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Abstract— In this paper, we study the behavior of power
suppliers who submit their bids to the market place in order
to maximize their payoffs. The market clearing mechanism is
based on the locational marginal price.

To study the interaction of the power suppliers, we rely on
two different approaches and compare the results obtained.
One approach consists of computing the Nash equilibria of the
market, and the other models each player’s behavior by using
reinforcement learning algorithms.

Simulations are carried out on a five node power system.

Index terms— Electricity markets modeling, spot markets,
Nash equilibria, reinforcement learning, matrix games.

I. INTRODUCTION

The main driver behind electricity markets restructuring was
the willingness to achieve highly competitive markets with
prices close to short-run marginal costs. The basic economic
principle is that with perfect competitive market conditions,
market participants maximize their own profit in a decentral-
ized way and bid in the market a price equal to their marginal
cost. In this way, competitive and efficient market results are
attained. In such a case, the prices at the nodes of the network
reflect the marginal cost of production and the marginal value
for the consumers [1].

However, in most deregulated markets around the world,
perfect competitive conditions do not hold true. The presence
of few power producers who bid strategically, of a highly
inelastic electricity demand, and of a transmission network
that could be insufficient to accommodate the flows derived
from a merit order dispatch are only some of the reasons that
move the market results from the expected optimum.

Two families of approaches have been used to study the
characteristics of imperfectly competitive electricity markets.
One family computes the market equilibrium points [2], [3],
[4]. The other family models the behavior of each agent (i.e.,
market participant) by a set of rules, builds a market dynamics
and analyzes its characteristics through simulations [5], [6],
[71.

In this paper we model the behavior of the active market
participants in such a way that they are able to use their past
experience to improve their behavior. To do so, we use an
algorithm known as @Q-learning that belongs to the class of
reinforcement learning algorithms [8]. After having modeled
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the active market participants, we simulate the market and
discuss the similarities that exist between the policy learned
by the agents and the pure Nash equilibria of the market.

In Section Il we introduce matrix games, define the notion
of Nash equilibrium and describe the @Q-learning algorithm.
Section |11 describes the market structure considered, explains
how the process of bidding to the power market for the
different generators may be formalized as a matrix game and
discusses whether reinforcement learning is better adapted
than Nash equilibria to analyze this type of market. In Section
IV we define our benchmark electricity market and analyze
simulation results. Finally, Section V concludes.

Il. MATRIX GAMES, NASH EQUILIBRIUM AND
REINFORCEMENT LEARNING

The theory of games is explicitly designed for reasoning
about multi-agent systems [9]. There exists a vast variety of
games, such as cooperative and non-cooperative games, static
and dynamic games, 2-agent or m-agent games, etc. In this
paper we consider n-agent matrix games defined through the
following elements:

« aset of n agents {1,--- ,n}

o Al ..., A™ acollection of finite sets of actions available
to each agent (4; is the set of actions for agent 1),

o 781 A1 x---xA, — Rfori e {1,---,n} is each agent’s
reward function, giving the reward gained by agent ¢ for
each set of action choices the group of agents could make.

o 1 A — AA® the strategy for each agent 3, where
A A' is the space of probability distributions over agent
actions. We may distinguish between pure strategies and
mixed strategies. 7* is a pure strategy if there exists an
a’ € A? such that 7é(a?) = 1, and is a mixed strategy
otherwise. Equivalently, an agent plays a pure strategy if
he plays with probability one an action and plays a mixed
strategy otherwise. We denote by II? the set of strategies
available to agent 3.

o ri(mt,---  7™) denotes the expected reward of agent i
when the different strategies 7!, ---, 7™ are played, that
is T’(ﬂ'l, PN ’7rn) — E(al,---,an)eAl---,A" 71.n(al) X oo %

n

7t(a™) * ri(al,--- ,a")



A. Nash equilibrium

One important notion associated with a game is the notion of
Nash equilibrium point. A Nash equilibrium is a joint strategy
where each agent strategy is a best response to the strategies
of the others. It is formally defined as follows:

The tuple of n strategies (w1,---,#7) is a Nash equilibrium
if for all ¢ € {1,--- ,n} we have

Ti(ﬂ-ia"' 771-2) 2 Ti(ﬂ-inﬂ'i_laﬂ'iaﬂ-i—i_l,"' 771-?) (1)

for all =t € II%.

It can be shown that for every game there exists at least
one Nash equilibrium. The appropriate method for computing
Nash equilibria for a game depends on a number of factors.
Certainly, the most important factor involves whether we want
to simply find one equilibrium (a sample equilibrium) or find
all equilibria. The problem of finding one equilibrium is a
relatively well-studied problem, and there exists a number
of different methods for numerically computing a sample
equilibrium (see for example the Lemke-Howson algorithm
[10] for a 2-agent game, and its extension by to an n-agent
game by Rosenmiiller [11]). While there exist methods for
the computation of all equilibria, they take prohibitively much
time for games beyond a rather small size.

We have observed the presence of pure Nash equilibria for
the different game problems studied in this paper (see Section
IV) - Nash equilibria for which the corresponding n strategies
are pure strategies - but did not try to determine whether other
equilibria existed. Since the action spaces A* are finite in our
examples, these Nash equilibria were computed by considering
all the n-tuples (a',--- ,a™) € A* x---x A™ and determining
through Eqgn (1) those which indeed correspond to equilibria.

B. Reinforcement learning

Reinforcement learning is the problem of an agent learning
from experience. In the context of reinforcement learning, we
suppose that the matrix game is played several times, and that
each time the game is played the different agents observe their
rewards and use these observations to adjust their strategy in
order to maximize their next reward. We propose to use here
for the problem of learning in matrix games the well-known
Q@-learning algorithm [12], which was initially designed for
learning through interaction with a Markov Decision Process
(MDP). There are several papers which discuss extensions of
Q@-learning algorithm to various types of games and study
under which conditions the behavior of the players converge
to a Nash equilibrium [8], [13].

When an agent 7 is modeled by a @-learning algorithm,
it keeps in memory a function Q! : A* — R such that
Q¢(a?) represents the expected reward it believes it will obtain
by playing action ai. It then plays with a great probability
the action it believes is going to lead to the highest reward,
observes the reward it obtains and uses this observation to
update its estimate of Q*. Suppose that the tth time the game
is played, the joint actions (a},--- ,a}) represent the actions
the different agents have taken. After the game is played and

the different rewards have been observed, agent 7 updates its
Q’*-function according to the following expression:

Q'(a;) + Q'(af) + ay(r'(ay,--+,a7) = Q'(af)) (@
where ai € [0,1] is the degree of correction. If af = 1,
the agent supposes that the expected reward it will get by
taking action a! in the next game is equal to the reward it just
observed. If ai = 0, it means the agent does not use its last
observation to update the value of its Qi-function.

If all the agents use a time-invariant policy?, then it can be
shown that Q¢(a?) Vat € A Vi € {1,---,n} indeed converges
towards the expected reward obtained by agent ¢ while playing
action a?, if of satisfies the conditions

oo o0 5
Z oy =00 Z o <00 3)
t=1 t=1

and if action a? is played an infinite number of times.

Similarly, it can be shown that if all the agents except agent
i use a time-invariant strategy, if o} satisfies conditions (3) and
if action af is played an infinite number of times, then Q¢(a?)
converges towards the expected reward obtained by agent 4
while playing action a.

We will suppose in this paper that the agents select their
actions according to the so-called e-Greedy policy. When
an agent ¢ uses an e-Greedy policy to choose its action, it
selects with probability 1 — e the action which maximizes its
believed expected reward (arg max@¢(a?)), and chooses with

ate Al
probability e an action at random in A¢. The main reason for an
agent to adopt a policy that selects from time to time an action
that it believes does not lead to the highest expected reward,
is to guarantee that all actions have been tried a sufficient
number of times to be able to correctly assess their expected
reward.

Even if the value of € is chosen to be constant for each
of the agents, they will constantly update their Q*-functions
and their policies become time-variant. Therefore, nothing
can be firmly said about the convergence of these reinforce-
ment learning algorithms. However, as we have observed in
our simulations (see Section 1V), the learned Q®-functions
sometimes remained almost unchanged after a certain learning
time, and their corresponding greedy actions - the actions that
maximize their Q*-functions - corresponded to a pure Nash
equilibrium or said otherwise, after playing several games, the
joint pure strategies (argmaxQ!(al),--- ,argmaxQ™(a"))

alcAl ancAn
corresponded to a pure Nash equilibrium.

On Figure 1 we have drawn a tabular version of the
algorithm that simulates reinforcement learning driven agents
interacting with a matrix game. The number of games after
which the simulation should be stopped (step 7 of the al-
gorithm) depends on the use desired of the algorithm. For
example, one may be interested in studying the dynamics of
the system for a predefined number of games, or to simulate
it until the different agents have learned a rational behavior.

'1Agent 4 uses a time-invariant policy if its probability of selecting action
a* € A* is constant for all ¢.



Fig. 1. Simulation of reinforcement learning agents interacting with a matrix
game

1] Set t = 0.

2] Initialize Q(a?) = 0 Vi € {1,--- ,n} and Va' € A"
3t+t+1.

4] Select for each agent i an action a? by using an e-Greedy
policy.

5] Play the game with the joint actions (a},--- ,a?).

5] Observe for each agent i the reward ri(aj,--- ,a?) it has
obtained.

6] Update for each agent s its Q*-function according to

Q'(aj) + Q*(ay) + aj(r'(ay, -+ ,af) — Q(a}))

7] If a sufficient number of games have been played, then stop.
Otherwise, return to step 3.

I1l. MARKET STRUCTURE AND CORRESPONDING MATRIX
GAME

A. Market structure

We assume that the energy can only be traded through a
spot market (no bilateral agreements, etc.) where the suppliers
submit to the 1SO how much they are willing to produce
for a certain price. We suppose that we are dealing with
a power system in which we have nbGen generators (G,

-+, Gpnpgen) having constant marginal costs (Mg,, ---,
Mg, ,s...), nbNodes nodes (1, ---, nbNodes) and inelastic
and constant loads. We suppose that each supplier (generator)
G'; always bids its full generation capacity PZ'*® at a constant
price per MW produced. This procedure conforms to the so-
called “block bids”[14], where the only simplification we make
is that generators always bid their full capacity Pz.**. We also
assume that the generators are not allowed to bid higher that
a price cap and denote by bg; ($/MW) the bid that generator
G; submits to the ISO.

The 1SO collects all bids and is then in charge of clearing
the market by minimizing the sum of the production costs
while satisfying network constraints. To realize this objective,
the 1SO solves the following linear programming problem:2

Determine

c Ranen+nbN0des

(PG13' ot ’PanGen701’. o aenbNodes)

that minimizes

Z bGi PGi (4)
G;

subject to the constraints
Pload(k) = Pp'roduced(k) + E?iJlVOdes Ykl (al - ak)

PG,- S P&niaz
lyri (O — 61)| < Pgpe®
2The problem is a linear optimization problem because we assume a DC

representation of the transmission network. Furthermore the 1SO does not
consider any security criteria such as N — 1 criteria.

Here Pg, denotes the power injected by generator G;, 6y, the
voltage angle at node k, Pj;** the maximum flow allowed in
the line connecting node & to node I, y; the admittance of the
line connection node & to node [, and Pioad(k) (Pproduced(k))
the power consumed (injected) at node k.

By solving this linear programming problem, the ISO can
determine the power each generator G; should be dispatched
(Pg;), and through the knowledge of the Lagrangian multipli-
ers associated with this optimization problem, the nodal prices
at each node k of the system.® We denote by ng, the nodal
price at the node at which generator G, is connected. After
the market is cleared, each generator G; is dispatched Pg, and
is paid ng, by MW produced.

B. The matrix game

Generator G; submits its bid in order to maximize its
reward, which is equal to the money it is paid for producing
electricity Pg, MW (ng, Pg;) minus the money it has to pay
for producing this quantity of power (M Cg, Pg;). The power
dispatched to a generator G; and the nodal prices are a function
of the different bids submitted by the generators. Therefore,
the reward of each generator is also a function of the joint
bids submitted to the I1SO. If we assume that each generator
G; can only choose a bid which belongs to the finite set Bg,,
we face a matrix game wherein:

« we have nbGen agents Gy, - -+, GnpGen
« the finite action set for agent G; is Bg,
« the reward function for agent G; is given by

ng; (bay, - »ba, )pe;(bey, - 1ba,) — Pa;(bey, - »ba, ) MCa,

C. Nash equilibria versus reinforcement learning to study
electricity markets

We have seen in the previous subsection that a spot market
may be seen as a matrix game in which the agents are the
power producers. One may wonder whether reinforcement
learning is better suited to analyze such electricity markets
than Nash equilibria. In the following, we discuss several
points that attempt to answer this question:

The notion of information. In an electricity market, the
different agents in principle know neither the set of actions
the other agents have at their disposal nor the different reward
functions »%. In this context, it is difficult to assume that the
players are indeed going to adhere to an Nash equilibrium
since they do not have the elements to compute it. On the other
hand, reinforcement learning does not use any information to
compute the agents’ behavior that is not indeed available to
the agents. At each stage of the market, an agent ¢ corrects its
Qi-function only by using its old estimate and the reward it
has observed.

Multiplicity of Nash equilibria. Even if we admit that the
different agents will indeed in the real world adhere to a Nash

3The nodal price at node & may be seen as the price for extracting one
additional MW at this node.



equilibrium, there may exist different Nash equilibria. Even
if there exists a large literature on equilibrium refinements,
which defines criteria for selecting from among multiple equi-
libria (such as perfect equilibria, proper equilibria, sequential
equilibria, etc.), the choice of the right equilibrium may prove
to be ill-defined.

Lack of studies of @-learning for market modeling. If the

Q@-learning algorithm possesses a firm foundation in the theory
of Markov Decision Processes (MDP), results concerning its
properties in a multi-agent environment are much poorer.
Moreover, to our knowledge, no experimental results have
shown that by using this type of algorithm to model the
behavior of the objective-oriented agents of a market we may
reproduce the reality.
Computational burdens. While it may be computationally
expensive to identify Nash equilibria, especially when one
deals with a large number of players, computational burdens
associated with @-learning algorithms may seem much lighter,
since for a fixed number of games played they grow only
linearly with the number of players. However, it is difficult
to determine how many games have to be played before
obtaining, if ever obtained, a behavior for the agents that may
be call “rational”. In this respect, one can perfectly imagine
that for electricity markets the number of games having to
be played before obtaining some rational behavior tends to
grow exponentially with the number of power producers which
could make the reinforcement learning approach computation-
ally much less efficient than the Nash equilibria approach.

1V. CASE STUDIES

A. Test market description and simulation conditions

We have carried out simulations on the power system
sketched on Figure 2, whose topology is similar to the
Pennsylvania-New-Jersey-Maryland (PJM) five node power
system [15].

The market is cleared according to the procedure detailed
in the previous section, and the price cap for this market is
set equal to 50 $/MW.

This system has four loads and three generators. The loads
are assumed to be inelastic and constant, and every generator
G; is assumed to have a maximum production capacity of
Pg*®, a constant marginal cost MCg, and a finite bid set
Bg,. The values of these production limits and these marginal
costs as well as the description of these bid sets are given in
Table I. Note that the lowest bid of each generator is equal to
its marginal cost, while its highest possible bid equal to the
price cap.

The line connecting nodes 2 and 5 can only transfer 100
MW, and as a result may be subjected to congestion. For the
other lines of the system, we suppose that there exist no power
dispatches that may lead to flows greater than their transfer
capacity.

We consider in our simulations two different cases. In the
first case, we suppose that only generators G, and G5 behave

G 100 MW 100 MW
9 node 1 node 3 node 4
.
node 2
o) o node 5 é
G 250 MW Gs
Fig. 2. Power system description
Pge® [MW] | MCg, [$IMW] | Bg, [$IMW]

G1 300 20 {20, 30, 40, 50}

G2 300 20 {20, 30, 40, 50}

G3 250 30 {30, 40, 50}

TABLE |
GENERATION DATA AND BID SETS

as active agents,* while G always bids at its marginal cost.®
In the second case, all three generators are considered as
being active agents. For each case we simulate the market
dynamics when the active agents are modeled through rein-
forcement learning algorithms (see Figure 1), and compute
the different pure Nash equilibria. When using reinforcement
learning algorithms, the update of the different Q¢-functions
of the agents depends on the value of the parameters ai.
These parameters have been chosen in our simulations equal
to 0.1 Vi,t. Furthermore, the value of ¢, the parameter that
determines the degree of randomness in the action selection
process, has been chosen to be 0.1 for all agents. This means
that the agents select the action that maximizes their Q-
function with a probability of 0.9 and with a probability of
0.1 an action at random.

B. Two generators behaving as active agents

In this case G always bids at its marginal cost of 20 $/MW
while the other two generators G; and G5 are active agents.

In Figure 3 we have represented the evolution of the Q-
function for G5. Each curve drawn on this figure represents
the evolution of the expected reward G5 believes it will obtain
by submitting a certain bid to the market. As one may observe,
G5 learns after less than 100 market clearings that to obtain
the highest rewards it should bid at the price cap (50 $/MW).
Obviously, generator G3 ‘realizes’ its advantaged position in
the network. Indeed, it is connected to a node where the
power consumption is equal to 250 MW and, due to the
limited transfer capacity of the line connecting nodes 2 and

4By active agent, we mean an agent that selects its actions in order to
maximize its rewards.

Sor equivalently that all the generators are active agents and that Bg, is
now equal to {20}



5, all this power cannot come from G; and G,. Therefore,
in order to cover the load it needs to be dispatched, and uses
this market power to sell its energy at the highest price. The
spikes observed in the evolution of the different curves drawn
in Figure 3 result from the e-greedy strategies used by the
different agents of the system. Even if all the active generators
are able to assess quite clearly which bid is going to lead to
the highest reward, they select a bid totally at random one
out of every ten times and may therefore deviate from their
optimal strategies. This may modify the power dispatches and
the nodal prices and “perturb” therefore the previous estimates
of the different @-functions. The generator G learns that
its best strategy is to bid at the price cap (50 $/MW) (see
Figure 4). However, now the learning is slower, since only
after approximately 800 clearings of the market does 50 $/MW
become the bid that maximizes its @Q-function.
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Fig. 3. Evolution of the Q-function for G'3 (2 active agents)
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Fig. 4. Evolution of the @-function for G'1 (2 active agents)

Table 11 gathers the bids that would have been submitted by
G1, G5 and G3 just after 1000 clearings of the market if G
and G (the active agents) would indeed submit their greedy
bids. On the same table one may also view the corresponding

power dispatches, nodal prices and rewards. Although with
such power dispatches the line connecting nodes 2 and 5 is
congested, we have the same nodal prices, as the next MW
will either be produced by G1 or G5, both having submitted
bids equal to 50 $/MW.

bg; [$/MW] | Pg, [MW] | ng, [$/MW] | Reward [$]
G 50 48 50 1440
G2 20 300 50 9000
Gs 50 152 50 3040
TABLE 1l

MARKET INPUT AND OUTPUT WHEN AFTER 1000 OF MARKET CLEARINGS
THE GENERATORS SELECT THEIR GREEDY BIDS.

To determine the pure Nash equilibria of the market, we
clear the market for all the bids (bg,,ba,,ba;) € Bag, X
{20} x Bg, in order to compute the reward functions for
generators G; and G3, and then determine by explicit search
the bids (bg,,ba,) that satisfy expression (1). The reward
functions for G; and G, are provided in Table Il1. To explain
the meaning of the different elements of this table, let us say
that the cell containing the two elements 477 3040 gathers the
value of the rewards obtained by G1 (477) and G5 (3040)
when G, bids 30 $/MW and G3 50 $/MW. By analyzing
this table, one can observe that there exists a unique pure
Nash equilibrium ((bg,,ba,) = (50,50)). In this case, the
greedy strategies learned by G; and G5 “converge” to a Nash
equilibrium.

30 /MW 40 /MW 50 $/MW
20 /MW 144 0 288 1401 431 2802
30 /MW 478 0 478 1522 477 3040
40 /MW 0 0 956 1522 956 3040
50 /MW 0 0 0 2000 | 1440* 3040*
TABLE Il

REWARD FUNCTIONSWHEN G1 AND G2 ARE THE ONLY ACTIVE AGENTS

C. Three generators behaving as active agents

In the previous subsection, only generators G; and G were
modeled as active agents. In this case G5 also bids actively to
the spot market.

Under such conditions, we have observed that the evolution
of the @-function for G5 was quite similar to the evolution
observed in the previous case analyzed (see Figure 3), and so
G5 learns that it has market power and that it should bid at
the price cap (50 $/MW) to maximize its reward. However, the
evolution of the @-function for G2 now exhibits a completely
different behavior. If when only G and G'5 were active agents,
we observed (see Figure 4) that the @-function learned by G4
was clearly indicating that the bid 50 $MW was the greedy
action (the greedy action being the action that maximizes the
Q@-function), it is no longer the case here (see Figure 5). Indeed
the greedy action always changes. Furthermore, the evolution
of the @-function seems now to be driven by a chaotic process.
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Fig. 5. Evolution of the @-function for G2 (3 active agents)

Note that for G, the same type of chaotic evolution has also
been observed.

If in the previous case there was only one single pure Nash
equilibrium, now two pure Nash equilibria exist. These two
pure joint strategies are (bg,,ba,,ba;) = (20,50,50) and
(bay,bG,,ba5) = (50,20,50). This may eventually explain
why the @-functions of generators G; and G4 evolve in such
a chaotic way. Indeed, one may reasonably suppose that these
generators are in some sense unable to decide around which
Nash equilibrium their greedy strategies should stabilize.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have considered a spot market as being
an n-agent matrix game, and used two types of approaches
to analyze its characteristics. One approach directly computes
the Nash equilibria of the market, and the other models each
agent of the game through reinforcement learning algorithms
and simulates the market dynamics so created to analyze its
characteristics. These two approaches have been illustrated on
some examples, and the similarities that exist between the
results they generate have been highlighted.

One future research work would be to explore more care-
fully the properties of the Q-learning algorithm used in a
multi-agent framework. In this respect, there exists in our
opinion several research directions. One is to determine for
which matrix games the different agents modeled with Q-
learning algorithms could exhibit, after a certain learning time,
a rational behavior. Under the assumption that the agents can
indeed learn a rational behavior, it could also be useful to
be able to assess the speed at which they learn it. Another
direction is to further investigate the relationships that exist
between @-learning and Nash equilibria. For example, it might
be interesting to determine under exactly which conditions the
learned joint strategies converge to a Nash equilibrium.

All the simulations carried out in this paper were made
under some strong assumptions concerning the market struc-
ture (the energy was only traded through a spot market) and
the power system itself (no reliability problems, constant and

inelastic load, etc.). In this respect, it would be particularly
relevant to experiment reinforcement learning algorithms in a
more realistic setup. This would also allow us to compare our
simulation results with the data gathered on real markets, and
thereby determine whether reinforcement learning can indeed
be an efficient tool to reproduce the “real-world” behavior of
some objective oriented agents.

REFERENCES

[1] F. Schweppe, M. Caramanis, R. Tabors, and R. Bohn, Spot Pricing of
Electricity. Kluwer Academic Publisher, 1988.

[2] J. Cardell, C. Hitt, and W. Hogan, “Market Power and Strategic
Interaction in Electricity Networks,” Resource and Energy Economics,
vol. 19, pp. 109-137, 1997.

[3] C. Berry, B. Hobbs, W. Meroney, R. O’Neill, and W. Stewart Jr,
“Understanding how market power can arise in network competition:
a game theoretic approach,” Utilities Policy, vol. 8, pp. 139-158, 1999.

[4] B. Hobbs, “Linear Complementarity Models of Nash-Cournot Competi-
tion in Bilateral and POOLCO Power Markets,” |EEE Transactions on
Power Systems, vol. 16, no. 2, pp. 194-202, May 2001.

[5] D. Bunn and F. Oliveira, “Agent-Based Simulation - An Application to
the New Electricity Trading Arrangements of England and Wales,” IEEE
Transactions On Evolutionary Computation, vol. 5, no. 5, pp. 493-503,
October 2001.

[6] D. Ernst, A. Minoia, and M. llic, “Market dynamics driven by the
decision-making of power producers,” in Proceedings of Bulk Power
System Dynamics and Control - IV Managing Complexity in Power
Systems: From Micro-Grids to Mega-Interconnections, August 2004.

[7] C.Day and D. Bunn, “Divestiture of Generation Assets in the Electricity

Pool of England and Wales: A Computational Approach to Analyzing

Market Power,” Journal of Regulatory Economics, vol. 19, no. 2, pp.

123-141, 2000.

M. Littman, “Markov games as a framework for multiagent reinforce-

ment learning,” in Proceedings of the Eleventh International Conference

on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1994.

J. von Neumann and O. Morgenstern, Theory of Games and Economic

Behavior. Princeton, New Jersey: Princeton University Press, 1947.

[10] C. Lemke and J. Howson, “Equilibrium points of bimatrix games,”
Journal of the Society of Industrial and Applied Mathematics, vol. 12,
pp. 413-423, 1964.

[11] J. Rosenmuller, “On a generalisation of the Lemke-Howson algorithm to
noncooperative n-person games,” SSAM Journal of Applied Mathematics,
vol. 21, pp. 73-79, 1971.

[12] C. Watkins, “Learning from Delayed Rewards,” Ph.D. dissertation,
Cambridge University, Cambridge, England, 1989.

[13] J. Hu and M. Wellman, “Nash @Q-learning for General-Sum Stochastic
Games,” Journal of Machine Learning Research, vol. 4, pp. 1039-1069,
2003.

[14] “European Energy Exchange - EEX, Market Model,” Available Online:
http://www.eex.de/spot_market/info/market_model/index _e.asp.

[15] “PJM - Interconnection, Presentation -
FTR Auction Example,” Auvailable Online:
http://www.pjm.com/services/training/downloads/Impftr2.pdf.

8

—_—

[9

—



