Factors influencing multiple imputation in longitudinal ordinal data

Anne-Francoise DONNEAU

Medical Informatics and Biostatistics University of Liège

Annual meeting SBS-BVS Liège, 25 October 2012

Outline of the presentation

- ► Introduction
- Multiple imputation (MI-GEE)
 Monotone
 Non-monotone
- ► Simulation plan
- ► Results

Monotone Non-monotone

► Conclusions

Units: Subjects, objects $(i = 1, \dots, N)$

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable *Y* with *K* levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $X_i = (x_{i1}, \dots, x_{iT})'$

Time, gender, age ...

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $X_i = (x_{i1}, \dots, x_{iT})'$

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \dots, \mathbf{x_{iT}})'$

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data

Generalized estimating equations (GEE)

Units: Subjects, objects $(i = 1, \dots, N)$

Outcome: Ordinal variable Y with K levels

Measurement: Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \dots, \mathbf{x_{iT}})'$

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data

Generalized estimating equations (GEE)

Problem: Missing data

Subjects, objects $(i = 1, \dots, N)$ **Units:**

Ordinal variable Y with K levels Outcome:

Repeated at T time points, $\mathbf{Y_i} = (Y_{i1}, \dots, Y_{iT})'$ Measurement:

Covariates: $T \times p$ covariates matrix $\mathbf{X_i} = (\mathbf{x_{i1}}, \cdots, \mathbf{x_{iT}})'$

Time, gender, age ...

Methods: Methods for Non-Gaussian Longitudinal Data

Generalized estimating equations (GEE)

Problem: Missing data

Solution Use Multiple Imputation (MI) as a preliminary step

Idea Replace each missing value by a set of M>1 plausible values drawn from conditional distribution of unobserved values given observed ones

Idea Replace each missing value by a set of M>1 plausible values drawn from conditional distribution of unobserved values given observed ones

How

- 1. Imputation stage $Y_{ij}^{mis} \Rightarrow Y_{ij}^{1}, \cdots, Y_{ij}^{M}$
- 2. Analysis stage Analyze the M completed datasets using GEE

$$\left(\hat{eta}^{m}, \hat{var}(\hat{eta}^{m})\right), m=1,\cdots,M$$

3. Pooling stage - Combination of the M results

$$\hat{\boldsymbol{\beta}}^* = \frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\beta}}_m \quad \mathbf{T} = \mathbf{W} + \left(1 + \frac{1}{M}\right) \mathbf{B}$$

where $\mathbf{W} = \frac{1}{M} \sum_{m=1}^{M} v \hat{a} r(\hat{\boldsymbol{\beta}}^m)$ and $\mathbf{B} = \frac{1}{M-1} \sum_{m=1}^{M} (\hat{\boldsymbol{\beta}}_m - \hat{\boldsymbol{\beta}}^*) (\hat{\boldsymbol{\beta}}_m - \hat{\boldsymbol{\beta}}^*)'$

Idea Replace each missing value by a set of M>1 plausible values drawn from conditional distribution of unobserved values given observed ones

How

- 1. Imputation stage $Y_{ij}^{mis} \Rightarrow Y_{ij}^{1}, \cdots, Y_{ij}^{M}$
- 2. Analysis stage Analyze the M completed datasets using GEE

$$\left(\hat{eta}^{m}, \hat{var}(\hat{eta}^{m})\right), m=1,\cdots,M$$

3. Pooling stage - Combination of the M results

$$\hat{\boldsymbol{\beta}}^* = \frac{1}{M} \sum_{m=1}^{M} \hat{\boldsymbol{\beta}}_m \quad \mathbf{T} = \mathbf{W} + \left(1 + \frac{1}{M}\right) \mathbf{B}$$

where $\mathbf{W} = \frac{1}{M} \sum_{m=1}^{M} v \hat{a} r(\hat{\beta}^m)$ and $\mathbf{B} = \frac{1}{M-1} \sum_{m=1}^{M} (\hat{\beta}_m - \hat{\beta}^*) (\hat{\beta}_m - \hat{\beta}^*)'$

Let θ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{mis}|\mathbf{Y}^o,\theta)$.

Let θ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{mis}|\mathbf{Y}^o,\hat{\boldsymbol{\theta}})$.

Let θ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{mis}|\mathbf{Y}^o,\hat{\boldsymbol{\theta}})$.

Imputation mechanisms based on :

Let θ represents the parameter vector of the distribution of the response \mathbf{Y} . The idea is to impute missing data using $f(\mathbf{Y}^{mis}|\mathbf{Y}^o,\hat{\boldsymbol{\theta}})$.

Imputation mechanisms based on:

- Multivariate Normal Imputation (MNI)
- Ordinal (logistic regression) Imputation Model (OIM)

Assuming data from a multivariate Normal distribution, use an iterative imputation method inspired from MCMC (Schafer, 1997).

Assuming data from a multivariate Normal distribution, use an iterative imputation method inspired from MCMC (Schafer, 1997).

- 1. **I-step** Given starting values for the mean and the covariance matrix, $\hat{\theta}_{(0)}$, values for \mathbf{Y}^{mis} are simulated by randomly drawing a value from $f(\mathbf{Y}^{mis}|\mathbf{Y}^{o},\hat{\theta}_{(0)})$, a multivariate Normal distribution.
- 2. **P-step** New value for the mean and the covariance , $\hat{\theta}_{(j)}$, are simulated by drawing from their posterior distribution.

Both steps are iterated long enough to provide a stationary Markov chain $(\mathbf{Y}_{(1)}^{mis}, \boldsymbol{\theta}_{(1)}), (\mathbf{Y}_{(2)}^{mis}, \boldsymbol{\theta}_{(2)}), \cdots$. The last iteration is used to impute \mathbf{Y}^{mis} in the dataset.

Repeat to obtain M sets of imputed values.

Assuming data from a multivariate Normal distribution, use an iterative imputation method inspired from MCMC (Schafer, 1997).

- 1. **I-step** Given starting values for the mean and the covariance matrix, $\hat{\theta}_{(0)}$, values for \mathbf{Y}^{mis} are simulated by randomly drawing a value from $f(\mathbf{Y}^{mis}|\mathbf{Y}^{o},\hat{\theta}_{(0)})$, a multivariate Normal distribution.
- 2. **P-step** New value for the mean and the covariance , $\hat{\theta}_{(j)}$, are simulated by drawing from their posterior distribution.

Both steps are iterated long enough to provide a stationary Markov chain $(\mathbf{Y}_{(1)}^{mis}, \boldsymbol{\theta}_{(1)}), (\mathbf{Y}_{(2)}^{mis}, \boldsymbol{\theta}_{(2)}), \cdots$. The last iteration is used to impute \mathbf{Y}^{mis} in the dataset.

Repeat to obtain M sets of imputed values.

Problem when applied to ordinal data

- ► Normality assumption fails
- \blacktriangleright Imputed values are no longer integers between 1 and $K \to \text{rounding}$

Imputation methods - OIM

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include X_{ii} , possible auxiliary covariates A_{ii} , and the previous outcomes $\mathbf{Y}_{ij} = (Y_{i1}, ..., Y_{i,j-1}).$

Ordinal imputation model:

$$logit[Pr(Y_{ij} \le k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{\mathbf{\Gamma}} = (\gamma_0', \gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}'_{hi}\mathbf{Z}$$

where \mathbf{V}_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and \mathbf{Z} is a [(K-1)+q]-vector of independent random Normal variates.

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{\mathbf{\Gamma}}=(\gamma_0',\gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}_{hi}'\mathbf{Z}$$

where \mathbf{V}_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and \mathbf{Z} is a [(K-1)+q]-vector of independent random Normal variates.

2. For each missing observation, Y_{ij}^{mis} , compute the expected probabilities $\pi_k = P[Y_{ij}^{mis} = k | \mathbf{x}_{ij}^*]$ (k = 1, ..., K), using (Eq. 1)

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{\mathbf{\Gamma}}=(\gamma_0',\gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}_{hi}'\mathbf{Z}$$

where \mathbf{V}_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\mathbf{\Gamma}})$ and \mathbf{Z} is a [(K-1)+q]-vector of independent random Normal variates.

- 2. For each missing observation, Y_{ij}^{mis} , compute the expected probabilities $\pi_k = P[Y_{ii}^{mis} = k | \mathbf{x}_{ii}^*]$ (k = 1, ..., K), using (Eq. 1)
- 3. Draw a random variate from a multinomial distribution with probabilities derived in step 2.

Ordinal imputation model:

$$logit[Pr(Y_{ij} \leq k)|\mathbf{x}_{ij}^*] = \gamma_{0k} + \mathbf{x'}_{ij}^* \gamma$$
 (1)

where the covariates typically include \mathbf{X}_{ij} , possible auxiliary covariates \mathbf{A}_{ij} , and the previous outcomes $\tilde{\mathbf{Y}}_{ij} = (Y_{i1}, ..., Y_{i,j-1})$.

1. Draw new values for parameters $\hat{\mathbf{\Gamma}}=(\gamma_0',\gamma')'$,

$$\mathbf{\Gamma}^* = \hat{\mathbf{\Gamma}} + \mathbf{V}'_{hi}\mathbf{Z}$$

where V_{hi} is the upper triangular matrix of the Cholesky decomposition of $V(\hat{\Gamma})$ and Z is a [(K-1)+q]-vector of independent random Normal variates.

- 2. For each missing observation, Y_{ij}^{mis} , compute the expected probabilities $\pi_k = P[Y_{ii}^{mis} = k | \mathbf{x}_{ii}^*]$ (k = 1, ..., K), using (Eq. 1)
- 3. Draw a random variate from a multinomial distribution with probabilities derived in step 2.

Application of OIM depends on the missingness pattern.

Imputation methods - OIM - Monotone

\overline{X}	Y_1		Y_{i-1}	Y_i	Y_{i+1}		X	<i>Y</i> ₁		Y_{i-1}	Y_i	Y_{i+1}
0	0		Ö	Ó	0		0	0		Ô	Ŏ	O
0	0		0	0	Ο		0	0		0	0	Ο
0	0		0	0	М	$\xrightarrow{\text{sequential}}$	0	0		0	0	1
0	0		0	М	М		0	0		0	ı	I
0	Μ		М	M	M		Ο	- 1		1	- 1	1
0 =	= obse	rved -	M = mi	ssing			0 =	= obse	rved -	I = imp	uted	

In this way, the part of the dataset used to impute Y_j is only composed of observed values for all previous variables (Y_1, \dots, Y_{j-1}) . So, $\hat{\mathbf{\Gamma}}_j$ do not depend on any previous imputed values, which means that $\hat{\mathbf{\Gamma}}_j$ is independent of $\hat{\mathbf{\Gamma}}_1, \dots, \hat{\mathbf{\Gamma}}_{j-1}$, monotone-distinct structure (Rubin, 1987).

Imputation methods - OIM - Monotone

\overline{X}	<i>Y</i> ₁	•••	Y_{i-1}	Y_i	Y_{i+1}		X	<i>Y</i> ₁		Y_{i-1}	Y_i	Y_{i+1}
0	0		Ö	Ó	0		0	0		Ö	Ŏ	0
0	0		0	0	Ο		0	0		0	0	0
0	0		0	0	М	$\xrightarrow{\text{sequential}}$	0	0		0	0	I
0	0		0	М	М	0	0	0		0	ı	1
0	M		М	M	M		0	I		1	- 1	1
0 =	obse	rved -	M = mi	ssing			O =	obse -	rved -	I = impi	uted	

In this way, the part of the dataset used to impute Y_j is only composed of observed values for all previous variables (Y_1, \cdots, Y_{j-1}) . So, $\hat{\mathbf{\Gamma}}_j$ do not depend on any previous imputed values, which means that $\hat{\mathbf{\Gamma}}_j$ is independent of $\hat{\mathbf{\Gamma}}_1, \cdots, \hat{\mathbf{\Gamma}}_{j-1}$, monotone-distinct structure (Rubin, 1987).

In a monotone missingness dataset, OIM can be sequentially applied from the left to the right of the dataset.

Imputation methods - OIM - Monotone

X	<i>Y</i> ₁		Y_{i-1}	Y_i	Y_{i+1}		X	<i>Y</i> ₁		Y_{i-1}	Y_i	Y_{i+1}
0	0		Ó	Ő	Ö		0	0		Ô	Ó	O
0	0		0	0	0		0	0		0	0	0
0	0		0	0	М	$\xrightarrow{sequential}$ OIM	0	0		0	0	1
0	0		0	М	M		0	0		0	ı	- 1
0	Μ		М	M	M		0	1		1	- 1	1
0 =	= obse	rved -	M = mi	ssing			0 =	- obse	rved -	I = impi	uted	

In this way, the part of the dataset used to impute Y_j is only composed of observed values for all previous variables (Y_1, \cdots, Y_{j-1}) . So, $\hat{\mathbf{\Gamma}}_j$ do not depend on any previous imputed values, which means that $\hat{\mathbf{\Gamma}}_j$ is independent of $\hat{\mathbf{\Gamma}}_1, \cdots, \hat{\mathbf{\Gamma}}_{j-1}$, monotone-distinct structure (Rubin, 1987).

In a monotone missingness dataset, OIM can be sequentially applied from the left to the right of the dataset.

Repeat to obtain M sets of imputed values.

Imputation methods - OIM - Non-Monotone

X	<i>Y</i> ₁		Y_{i-1}	Y_i	Y_{i+1}		X	<i>Y</i> ₁		Y_{i-1}	Y_i	Y_{i+1}
0	0		M	Ŏ	M		0	0		ĺ	Ŏ	Ī
0	М		0	0	0		0	0		0	0	0
Ο	М		М	М	0	$\xrightarrow{sequential}$ OIM	Ο	1		1	1	0
0	0		Ο	М	M	Olivi	0	0		Ο	ı	- 1
0	М		М	0	0		0	- 1		1	0	0
<u> </u>	ohse	rved -	M = mi	ssing			<u> </u>	- obse	rved -	I = imni	uted	

In this way, the part of the dataset used to impute Y_j may be composed of observed and imputed values. So, $\hat{\Gamma}_j$ are derived using previous imputed values and are therefore dependent on $\hat{\Gamma}_1, \dots, \hat{\Gamma}_{j-1}$.

Imputation methods - OIM - Non-Monotone

X	<i>Y</i> ₁		Y_{j-1}	Y_{j}	Y_{j+1}		X	Y_1		Y_{j-1}	Y_{j}	Y_{j+1}
0	0		M	Ö	M		0	0		Ī	Ö	Ī
0	М	• • •	0	0	Ο		0	0	• • •	0	0	Ο
Ο	М		М	М	0	sequential	Ο	I		1	1	0
0	0		0	М	M	Olivi	Ο	0		0	ı	1
0	М		М	0	Ο		0	- 1		- 1	0	0
Ω =	= obse	rved -	M = mi	ssing			Ω =	= obse	rved -	I = imp	uted	

In this way, the part of the dataset used to impute Y_j is may be composed of observed and imputed values. So, $\hat{\Gamma}_j$ are derived using previous imputed values and are then dependent on $\hat{\Gamma}_1, \dots, \hat{\Gamma}_{j-1}$.

Imputation methods - OIM - Non-Monotone

\overline{X}	<i>Y</i> ₁		Y_{j-1}	Y_{j}	Y_{j+1}		X	<i>Y</i> ₁		Y_{j-1}	Y_{j}	Y_{j+1}
0	0		M	Ö	M		0	0		İ	Ö	Ī
0	М	• • •	0	0	0		0	0	• • •	0	0	Ο
0	М		М	М	Ο	Sequential	Ο	I		I	1	0
0	0		0	М	M	Olivi	Ο	0		Ο	ı	1
0	М		М	0	0		0	ı		I	0	0
O = observed - M = missing O = observed - I = imputed												

In this way, the part of the dataset used to impute Y_j is may be composed of observed and imputed values. So, $\hat{\Gamma}_j$ are derived using previous imputed values and are then dependent on $\hat{\Gamma}_1, \dots, \hat{\Gamma}_{j-1}$.

⇒ Fully conditional specification (FCS, (Van Buuren, 2006)) using OIM.

Imputation methods - FCS based OIM

Idea Impute the data iteratively variable-by-variable using a separate imputation model for each variable (ordinal logistic regression)

Imputation methods - FCS based OIM

Idea Impute the data iteratively variable-by-variable using a separate imputation model for each variable (ordinal logistic regression)

Filled-in phase: all missing values are filled in Imputation phase

- The OIM process is sequentially applied on the 'filled-in' dataset through all variables with initial missing values
- ➤ To stabilize the results (independence of initial values), the sequential imputation of the dataset is iterated.

Imputation methods - FCS based OIM

Idea Impute the data iteratively variable-by-variable using a separate imputation model for each variable (ordinal logistic regression)

Filled-in phase: all missing values are filled in Imputation phase

- ► The OIM process is sequentially applied on the 'filled-in' dataset through all variables with initial missing values
- ► To stabilize the results (independence of initial values), the sequential imputation of the dataset is iterated.

Repeat to obtain M sets of imputed values.

Simulation plan

Longitudinal ordinal data model:

$$\mathsf{logit}[\mathsf{Pr}(Y_{ij} \leq k | x_i, t_j)] = \beta_{0k} + \beta_x x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \cdots K - 1)$$

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction term between group and time.

Simulation plan

Longitudinal ordinal data model:

$$logit[Pr(Y_{ij} \leq k|x_i, t_j)] = \beta_{0k} + \beta_x x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \dots K - 1)$$

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction term between group and time.

MAR missingness generation: monotone

logit[Pr(
$$Drop_i = j | x_i, Y_{i,(j-1)}$$
)] = $\psi_0 + \psi_x x_i + \psi_{prev} Y_{i,(j-1)}$

Simulation plan

Longitudinal ordinal data model:

$$\mathsf{logit}[\mathsf{Pr}(Y_{ij} \leq k | x_i, t_j)] = \beta_{0k} + \beta_x x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \cdots K - 1)$$

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction term between group and time.

MAR missingness generation: non-monotone

$$\mathsf{logit}[\mathsf{Pr}(\mathit{missing}_i = j | x_i, Y_{i,(j-1)})] = \psi_0 + \psi_x x_i + \psi_{\mathit{prev}} Y_{i,(j-1)}$$

Simulation plan

Longitudinal ordinal data model:

$$logit[Pr(Y_{ij} \leq k|x_i, t_j)] = \beta_{0k} + \beta_x x_i + \beta_t t_j + \beta_{tx} x_i t_j \quad (k = 1, \dots K - 1)$$

with a binary group effect (x = 0 or 1), an assessment time (t) and an interaction term between group and time.

MAR missingness generation: non-monotone

$$\mathsf{logit}[\mathsf{Pr}(\mathit{missing}_i = j | x_i, Y_{i,(j-1)})] = \psi_0 + \psi_x x_i + \psi_{\mathit{prev}} Y_{i,(j-1)}$$

Model simulation parameters (Well-balanced data):

K = 2, 3, 4, 5 and 7

T = 3, 5

N = 100, 300, 500

Missingness = 10%, 30%, 50%

 \rightarrow 90 different combination patterns. For each pattern, 500 random samples were generated.

Simulation results - monotone

Relative bias (%)

Relative bias (Mean \pm SD)

		- /	
	MNI	OIM	Difference
β_x	89.4 ± 13.1	99.5 ± 15.5	-10.1 ± 8.91
β_{t}	84.6 ± 10.4	100.9 ± 8.95	-16.4 ± 9.58
β_{tx}	90.6 ± 5.73	99.7 ± 5.37	-9.10 ± 4.60

Simulation results - monotone

Relative bias (%)

Relative bias (Mean \pm SD)

	,	,	
	MNI	OIM	Difference
β_{x}	89.4 ± 13.1	99.5 ± 15.5	-10.1 ± 8.91
β_{t}	84.6 ± 10.4	100.9 ± 8.95	-16.4 ± 9.58
β_{tx}	90.6 ± 5.73	99.7 ± 5.37	-9.10 ± 4.60

Mean square error (MSE): similar for MNI and OIM.

Simulation results - monotone

Relative bias (%)

Relative bias (Mean \pm SD)

	,	,	
	MNI	OIM	Difference
β_{x}	89.4 ± 13.1	99.5 ± 15.5	-10.1 ± 8.91
β_t	84.6 ± 10.4	100.9 ± 8.95	-16.4 ± 9.58
β_{tx}	90.6 ± 5.73	99.7 ± 5.37	-9.10 ± 4.60

Mean square error (MSE): similar for MNI and OIM.

Number of levels K

K	MNI	OIM	Difference
2	92.9 ± 5.18	101.2 ± 2.93	-8.35 ± 4.29
3	94.1 ± 2.98	103.4 ± 4.23	-9.35 ± 4.34
4	88.0 ± 6.71	99.1 ± 6.05	-11.1 \pm 4.66
5	89.1 ± 5.36	99.5 ± 3.09	-10.4 ± 4.70
7	88.7 ± 5.56	95.0 ± 6.12	-6.34 ± 3.87
	< 0.0001	< 0.0001	0.034

Number of levels K

K	MNI	OIM	Difference
2	92.9 ± 5.18	101.2 ± 2.93	-8.35 ± 4.29
3	94.1 ± 2.98	103.4 ± 4.23	-9.35 ± 4.34
4	88.0 ± 6.71	99.1 ± 6.05	-11.1 \pm 4.66
5	89.1 ± 5.36	99.5 ± 3.09	-10.4 ± 4.70
7	88.7 ± 5.56	95.0 ± 6.12	-6.34 ± 3.87
	< 0.0001	< 0.0001	0.034

Number of time points T

T	MNI	OIM	Difference
3	91.7 ± 5.82	100.9 ± 5.34	-9.26 ± 4.73
5	89.4 ± 5.47	98.4 ± 5.14	-8.94 ± 4.51
	0.007	0.009	0.61

Sample size

N	MNI	OIM	Difference
100	90.5 ± 6.60	97.7 ± 6.73	-7.22 ± 4.18
300	90.9 ± 5.37	100.8 ± 4.77	-9.88 ± 4.48
500	90.2 ± 5.29	100.4 ± 3.85	-10.2 ± 4.67
	0.74	0.027	0.0002

Sample size

N	MNI	OIM	Difference
100	90.5 ± 6.60	97.7 ± 6.73	-7.22 ± 4.18
300	90.9 ± 5.37	100.8 ± 4.77	-9.88 ± 4.48
500	90.2 ± 5.29	100.4 ± 3.85	-10.2 ± 4.67
	0.74	0.027	0.0002

Rate of missingness

Missingness	MNI	OIM	Difference
10%	95.4 ± 2.65	100.1 ± 2.47	-4.64 ± 0.94
30%	89.9 ± 3.23	99.9 ± 3.57	-9.94 ± 2.21
50%	86.3 ± 6.29	99.0 ± 8.31	-12.7 ± 4.92
	< 0.0001	0.37	< 0.0001

- ► MNI yields highly underestimated model parameters
- ▶ The estimates derived under the OIM method are almost unbiased.

- ► MNI yields highly underestimated model parameters
- ▶ The estimates derived under the OIM method are almost unbiased.

			K	Ν	T	Missingness
	β_x	MNI			\uparrow	
		OIM	\uparrow	\downarrow	\uparrow	
	β_t	MNI	↑			†
>	/~ £	OIM	†	\downarrow	\uparrow	ı
	Q	MANII	.		.	*
	β_{tx}	MNI				T
		OIM	\uparrow	\downarrow	\uparrow	
	ΛΛ	امدنامما	.: :.			

- Absolute bias increases
- ↓ Absolute bias decreases

Relative bias

- ► MNI yields highly underestimated model parameters
- ▶ The estimates derived under the OIM method are almost unbiased.

			K	Ν	T	Missingness
	β_x	MNI			\uparrow	
		OIM	\uparrow	\downarrow	\uparrow	
	β_t	MNI				†
>	ρτ	OIM	†	\downarrow	\uparrow	ı
	$\beta_{\sf tx}$	MNI	\uparrow		\uparrow	↑
		OIM	\uparrow	\downarrow	\uparrow	
	↑ Ab	solute l	nias i	ncrea	ses	

- ↓ Absolute bias decreases

MSE

MNI and OIM were similar

Relative bias (%)

Relative bias (Mean \pm SD)

	,	,	
	MNI	FCS OIM	Difference
β_{x}	98.8 ± 16.2	102.6 ± 15.0	-3.82 ± 3.87
β_t	90.4 ± 14.1	98.9 ± 8.82	-8.50 ± 6.89
$\beta_{\sf tx}$	95.1 ± 7.51	99.4 ± 6.13	-4.32 ± 2.74

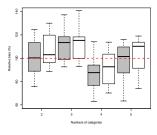
Relative bias (%)

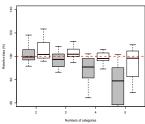
Relative bias (Mean \pm SD)

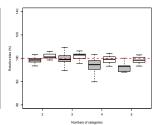
	MNI	FCS OIM	Difference
β_x	98.8 ± 16.2	102.6 ± 15.0	-3.82 ± 3.87
β_{t}	90.4 ± 14.1	98.9 ± 8.82	-8.50 ± 6.89
β_{tx}	95.1 ± 7.51	99.4 ± 6.13	-4.32 ± 2.74

Mean square error (MSE): similar for MNI and FCS OIM.

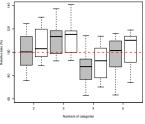
Number of levels K

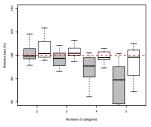


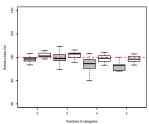




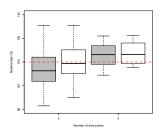
Number of levels K

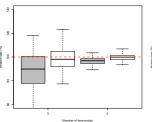


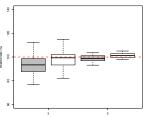




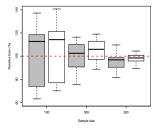
Number of time points T

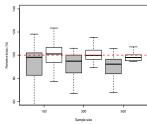


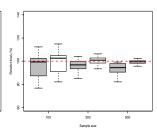




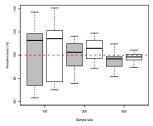
Sample size

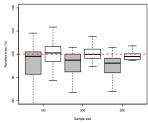


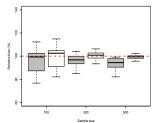




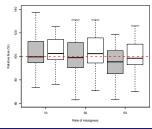
Sample size

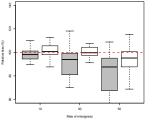


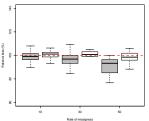




Rate of missingness







- ► MNI yields underestimated model parameters
- ▶ The estimates derived under the FCS OIM method are almost unbiased.

- ► MNI yields underestimated model parameters
- ▶ The estimates derived under the FCS OIM method are almost unbiased.
- ► The difference between the two imputation methods is however small

- ► MNI yields underestimated model parameters
- ▶ The estimates derived under the FCS OIM method are almost unbiased.
- ► The difference between the two imputation methods is however small
- The effects of simulation parameters on the RB are similar than those found for the monotone case.

Relative bias

- ► MNI yields underestimated model parameters
- ► The estimates derived under the FCS OIM method are almost unbiased.
- ► The difference between the two imputation methods is however small
- The effects of simulation parameters on the RB are similar than those found for the monotone case.

MSE

► MNI and FCS OIM were similar

Conclusion - General

Monotone: Advisable to impute missing ordinal data using appropriate method.

Conclusion - General

Monotone: Advisable to impute missing ordinal data using appropriate method.

Non-monotone: No great differences were observed between the two methods (To be confirmed).

Thank you.