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ABSTRACT 

 

In this paper, different modeling philosophies are explored in order to explain and forecast 

daily traffic counts. The main objectives of this study are the analysis of the impact of 

holidays on daily traffic, and the forecasting of future traffic counts. Data coming from single 

inductive loop detectors, collected in 2003, 2004 and 2005, were used for the analysis. The 

different models that were investigated showed that the variation in daily traffic counts could 

be explained by weekly cycles. The Box-Tiao modeling approach was applied to quantify the 

effect of holidays on daily traffic. The results showed that traffic counts were significantly 

lower for holiday periods. When the different modeling techniques were compared with 

respect to forecasting with a large forecast horizon, Box-Tiao modeling clearly outperformed 

the other modeling strategies. Simultaneous modeling of both the underlying reasons of 

travel, and revealed traffic patterns, certainly is a challenge for further research. 
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1 BACKGROUND 

 

In today’s society, mobility is one of the driving forces of human development. The motives 

for travel trips are not confined to work or educational purposes, but reach a spectrum of 

diverse goals. Mobility is more than a cornerstone for economic growth; it is a social need 

that offers people the opportunity for self-fulfillment and relaxation (1). 

 Governments recognize this significance of mobility. This is evidenced by the 

mobility plans that are formulated by government agencies at different policy levels, e.g. at 

European level the European Commission’s White paper “European transport policy for 

2010: time to decide” (2), and at Belgian regional level the “Mobiliteitsplan Vlaanderen” 

(Mobility plan Flanders (3)), and evidenced by the transportation research that is directly or 

indirectly funded by governments. 

 In order to lead an efficient policy, governments require reliable predictions of travel 

behavior, traffic performance, and traffic safety. A better understanding in the events that 

influence travel behavior and traffic performance, will lead to better forecasts and 

consequently policy measures can be based upon more accurate data. This allows policy 

makers to provide more precise travel information and adapt the dynamic traffic management 

systems, so that an important goal, more acceptable and reliable travel times (1), can be 

achieved. 

<INSERT FIGURE 1 HERE> 

 

 Events such as special holidays (e.g. Christmas, New Year’s day), school holidays 

(e.g. in July and August), socio-demographic changes, and weather, can have an influence on 

mobility in different ways, as is illustrated by Figure 1 (4). First, they can influence the travel 

market. This is the market where the demand for activities and the supply of activity 

opportunities in space and time result in travel patterns. Second, these events can have an 

influence on the transport market. At this market, the demanded travel patterns and the supply 

of transport options come together in a transport pattern that assigns passenger- and good 

trips to vehicles and transport services. Finally, these events can have an effect on the traffic 

market, where the required transport patterns are confronted with the actual supply of 

infrastructure and their associated management systems, resulting in an actual use of the 

infrastructure, revealed by the traffic patterns.  

 When the list of examples, which is given in Figure 1, is considered, one can notice 

that people might perform other activities during holidays, than during normal days. During 

holidays, people for example go to the beach, while during normal days, people go to work. 

Another effect that is indicated by Figure 1, is the closing period of amusement parks during 

the winter. People wishing to visit the park during the winter, obviously can’t, and will 

perform another activity, for instance ice skating. These are merely two examples of how 

holidays and seasonal effects influence the activities that people pursue and in turn, these 

activities have an impact on the travel market. Another example shows how mode choice can 

be influenced by the type of day, and this can have an impact of the transport market, while 

the fourth illustration demonstrates how the environment can have an impact on the traffic 

market. Note that the list of examples, given in Figure 1, is not limitative, but is meant as an 

exemplification of how the three markets and hence the mobility can be influenced by various 

events. 
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 The main objectives of this study are the identification of the effects of holidays on 

daily traffic, and the prediction of future traffic volumes. A Box-Tiao model is used to 

quantify these effects. The combination of a regression model with ARMA (Auto-Regressive 

Moving Average) errors raises the opportunity to build a model with desirable statistical 

properties, and thus to minimize the risk of erroneous model interpretation (5).  

The text is organized in the following way. First, an overview of the data is given, and 

the imputation strategy that was applied is discussed. Then, the methodology of the different 

models used in the analysis is explained. Next, the model outcomes and the forecast are 

presented. Finally, some general discussion and avenues for further research are provided. 

 

2 DATA 

 

The impact of holidays on daily traffic will be analyzed by studying the effect on daily 

highway traffic counts. In this section, first, the dependent variable (daily traffic count) is 

further explored. Then, the different covariates, called interventions in Box-Tiao terminology, 

are described. 

 

2.1 Daily Traffic 

 

The aggregated daily traffic counts originate from minute data of two single inductive loop 

detectors, located on the E314 Highway in the direction of Brussels in Gasthuisberg (Leuven, 

Belgium), collected in 2003, 2004 and 2005 by the Vlaams Verkeercentrum (Flemish Traffic 

Control Center). Figure 2 pin-points the traffic count location under study. The highway that 

is analyzed is one of the entranceways of Brussels, and thus excessively used by commuters. 

 

<INSERT FIGURE 2 HERE> 

 

Every minute, the loop detectors output four variables: the number of cars driven by, 

the number of trucks, the occupancy of the detector and the time-mean speed of all vehicles 

(6). The number of cars and trucks are added up for both detectors, yielding a total traffic 

count for each minute. The aggregation on daily basis of these minute data can only be done 

when there are no missing data that day. When some, or all of the minute data are missing, a 

defendable imputation strategy must be applied.  

About half of all the days, that were analyzed, contained no missing data, as is shown 

in Table 1. Obviously, for these days no imputation strategy needed to be applied. This, 

however means that for the other half, there were some (41,78%) or a lot (7,84%) of the 

minute count data missing. When at least two hours of data, so at least 120 of the 1440 data 

points, were available, an imputation strategy was applied that is very similar to the 

“reference days”-method proposed by Bellemans (7). When there were fewer than 120 data 

points available in a day, a more general imputation strategy was applied.  

 

<INSERT TABLE 1 HERE> 
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2.1.1 Imputation strategy 1 

 

Bellemans (7) assumed in his work the existence of an a priori known reference day that is 

representative of the day for which missing values have to be estimated. The imputed value is 

then calculated by scaling the reference measurement such that it corresponds to the traffic 

dynamics of the day under study. In his study, the scaling factor was the fraction of the 

measurement and the reference measurement, in the previous minute. 

 The imputation strategy applied in this study uses the ideas of the reference days and 

the use of a scaling factor. The new measurements 
newx t  are calculated in the following 

way: 

 new refx t x t  

where refx t is the reference measurement and  the scaling factor. For determining the 

reference measurement, 21 reference days (7 days for each of 3 holiday statuses) were used. 

For each reference day, the reference measurements were defined as the average of the 

modus, median and mean of the available days that corresponded to the reference day. The 

average of these three measures of central tendency was taken, because each of them has its 

own unique attributes (central location, robustness, highest selection probability), and 

favoring one could obscure model interpretation. The scaling factor  is calculated as 

follows: 

 

1440
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t
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t
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In the above equations, x t  is the measurement at minute t and refx t  the reference 

measurement at minute t. 

 

2.1.2 Imputation strategy 2 

 

For the above described imputation strategy, a scaling factor was required to match the 

reference measurement to the day under study. When all, or almost all, of the data points are 

missing, the scaling factor could not be calculated. In this case, the missing values are 

replaced by the reference measurements, which is equivalent with setting the scaling factor 

equal to 1. 

 

2.1.3 Evaluation of implemented imputation strategies 

 

Circumspection is essential when applying imputation strategies, as imputation processes 

encompass the risk of distorting the distributions of the data, and thus biasing the results. The 

magnitude of the risk must be indicated and potential patterns of the missing data need to be 

analyzed. 
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 When the risk of distortion of the data is addressed, a thorough look at the minute data 

places the risk in the correct context. Of the 1578240 minutes (1096 days multiplied by 1440 

minutes a day) that were aggregated on a daily basis, 140860 minutes (8,93%) were missing. 

Communication errors (e.g. due to system failures) account for 135654 minutes (8,60%) of 

missing data. The remaining 5206 minutes (0,33%) were due to other reasons such as 

physical errors of the loop detectors, disturbances in the electronic systems of the substations 

and inaccurate measurements. 

 When the imputation strategies are evaluated on the daily level, a first observation is 

that 81,56% (50,36% + 31,20%) of the days contains at least 95,83% (more then 1380 of the 

1440 data points) of the data points that day. Thus, the imputation strategy has nearly no 

effect on these days. For the days (4,65% + 0,27%) that contained nearly no information (less 

than 120 of the 1440 data points available), just a measure of central tendency was used as 

imputed value, taking into account the day type (which day of the week and holiday or not). 

For 10,58% (4,38% + 6,20%) of the days between 50% and 95,83% of the data points were 

available, so the scaling factor used for the imputation strategy was still based upon a reliable 

amount of data. Only for 2,92% of the days, less than 50%, but at least 8,33% of the data 

points were available. It might be judged that the imputation strategy could result here in 

significantly distorted values. Different imputation strategies could be applied to this part of 

the data to assess the effect of the chosen strategy. However, since it is only a very small part 

of the entire data set, it was judged not to have a significant impact on the remainder of the 

study. 

 It is important to stress that the imputation strategies applied use a measure of central 

tendency that takes into account the day of week and the holiday status. Thus, the significance 

of these variables (day of week, holiday status) is not affected by the choice of the measure of 

central tendency. It is fair to recapitulate and infer that the implemented imputation strategies 

had no significant distorting effect on the results or conclusions. 

 

2.1.4 Plot of the data 

 

The following figure visualizes the aggregated daily traffic count data, taking into account the 

imputation strategies that were implemented. A similar pattern is visible over the three years. 

A drop in the number of passing vehicles at the beginning and end of each year is noticed, 

and during summer holidays, the intensity of daily traffic clearly is lower than during the 

other months. 

<INSERT FIGURE 3 HERE> 

 

Next the different interventions will be briefly summarized. 

 

2.2 Holiday Effect 

 

A dummy variable was created in order to model the effect of holidays. “Normal” days were 

coded zero, and holidays were coded one. The following holidays were considered: Christmas 

vacation, spring half-term, Easter vacation, Labor Day, Ascension Day, Whit Monday, 

vacation of the construction industry (three weeks, starting the second Monday of July), Our 

Blessed Lady Ascension, fall break (including All Saints’ Day and All Soul’s Day), and 

finally Remembrance Day. Note that for all these holidays, the adjacent weekends, were 
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considered to be a holiday too. For holidays occurring on a Tuesday or on a Thursday, 

respectively the Monday and weekend before, and the Friday and weekend after, were also 

defined as a holiday, because often people have a day-off at those days, and thus have a leave 

of several days, which might be used to go on a long weekend or on a short holiday. 

 

2.3 Day Effects 

 

Six dummy variables were created in order to model the day-of-week effect. Note that in 

general you have to create 1k  dummy variables, if you want to analyze the effect of a 

categorical variable with k classes (8). Since, there are seven days in a week, the first six days 

(Monday until Saturday) were each represented by one of the dummies, equal to one for the 

days they represent, and zero elsewhere. The reference day was Sunday, so for all traffic 

counts that were collected on a Sunday, the corresponding six dummies were coded zero. 

 

3 METHODOLOGY 

 

In this study, two main philosophies were explored in order to model the daily traffic counts. 

The first philosophy is based on the fact that consecutive traffic counts are correlated, and 

that therefore present and future values can be explained by past values. Two types of models 

that use this philosophy are investigated in this paper, namely exponential smoothing and 

ARMA modeling. The second philosophy is the regression philosophy, which postulates the 

idea that the dependent variable, in this study the daily traffic counts, could be explained by 

other variables. Since different assumptions have to be met before the linear regression model 

yields interpretable parameter estimates, also the Box-Tiao-model is investigated. The latter is 

capable of taking into account dependencies between error terms. For an introduction on time 

series analysis, the reader is referred to Yaffee and McGee (9). In Neter et al. (8)  a 

comprehensive overview of regression models is given. 

 

3.1 Exponential Smoothing 

 

3.1.1 Simple Exponential Smoothing 

 

Simple exponential smoothing is a way of forecasting future observations, by producing a 

time trend forecast, where the parameters are allowed to change gradually over time, and 

where recent observations are given more weight than observations further in the past (9). 

The technique assumes that the data fluctuate around a reasonably stable mean. The formula 

for simple exponential smoothing is: 11t t tS Y S , where each new smoothed 

value tS  is computed as the weighted average of the current observation tY  and the previous 

smoothed observation 1tS . The magnitude of the smoothing constant , ranges between zero 

and one. If the constant equals to one, then the previous observations are ignored entirely. If 

the constant equals to zero, then the current observation is ignored entirely, and the smoothed 

value consists entirely of the previous smoothed value, thus, as a consequence, all smoothed 

values will be equal to the initial smoothed value 0S .  
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3.1.2 Multiplicative Holt-Winters Exponential Smoothing 

 

In order to accommodate the simple exponential smoothing model to account for regular 

seasonal fluctuations, the Holt-Winters method combines a time trend with multiplicative 

seasonal factors (10). The general formula for the multiplicative Holt-Winters model is 

ˆ
t h t t t p hY b h S , where ˆ

t hY  is the estimated value for the time series at time t h , h the 

number of periods into the forecast horizon, t the permanent component at time t, tb  the 

trend component at time t, t p hS  the multiplicative seasonal component at time t p h , 

and p the periodicity of the seasonality (the number of periods in one cycle of seasons). 

 Each of the three parameters ( , ,t t tb S ) is updated with its own exponential smoothing 

equation (9). The permanent component is updated by the following equation:  

 
1 11t

t t t

t p

Y
b

S
. 

Dividing the series tY  by its seasonal component at its periodic lag, removes the 

seasonality from the data. Therefore, only the trend component and the prior value of the 

permanent component enter into the updating process for t . The updating equation for the 

trend component is given by 1 11t t t tb b . Thus, the trend component is 

simply the smoothed difference between two successive estimates of the deseasonalized level. 

The last parameter, the multiplicative seasonal component, is updated by the following 

smoothing equation: 

 1t
t t p

t

Y
S S . 

Thus, the seasonal component is updated by a portion of the ratio of the series value over the 

average, plus a smoothed portion of the seasonality at its periodic lag. 

 

3.2 ARMA Modeling 

 

Like exponential smoothing, also the ARMA modeling approach tries to explain current and 

future values of a variable as a weighted average of its own past values. In most cases, the 

model consists of a combination of an autoregressive (AR) part and a moving average (MA) 

part.  

When tY  is modeled as an autoregressive process AR(p), then tY  can be expressed in 

terms of its own passed values. Suppose tY is modeled as an autoregressive process of order 

two, AR(2), then 1 1 2 2t t t tY c Y Y e , where 1 2, are the weights for the autoregressive 

terms, c a constant and te a new random term. Using a backshift operator iB on tY , defined as 

i

t t iB Y Y  , this process can be written as 2

1 2t t t tY c BY B Y e or 2

1 21 tB B Y . 

tc e  

When the series tY  is modeled as a moving average process MA(q), then tY  can be 

expressed in terms of current and past errors, also called shocks. Suppose tY  is modeled as a 
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moving average process of order two, MA(2), then 1 1 2 2t t t tY c e e e , where 1 2, are 

the weights for the moving average terms. Using the backshift operator, previously defined, 

this process can be written as 2

1 21t tY c B B e .  

In the cases that a series tY  is modeled as combination of an autoregressive process of 

order p, AR(p), and a moving average process of order q, MA(q), the combined process is 

called an ARMA(p,q) process. The model is then given by:  

 2 2

1 2 1 21 ... 1 ...p q

p t q tB B B Y c B B B e .  

Note that the ARMA-model is only valid, when the series satisfies the requirement of weak 

stationarity. A time series is weakly stationary when the mean value function is constant and 

does not depend on time, and that the variance around the mean remains constant over time 

(11). If the variance of the series does not remain constant over time, a transformation, like 

taking the logarithm or the square root of the series, often proves itself be a good remedial 

measure to achieve constancy (8). To achieve stationarity in terms of the mean, it sometimes 

is required to difference the original series. Successive changes in the series are then modeled 

instead of the original series. When differencing is applied, the ARMA model is called an 

ARIMA model where “I” indicates that the series is differenced. 

 

3.3 Regression Modeling 

 

Instead of modeling a series tY  as a combination of its past values, the regression approach 

tries to explain the series tY  with other covariates. Formally, the multiple linear regression 

model can be represented by the following equation:  

 
0 1 1, 2 2, ,...t t t k k t tY X X X ,  

where tY  is the t-th observation of the dependent variable, and
1, 2, ,, ,...,t t k tX X X  are the 

corresponding observations of the explanatory variables. 0 1 2, , ,..., k are the parameters of 

the regression model, which are fixed, but unknown, and t is the unknown random error (8).  

Estimates for the unknown parameters can be obtained by using classical estimation 

techniques. If 0 1 2, , ,..., kb b b b are the estimates for 0 1 2, , ,..., k , then the estimated value for 

the dependent variable tY  is given by 0 1 1, 2 2, ,
ˆ ...t t t k k tY b b X b X b X .When the error terms 

are independently and identically normally distributed with mean 0 and variance
2

, then the 

estimators for the parameters are BLUE (Best Linear Unbiased Estimators). 

 

3.4 Box-Tiao Modeling 

 

When regression modeling is applied to time series, the assumption of independence of the 

error terms is often violated because of autocorrelation (the error terms being correlated 

among themselves). This violation of one of the underlying assumptions of linear regression 

increases the risk for erroneous model interpretation, because the true variance of the 

parameter estimates may be seriously underestimated (8).  

Box-Tiao modeling can be used to solve this problem of autocorrelation. A Box-Tiao 

model corrects for autocorrelation by describing the errors terms of the linear regression 
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model by an ARMA(p,q) process. Let 
0 1 1, 2 2, ,...t t t k k t tY X X X N  be the 

regression model, where 2 2

1 2 1 21 ... 1 ...p q

p t q tB B B N B B B  and t is 

assumed to be white noise, then the Box-Tiao model can then be represented by the following 

equation: 

 

2

1 2

0 1 1, 2 2, , 2

1 2

1 ...
...

1 ...

q

q

t t t k k t tp

p

B B B
Y X X X

B B B
. 

The parameters in this equation are estimated using Maximum Likelihood. Studies, 

comparing least squares methods with maximum likelihood methods for this kind of models, 

show that maximum likelihood estimation gives more accurate results (12). The Likelihood 

function is maximized via nonlinear least squares using Marquardt’s method (10). When 

differencing of the error terms is required to obtain stationarity, all dependent and 

independent variables should be differenced (5,13). 

 

 

3.5 Model Evaluation 

 

Since different types of models are considered to estimate the daily traffic counts, it is 

required that an objective criterion is used to determine which model performs better (14). 

The following criteria were used to determine the appropriateness off the models: the Akaike 

Information Criterion (AIC), the Mean Square Error (MSE) and the Mean Absolute 

Percentage Error (MAPE). Note that the models were constructed on a training data set 

containing the first 75% of the observations. The remaining 25% of the observations make up 

the validation or test data set that can be used to assess the performance of the models, by 

calculating the MSE and MAPE for the forecasts. The choice of these percentages is 

arbitrary, but common practice in validation studies (see e.g. Wets et al. (15) or Moons (16)).  

The Akaike Information Criterion (AIC) is defined as -2 2AIC log likelihood  

number   of free parameters . Models with a lower value for this criterion are considered to be 

the more appropriate ones (17). The Mean Square Error (MSE) equals the Sum of all Squared 

Errors (SSE) divided by its degrees of freedom, which are calculated by subtracting the 

number of parameters in the model from the number of observations. The Mean Absolute 

Percentage Error (MAPE) is defined as the average of the absolute values of the proportion of 

error at a given point of time. 

 

4 RESULTS 

 

In this Section, the results are presented. The parameter estimates of the models are 

interpreted, and the different models are compared with each other. Predictions of the daily 

traffic counts are graphically displayed. A distinction is made between the predictions that are 

based on the training data (Figure 4), and the predictions that are based on the test data 

(Figure 5). 
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4.1 Holt-Winters Multiplicative Exponential Smoothing 

 

The best Holt-Winters model, in terms of AIC, was obtained when a cycle of seven seasons 

(the seven seasons correspond to the seven days of the week), combined with a linear trend, 

was considered. In this model, nine (seven plus two) parameters had to be estimated: the 

parameter for the permanent component ( 1
ˆ 35154 ), the parameter for the linear component 

(
1
ˆ 64.56b ), and the seven factors of the seasonal component. The estimated seasonal 

parameters are given by
1

ˆ 1.122,S 2
ˆ 1.128,S  

3
ˆ 1.137,S  

4
ˆ 0.781,S  

5
ˆ 0.731,S  

6
ˆ 1.009,S 7

ˆ 1.091,S  where 1, 2,...,7i  represents the ordering of the seasonal parameters. 

The average of these seven parameters must be equal to one (9). Note that these seasonal 

factors correspond to the different days of a week. Since the first observation in the data set 

was a Wednesday (January 1, 2003), the first seasonal factor also represents a Wednesday. 

Similarly, the other seasonal factors represent the other days of the week. Recall that the Holt-

Winters method uses smoothing equations for updating the parameters. The smoothing 

parameters for the permanent component and the linear component are given by 

0.106  and the smoothing parameter for the seasonal component is given by 0.25 . 

When the estimates for the seasonal parameters are compared, the difference between 

the components that correspond to the weekend-days and the components that correspond to 

the week-days is appealing. The results indicate that during weekend-days the daily traffic 

count will be much lower. This tendency can also be observed in Figure 4. 

 

4.2 ARMA Modeling 

 

In order to obtain stationarity, the ARMA model was developed on differenced data. The 

Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) of the 

residuals were investigated to determine which Autoregressive (AR) and moving average 

(MA) factors were required to build the model. Let 1 tY  denote the first difference of the data 

( 1t tY Y ), then the obtained model could be written as: 

 

4 7

1 4 7

1 0.79134 1 0.94883 1 0.9998

1 0.308 1 0.87767 1
t t

B B B
Y

B B B
. 

This model contains three multiplicative autoregressive and three multiplicative moving 

average factors.  Notice that if the model is worked out, other autoregressive and moving 

factors also play a role. When the parameter estimates for the ARMA factors are investigated, 

it can be seen that the estimates for the terms of the seventh order are very close or equal to 

one. This is an indication for the weekly cyclic behavior, which was also evidenced by the 

Holt-Winters model. The high parameters estimates for the ARMA factors of the fourth order 

might be evidence of some half-week recurring pattern in daily traffic counts. The 

dependency on the previous day was much smaller, yet significant. 
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4.3 Box-Tiao Modeling 

 

The classical linear regression modeling approach did not yield valid results, because of the 

problem of autocorrelation of the error terms. As is indicated in Section 3.4, Box-Tiao 

modeling is an approach that can tackle this problem of autocorrelation.  

Like for the ARMA modeling, it was also for the Box-Tiao modeling required to take 

the first difference of the data to obtain stationarity. Note that for both the ARMA model and 

the Box-Tiao model the intercept was dropped from the equations. When differencing is 

done, the intercept is interpreted as a deterministic trend, and that is not always realistic (13). 

The final error terms obtained were accepted to be ‘white noise’ according to the Ljung-Box 

Q
*
-statistics (18). The final Box-Tiao model obtained is given by the following equation: 

 

1 ,

1 , 1 , 1 ,

1 , 1 , 1 ,1

4

4

4130

9176 10812 11546

11295 12053 1450

1 0.858 1 0.937 

1 0.272 1 0.893 

Holiday t

Monday t Tuesday t Wednesday t

Thursday t Friday t Saturday tt

t

X

X X X

X X XY

B B

B B

 

 

<INSERT FIGURE 4 HERE> 

 

The six dummy variables to model the day-of-week effect, and the dummy variable of 

the holiday effect were all very significant (p-value < 0.0001) as can be seen from Table 2. 

This evidences that the daily traffic counts are influenced by holidays. Interpretation of the 

parameter estimates is not straightforward since both the dependent and independent variables 

were differenced. 

<INSERT TABLE 2 HERE> 

 

The parameter estimate for the holiday effect could be interpreted in the following 

way. When the holiday starts (the differenced holiday dummy equals one), the daily traffic 

count will be 4130 vehicles lower than the day before. The day after the holiday (the 

differenced holiday dummy equals minus one), the daily traffic count will increase again with 

4130 vehicles. Note that for all other days the differenced holiday dummy equals zero. 

 For the interpretation of the parameter estimates for the day-of-week effects, the 

Wednesdays are taken as an example. On a Wednesday, the differenced dummy of the 

Wednesday-effect equals one, and the differenced dummy of the Tuesday-effect equals minus 

one. All other differenced day-of-week dummies equal zero for a Wednesday. Thus, on a 

Wednesday, the traffic count will be 734 (11546-10812) vehicles higher than the day before 

(obviously the Tuesday before). 

 

<INSERT FIGURE 5 HERE> 

 

4.4 Model Comparison 

 

When the different models are compared, the weekly cyclic behavior was exposed by all three 

models. In the Holt-Winters Exponential Smoothing model this cyclicality was revealed by 
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the seasonal component, in the ARMA model by the high estimates for the seventh order 

autoregressive and moving average factors, and in the Box-Tiao model by the clearly 

significant day-of-week effect. Differences between different weekdays were also discovered  

by Weijermars & Berkum (19). In their work, they used cluster analysis techniques that 

revealed the differences. 

In order to determine whether predicting daily traffic counts with other covariates, 

such as the holiday effect and the day-of-week effects, adds insight, different criteria that 

assess the model fit are shown in Table 3. 

 

<INSERT TABLE 3 HERE> 

 

According to the AIC the best model is the Holt-Winters model, but when the other 

criteria are assessed, the Box-Tiao model outperforms the other models, indicating that 

considering a holiday effect and day-of-week effects with a Box-Tiao model really adds 

insight into the cyclicality of daily traffic counts. Note that Liu and Sharma (20) also 

identified a significant holiday effect. 

Figure 4 shows that the predictions that are based upon the training data set are 

comparable for the three modeling strategies. The MSE and MAPE criteria for these 

predictions indicate that the ARMA and Box-Tiao models perform better, however the AIC 

favors the Holt-Winters model. 

When the different models are validated by a test data set it can be seen from Figure 5 

that the Box-Tiao model performs best.  The ARMA model also performs quite well, but the 

Holt-Winters model performs only well for a very short forecast horizon. The MSE and 

MAPE criteria demonstrate that the ARMA and Box-Tiao model approaches outperform the 

Holt-Winters Exponential Smoothing model, favoring the Box-Tiao model. 

 

5 CONCLUSIONS AND FURTHER RESEARCH 

 

In this study, different modeling approaches were considered to predict daily traffic counts. 

The different techniques pointed out the significance of the day-of-week effects: weekly 

cycles seem to determine the variation of daily traffic flows. In the weekends the daily traffic 

flows turn out to be lower than during the week. The Box-Tiao model approach demonstrated 

that during holidays the daily traffic flows are significantly lower.  

When forecasting of daily traffic flows is required, the Box-Tiao model appears to be 

an approach that performs reasonably well. Smoothing techniques, like the Holt-Winters 

Exponential Smoothing model, are to be avoided for predictions with a large forecast horizon. 

These findings can be used by policy makers to fine-tune current policy measures. 

More precise travel information can be provided and the dynamic traffic management 

systems can be improved. In this way, the findings of this study contribute in achieving an 

important goal, i.e. more acceptable and reliable travel times.  

The analysis of day-of-week and holiday effects in this study was done on the 

revealed traffic patterns. Generalization of the discussed results is possible, when traffic 

patterns of other parts of the road network are analyzed. In order to get more insight in how 

holidays affect mobility, further analysis is required. The different modeling techniques 

described in this paper could be applied on data from national travel surveys, to determine 
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potential effects on travel behavior. Simultaneous modeling of both the underlying reasons of 

travel, and revealed traffic patterns, certainly is a challenge for further research. 
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FIGURE 1  Three market model and effects that influence mobility. 
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FIGURE 2  Geographical representation of the traffic count location under study. 
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FIGURE 3  Evolution in time of daily traffic counts. 
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FIGURE 4  Daily traffic counts and their corresponding predicted values (a subset of 

the training data set). 
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FIGURE 5  Daily traffic counts and their corresponding predicted values and 

confidence bounds (a subset of the test data set). 
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TABLE 1  Missing Data Analysis and Corresponding Imputation Strategy 

 

Quality Assessment Number of days   % of all days Imputation strategy 

No minutes missing 552 50,36% no strategy 

1-60 minutes missing 342 31,20% strategy 1 

61-240 minutes missing 48 4,38% strategy 1 

241-720 minutes missing 68 6,20% strategy 1 

721-1320 minutes missing 32 2,92% strategy 1 

1321-1439 minutes missing 3 0,27% strategy 2 

Entire day missing 51 4,65% strategy 2 

Total 1096 100,00%  

 



Cools, Moons and Wets  23 

TABLE 2  Parameter Estimates for the Box-Tiao Model 

 

Parameter Estimate Standard Error t-value p-value 

Moving Average (Lag 1) 0.858 0.026 32,7 < 0.0001 

Moving Average (Lag 4) 0.937 0.047 20,1 < 0.0001 

Auto Regressive (Lag 1) 0.272 0.046 5,9 < 0.0001 

Auto Regressive (Lag 4) 0.893 0.061 14,5 < 0.0001 

Holiday -4130 303.67 -13,6 < 0.0001 

Monday 9176 264.38 34,7 < 0.0001 

Tuesday 10812 299.24 36,1 < 0.0001 

Wednesday 11546 307.85 37,5 < 0.0001 

Thursday 11295 306.17 36,9 < 0.0001 

Friday 12053 296.99 40,6 < 0.0001 

Saturday 1450 260.18 5,6 < 0.0001 
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TABLE 3  Criteria for Model Comparisons 

  

Criterion Holt-Winters ARMA Box-Tiao 

Comparison based on training data set 

AIC(Model) 13,295.7 15,284.8 15,095.2 

MSE(Model) 10,469,329 6 708 034 5,573,994 

MAPE(Model) 6.788 5.373 4.976 
 

Comparison based on test data set 

MSE(Forecast) 125,737,853 14,638,087 9,375,331 

MAPE(Forecast) 27.683 7.685 6.482 

 


