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Abstract–An approach to modal analysis and modal identi-
fication is proposed, capable of complementing the panoply
of existing methods. It is based on a hybrid time-domain
– direct transient stability method called SIME (for SIngle
Machine Equivalent). In short, SIME uses a conventional
transient stability program to transform the time varying
parameters of the system into those of a one-machine infi-
nite bus (OMIB) equivalent system. The representations of
this OMIB allow substantial reduction of the original prob-
lem’s dimensionality. Many important advantages may re-
sult. For example, the multimachine system unstable equi-
librium point (UEP) can readily be derived from the OMIB
UEP, which is calculated analytically and unambiguously in a
two-dimensional space. Further, the interplay between mul-
timachine and OMIB characteristics and their complemen-
tary properties provides a better understanding and handling
of damping, inter-area oscillations and their control. More
generally, modal analysis and modal identification tasks get
closer to each other and easier to handle. The paper essen-
tially focuses on the approach as such rather than on potential
applications. Simulations carried out on a 3-machine system
illustrate main features.

Index Terms–modal analysis; model identification; transient
stability control; preventive control; damping; oscillations.

1 INTRODUCTION

Power system angle stability covers two aspects: small-signal
(small-disturbance) stability and transient (large-disturbance) sta-
bility. An important issue common to both aspects is power sys-
tem oscillations. Their study encompasses modal analysis and
modal identification [1].

Modal analysis of angle stability deals with the determination
of the characteristic modes of a system model linearized about its
stable or unstable equilibrium points (SEP or UEP). It mainly con-
sists of computing eigenvalues, eigenvectors, participation fac-
tors, and the like. In particular, analysis of these quantities al-
lows uncovering the participation (natural modes of oscillation)
of the various machines losing synchronism, as for example in an
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inter-area mode oscillation [2]. While post-disturbance SEPs are
generally easy to determine, computation of UEPs has long been
considered as a problematic task [3,4]. Modal identification, on
the other hand, involves the determination of characteristic modes
from large-disturbance dynamic behavior obtained via transient
stability simulations.

The approach proposed in this paper relies on the hybrid tran-
sient stability method called SIME (for SIngle Machine Equiva-
lent). In short, SIME uses a numerical program to get the sys-
tem time varying parameters and to transform them into those of
a one-machine infinite bus (OMIB) equivalent system, suitably
defined. By refreshing the OMIB parameters at each time-step
of the program along the post-disturbance trajectory, SIME pro-
vides an accurate picture of the multimachine system trajectory.
Besides, the equal-area criterion determines analytically neces-
sary and sufficient borderline (in)stability conditions in a two-
dimensional space, and corresponding conditions in the multima-
chine space. The coordinates of “SIME’s UEP” are by construc-
tion close to the multimachine system UEP. Hence, using them
as starting conditions makes the minimization procedure search
significantly easier and faster [5].

Further, comparing modal analysis performed about SIME’s
and system’s UEPs provides interesting results. Stabilization pro-
cedures relying on participation factors and on SIME are also
worth comparing.

The proposed approach is general and free from any restric-
tions regarding power system modeling and size, contingency sce-
nario or type of instability (first- or multi-swing, etc). It can there-
fore yield easy sensitivity analyses, for example of the influence
of various parameters (e.g. damping) on system stability.

The modal analysis and modal identification approaches pro-
posed in this paper are different from the existing conventional
ones. It is expected that they will provide additional insight into
an old but timely problem and new means of tackling it.

2 FUNDAMENTALS OF SIME

2.1 Notation

All symbols are fully defined at the place where they are first
introduced. Some of the more frequently used ones are collected
below.

CCT Critical Clearing Time
CM Critical Machine
CT Clearing Time
NM Non-critical Machine
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OMIB One-Machine Infinite Bus
Pe ; Pm respectively OMIB electrical output power

and mechanical input power
Pa OMIB accelerating power:Pa = Pm � Pe
SEP Stable Equilibrium Point
SIME SIngle Machine Equivalent
UEP Unstable Equilibrium Point
Ær OMIB “return” angle, i.e., OMIB maximum

angular deviation on a stable trajectory
Æu OMIB unstable angle
tr “return” time, i.e. time to (reach) stability conditions,

i.e. to reachÆr
tu time to (reach) instability conditions, i.e. to reachÆu

2.2 Foundations

The multimachine power system parameters provided by a
time-domain program are transformed into those of a one-
machine infinite bus (OMIB) system, and refreshed at each time
step of the program. Further, at each time step, the stability of the
OMIB is explored by the Equal Area Criterion (EAC); the proce-
dure is stopped as soon as the (in)stability conditions of the EAC
are reached (see below).

More precisely, after a contingency inception and its clearance,
SIME drives a time-domain program so as to accomplish the fol-
lowing tasks: identify the critical and non critical machines and
aggregate them into two groups; replace these groups by succes-
sively a two-machine, then an OMIB equivalent system; assess
transient stability of this OMIB, using the EAC [6]. The various
steps of the method are briefly described below and illustrated in
Figs 1 drawn for the 3-machine system simulated in Section 5.
For more details about SIME, see [7].
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Fig. 1. Swing curves and OMIBP�Æ representation of the
3-machine system considered in Section 5. Contingency#2;

CCT = 334 ms ; CT = 335 ms

2.3 Identification of the critical machines (CMs)

By definition, the critical machines are those which cause the
system loss of synchronism. To identify them, SIME drives the
time-domain (T-D) transient stability program, and, as soon as
the system enters the post-fault phase, it starts considering a
few candidate decomposition patterns, by: (i) sorting the ma-
chines according to their rotor angles; (ii) identifying the very
first largest rotor angular deviations (“distances”) between adja-
cent machines; (iii) considering as candidate CMs those which
are above each one of the (say, 5) largest distances. The procedure
is carried out until a candidate group of CMs and corresponding
OMIB reaches the unstable conditions (3) defined below. It is

then declared to be the critical OMIB of concern or simply the
OMIB1.

2.4 OMIB parameters, margins and by-products

The OMIB parameters Æ ; ! ; M ; Pm ; Pe are computed
from the corresponding individual machines parameters, using
the concept of partial center of angle. On the other hand, the
EAC states that the stabiltiy margin is the excess of the deceler-
ating area over the accelerating area (Fig. 1b). Accordingly, the
following analytical expressions for unstable and stable margins
are derived:

�u = �
1

2
M!

2

u (1)

�st =

Z Æu

Ær

jPaj dÆ : (2)

In these expressions,

� Pa is the accelerating power:Pa = Pm � Pe ,

� subscriptu (for unstable) refers to the angleÆu , speed!u ,
and time tu when the OMIB instability conditions are met:

Pa(tu) = 0 ; _Pa(tu) > 0 (3)

� subscript r (for return) refers to the “return” angleÆr and
time tr where Æ starts decreasing and! vanishes (OMIB
stability conditions):

!(tr) = 0 ; Pa(tr) < 0 : (4)

Figs 1 illustrate SIME in an unstable case.

2.5 Stabilization

According to SIME, stabilizing an unstable contingency sce-
nario consists of cancelling out its (negative) margin. According
to EAC, in terms of the OMIB parameters, this corresponds to
decreasing the OMIB mechanical power, see Fig. 1b (unless the
instability is of the back-swing type, for which the OMIB me-
chanical power should be increased). The application of the EAC
can guide effectively the search of the amount,�Pm , needed to
cancel out the margin.

In terms of the multimachine system parameters, it can be
shown that, in turn,

�Pm = �PC = ��PN (5)

wherePC (respectivelyPN ) stands for generation power of the
CMs (respectively of the NMs) [7].

In other words, SIME determines how much generation to shift
from CMs to NMs. Further, to determine how to report the total

1Note that the above criterion for identifying the CMs and correspond-
ing OMIB obeys the necessary and sufficient conditions derived from
EAC and expressed by (3). This unambiguous identification of the CMs is
a major advantage of hybrid one-machine equivalent methods over hybrid
multimachine methods. Besides, the criterion is free from any pragmatic
consideration, unlike T-D methods which call upon pragmatic criteria to
detect instability. Finally, the procedure is computationally very little de-
manding: it involves very unexpensive computations and, in addition, it
allows saving number and duration of T-D simulations.



generation decrease,�PC , on the various CMs, SIME may in-
voke the “degree of criticality” of each CM. For thei-th CM,
this latter is considered to be proportional to its inertia,Hi , and
to its “electrical distance”,di , measuring its angular deviation
with respect to a reference (for example, with respect to the most
advanced NM), assessed attu . It thus comes:

�PCi
�PCk

=
Hidi

Hkdk
; �PC =

X
i2=C

�PCi (6)

3 CONVENTIONAL SMALL-SIGNAL ANALYSIS

3.1 Fundamentals of modal analysis [1, 8, 9]

The non-linear model describing the dynamics of a power sys-
tem comprises a set of differential and algebraic equations:

_x = f (x;y) (7)

0 = g (x;y) (8)

where x and y are the vectors of state variables and algebraic
variables, respectively.

A conventional modal analysis is performed by linearizing the
system equations (7) about an equilibrium point,xo , defined by:

_xo = f(xo) = 0: (9)

Small disturbances aroundxo can then be described by

� _x = A�x (10)

whereA is the system state matrix defined by

A = [Aij] =

"
@fi

@xj

����
x=xo

#
: (11)

3.2 Modal analysis performance measures

The characteristic modes of eq. (10) have the general form

'i e
�it (12)

where 'i is the characteristic vector (or right eigenvector) and
�i is the corresponding eigenvalue. Eigenvalues are solutions of
the characteristic equation

det (A� �I) = 0 ; (13)

and the right eigenvectors are column vectors satisfying

A'i = �i'i : (14)

The right eigenvector associated with each mode defines the
relative distribution of the mode throughout the system dynamic
states.

On the other hand, the left eigenvectors defined by

 iA = �i i (15)

provide, together with the right eigenvectors, the participation fac-
tors. In particular, the participation factorpij expressed by

pij =
@�i

@ajj
(16)

measures the sensitivity of�i to the change in thej-th diagonal
elementajj . It also measures the relative participation of thej-
th state variable in thei-th mode and vice versa. In other words, it
gives an indication of the sensitivity of a system physical compo-
nent to a mode. A direct practical application is the consideration
of participation factors in the stabilization procedure described in
x 2.5: instead of distributing power on critical machines propor-
tionally to their “degree of criticality”,Hi � di (see eq. (6)), one
may think of distributing it proportionally to the corresponding
participation factors,PFi 2:

�PCi
�PCk

=
PFi

PFk
; �PC =

X
i2C

�PCi : (60)

4 PROPOSED APPROACH

4.1 Search of equilibrium points

For small-signal analysis, calculating system’s equilibrium
points is a rather easy task, but for large-disturbance analysis the
search of the post-fault unstable equilibrium point (UEP) may be
problematic. Indeed, numerical instabilities linked to the physical
unstable nature of UEP make its search difficult through conven-
tional minimization procedures. These procedures may even con-
verge to the SEP instead of the UEP sought, unless the starting
point is close enough to this UEP [10].

The transformation of the multimachine angle state space into
the OMIB uni-dimensional one and the interplay between them
renders the UEP search straightforward and unambiguous. The
reasoning underlying this search is as follows. For a given con-
tingency and its clearing time, CT, the instability conditions (3)
define the unstable angle,Æu , and corresponding timetu . Now,
by definition, when the clearing time gets close to the critical
clearing time, the unstable angle gets close to its maximum value
and almost coincides with the maximum stable angle,Ær , obey-
ing the stability conditions (4). In other words, for CT = CCT :
Æu = UEPOMIB ; !OMIB = 0 .

The search of the multimachine UEP derives from the above
considerations. It is summarized in the following four steps [5]:

(i) run SIME to find the contingency CCT

(ii) using a slightly larger clearing time ( CT = CCT+� , where
� is a small quantity), run SIME to determine the corre-
sponding time to instability,tu

(iii) at tu , identify the corresponding angles of the multima-
chine system,Æ0ui (i = 1; 2; :::; n)

(iv) using as initial values these anglesÆ0ui , search the com-
ponentsÆui of the multimachine UEP via a standard mini-
mization procedure.

Ref. [5] has used a simple iterative perturbation procedure in
the case of the 3-machine system.In what follows, we will im-
properly denote the anglesÆ0ui as being the components of the
“SIME UEP”, whereas the anglesÆui are the components of
the multimachine system UEP.

2Actually, the authors of [4] proceed in an opposite way: they propose
to identify the system CMs based on the size of their corresponding par-
ticipation factors. However, it is not always easy to determine the border
between CMs and NMs.



The above general procedure applies to the search of both pre-
fault and post-fault SEPs. Note that in the particular case of sim-
plified power system modeling SEPs may simply be computed by
a conventional load flow program.

4.2 Modal analysis performance measures

Using the definitions ofx 3.2 and linearizing the multima-
chine power system about its SEPs and UEPs, computed accord-
ing to x 4.1, provides readily the corresponding system eigenval-
ues. Their comparison with the corresponding SIME’s eigenval-
ues computed in a similar way provides interesting results.

Similarly, the eigenvectors and corresponding participation
factors are computed. Further, the relative size of the participation
factors corresponding to the system machines are again compared
to the “degree of criticality”Hi � di as provided by SIME.

4.3 Note on SIME-based modal identification

Modal identification involves the determination of system dy-
namic behavior, possibly from measurements, or transient sta-
bility simulations using non-linear models. Among many signal
analysis tools used to this end, Prony analysis is acknowledged
to be a powerful and useful technique [1]. For example, in [11],
applying a multichannel Prony analysis to the swing curves of 4
selected generators, out of 798 available in the system, gives a
good assessment of the damping. However, the problem of se-
lecting the correct generators remains an open question. Using
SIME, the dynamics of the whole system is represented by the
single OMIB swing curve; this solves the problem of selecting
the correct generators and makes the application of a single chan-
nel Prony analysis much easier. Even in a system as simple as the
3-machine one, Figs 2 suggest how easily the system damping can
be visualized and analyzed.
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Fig. 2. Swing curves for contingency # 5;

5 ILLUSTRATIONS

5.1 System description

All simulation results reported in this section are taken from
[5]. They are obtained with the 3-machine, 9-bus system sketched
in Fig. 3 . The time-domain program used here by SIME as well as
for computing eigenproperties of the 3-machine system is written
in MATLAB [12].
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Fig. 3. One-line diagram of the 3-machine, 9-bus test system.
H1 = 23:64 s ,H2 = 6:40 s ,H3 = 3:01 s

5.2 Post-fault SEP and eigenproperties

In the particular case of simplified power system modeling,
the SEP is readily computed either by following the procedure
of x 4.1 or simply by running a load flow program.

As an example, the SEP obtained with both approaches for the
post-fault configuration resulting by tripping line 5-7 is given by

x0 = [!10 Æ10 !20 Æ20 !30 Æ30]
T

= [0:0 0:0 0:0 41:73 0:0 26:55]T (17)

where angular speeds are expressed in rad/s and angles in degrees.
Linearizing about the above SEP (cfr eq. (10)), one gets the cor-
responding eigenvalues

�SEP = [0 0 j 6:09 � j 6:09 j 12:90 � j 12:90]T : (18)

Note that there are 6 eigenvalues, since there are 6 states. But,
actually, two eigenvalues are zero, since the simplified system
modeling has2 (n � 1) = 4 independent state variables. Note
also that the other four eigenvalues occur in conjugated pairs with
zero real part, since damping is neglected.

5.3 Contingency scenarios: description,
UEPs and corresponding eigenproperties

The contingencies considered consist of three-phase short cir-
cuits (3�SCs) applied at each one of the buses 4, 5, 6, 7, 8, 9,
and cleared by opening one line connected to this bus (see Fig.3).
This creates 12 contingencies.

According tox 4.1, the search of the corresponding SIME’s
UEP (computed attu and denoted Æ0u ) and system’s UEP
requires computation of the corresponding CCTs, and use of a
clearing time CT = CCT+� . This yields an unstable simula-
tion and corrsponding system’s CMs; the unstable margin is also



Table 1. Simulation results of unstable contingency scenarios
1 2 3 4 5 6 7 8 9 10 11 12 13

Contingency SIME 3-machine system

#
Applied

at
bus#

Cleared
by

op.line#
CCT
(ms)

CT =
CCT+�

�

(rad/s)2
CM(s)

UEP
(Æ) � PF

UEP
(Æ) � PF

1 7 5-7 171 172 -0.04 M2,M3 -39.1 (0) 6.38 0.49 -42.6 (0) 6.56 0.52
103.7 (142.8) 0 1.00 109.1 (151.7) 0 1.00
86.8 (125.2)j 8.66 0.81 85.2 (127.8) j 8.31 0.81

2 5 5-7 334 335 -0.17 M2,M3 -41.3 (0) 6.83 0.57 -32.6 (0) 6.56 0.52
108.6 (149.9) 0 1.00 119.1 (151.7) 0 1.00
93.5 (134.8)j 8.46 0.94 95.2 (127.8) j 8.31 0.81

3 7 7-8 185 186 -3.26 M2 -24.8 (0) 7.78 0.15 -45.4 (0) 7.79 0.15
112.7 (137.5) 0 1.00 96.7 (142.0) 0 1.00
-44.7 (-19.9) j 8.65 0.04 -37.5 (7.9) j 8.79 0.03

4 8 7-8 264 265 -0.66 M2 -20.5 (0) 7.53 0.14 -25.7 (0) 7.79 0.16
111.3 (131.8) 0 1.00 116.3 (142.0) 0 1.00
-75.7 (-55.2) j 6.72 0.05 -17.8 (7.9) j 8.79 0.03

5 8 8-9 292 294 -1.46 M2 -25.5 (0) 8.06 0.15 -61.7 (0) 8.03 0.16
120.2 (145.7) 0 1.00 93.3 (155.0) 0 1.00
-55.6 (-30.1) j 8.30 0.04 -36.8 (24.9) j 8.63 0.03

6 9 8-9 239 240 -3.52 M3 -27.3 (0) 10.38 0.09 4.1 (0) 10.69 0.08
33.8 (61.1) 0 0.00 29.6 (25.5) 0 0.01

142.5 (169.8)j 4.29 1.00 166.6 (162.5) j 6.48 1.00

computed, to allow assessing how close the corresponding ma-
chine angles are to the borderline conditions wheretr and tu
coincide, and so doÆu and Ær . Further, the eigenvalues cor-
responding to SIME’s and system’s UEPs are computed. Finally,
the participation factors relative to the angle with positive eigen-
value are also computed.

Because of space limitations, Table 1 gathers simulation results
obtained with 6 out of the 12 contingencies, randomly selected.
The other 6 contingencies exhibit similar behavior. The contents
of the various columns are self explanatory, except for the follow-
ing ones.

Column #8: the angles are listed in absolute values and, be-
tween brackets, in values relative to the angle of the first, most
advanced machine: this eases comparisons with values of column
#11, obtained by the minimization procedure initialized with the
angles of column #8.

Columns #9 and 11: In the absence of damping, the eigenval-
ues are pairwise purely real (��), zero (see comment following
eq. (18)), or purely imaginary (�j�); the three eigenvalues listed
in columns 9 and 11 correspond to:� ; 0 ; j� .

Columns #10 and 13: participation factors, computed via the
SIME’s and the system’s UEPs respectively.

Inspection of the various columns conveys interesting infor-
mation. In particular: the eigenvalues resulting from SIME’s and
system’s UEPs are close to each other, and so are the participation
factors.

The above observations are quite interesting, though not sur-
prising since, by construction, SIME gives a faithful account of
the multimachine dynamic behaviour. The advantage of using
SIME’s rather than system’s UEPs to get system’s eigenproper-
ties is quite obvious; it allows one to get rid of the minimization
procedure.

Figs 1, 2 and 4 illustrate interesting aspects of the simulation

Table 2. Power limits computed according to 4 patterns
Compensation

method SIME Part. fact. Fifty-fifty CM: M2

Ctg#1 : CCT = 171 ms ; CT = 240 ms ; CMs: M2 , M3

Plimit (MW) 218.4 214.3 211.5 223.9
Ctg#2 : CCT = 334 ms ; CT = 380 ms ; CMs: M2 , M3

Plimit (MW) 239.6 239.1 238.9 238.4

results. Figs 1 are relative to simulations with contingency # 2,
while Fig. 2 and 4 are relative to contingency # 5. Observe in
Fig. 2a how clearer the multiswing phenomena are described by
the OMIB swing curve, even in such a simple case. Incidentally,
Fig. 2b shows that the “time to instability”,tu , and the “return
time”, tr , are very close; also,Æu is very close to but slightly
larger than Ær . Finally, Fig. 4 displays the participation fac-
tors computed for the system UEP and the SIME UEP (labelled
“SIME” in the figure); obviously, they are very close to each other
for the CM (M2) as well as for the NMs (M3 , M1).

0.0 M1 M3

0.5

M2

0.25

UEP

SIME

PF
1.0

0.75

Fig. 4. Participation factors corresponding to the angle with the
positive eigenvalue, computed for the system and SIME UEPs



5.4 Stabilization procedure

The general procedure outlined inx 2.5 may yield many vari-
ants, depending upon the way of reporting the total generation
shifting on the various CMs, whenever there are many. For exam-
ple, the total generation shifting may be distributed: (i) propor-
tionally to the CMs’ degree of criticality, see eq. (6); (ii) propor-
tionally to the CMs’ participation factors, see eq. (6’); (iii) equally
on the various CMs; (iv) only on one CM (for example, the most
advanced one).

The simulation results using the above four ways are summa-
rized in Table 2 corresponding to two contingency scenarios hav-
ing two CMs (M2 and M3). The “quality” of these results depends
upon the generation power limit of the system CMs (here, M2 and
M3): the larger thePlimit and the better. Note that, here, CT has
been chosen quite larger than CCT in order to stress the system.
According to this table, the SIME procedure described by eq. (6)
shows to provide slightly better results than the participation fac-
tors, for ctg.#2, whereas for ctg.#1 shifting the generation of
the most CM only provides a largerPlimit . Actually, the small
size of the system, the small number of CMs and the simplified
system modeling do not allow sound comparisons and conclu-
sions; the reported results are merely for illustration.

5.5 Influence of damping

Among the various types of damping, the one used in this para-
graph is the mechanical damping modeled by adding in thei-th
dynamic equation a termD!i ,D = D1 = D2 = D3 . This sim-
plified damping allows easy comparisons with the simulations re-
ported so far, since it doesn’t change the system SEPs and UEPs.

Eignvectors have thus been computed for various values of D.
Such a typical example is given below. It concerns the eigenvec-
tors obtained for a 3�SC applied at bus 6 and cleared by opening
line 6-9 [5].

�(UEP)
(Di = 0)

=

2
64

6:95
�6:95

0
0

j 9:18
�j 9:18

3
75 ;

�UEP(SIME)
(Di = 0)

=

2
64

7
�7
0
0

j 8:86
�j 8:86

3
75 ;

�UEP
(Di = 0:1)

=

2
64

5:63
�9:00

0
�1:47

�2:58 + j 8:71
�2:58� j 8:71

3
75 :

6 CONCLUDING REMARKS

An approach to small-signal analysis and modal identification
has been proposed. Various aspects have been illustrated on a
simple 3-machine system, anda priori interesting features have
been observed.

Such an interesting result concerns computation of system’s
unstable equilibrium points (UEPs), generally considered to be a
problematic issue. These UEPs are found to be close to the cor-
responding SIME’s UEPs, which are extremely easy to compute.
Conceptually, this result is quite sound, since by essence SIME
reproduces faithfully the dynamic behavior of the multimachine
system. From a practical viewpoint, this result may greatly facil-
itate the search of system’s UEPs, since the efficiency of a min-
mization procedure depends on the good choice of starting points.

Note, however, that such a minimization procedure becomes even
unnecessary if the purpose is to compute system’s eigenproper-
ties, given the following observations.

The eigenvectors computed from SIME’s UEPs are found to be
very close to those computed from the system’s UEPs.

Similarly, participation factors (PFs) computed from system’s
UEPs and PFs computed from SIME’s UEPs are very close to
each other. Note, however, that PFs computed for identifying
the machines’ influence on transient stability may advantageously
be replaced by SIME’s assessment of critical machines and their
degree of criticality, which is computationally significantly more
straightforward.

Concerning explorations of damping influence, it is suggested
to use the corresponding OMIB swing curve which provides a
considerably clearer description of the phenomena and a much
easier means of analysis.

More generally, SIME shows to be quite helpful for modal
identification purposes: it determines unambiguously the modes
of oscillation as well as the involved machines and their respective
influcence. Note that all aspects relating to the dynamic, non lin-
ear system’s behavior have long been validated through extensive
simulations.

Admittedly, the above linearized analysis aspects would de-
serve further validation, performed on real world power systems
with detailed modeling.
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