dξ θ = ‖∇h‖Bb

h
cos2 (θ −φ)

cosφ
= K

cos2 (θ −φ)

cosφ
(19)

In this equation, parameter K stands for ‖∇h‖Bb/h, where ‖. . .‖ is the magnitude of a vector.
Eq. (19) is applied assuming that θ = 0 at the upstream edge of the critical section and

K is constant along the critical section (but its value is a priori unknown). Fig. 4a shows
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(a) (b)

Fig. 4 Parametrical study of the influence of parameter K on - a) the distribution of angle θ along the critical
section - b) coefficient χb (example for Fm = 0.32)

different flow direction profiles which can be obtained with different values for K. Most of
these distributions involve some points where Eq. (20) is not verified:

φ(ξ )≤ θ(ξ )≤ φ(ξ )+ (20)

The efficiency of the critical section in evacuating a discharge Qb for a given head Hb =
hb+q2

b/(2gh2
b) is reduced by these points at which flow enters the channel instead of leaving

it. Coefficient χb is an indicator of this efficiency since

Qb = χbqbBb =
2
3

χb√
3

√
2gH3/2

b Bb (21)

For a given critical section, i.e. for a given ξint, the distribution of θ is therefore chosen so
as to maximize χb (Fig. 4b).

6.3 Computation of coefficients χb, χbx and χby

Parameter ξint sets the shape of the critical section, which, in turn, gives the distribution of
flow directions; once the distributions of φ and θ are known, Eqs. (5)-(7) give the values of
coefficients χb, χbx and χby.

Fig. 5a compares the values given by this method with the values given by the interpola-
tion of WOLF 2D results. At low ξint (i.e. low Fm), these three coefficients are underestimated
by the present model. It can be shown that this is mainly due to the assumption of a con-
stant K, i.e. a constant ‖∇h‖ along the critical section. This hypothesis is however kept for
simplicity. For ξint > 0.4, coefficients are overestimated, which means that the values of qb
and hb given by Eq. (4) are underestimated. Underestimation of qb reduces the domain of
validity of the simplified model described by Eq. (9).
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7 System of equations and numerical scheme

Eq. (4) is solved by a pseudo-unsteady scheme:
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o
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2
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(
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2
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)gh2
o

2
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q2
b
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Bb−

gh2
b

2
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] (22)

An integration of the unsteady SWE on the domain A of the control volume would involve
time derivatives of, respectively, the mean water depth and the mean specific discharges in
x and y directions. In Eq. (22), these mean values are replaced by the three unknowns hi,
qo and qb because the aim is not to compute a transient phase, but simply to converge to a
steady flow starting from an arbitrary initial condition.

Boundary conditions, which are simple algebraic relations, are solved at each pseudo-
time step to give the values of the unknowns qi, ho and hb:

qi =
Qi

Bc
(23)

qo =
2
3

(
0.657+0.084

ho−hw

hw

)√
2g(ho−hw)

3/2 (24)

qb =
√

gh3
b (25)

Discharge Qi is a parameter of the problem. Eq. (24) is the weir relation calibrated for the
weir at the end of the channel as given by Briechle [2] (hw is the crest heigth). A more
rigorous relation would imply a 1D computation of water depths along the downstream
reach of the channel but this proved to be unnecessary in present case (low friction and short
reach) and Equation (24) is kept here for clarity.

The time-integration algorithm is a three-step first-order accurate Runge-Kutta scheme.

8 Results

In Fig. 5b, the ratio Qb/Qi is plotted against the initial Froude number F∗, which is obtained
from the initial specific discharge q∗ = qi and water depth h∗, given by substituting q∗ for
qo in Eq. (24).

Experimental data and 2D numerical results are both presented as reference points for
the simplified model. Absolute differences of 0.06 can be observed between measured and
computed Qb/Qi ratios (corresponding relative differences less or equal to 11%). According
to Roger et al. [12, 13], the underestimation of the discharge through the breach is due
to the underlying fundamental assumptions of the SWE model used in the 2D numerical
simulations.

As for the simplified model, results show good agreement with those from WOLF 2D
simulations: absolute differences between results are less or equal to 0.05 (relative differ-
ences less or equal to 15%). Deviations with respect to experimental data are slightly higher,
with absolute errors up to 0.15 (relative errors up to 17%). These values show that the substi-
tution of the simplified model for the 2D simulations does not reduce excessively the quality
of the results with regard to the gain in computational time.
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(a) (b)

Fig. 5 Comparison of results given by the simplified model with experimental data and/or results given by
WOLF 2D: - a) χb, χbx and χby coefficients as functions of ξint - b) Qb/Qi ratio as a function of the initial
Froude number F∗ for different breach widths

The domain of validity is however reduced. The present model remains valid provided
that a contraction of the deviated flow takes place at the breach (see Section 5). For ranges of
parameters for which this effect is not reproduced by the model (i.e. qb ≤ qi), the solutions
predicted by the model are not valid (hatched area in Fig. 5b).

Another limitation of the simplified model is linked to the overestimation of coefficients
χb, χbx and χby for ξint > 0.4− 0.5 (Fig. 5a). In Fig. 5b, solid lines indicating the results
of the model are replaced by dotted lines for configurations in which ξint = Fm > 0.5. The
effect on the ratio Qb/Qi is not important, nevertheless it leads to an overestimation of the
hatched zone in Fig. 5b.

9 Conclusion

A simplified model, based on a macroscopic control volume, has been developed for the
prediction of the ultimate steady-state outflow through a dike breach. The absence of any
space discretisation has required the definition of a proper shape for the control volume,
so as to take advantage of the main characteristics of the flow, as disclosed by 2D numeri-
cal simulations, and of mathematical simplifications of the shallow-water equations on the
critical section.

In view of its simplicity, this model compares well with numerical simulations, which
it is intended to replace, and experimental data. Its domain of validity has been investigated
focusing on its main underlying assumption, i.e. a critical section crossing the breach, and
has been shown to cover a wide range of fluvial conditions.

The experimental set-up used is well-suited for the study of the advective effects incor-
porated in the simplified model. For real-world applications however, friction and bottom
slope terms should be added in the system of equations, as their effects would become more
significant. Similarly, it is worth verifying the behaviour of the simplified model in configu-
rations with larger Bc/Bb and Bb/h ratios.
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