
Selecting concise sets of samples for a reinforcement learning agent

D. Ernst

Dept of Electrical Engineering and Computer Science - University of Liège -Belgium

Email: ernst@montefiore.ulg.ac.be

Abstract

We derive an algorithm for selecting from the set of

samples gathered by a reinforcement learning agent in-

teracting with a deterministic environment, a concise

set from which the agent can extract a good policy.

The reinforcement learning agent is assumed to ex-

tract policies from sets of samples by solving a sequence

of standard supervised learning regression problems.

To identify concise sets, we adopt a criterion based on

an error function defined from the sequence of models

produced by the supervised learning algorithm.

We evaluate our approach on two-dimensional maze

problems and show its good performances when prob-

lems are continuous.

1 Introduction

Generalization of the information in reinforcement
learning (RL) has been an open problem for years.
Recently, several authors have advocated addressing
this problem by solving a sequence of standard super-
vised learning problems [1, 6]. They have shown that
by using non-parametric supervised learning methods
and in particular ensembles of regression trees, this
framework could lead to excellent generalization per-
formances while avoiding convergence problems of the
sequence.

The training sets for the different supervised learn-
ing problems contain a number of elements equal
to the number of samples the reinforcement learning
agent has acquired from interaction with the system.
After a certain time of interaction, these samples may
become so numerous that this framework may become
computationally impractical. To reduce the computa-
tional burdens, we propose to select a concise set of
sufficiently rich representatives of the samples.

We propose in this paper an algorithm that identi-
fies such concise sets. The algorithm works iteratively
by associating to the solution computed from the al-
ready selected samples an error function and by select-
ing the sample for which this error function takes its
largest value.

Our algorithm is inspired by work in the classi-
cal supervised learning framework. The closest one is
probably the certainty-based algorithm from [4] which
is applied to classification problems and grows a con-
cise training set by selecting elements with the lowest
annotation certainty, while in [7] the selection is rather
based on the decrement of the error. Our approach is
also related to some techniques in dynamic program-
ming (DP) that iteratively discretize the state space
(see e.g. [3, 5]). Our problem is however different since
it does not focus on where to generate some new infor-
mation but well on which information among a given
set should be selected. Another fundamental differ-
ence is that these DP techniques mainly associate to
every discretization a finite Markov Decision Problem
from which they deduce an approximate solution to
the optimal control problem, whereas here we compute
from a given set of samples an approximate solution
by solving a sequence of supervised learning problems.

Section 2 formalizes the problem of learning from a
set of samples, reviews some classical results of the dy-
namic programming theory and presents the fitted Q

iteration algorithm that solves this problem by refor-
mulating it as a sequence of standard supervised learn-
ing problems. The material of this section is largely
borrowed from [1] and is valid both for stochastic and
deterministic environments. In Section 3 we present
our approach to select concise sets of samples when a
deterministic environment is assumed. Section 4 gath-
ers simulation results and, finally, Section 5 concludes.

2 Learning from a set of samples

2.1 Problem formulation

Let us consider a system having a discrete-time dy-

namics described by:

xt+1 = f(xt, ut, wt) t = 0, 1, · · · (1)

where for all t, the state xt is an element of the state
space X , the action ut is an element of the action space
U and the random disturbance wt an element of the

disturbance space W . The disturbance wt is generated
by the time-invariant conditional probability distribu-
tion Pw(w|x, u).

To the transition from t to t + 1 is associated an
instantaneous reward signal rt = r(xt, ut, wt) where
r(x, u, w) is the reward function bounded by some con-
stant Br.

Let µ(·) : X → U denote a stationary control policy
and Jµ denote the expected return obtained over an
infinite time horizon when the system is controlled us-
ing this policy (i.e. when ut = µ(xt), ∀t). For a given
initial condition x0 = x, Jµ is defined as follows:

J
µ(x)= lim

N→∞
E
wt

t=0,1,··· ,N−1

[
N−1
X

t=0

γ
t
r(xt, µ(xt), wt)|x0 = x] (2)

where γ is a discount factor (0 ≤ γ < 1) that weighs
short-term rewards more than long-term ones, and
where the conditional expectation is taken over all tra-
jectories starting with the initial condition x0 = x.
Our objective is to find an optimal stationary policy
µ∗, i.e. a stationary policy that maximizes Jµ for all
x. The only information that we assume available to
solve this problem is the one obtained from the obser-
vation of a certain number of one-step system transi-
tions (from t to t+1). Each system transition provides
the knowledge of a new sample (xt, ut, rt, xt+1) that
we name four-tuple. Since it is usually not possible to
determine an optimal policy from a finite number of
four-tuples, we aim at computing an approximation of
µ∗ from a set F = {(xl

t, u
l
t, r

l
t, x

l
t+1), l = 1, · · · , #F}

of such four-tuples.

2.2 Dynamic programming results

Let H denote the mapping that transforms any
bounded function K : X × U → R into

(HK)(x, u) = E
w

[r(x, u, w) + γmax
u′∈U

K(f(x, u, w), u′)] (3)

where the expectation is computed by using P (w) =
Pw(w|x, u).
The sequence of QN -functions defined on X × U

QN (x, u) = (HQN−1)(x, u) ∀N > 0 (4)

with Q0(x, u) ≡ 0 converges, in infinity norm, to the
Q-function, defined as the (unique) solution of the
Bellman equation:

Q(x, u) = (HQ)(x, u). (5)

A policy µ∗ that satisfies

µ
∗(x) = arg max

u∈U

Q(x, u) (6)

is an optimal stationary policy.

Let us denote by µ∗

N the stationary policy

µ
∗
N (x) = arg max

u∈U

QN (x, u). (7)

The following bound on the suboptimality of µ∗

N

holds:

‖Jµ∗

− J
µ∗

N ‖∞ ≤
2γNBr

(1− γ)2
. (8)

2.3 Fitted Q iteration

The fitted Q iteration algorithm computes from the
set of four-tuples F the functions Q̂1, Q̂2, · · · , Q̂N , ap-
proximations of the functions Q1, Q2 · · · , QN defined
by Eqn (5), by solving a sequence of standard super-
vised learning regression problems. The policy

µ̂
∗
N (x) = arg max

u∈U

Q̂N (x, u) (9)

is then taken as approximation of the optimal sta-
tionary policy. The training set for the kth problem
(k ≥ 1) of the sequence is

((xl
t, u

l
t), r

l
t + γmax

u∈U
Q̂k−1(x

l
t+1, u)), l = 1, · · · , #F (10)

with Q̂0(x, u) = 0 everywhere. The supervised learn-
ing regression algorithm produces from this training
set the function Q̂k that is used to determine the next
training set and from there, the next function of the
sequence.

We have the following upper bound on the subop-
timality of µ̂∗

N :

‖Jµ∗

− J
µ̂∗

N ‖∞ ≤
2γNBr + ‖ε‖∞(2− 2γN)

(1− γ)2
(11)

where the error function ε : X × U → R is:

ε(x, u) = max
k∈{1,2,··· ,N}

|Q̂k(x, u)− (HQ̂k−1)(x, u)|. (12)

3 Concise set of samples selection

The algorithm. The algorithm we propose to se-
lect from F the n most informative four-tuples works
iteratively. At each iteration, it computes from the
already selected four-tuples the functions Q̂1, Q̂2, · · · ,
Q̂N and then selects as new four-tuple (xl

t, u
l
t, r

l
t, x

l
t+1)

the one that maximizes ε(xl
t, u

l
t). Our algorithm is

limited to deterministic environments since we cannot
from the sole knowledge of F compute the value of
ε(xl

t, u
l
t) when the environment is stochastic. The tab-

ular version of the algorithm is given in Fig. 1 where
the symbol f j denotes a concise set containing j four-
tuples.

(i) Set j = 1 and f j = { arg max
(xl

t,ul
t,rl

t,xl
t+1

)∈F

|rl
t|}

(ii) Compute Q̂1, Q̂2, · · · , Q̂N from f j by using the fitted
Q iteration algorithm

(iii) f j+1 ← f j∪{ arg max
(xl

t,ul
t,rl

t,xl
t+1

)∈F\fj

(max
k∈{1,2,··· ,N}

|Q̂k(xl
t, u

l
t)−

rl
t − γmax

u∈U
Q̂k−1(x

l
t+1, u)|)}

(iv) If j + 1 = n return f j+1 else j ← j + 1 and go back
to step (ii).

Figure 1: Concise set selection algorithm. The algorithm

takes F as input and outputs a n element concise set.

Will such an algorithm identify concise sets ?

The motivation for the algorithm lies in the expecta-
tion that by growing iteratively the concise set and
by selecting at each iteration the four-tuple associated
with the largest error, the resulting value of ‖ε‖∞ will
be small. This in turn would lead to a tight bound
(11) and, therefore, to a low suboptimality on the pol-
icy computed.

There are of course no guarantees that even if there
exist concise sets leading to small values of ‖ε‖∞, our
algorithm will be able to identify them. However, sim-
ulation results reported in the next section are rather
encouraging.

We may also question whether it is a good strategy
to identify concise sets that lead to a minimization of
‖ε‖∞. Indeed, we are interested in concise sets leading
to policies with high expected returns and by identi-
fying them through a criterion in which the expected
return does not directly intervene, our algorithm may
fall into several pitfalls. For example, we will show in
the next section that when the environment is non-
smooth, there may not exist sets of four-tuples for
which ‖ε‖∞ drops below a certain value which leads
the algorithm to select too many samples alongside the
discontinuities.
Computational burdens. Our main motivation for
selecting concise sets is to lighten the computational
burdens of running the fitted Q iteration algorithm on
the whole set of four-tuples. To analyze the potential
computational benefits of our approach, two aspects
need to be considered: the computation time and the
memory requirements. Obviously, these two aspects
strongly depend on the supervised learning method
considered in the inner loop of the fitted Q iteration
algorithm.

1x(0)0

0

xt

xt + (0, −0.25)

with ut = (0, 0.25)

1

xt + (−0.25, 0) xt + (0.25, 0)

xt+1 = xt + ut

positive

rewards

zero
rewardslarge

rewards

positive
x(1)

0.2

0.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) System dynamics (b) Reward functions

Figure 2: The 2-dimensional maze problem.

Concerning the computation time, we should no-
tice that the concise set selection approach requires
to run the fitted Q iteration algorithm n times with
sets of four-tuples ranging from 1 till n elements and
that after each run, except the last one, the four-tuple
that maximizes ε(xl

t, u
l
l) has to be identified. Gener-

ally speaking, we can say that the computation time
associated with such an approach grows rapidly with
n and will only be lower than the one required to run
fitted Q iteration on F if n is small compared to #F .

The memory gain realized by the concise set selec-
tion approach comes from the lower amount of mem-
ory required to use the supervised learning algorithm
with n element training set rather than a #F element
training set. For some supervised learning methods
like ensemble of regression trees which output a model
whose size grows with the training set, the gain may
be significant.

4 Simulations results

In this section, we evaluate the performances, in
terms of capability to identify concise sets of samples,
of the algorithm discussed in Section 3.
Test problems. Experiments are carried out on the
deterministic 2-dimensional maze problem. Descrip-
tion of the system dynamics is done in Fig. 2a.1 An
object whose coordinates are (x(1), x(2)) travels in a
square and can go either up, down, left or right. Zero
rewards are always observed, except in the upper right
corner of the square and in the bottom left corner. The
decay factor γ is equal to 0.5.

Two different reward functions are considered in our
experiments. One is continuous and the other discon-

1The exact system dynamics is given by the following equa-
tion:

xt+1(i) =

8

>

<

>

:

xt(i) + ut(i) if 0 ≤ xt(i) + ut(i) ≤ 1

1 if xt(i) + ut(i) > 1

0 if xt(i) + ut(i) < 0

∀i = {1, 2}.

1x(0)0

1

0

u = (0.25, 0)
u = (0, 0.25)
u = (−0.25, 0)
u = (0, −0.25)

x(1)

Figure 3: Representation of the optimal control station-

ary policy µ∗ for 2-dimensional maze problem when the

continuous reward function is considered.

tinuous (see Fig. 2). It can be shown that with the
continuous (discontinuous) reward function, the cor-
responding QN -functions are continuous (discontinu-
ous).

Figure 3 sketches the optimal stationary policy cor-
responding to the control problem with continuous re-
ward function. To each point of the set {x ∈ X |∃i, j ∈
N|x = (0.1∗i, 0.1∗j)}, the figure draws control actions
which are optimal ones.
Supervised learning method. In all our experi-
ments, the supervised learning algorithm used inside
fitted Q iteration is an ensemble of regression trees
method named Extra-Trees.2 This algorithm produces
piecewise constant models. Each piece of the model is
a hyperrectangle with each face parallel to all but one
axes of the input space.
Value of N in fitted Q iteration. We have chosen
to carry out ten iterations with the fitted Q iteration
algorithm, i.e. N = 10. The policy chosen to approxi-
mate the optimal stationary policy is therefore µ̂∗

10. A
larger value of N could at best lead to an upper bound

(11) whose value is 2γNBr

(1−γ)2 ' 0.008 tighter.

Generation of the four-tuples. We consider in our
experiments different sets F . The mechanism that
generates these different sets is the same. It considers
one-step episodes with the initial state of each episode
chosen at random in X and adopts as control policy a
totally random policy.
Estimation of ‖ε‖∞ and ‖Jµ∗

−J µ̂∗

N‖∞. To estimate
‖ε‖∞ we compute max

Xtest×U
ε(x, u) where Xtest = {x ∈

X |∃i, j ∈ N|x = (0.02 ∗ i, 0.02 ∗ j)}. Similarly the
estimation of ‖Jµ∗

− J µ̂∗

N ‖∞ is done by computing
max
Xtest

(Jµ∗

(x) − J µ̂∗

N (x)).

2Description of the Extra-Trees algorithm may be found in
[2]. Three parameters are associated to this algorithm: the
number M of trees to build, the number K of candidate tests
at each node and the minimum number of elements to split a
leaf nmin. These parameters values are: M = 50, K is chosen
equal to dimension of the input space which is equal to 4 (X is
a 2-dimensional space and u is described by a pair of values),
nmin = 2 (the trees are fully developed).

Random sets. To assess performances of the concise
sets fn, we compare them with those of sets which are
randomly and uniformly chosen from F . These sets
are referred to as random sets.

About the figures drawn. We explain how to in-
terpret some of the figures drawn hereafter:
- set of four-tuples: several figures (Fig. 4a, Fig 6a
and Fig 6d) draw sets of four-tuples. A four-tuple
(xl

t, u
l
t, r

l
t, x

l
t+1) is represented by a triangle on the

(x(1), x(2)) plane with the center of the triangle being
located at xl

t and the orientation of the triangle giving
information about ul

t with the same convention as the
one adopted in Fig. 3. Since the optimal control prob-
lem is deterministic, rl

t and xl
t+1 can be deduced from

xl
t and ul

t. A white triangle represents an element of
the concise set fn while a black triangle represents an
element of F \ fn.
- policy µ̂∗

10: Figures 4b, 6b and 6e represent policies
µ̂∗

10 computed in various conditions. Orientation of the
triangles gives information about µ̂∗

N (x) with the same
convention as the one adopted in Fig. 3. If for a state
x, the color of the triangle is white, µ̂∗

10(x) 6= µ∗(x).
If it is black, µ̂∗

10(x) = µ∗(x).
- function max

u∈U
ε(x, u): Figures 5, 6c and 6f represent

the function max
u∈U

ε(x, u). These figures give informa-

tion about areas of the state space where the error
function ε is the highest.

4.1 Continuous QN -functions

We consider here the case where the reward func-
tion is continuous. We first use our algorithm to select
a 100 element concise set from a 10, 000 element set.
The set f100 together with the set F \ f 100 are repre-
sented on Fig. 4a. As we observe, many of the four-
tuples are selected in areas of the state space where
the reward function is different from zero. If fitted Q

iteration takes f100 as input, it produces the policy
µ̂∗

10 represented on Fig. 4b. To assess performances
of this concise set, we have compared them with those
obtained by 100 element random sets. For the concise
set, the values of ‖ε‖∞ and ‖Jµ∗

− J µ̂∗

10‖∞ estimated
are respectively equal to 0.490 and 0.399 while they
are equal in average to 1.871 and 1.823 for the random
sets. It is clear that our concise set was indeed able to
lead to a better solution than random sets. It should
however be noticed that if fitted Q iteration had been
combined with F , it would have lead to better values:
0.409 for‖ε‖∞ and 0.199 for ‖Jµ∗

− J µ̂∗

10‖∞.

Table 1 further assesses performances of our algo-
rithm. In the upper part of the table, we report per-
formances of fitted Q iteration when combined with

1x(0)0

1

0

x(1)

1x(0)0

1

0

x(1)

(a) (b)

Figure 4: Figure a draws f100 and F \ f100. Figure b

draws µ̂∗
10 when f100 is used with fitted Q iteration.

some concise sets of various sizes while in the lower
part, average performances of several random sets as
well as performances of F are given. The third column
of the table estimates the value of ‖ε‖∞ and the fourth
column the value of ‖Jµ∗

− J µ̂∗

10‖∞. By analyzing the
content of these columns, we observe that concise sets
lead to much better performances than random sets.
In particular, performances of a 100 element concise
set are better than average performances achieved by
2000 element random sets. These two columns also
show that the upper bound (11) on the suboptimal-
ity of µ̂∗

N is particularly loose. For example, if we
suppose that estimates of ‖ε‖∞ and ‖Jµ∗

− J µ̂∗

10‖∞
are correct, the upper bound on the suboptimality of

the policy is equal to 2(0.5)102+0.409(2−2(0.5)10)
(1−0.5)2 ' 1.6

when 10, 000 four-tuples are considered as input of fit-
ted Q iteration while the actual suboptimality of the
policy is 0.199. Table 1 reports also the maximum
value reached by the error functions over the differ-
ent elements (xl

t, u
l
t). Contrary to the values reported

in columns three and four, these values can be com-
puted from the sole knowledge of F . They give to the
reinforcement learning agent a lower bound on ‖ε‖∞.
Remark that when the 10, 000 four-tuples are taken to
compute Q̂1, Q̂2, · · · , Q̂10, this value drops to zero,
which is due to the fact that since the regression trees
built are fully developed, they perfectly represent ev-
ery training set of the sequence.

On Figs 5a-d we have drawn the function
max
u∈U

ε(x, u) for increasing sizes of fn. We observe that

our algorithm tends to produce an error function con-
stant over the state space and that by increasing the
size of the concise set, the error function tends to de-
crease uniformly everywhere. It is obvious that this
uniform decrease of the error would not have happened
if the different (xl

t, u
l
t) were not covering every area of

the state-action space. These four figures should be
put in comparison with Fig. 5e that draws max

u∈U
ε(x, u)

when a 500 element random set is considered. By not

size
set

max
F

ε(xl
t, u

l
t)

max
Xtest×U

ε(x, u)

max
Xtest

(Jµ∗

−J µ̂∗

10)

50 0.510 0.617 0.599
Concise

sets
100 0.348 0.490 0.399
200 0.245 0.438 0.399
500 0.117 0.439 0.199
1000 0.073 0.450 0.199

Random
sets

(average
values)

50 1.791 1.977 1.939
100 1.652 1.871 1.823
200 1.489 1.707 1.625
500 1.062 1.259 1.330
1000 0.766 1.015 0.903
2000 0.629 0.818 0.679

F 10000 0. 0.409 0.199

Table 1: Performances of different sets.

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

(a) 25 4-tuples,
conc. set

(b) 50 4-tuples,
conc. set

(c) 100 4-tuples,
conc. set

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

(d) 500 4-tuples,
conc. set

(e) 500 4-tuples,
rand. set

(f) 10,000 4-tuples
= F

Figure 5: Function maxu∈Uε(x, u).

selecting four-tuples in areas where the error is the
highest, the error function reaches large values in the
lower left and upper right corner. These values are
even larger than those obtained by considering a 25
element concise set.

4.2 Discontinuous QN -functions

We consider here the case where the reward func-
tion is discontinuous which leads to some discontin-
uous QN -functions. First, we consider a set F com-
posed of 500 elements and select from this 500 four-
tuple set, a 100 element concise set. Figures 6a-c
represent the results obtained. One should note that
the error function reaches large values especially in
the state space areas close to (0, 0) where the re-
ward function is discontinuous. The circular aspect
of the discontinuities together with the fact that the
supervised learning algorithm produces piecewise con-
stant models with each piece being an hyperrectan-
gle, will always lead to a high value of ‖ε‖∞, what-

ever the finite set of four-tuples considered inside the
fitted Q iteration algorithm is. In particular, since
‖ε‖∞ ≥ ‖Q̂1−r(x, u)‖∞ and since the height of largest
discontinuity for the reward function is 2, ‖ε‖∞ will al-
ways at least be greater than 1.

Our algorithm selects four-tuples in areas of the
state space where the error function is the highest.
If when #F = 500, the concise set still contains four-
tuples located in the upper right part of the square
while the error function is greater in the lower left
part, it is because F contains less than 100 four-tuples
located in this lower left part.

Figures 6d-f gather simulation results when #F =
100, 000. We observe now that almost all the four-
tuples of the concise set are located alongside the
largest discontinuity of the reward function and that
the quality of the resulting policy is poor. In particu-
lar, since none of the elements of f 100 gives informa-
tion about the positive rewards that may be obtained
in the upper right part of the state space, the policy
computed tries mainly to drive the point to the lower
left part of the state space.

1x(0)0

1

0

x(1)

1x(0)0

1

0

x(1)

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) (b) (c)

1x(0)0

1

0

x(1)

1x(0)0

1

0

x(1)

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) (e) (f)

Figure 6: Figures a, b and c gather simulation results

when #F = 500. Figure a sketches f100 and F \ f100,

figure b the policy µ̂∗
10 and figure c maxu∈Uε(x, u). Figures

d, e and f reproduce similar results when #F = 100, 000.

5 Conclusions and future work

In this paper, we have proposed an algorithm to
identify concise sets of samples for a reinforcement
learning agent interacting with a deterministic envi-
ronment. This algorithm grows the concise sets it-
eratively. At each iteration, it computes a sequence
of Q̂N -functions from the already selected samples by

using the fitted Q iteration algorithm, associates an
error function to these Q̂N -functions and selects the
sample for which this error function takes its largest
value. We showed through simulations that this algo-
rithm has indeed the potential to identify good concise
sets when the environment is smooth. However, we
also found out that it may run into difficulties when
non-smooth environments are considered. Indeed, in
such cases the algorithm may select too many samples
alongside the discontinuities.

Our primary motivation for selecting concise sets of
samples was to lighten the computational burdens of
running fitted Q iteration on the whole set of samples.
However, we found out that the computation time as-
sociated with our proposed algorithm grows rapidly
with the size of the concise set and may become larger
than the time needed to run fitted Q iteration on the
whole set of samples. We therefore suggest as future
research direction to design faster versions of our al-
gorithm.

Acknowledgments

Damien Ernst gratefully acknowledges the financial
support of the Belgian National Fund of Scientific Re-
search (FNRS).

References

[1] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based
batch mode reinforcement learning. Journal of Ma-

chine Learning Research, 6:503–556, April 2005.

[2] P. Geurts, D. Ernst, and L. Wehenkel. Extremely ran-
domized trees. Submitted.

[3] L. Grüne and W. Semmler. Using dynamic program-
ming with adaptive grid scheme for optimal control
problems in economics. Journal of Economics Dynam-

ics and Control, 28:2427–2456, 2004.

[4] D.D. Lewis and J. Catlett. Heterogeonous uncertainty
sampling for supervised learning. In Proceedings of the

Eleventh International Conference on Machine Learn-

ing, pages 148–156, San Francisco, CA, 1994. Morgan
Kaufman.

[5] R. Munos and A. Moore. Variable resolution discretiza-
tion in optimal control. Machine Learning, 49:291–323,
2002.

[6] D. Ormoneit and S. Sen. Kernel-based reinforcement
learning. Machine Learning, 49(2-3):161–178, 2002.

[7] M. Plutowski and H. White. Selecting concise training
sets from clean data. IEEE Transactions on Neural

Networks, 4(2):305–318, March 1993.

