
UNIVERSITE DE LIEGE
Faculté des Sciences Appliquées

Département d’Electricité, Electronique et Informatique
Institut Montefiore

Near optimal closed-loop control
Application to electric power systems

Dissertation présentée en vue de l’obtention
du grade de Docteur en Sciences Appliquées

par

Damien ERNST

Année Académique 2002-2003



Preface

In
�������

, still an undergraduate student, I started doing research in summer. At
that time I had to study and improve a method developed in Liège, aiming to an-
alyze transient stability phenomena that may occur on an electric power system
[PERV00]. In December

�������
, after more than one year spent as a PhD student, I

went to Stockholm in order to start a research collaboration with the Royal Insti-
tute of Technology (KTH). The main motivation of the collaboration was to use the
tools developed in Liège in the context of transient stability in order to explore how
useful they could be to the design of the control function of a Flexible AC Trans-
mission System (FACTS) [GAPE01]. About the same period, in Liège, a friend of
mine was working on reinforcement learning methods. By friendship we decided to
work together in order to apply the methods he knew well to a power system emer-
gency defence scheme I was familiar with [EBZ � 98, DEW00]. I rapidly realized
the tremendous interests that such methods could also offer to control the FACTS
device I studied at KTH as well as to solve many other power system control prob-
lems. From there on, I decided to concentrate my research effort essentially on this
topic. This dissertation is the result of this research effort.

1



2



Acknowledgments

First of all, I would like to express my deepest gratitude and appreciation to my su-
pervisor, Professor Louis Wehenkel, for his constant support and guidance through-
out this thesis.
I would like to extend my warmest thanks to Professor Mania Pavella for introduc-
ing me several years ago in the fascinating world of research and for her support,
valuable suggestions and perpetual enthusiasm for research.
Many thanks to the staff of the Electrical Engineering & Computer Science Depart-
ment of the University of Liège for providing a stimulating and friendly atmosphere
for study and research and help in many respects.
A special thanks to Dr. Thierry Van Cutsem for providing the Simulink models of
the four-machine power system.
I am very grateful to the FNRS (Fonds National de la Recherche Scientifique) for
providing the financial support for my PhD.
Finally, I would like to express my deepest gratitude and personal thanks to those
closest to me. In particular, I would like to thank my parents for teaching me the
value of education, their support and encouragement.

Damien Ernst
Liège
January 2003

3



4



Summary

The work reported in this thesis is motivated by the practical problem of electric
power systems control. Electric power systems are large-scale, complex non-linear
systems which pose a number of challenging control problems, some of which are
not yet solved in a fully satisfactory way. Interpreting the word “control” in the
large sense, these problems encompass a multitude of issues as diverse as energy
market regulation, system expansion, maintenance scheduling, power system oper-
ation, and automatic real-time control. Often these problems are coupled and most
of them show up in different shapes and intensities in the various interconnected
and isolated power systems that exist around the world.

The strategy we adopt to tackle such problems consists in explicitly formulating
them as optimal control problems and in searching for an optimal closed-loop con-
trol policy. Unfortunately, optimal solutions of most power system control prob-
lems are impossible to determine exactly. Therefore, we use approximation tech-
niques in order to find near optimal control policies. The solution of the original
control problem is thus restated as the determination of an approximation archi-
tecture so as to approximate “at best” the optimal control policy of the original
problem.

From a fundamental point of view our work is based on the combination of two in-
timately related frameworks. The first one concerns the theory of Markov Decision
Processes (MDPs) and the Dynamic Programming (DP) paradigm. The second one,
known as Reinforcement Learning (RL), studies the design of algorithms to deter-
mine optimal control policies from interaction with a system. To solve a practical
control problem, our approach then consists in three successive steps : (i) define, in
an ad hoc way, the states of a finite MDP that is used to determine the control policy;
(ii) determine an optimal control policy for this MDP using information gathered
(by observation, simulation, or calculation) from the original control problem; (iii)
extrapolate this policy to the original problem.

5



6

Along these ideas, we have studied two categories of approaches, to handle respec-
tively the case where an accurate and tractable analytical characterization of the
original problem is available, and the more difficult - but very relevant - case where
information can only be gathered from interaction with the original system (or with
a black-box simulation model of the latter). In both cases, we have developed and
compared various approximation architectures and various types of algorithms to
determine their optimal parameters.

Among the numerous electric power system control problems mentioned above, we
have focused on those related to automatic real-time control of Flexible Alternative
Current Transmission System (FACTS) devices to damp electric power oscillations.
Control strategies for such a FACTS device have been determined and assessed un-
der various idealistic and realistic conditions, and in the context of different power
system models ranging from two to more than sixty state variables. The thesis ends
with a synthetic discussion of power system control problems and the advocacy of
the developed framework.



Abbreviations and nomenclature

Abbreviations used (alphabetical order) :

AVR Automatic Voltage Regulator
AGC Automatic Generation Control
DP Dynamic Programming
FACTS Flexible Alternative Current Transmission System
FD finite differences
Hz Hertz
KF Kalman Filter
kV Kilovolt
LSE Least Square Estimation���

Learning Time (used in the graphics only)
MDP Markov Decision Process
MDP

�
Markov Decision Process that approximates the initial control problem

MLE Maximum Likehood Estimation
MW Megawatt
OMIB One-Machine Infinite Bus
PSS Power System Stabilizer
RL Reinforcement Learning
SA Stochastic Approximation���

Abbreviation used for the word score (used in the graphics only)
SPS System Protection Scheme (or Special Protection Scheme)
TCSC Thyristor Controlled Series Capacitor
WLSE Weighted Least Square Estimation

Nomenclature :

���
	������������������������� generic equation of a discrete-time stochastic system���
	������������������� generic equation of a discrete-time deterministic system��������������� �!� generic equation of a continuous-time stochastic system

7



8

������������� � generic equation of a continuous-time deterministic system� state of the system� control variable or action� random disturbance��� state of the system at time
�

��� action taken at time
�

� � value of the random disturbance at time
��

state space�
disturbance space�
control space� � � � set of actions that can be taken in state ���� ��� �  � � � ���	� ��
 � ��� �� � ��� � � has no yet been visited ������ � ������� ��� ��
 � and ��
 � ��� � ��
set of control policies� control policy� deterministic stationary policy��� randomized stationary policy�
value function or maximum expected return���
value function or maximum expected return (

���  �
)� �

-function of the system��
approximate

�
-function�! 

expected return associated to the policy ��!"$#
expected return associated to the policy �%�� "
expected return associated to the policy �& ��� � � ��� � � probability to reach state � � after taking action � in state �

' � ��� ����� � reward function' � ��� � � average reward obtained by taking action � in state �
' � ' � ��� �������������( )+*,.-0/21 , ' ,( � ) *,.- � 1 , ' ,3	4

bound on the rewards�
suffix used to identify an element belonging to a MDP

�
� � state of a MDP

�
� �

finite set of all �
�

� �
subset of

�
that intervenes in the MDP

�
definition� � ��� � � set of actions that can be taken in � �� � ��� � � ��� � ��� ��� � � 
 � �

and ��
 � � � � � � �� �
value function of the MDP

�
� � �

-function of the MDP
�



9

� ������� � � “probability” for state ��
 � to belong to � � 
 � �
� degree of correction used in non-model based techniques�

memory factor used in model based techniques�
temporal-difference factor� used to define the degree of randomness of the � -Greedy policy�
trace decay factor� 4 degree of correction used in the estimate of the reward� � degree of correction used in the estimate of the transition probabilities� � � � number of times � has been taken� � ��� � � number of times � has been taken while being in �� � � � ����� � � number of times � � has been reached while taking action � in �� � ��� � � � � number of times action � has been taken while being in � �

� � ��� � � ��� � � � � number of times � � � has been reached while taking action � in � �
� ��� � � state-action pair composed by the state � and the action �
� ������� � eligibility trace for the state-action pair ������� �
� � � � � ��� � eligibility trace for the state-action pair ��� � � � ��
	������� 4�� ��� � symbolizes a uniform probability distribution of � on

�
� / ��� � probability that � is the initial state of the system������� 4������� � ��� � � probability distribution of the � ��� � � visited during the learning�

pseudo state space of the system� pseudo-state of the system� � ��� / �! � ! � ���#"�� ��� / �� ! ! � ���$"�� ��� / �! ! � � ���$"�� �%'&
indicator function of a set

3
.
%�& � � � )( if ��
 3 and * otherwise� � ��� � � � � ������� � ��)( if �� � � and * otherwise+ �-, �/. the expectation of � with respect to the

distribution of the random variable 0



10



Contents

1 Introduction 23
1.1 Power system control and reinforcement learning . . . . . . . . . 23
1.2 Framework used to present RL methods . . . . . . . . . . . . . . 24
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.1 Structure of the main body . . . . . . . . . . . . . . . . . 25
1.3.2 About the appendices . . . . . . . . . . . . . . . . . . . . 27

1.4 Main contributions of the thesis . . . . . . . . . . . . . . . . . . 27
1.4.1 Reinforcement learning and dynamic programming . . . . 27
1.4.2 Power system control . . . . . . . . . . . . . . . . . . . . 29

2 Dynamic programming 31
2.1 Dynamic programming : the basics . . . . . . . . . . . . . . . . 32

2.1.1 Finite spaces . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Infinite state spaces . . . . . . . . . . . . . . . . . . . . . 39
2.1.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Computation of
�

, ��� , ����� . . . . . . . . . . . . . . . . . . . . 40
2.3 Finite state and control spaces : computational methods . . . . . 44

2.3.1 Markov decision processes . . . . . . . . . . . . . . . . . 44
2.3.2 Definition of the MDP structure from the system dynamics

and reward function . . . . . . . . . . . . . . . . . . . . 45
2.3.3 MDP structure computation . . . . . . . . . . . . . . . . 46
2.3.4 Rewriting of the mappings using a MDP structure . . . . . 47
2.3.5 Computation of ��� . . . . . . . . . . . . . . . . . . . . . 47
2.3.6 Value iteration algorithm . . . . . . . . . . . . . . . . . . 48
2.3.7 Gauss-Seidel version of the value iteration algorithm . . . 53
2.3.8 Policy iteration algorithm . . . . . . . . . . . . . . . . . 54
2.3.9 The modified policy iteration algorithms . . . . . . . . . . 55
2.3.10 Randomized stationary policy evaluation . . . . . . . . . 56

11



12 CONTENTS

2.4 Infinite state spaces . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Approximate solutions for DP problems 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Aggregation technique . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Approximate MDP . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 Extension of the MDP solution to the original problem . . 62
3.2.3 Equivalence between

�
and ��

. . . . . . . . . . . . . . 64
3.2.4 Equivalence conditions used to define the MDP � . . . . . 65
3.2.5 Difficulties to compute the MDP � structure . . . . . . . . 66
3.2.6 Continuous state spaces . . . . . . . . . . . . . . . . . . 67

3.3 Representative states technique . . . . . . . . . . . . . . . . . . 69
3.3.1 Approximate MDP . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Extension of the MDP solution to the original problem . . 71
3.3.3 Equivalence between

�
and ��

. . . . . . . . . . . . . . 71
3.3.4 Equivalence conditions used to define the MDP � . . . . . 73
3.3.5 Difficulties to compute the MDP � structure . . . . . . . . 74
3.3.6 Triangulation technique . . . . . . . . . . . . . . . . . . 75
3.3.7 Other methods to determine � . . . . . . . . . . . . . . 80

3.4 Quality of the approximate policy computed . . . . . . . . . . . 80
3.5 Bellman error method . . . . . . . . . . . . . . . . . . . . . . . 85
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 A simple FACTS control problem 87
4.1 The OMIB power system . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 The system dynamics . . . . . . . . . . . . . . . . . . . . 88
4.1.2 State space trimming . . . . . . . . . . . . . . . . . . . . 89

4.2 Optimal control problem formulation . . . . . . . . . . . . . . . 91
4.2.1 Discrete-time system dynamics . . . . . . . . . . . . . . 91
4.2.2 Reward definition . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Optimal control problem solution . . . . . . . . . . . . . . . . . 92
4.3.1 Aggregation technique . . . . . . . . . . . . . . . . . . . 92
4.3.2 Representative states technique . . . . . . . . . . . . . . 98

4.4 State and control space discretization variants . . . . . . . . . . . 100
4.4.1 About the different scores . . . . . . . . . . . . . . . . . 103
4.4.2 About the technique used . . . . . . . . . . . . . . . . . . 103
4.4.3 About the grid used . . . . . . . . . . . . . . . . . . . . . 103
4.4.4 About the control set used . . . . . . . . . . . . . . . . . 104



CONTENTS 13

4.5 On the combined use of multiple MDP � . . . . . . . . . . . . . . 104
4.6 Robustness of the control law . . . . . . . . . . . . . . . . . . . 106

4.6.1 Robustness to a parameter change . . . . . . . . . . . . . 106
4.6.2 Robustness to noise . . . . . . . . . . . . . . . . . . . . . 107
4.6.3 Robustness to modeling . . . . . . . . . . . . . . . . . . 107

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Reinforcement learning 111
5.1 The generic reinforcement learning method . . . . . . . . . . . . 112
5.2 Action selection . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Learning : model based techniques . . . . . . . . . . . . . . . . 115

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.2 Kalman Filter like algorithm . . . . . . . . . . . . . . . . 115
5.3.3 Stochastic Approximation algorithm . . . . . . . . . . . 117
5.3.4 Resolution of the MDP . . . . . . . . . . . . . . . . . . 118

5.4 Learning : non-model based techniques . . . . . . . . . . . . . . 124
5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.4.2

�
-learning . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.3
� �����

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 Learning modules : a unified view . . . . . . . . . . . . . . . . . 131
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Reinforcement learning in infinite state spaces 133
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1.1 Model based techniques : general scheme . . . . . . . . . 134
6.1.2 Non-model based techniques : general scheme . . . . . . 135
6.1.3 Action selection . . . . . . . . . . . . . . . . . . . . . . 138

6.2 About convergence properties . . . . . . . . . . . . . . . . . . . 138
6.3 Model based aggregation technique . . . . . . . . . . . . . . . . 143

6.3.1 Kalman Filter like algorithm . . . . . . . . . . . . . . . . 143
6.3.2 Stochastic Approximation algorithm . . . . . . . . . . . . 145

6.4 Non-model based aggregation technique . . . . . . . . . . . . . . 147
6.4.1

�
-learning algorithm . . . . . . . . . . . . . . . . . . . . 148

6.4.2
� �����

algorithm . . . . . . . . . . . . . . . . . . . . . . . 149
6.5 Aggregation technique : a unified view . . . . . . . . . . . . . . 150
6.6 Model based representative states technique . . . . . . . . . . . . 153

6.6.1 Kalman Filter like algorithm . . . . . . . . . . . . . . . . 153
6.6.2 Stochastic Approximation algorithm . . . . . . . . . . . 156

6.7 Non-model based representative states technique . . . . . . . . . 160



14 CONTENTS

6.7.1
�

-learning algorithm . . . . . . . . . . . . . . . . . . . . 161
6.7.2

� �����
algorithm . . . . . . . . . . . . . . . . . . . . . . . 163

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Revisit of a simple FACTS control problem 169
7.1 Reinforcement learning and the aggregation technique . . . . . . 170

7.1.1 Model based techniques . . . . . . . . . . . . . . . . . . 170
7.1.2 Model based vs non-model based RL algorithm . . . . . . 176

7.2 Representative states technique . . . . . . . . . . . . . . . . . . . 177
7.2.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.2 Resulting score curves . . . . . . . . . . . . . . . . . . . 178
7.2.3 Comparison with the aggregation technique . . . . . . . . 180

7.3 On the combined use of multiple MDP � . . . . . . . . . . . . . . 180
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8 Dynamic programming in continuous-time 185
8.1 Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . . . . 186
8.2 Convergent numerical approximation scheme . . . . . . . . . . . 190
8.3 Learning of the control problem solution . . . . . . . . . . . . . . 194
8.4 The simple FACTS control problem . . . . . . . . . . . . . . . . 195

8.4.1 Rewards, decay factor and reinforcement functional . . . . 195
8.4.2 The HJB equation for the simple FACTS control problem . 196
8.4.3 Discretization of the HJB equation for the OMIB case . . 197

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

9 Real world conditions 199
9.1 Problems met when controlling a real world system . . . . . . . . 199

9.1.1 Policy used when starting to interact with a real system . . 199
9.1.2 Non observable rewards . . . . . . . . . . . . . . . . . . 201
9.1.3 Partially observable system state . . . . . . . . . . . . . 201
9.1.4 Curse of dimensionality . . . . . . . . . . . . . . . . . . 202
9.1.5 Non-stationarity of the system . . . . . . . . . . . . . . . 203

9.2 A real world power system control problem . . . . . . . . . . . . 204
9.2.1 The four-machine power system . . . . . . . . . . . . . . 204
9.2.2 Control problem definition . . . . . . . . . . . . . . . . . 205
9.2.3 Reinforcement learning algorithm used in real conditions 207
9.2.4 Case I : control of the stable equilibrium point . . . . . . . 211
9.2.5 Case II : damping of self-sustained power oscillations . . 212
9.2.6 Case III : adaptation to time-varying conditions . . . . . . 216



CONTENTS 15

9.2.7 Case IV : damping of oscillations caused by short-circuits 217
9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

10 Power system control and RL 227
10.1 Power system control : a high priority . . . . . . . . . . . . . . . 227
10.2 Power system control : a generic description . . . . . . . . . . . . 228
10.3 Design of control schemes : a systematic approach . . . . . . . . 231
10.4 Reinforcement learning as a tool to design agents . . . . . . . . . 233

10.4.1 Two modes of application . . . . . . . . . . . . . . . . . 233
10.4.2 Usefulness of RL methods to power system control . . . . 235
10.4.3 Multi-agent systems . . . . . . . . . . . . . . . . . . . . 236

10.5 Some problems already tackled by RL methods . . . . . . . . . . 236
10.5.1 Continuously acting controllers . . . . . . . . . . . . . . 237
10.5.2 System Protection Schemes . . . . . . . . . . . . . . . . 237

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

11 Conclusions and future prospects 241
11.1 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.2 Problems, solutions and future research prospects . . . . . . . . . 242

A Linear approximation functions 247
A.1 Weighted Least Square Estimation (WLSE) . . . . . . . . . . . . 247

A.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 247
A.1.2 Resolution of the WLSE problem : pseudo-inverse . . . . 248
A.1.3 Kalman filter like algorithm . . . . . . . . . . . . . . . . 248
A.1.4 Infinite set of values

� ��� � �
. . . . . . . . . . . . . . 249

A.2 Minimization of an integral of a continuum of cost functions . . . 250
A.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . 250
A.2.2 Iterative algorithm . . . . . . . . . . . . . . . . . . . . . 251
A.2.3 LSE and stochastic approximation algorithm . . . . . . . 252

A.3 Proofs and additional explanations . . . . . . . . . . . . . . . . . 252
A.3.1 Estimation of the transition probabilities of the MDP � . . 252
A.3.2 MDP structure estimation by solving WLSE problems . . 253
A.3.3 MDP structure estimation by minimizing an integral of a

continuum of cost functions . . . . . . . . . . . . . . . . 256

B Triangulation of an � -cube 259
B.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
B.2 Triangulation of the � -cube into ��� simplices . . . . . . . . . . . 260



16 CONTENTS

B.3 Triangulation of an � -cube into � � � � simplices . . . . . . . . . . . 260
B.4 Triangulation quality and control law quality . . . . . . . . . . . . 262

C Algorithms built under contraction assumptions 263
C.1 Contraction mapping . . . . . . . . . . . . . . . . . . . . . . . . 263
C.2 Description of algorithmic models . . . . . . . . . . . . . . . . . 264

C.2.1 All elements of
�

are refreshed . . . . . . . . . . . . . . 264
C.2.2 One element of

�
is refreshed . . . . . . . . . . . . . . . 264

C.2.3 One element of
�

is refreshed and noise introduction . . 265
C.3 � is a contraction mapping : consequences . . . . . . . . . . . . . 266
C.4 Introduction of the � mapping and consequences . . . . . . . . . 267
C.5 Q-learning convergence proof . . . . . . . . . . . . . . . . . . . 268
C.6 Aggregation technique : convergence to the MDP � solution . . . 269

C.6.1 Convergence conditions . . . . . . . . . . . . . . . . . . 269
C.6.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

C.7 Aggregation technique : convergence . . . . . . . . . . . . . . . 272
C.7.1 Convergence conditions . . . . . . . . . . . . . . . . . . 272
C.7.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

C.8 Representative states technique : convergence . . . . . . . . . . . 273
C.8.1 Convergence conditions . . . . . . . . . . . . . . . . . . 273
C.8.2 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274



List of Figures

2.1 Representation of �
�
�
��� �

. . . . . . . . . . . . . . . . . . . . . 43
2.2 The value iteration algorithm . . . . . . . . . . . . . . . . . . . . 49
2.3 The value iteration algorithm :

�
-function computation . . . . . . 51

2.4 The Gauss-Seidel version of the value iteration algorithm :
�

-
function computation . . . . . . . . . . . . . . . . . . . . . . . . 53

2.5 The Policy Iteration algorithm . . . . . . . . . . . . . . . . . . . 54
2.6 Randomized stationary policy evaluation . . . . . . . . . . . . . . 56

3.1 Approximate solutions for dynamic programming . . . . . . . . . 60
3.2 Aggregation technique : numerical estimation of the MDP � structure 67
3.3 Discretization of the state space (three-dimensional representation) 68
3.4 Approximation of the

�
-function for different state space discretiza-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 State space represented by a finite number of states . . . . . . . . 70
3.6 Representative states technique : numerical estimation of the MDP �

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.7 Triangulation of the state space. Two-dimensional representation. 75
3.8 Triangulation technique used to define the function � . The states

selected from
�

to represent
� � are

�
,
�����	��


, � and
��

. . . . . . . 77
3.9 Numerical estimation of the approximate

�
-function. � � ������� . 78

3.10 Approximate
�

-function computed for different sizes of
� � with����� � �������

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.11 Boundary and triangulation . . . . . . . . . . . . . . . . . . . . . 79
3.12 Numerical estimation of the score of a policy � . . . . . . . . . . 84

4.1 The one-machine infinite bus (OMIB) system . . . . . . . . . . . 88
4.2 Uncontrolled system . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Discretization and triangulation of the state space . . . . . . . . . 93
4.4


�����
��
grid and  "!$#&%')( %

� ' � �*�������
. . . . . . . . . . . . . . . . 95

17



18 LIST OF FIGURES

4.5

�����
��

grid and  "!$#&%')( %
� ' � �*���������

. . . . . . . . . . . . . . . 96
4.6 � 
 � � 
 grid and  "!$#&%')( %

� ' � �*�������
. . . . . . . . . . . . . . . . 97

4.7 Score obtained as a function of  ! # %' ( %
� ' for different state space

discretizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.8 Representative states technique.


���� 
��
grid used . . . . . . . . 99

4.9 Representative states technique. � 
 � � 
 grid used . . . . . . . . 100
4.10 Phase plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.11 Rapid changes of the control variable value around the equilibrium

point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1 Generic reinforcement learning method . . . . . . . . . . . . . . 112
5.2 Action selection : � -Greedy policy . . . . . . . . . . . . . . . . . 114
5.3 Learning : model based technique . . . . . . . . . . . . . . . . . 115
5.4 Estimation of the MDP structure : Kalman Filter like algorithm . 116
5.5 Estimation of the MDP structure : Stochastic Approximation algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.6 Resolution of the MDP : Prioritized sweeping algorithm . . . . . 121
5.7

�
-function estimated during the learning process . . . . . . . . . 122

5.8 Exploration-exploitation tradeoff . . . . . . . . . . . . . . . . . . 122
5.9 Score curves for different variants of the Learning module. . . . . 123
5.10 Learning : non-model based technique . . . . . . . . . . . . . . 124
5.11

�
-function correction :

�
-learning algorithm . . . . . . . . . . . 125

5.12
� �����

:
�

-function correction . . . . . . . . . . . . . . . . . . . . 127
5.13

�
-function correction : Watkins’s

� ��� �
algorithm . . . . . . . . 128

5.14
�

-function estimated during the learning process . . . . . . . . . 129
5.15 Four-state control problem : score curves . . . . . . . . . . . . . 130
5.16 The � � terms satisfy the convergence conditions . . . . . . . . . . 130

6.1 Learning : non-model based technique . . . . . . . . . . . . . . 134
6.2 Learning : model based technique . . . . . . . . . . . . . . . . . 134
6.3 Action selection : � -Greedy policy . . . . . . . . . . . . . . . . . 139
6.4 Aggregation technique : trajectory in a discretized continuous state

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5 Representative states technique : trajectory in a triangulated state

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.6 Estimation of the MDP � structure : Kalman Filter like algorithm

used with the aggregation technique . . . . . . . . . . . . . . . . 143
6.7 Estimation of the MDP � structure : Stochastic Approximation al-

gorithm used with the aggregation technique . . . . . . . . . . . 146



LIST OF FIGURES 19

6.8
� � -function correction :

�
-learning algorithm used with the aggre-

gation technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.9

� � -function correction : Watkins’s
� �����

algorithm used with the
aggregation technique . . . . . . . . . . . . . . . . . . . . . . . . 150

6.10 Representation of ��
at different stages of the learning process . . 151

6.11 Score curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.12 Estimation of the MDP � structure : Kalman Filter like algorithm

used with the representative states technique . . . . . . . . . . . 154
6.13 Estimation of the MDP � structure : Stochastic Approximation al-

gorithm used with the representative states technique . . . . . . . 157
6.14 Q � -function correction :

�
-learning used with the representative

states technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.15 Q � -function correction : Watkins’s

� �����
used with the representa-

tive states technique . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.16 Representation of ��

at different stages of the learning process . . 163
6.17 Score curves for different variants of the Learning module. . . . . 164
6.18 Score curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.19 Kalman Filter like algorithm vs Stochastic Approximation algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 Control law at different stages of the learning process . . . . . . . 174
7.2 Score curves for RL algorithms used with the aggregation technique 175
7.3 Score curves for RL algorithms used with the aggregation technique 176
7.4 Score curves for RL algorithms used with the representative states

technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5 Problem with the representative states technique and the boundary 179
7.6 Comparison between RL algorithms used either with the represen-

tative states technique or the aggregation technique . . . . . . . . 180
7.7 Score obtained as a function of learning time

� � . . . . . . . . . 182

8.1 Trajectories in the state space . . . . . . . . . . . . . . . . . . . . 187
8.2 Value function and solutions of the HJB equation . . . . . . . . . 189
8.3 Discretization of the state space . . . . . . . . . . . . . . . . . . 191
8.4 Discretization of HJB . . . . . . . . . . . . . . . . . . . . . . . . 194
8.5 Approximation of the optimal stationary policy computed by using

a finite differences method to discretize HJB equation . . . . . . . 197

9.1 A four-machine power system . . . . . . . . . . . . . . . . . . . 204



20 LIST OF FIGURES

9.2 The system operates in steady-state conditions. The RL algorithm
takes control of the TCSC at

� � 
 � . . . . . . . . . . . . . . . . 211
9.3 Representation of the self-sustained electric power oscillations . . 212
9.4 After ten minutes of control . . . . . . . . . . . . . . . . . . . . 213
9.5 After one hour of control . . . . . . . . . . . . . . . . . . . . . . 213
9.6 After five hours of control . . . . . . . . . . . . . . . . . . . . . 214
9.7

�  as a function of the learning time . . . . . . . . . . . . . . . . 215
9.8

�  as a function of the learning time . . . . . . . . . . . . . . . . 216
9.9 Representation of the electric power oscillations caused by a

����� �
three-phase short-circuit at bus � ���

. . . . . . . . . . . . . . . . 217
9.10 Representation of ����� � at different stages of the learning process 218
9.11 Number of times the loss of stability has been observed . . . . . . 220
9.12

�  obtained after convergence of the RL algorithm compared to
� 

obtained while using a fixed capacitor. �	��� � 

MW . . . . . . 221

9.13 Representation of � � � � after convergence of the algorithm. �
� �$�

MW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9.14 Representation of ��� � after convergence of the algorithm. �
��� �

MW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.15
�  obtained after convergence of the RL algorithm compared to

� 
obtained while using a fixed capacitor. �	��� � � MW . . . . . . 222

9.16 Representation of ����� � after convergence of the RL algorithm.
�
� �$� � MW . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.17 Representation of �� � after convergence of the RL algorithm.
�
� � � � MW . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

10.1 Power system and control : observations, agent, action, device and
physical influence . . . . . . . . . . . . . . . . . . . . . . . . . 229

10.2 Two modes of application . . . . . . . . . . . . . . . . . . . . . 234

B.1 Cube triangulation. Taken from [Epp]. . . . . . . . . . . . . . . . 261



List of Tables

2.1 Value iteration algorithm : illustration on the four-state control
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2
�

-function representation . . . . . . . . . . . . . . . . . . . . . . 55
2.3 � -Greedy policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Solution of the MDP � . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Transition probabilities computed by using the triangulation tech-

nique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Score obtained for different values of � . . . . . . . . . . . . . . . 82
3.4 Score obtained for different discretizations of the state space . . . 84
3.5 Score obtained for different sizes of the disturbance space subsets 85

4.1 Scores obtained for different ways to compute the MDP � . . . . . 102
4.2 Combined use of multiple MDP � . . . . . . . . . . . . . . . . . . 106
4.3 Robustness of the control law to a parameter change . . . . . . . . 107
4.4 Robustness of the control law to noise . . . . . . . . . . . . . . . 108
4.5 Robustness with respect to system modeling . . . . . . . . . . . . 109

7.1 Score for different � �
� � �

as a function of the learning time . . . . 172

B.1 Comparison between the minimum number of � -simplices required
to triangulate the � -cube and ��� . . . . . . . . . . . . . . . . . . . 261

B.2 Score obtained for different triangulations. The OMIB power sys-
tem with AVR. � � � � � � . . . . . . . . . . . . . . . . . . . . . 262

21



22 LIST OF TABLES



Chapter 1

Introduction

This research is motivated by our interest to solve practical electric power systems
control problems. To tackle such problems we formulate them as optimal control
problems and search for an optimal closed-loop control policy i.e., a control pol-
icy which uses real-time measurements to decide which control action to take with
the objective of maximizing some performance index. Among the approaches to
solve optimal control problems, we focus on Reinforcement Learning, which con-
cerns the development of algorithms to approximate optimal control policies in an
automatic way.
In the following sections we first provide an intuitive presentation of reinforcement
learning and of the dynamic programming ideas on which reinforcement learning
is based. Then we outline the logical organization of this work and provide some
reading guidelines. We conclude this introduction with a statement of our main
personal contributions.

1.1 Power system control and reinforcement learning

Learning from interaction with an environment is probably the most natural form of
learning. Humans acquire an immense source of knowledge from interaction with
their environment. When they hold a conversation, drive a car, or play tennis, they
are acutely aware of the effect they have on their environment and try to analyze
these effects in order to improve their behavior.
In this work, we explore how a computational approach to learning from interac-
tion can be applied to control power systems. The computational approach con-
sidered is called reinforcement learning (RL). Reinforcement learning is learning
from interaction what to do i.e., how to map situations to actions, so as to maxi-

23



24 CHAPTER 1. INTRODUCTION

mize a numerical reward signal. In this framework the learning agent is not told
explicitly which actions to take but instead must discover himself which actions
yield the highest rewards by trying out various possible actions and by observing
their consequences.
The interests in reinforcement learning methods for power system control are huge.
Indeed, they offer the possibility to design intelligent agents able to learn an appro-
priate control strategy from interaction with the power system % .
At least two types of applications are possible. One is to use these RL driven
agents in a simulation environment and to exploit the control strategy they have
learned to control the real power system. The other application consists in using
these agents directly on the real power system. Although this latter application is
the most attractive one, it is also the most difficult to achieve. Indeed, one must
guarantee that during his interaction with the power system the RL driven agent
will not, notably by lack of knowledge, adopt a behavior that can jeopardize the
system integrity.
The aim of this thesis is to explore these different applications and to set up rein-
forcement learning algorithms able to match power system control requirements.
Although the reinforcement learning methods developed in this work can be used
with a vast panel of power system control problems, in the examples we focus
mainly on control problems involving a Thyristor Controlled Series Capacitor (TCSC)
device. This device is built by using power electronics and has roughly the ability
to modify the line impedance. The reinforcement learning algorithms are able to
control it (i.e., to impose on the TCSC ways of modifying the line impedance) and
to gather information about the power system dynamics. They will have to learn
from this interaction an appropriate control strategy for the TCSC device.

1.2 Framework used to present RL methods

Reinforcement learning methods will be presented in this thesis as a way of learning
the (approximate) solution of optimal control problems.
The optimal control problems that we consider are multi-stage decision problems.
The outcome of each decision is not considered as fully predictable but can be
anticipated to some extent by knowing the system dynamics and a reward function.
Each decision results in some immediate reward but also influences the context in
which future decisions are to be made and therefore affects the reward incurred in
future stages. We are interested in decision making policies that maximize the total

�

Applications of reinforcement learning to power system control are more extensively discussed
in chapter 10.



1.3. OUTLINE OF THE THESIS 25

reward over a number of stages. Dynamic Programming is used to provide the
mathematical formalization of the tradeoff between immediate and future rewards.
Among the different types of optimal control problems, we consider mainly discrete-
time control problems with infinite horizon. Although such problems do not exist
in practice since every physical process is bounded in time, their analysis is ele-
gant and their optimal policies are simple. Among the different types of infinite
horizon problems that have been studied in the literature we consider, notably for
convergence reasons, only the discounted problems for which the rewards impor-
tance decays exponentially with their time of appearance. As we will observe in
the applications, this type of optimal control problem yields control policies that
are easily implementable and are able to control the power system correctly.

1.3 Outline of the thesis

1.3.1 Structure of the main body

Reinforcement learning methods do not use any analytical knowledge of the ele-
ments composing the optimal control problem

�

to learn its solution. They consider
these elements as unknown and compensate for this absence of knowledge by the
possibility to learn by interacting with the system. Rather than focusing directly
on the reinforcement learning methods, we will first present methods that solve
optimal control problems when the system dynamics and the reward function are
known.
Many variables that describe the power system dynamics being continuous, we will
have to deal with state spaces composed of an infinite number of states. Control
problems with infinite state spaces being more difficult to solve than control prob-
lems with finite state spaces, we will focus first on these latter.
More specifically, we will basically concentrate on the following four problems.

� Problem I : resolution of an optimal control problem with known system
dynamics and reward function and finite state space.

� Problem II : resolution of an optimal control problem with known system
dynamics and reward function and infinite state space.

� Problem III : resolution of an optimal control problem with unknown system
dynamics and reward function and finite state space.

�

These elements are the system dynamics and the reward function.



26 CHAPTER 1. INTRODUCTION

� Problem IV : resolution of an optimal control problem with unknown system
dynamics and reward function and infinite state space.

These four problems are treated in the following way.

� Problem I. To solve this problem we use classical dynamic programming
algorithms. These algorithms are described in chapter 2. At the beginning of
this chapter we define also the type of optimal control problem used in the
thesis (except for chapter 8) and characterize its solution.

� Problem II. Generally speaking, it is not possible to compute exactly the so-
lution of infinite state space control problems. Therefore, we propose some
strategies to determine approximate solutions. We focus mainly on strategies
that consist in defining from the infinite state space control problem knowl-
edge a finite state space control problem able to catch its main features. This
finite state space control problem is solved and its solution is extended to
the initial control problem. We investigate two different such strategies in
chapter 3.

� Problem III. To compensate for the absence of knowledge of the system dy-
namics and the reward function, one has the possibility to interact with the
system. Two approaches are possible. The first reconstructs the control prob-
lem structure and solves it. The second approach learns directly the control
problem solution without reconstructing its structure. Both approaches are
described in chapter 5.

� Problem IV. The absence of knowledge of the system dynamics and the re-
ward function is compensated by the possibility to interact with the system.
We propose two different approaches. Roughly speaking, both approaches
consist in determining the solution of a finite state space control problem and
in extending its solution to the initial control problem (procedure similar to
the one used to solve Problem II). One approach reconstructs the finite state
space control problem structure and solves it while the other learns directly
its solution. Chapter 6 is dedicated to this Problem IV.

The theoretical derivations of solutions for these four different problems are pro-
vided respectively in chapters 2, 3, 5, 6, together with illustrative (academic) ex-
amples. Chapters 4 and 7 complement this material with an in-depth empirical
analysis of the various algorithms proposed by simulations carried out on a simple
but still representative power system control problem.



1.4. MAIN CONTRIBUTIONS OF THE THESIS 27

Chapter 8 is a short incursion into the field of continuous-time optimal control
problems. The theory underlying the Hamilton-Jacobi-Bellman equation is first
outlined and a numerical discretization technique to solve it is described. This
algorithm is then applied to the test problem used in chapter 4, and the resulting
continuous-time control policy is compared with the previously obtained discrete-
time one. Analogies are drawn between the discretization techniques used in this
chapter and those used in chapters 3 and 6.
In chapter 9, we describe several additional problems (partial observability, curse of
dimensionality, time variance of the system, ����� ) met when applying reinforcement
learning methods to control real world systems and discuss some strategies that
can be adopted to solve these problems. An application of reinforcement learning
methods to control a FACTS device installed on a four-machine power system is
also carried out in this chapter.
In chapter 10 we highlight the main challenges in power system control and dis-
cuss how some (or many) of these challenges could be met by using reinforcement
learning methods.
The last chapter of the thesis is devoted to conclusions and discussions about open
issues and directions for future research.

1.3.2 About the appendices

We have removed from the main text of the thesis some detailed derivations which
are not strictly necessary for its understanding.
For the sake of completeness these derivations are collated in three appendices
dealing respectively with linear approximation, triangulation, and algorithms based
on contraction assumptions. The interested reader may have a quick look at these
appendices before starting to read the main text, or refer to them on the fly.

1.4 Main contributions of the thesis

We discuss separately our contributions to the field of reinforcement learning and
dynamic programming and our contributions in the context of electric power sys-
tems control.

1.4.1 Reinforcement learning and dynamic programming

The theoretical part of this thesis is the synthesis of our own study during the last
two years and classical material found in the literature on dynamic programming
and reinforcement learning (or neuro-dynamic programming). Starting from the



28 CHAPTER 1. INTRODUCTION

basic results in finite Markov decision problems, we provide a unified framework
to formulate and study a broad class of continuous state space optimal control and
reinforcement learning algorithms. Below, we enumerate some specific technical
contributions that we believe are new and hopefully interesting.

� The representative states technique. We introduce and study this discretiza-
tion technique to transform a continuous state space control problem into
a finite Markov Decision Process (MDP). The use of this technique, al-
ready known in the context of continuous-time optimal control problems (e.g.
[Mun00]), is new in the context of discrete-time optimal control problems.

� Model based reinforcement learning algorithms. We combine two discretiza-
tion techniques (the representative states technique and the aggregation tech-
nique) with model based RL algorithms to treat continuous state space prob-
lems. The way the finite MDPs are defined as well as the way their solution is
extended to the initial control problem are specific to this thesis (chapter 6).
While most recent work in RL focuses on non-model based techniques, we
found out that model based ones provide better performances in the context
of our applications.

� Equivalence conditions. We introduce theoretical equivalence conditions be-
tween solutions based on finite MDP based approximation architectures and
the solution of the original continuous state space control problem and show
how these equivalence conditions can be used as a framework to elaborate
algorithms to reconstruct the approximating MDP structure either from the
knowledge of system dynamics and reward functions or from samples along
system trajectories (chapters 3 and 6).

� MDP estimation algorithms. We introduce and study reinforcement learning
algorithms that learn the structure of a finite MDP aimed to catch the main
features of the infinite state space control problem (chapter 6). Two types of
algorithms are introduced to estimate the finite MDP structure. One is based
on the Kalman filter algorithm and the other on a stochastic approximation
algorithm.

� Unification of model based and non-model based algorithms. We provide
a unified view and a systematic theoretical study of model based and non-
model based reinforcement learning algorithms (chapters 5 and 6).

� Implementations, empirical studies and applications. We first provide a sys-
tematic comparison of various algorithms on a simple FACTS control prob-



1.4. MAIN CONTRIBUTIONS OF THE THESIS 29

lem (chapters 4, 7, 8). Then we apply RL techniques to real-world control
problems with continuous state spaces in various conditions (chapter 9).

We mention also some work not reported in this thesis on the development of adap-
tive discretization methods for reinforcement learning [BEW03].

1.4.2 Power system control

The practical part of the thesis is the result of personal work and collaborations
with other colleagues during the last three years. We have implemented ourselves
all the algorithms used in this context, except for some general purpose power
system simulation software that was already available. Our main contributions in
this context are the following.

� Reinforcement learning methods for power system control. Reference [DEW00]
is one of the earliest attempts to use reinforcement learning in power systems.
It is the first attempt to develop an automatic generation shedding system by
such an approach. This application is briefly reported in chapter 10.

� TCSC control by reinforcement learning. References [Ern01, EW02] are the
first publications on the control of such a device by reinforcement learning.
These publications partly overlap with the material reported in chapters 7 and
9 of this work.

� General framework for power system control. In chapter 10 we propose a
general framework for the development of power system control agents based
on reinforcement learning.

Finally, reference [EGW03] reports on work not reported in this thesis dealing with
the application of reinforcement learning for power system control .



30 CHAPTER 1. INTRODUCTION



Chapter 2

Dynamic programming

In this chapter, dynamic programming is used to handle discrete-time optimal con-
trol problems with infinite time horizon. Although these infinite time horizon control
problems do not exist in practice because physical processes are bounded in time,
their analysis is elegant and the implementation of the optimal policies computed
is simple because they are stationary. Among the different types of infinite hori-
zon problems we consider only the discounted problems for which the rewards are
weighted so that the importance of the rewards decays exponentially with their time
of appearance. Furthermore we will suppose that the rewards are bounded.
In this chapter we successively

� define the elements the optimal control problem is made of and introduce the
Dynamic Programming (DP) equation as a way of characterizing the control
problem solution;

� present iterative methods to solve the DP equation and to evaluate the return
of some particular policies;

� explain how to transform the control problem into a Markov Decision Pro-
cess (MDP);

� present some algorithms (value iteration algorithm, policy iteration algo-
rithm, ����� ) to solve the optimal control problem when the state space and the
control space are finite.

For more information about dynamic programming, and for the proofs which we
omit, the reader may refer to [Ber00] and [Ber95].

31



32 CHAPTER 2. DYNAMIC PROGRAMMING

2.1 Dynamic programming : the basics

In this section we describe the main elements that make up a dynamic programming
problem and give some important results of the dynamic programming theory. For
the sake of simplicity we consider first control problems for which the state space,
the control space and the disturbance space are finite.

2.1.1 Finite spaces

The system dynamics

One of the elements that will make up the dynamic programming (DP) problem is
a discrete-time dynamical system described by the generic equation :

� 
� % �

� ��� �� � ����  � � � � � � � � ����� (2.1)

where for all
�
, the state

�  is an element of a finite space
�

, the control �  is
an element of a finite space � and the random disturbance �  is an element of a
finite space � . The control �  is constrained to take values on a non-empty subset� � �  � of � which depends on the current state

�  . The random variables �  have
identical statistics and are characterized by the probability distribution � � � �	� �  � �  �
defined on � , where � � � �  � �  � �  � represents the probabilities of occurrence of
�  , when the current state and control are

�  and �  , respectively. The probability
of �  may depend explicitly on

�  and �  but not on values of prior disturbances
�  #&% � ����� ��� � .

The rewards

Another element that intervenes in the definition of the DP problem is a reward
function 
�� � � � � � � 

and its associated discount factor � with
��� ��� �

that weights the rewards. In this work we consider discounted problems, that is
problems for which % � � �

. The rewards we consider are supposed to be bounded,
that is there exists a value ��� such that

� 
 � � � � ��� � ��� ��� for all
��� �

, � � � ��� �
and � � � .

�

Although most of the time we will consider � as constant, optimal control problems for which �
depends on � and � can be treated similarly. Such problems are encountered in chapter 8.



2.1. DYNAMIC PROGRAMMING : THE BASICS 33

The return over
�

-stages is denoted by
� �

and is equal to the sum of the weighted
rewards observed over the

�
-stages defined as follows

�

:

� � �
� # %�
 ( �

�  
 � �  � �  ���  � � (2.2)

We mainly focus on the case where
� � �

. In this context we talk about return
rather than return over

�
-stages and denote it by

�
. One should notice that a

reward obtained after time
���� �

has less importance on the return than a same
magnitude reward observed at

� � �
. Indeed, it intervenes in the return definition

multiplied by a factor �  � �
.

Admissible control policies

The objective of the controller is to maximize in some sense (to be defined be-
low) the overall reward

�
. The control policy represents the method used by the

controller to select at each time
�

a control �  constrained to stay in �  � � ���  � .
At time

�
, when choosing the value of �  , the controller has at its disposal the full

history of the states already met and of the actions already selected at previous time
steps (

� � � � � � � � � � �
), as well as the value of the present state

�  . We denote this
history by

�  � � �
� � ����� � �  � � � � ����� � �  # %

� �

Based on this information the controller may select actions either in a deterministic
or in a stochastic way.
To formalize these notions we define the set of all admissible histories at time

�
by

� �  � � � / �� ! ! ��� � � � / �! � ! � � �$"�� �� � , 
 � � ����
 � ����� � �	� 
 � ( �� ! � � � � ��
 
 � ( �� ! ! � �� ( � �

and an admissible control policy by a sequence � ��� � % � � � � ������� of conditional
probability distributions �  � �  � �  � , such that for every

�  � �  ,  �������������� �  � � � �  � ��
.

We denote by  the set of all admissible control policies. A particular element of
 defines a particular method to generate a sequence � �  � of actions �  � � � �  �
such that for every history

�  and
� � � � � � ����� the distribution of �  is �  � � � �  � .

�

The value !�" � �$# � �%#'&(�') is also denoted by ! � .



34 CHAPTER 2. DYNAMIC PROGRAMMING

Controlled system trajectories

Once a control policy is adopted the process evolution is well defined. Trajectories
of the system are generated according to the following mechanism.

� At time
� � �

an initial state
�

� is chosen according to a probability distribu-
tion � �

� � �
, and the history is initialized to

�
� � � �

�
�
.

� At time
�

the controller selects an action �  � � � �  � according to the given
distribution �  � �	� �  � .

� The disturbance �  is generated according to the probability distribution
� � � � � �  � �  � .

� The value of the reward function is determined and equal to 
  � 
 ���  � �  ���  � .
� The next state is generated according to the system equation

� 
� % �

� � �  � �  ���  �

and the history is updated by appending the control action taken �  and the
new state reached

� 
� % to the value of the previous history

�  .
This mechanism defines for every finite time

�
, a joint probability distribution over

the variables
� �

� � � � � � �  � � � � � � � � �  ��� � � � ��� ���  � i.e., a discrete-time discrete-space
stochastic process.

Markov policies

The class  of control policies is the most general class of control policies that
one can envisage in order to optimize system behavior. We now introduce some
simpler, so-called Markov classes of control policies, which choose the control
action �  only on the basis of the state at time

�
:

� Randomized Markov policies. A policy is a randomized Markov policy if
it corresponds to a policy that selects at time

�
the action �  according to a

probability distribution � �  � � � �  � with  � � � � � ��� � �  � � � �  � � �
. Such policies

are denoted for brevity by � �  . These policies use only from the history
�  the

value of the current state to determine �  .
� Deterministic (nonrandomized) Markov policies. A policy is a deterministic

Markov policy if it corresponds to a policy that selects at time
�

the control
�  � �  � �  � where �  � � � � with �  � � � � � � � ��� ��� �

.



2.1. DYNAMIC PROGRAMMING : THE BASICS 35

� Randomized stationary (Markov) policies. A policy is a randomized sta-
tionary policy if it corresponds to a policy that selects at time

�
the action � 

according to a probability distribution � � � � � �  � with  �������������� � � � � � �  � � �
.

Such policies are denoted for brevity by � � .

� Deterministic stationary (Markov) policies. A policy is a deterministic sta-
tionary policy if it corresponds to a policy that selects at time

�
the control

�  � � � �  � where � � � � � with � � �  � � � ���  � � � � �
. Such policies

choose while being in a state
�

always the same action and are denoted for
brevity by � .

One can observe that these Markov classes of policies are particular cases of the
general policies  . They are much simpler to describe, study and implement, and,
as we will see soon, they are sufficiently general to solve our optimal control prob-
lem.

The expected return over
�

-stages of a policy

Among the system trajectories of length
�

, let us focus on the subset of trajectories
starting from a particular initial condition

�
� � �

. Then, the expected return over�
-stages of a policy � acting on a system starting from state

�
, is defined by the

following expression :

�
�� � � � � �

��������������� �
	�� � �������������  	�� � �������������� � 	�� ���

�
� #&%�
 ( �

�  
 � �  � �  ���  � � � � � ���
(2.3)

where the expectation is taken over all system trajectories according to the condi-
tional probability distribution

� � �
� � ��� � � � � #&% � � � � � � � � � � # % ��� � � � ��� ��� � #&%

� � � � � � �
Notice that this conditional probability distribution can be derived by recursion
from the different elements defining our control problem and the policy � , and
assuming that � �

� �
�
� ��� � � � � �

�
. In order to highlight this, we set

�  � � �
� � ����� � �  � � � � ����� � �  ��� � � ����� ���  � � � � � � ����� � � � � � �

We therefore have for all
� � � � � ����� � � � � � � :

� � �  � � � � �  #&%
�"!
# ����$ � � � �  # % � �  #&% ���  #&%

� � �  � �  � �  � � � � �  � �  � �  � (2.4)%�&�'
is the indicator function of a set ( .

&)' " � )�*,+ if �.-/( and 0 otherwise.



36 CHAPTER 2. DYNAMIC PROGRAMMING

with � � �
�
� ��� � � � � �

� � �
� � � � � �

� � � � � � � � � � � �
�
.

Expression (2.4) provides a way of computing � � � � # %
�

necessary to evaluate
(2.3).

The (infinite horizon) expected return

The expected return over an infinite number of stages (or expected return) of a
policy � is given by

�
:

�
� � � � � ��������	� � �� � ��������	� � �

� #&%�
 ( �

�  
 � �  � �  ���  � � � � � ��� �
(2.5)

The maximum expected return over
�

-stages

The upper bound of the expected return over
�

-stages is denoted by ��
� and is
given by the following expression :

� 
� � � � ������� ���
� �
� # %�
 ( �

�  
 � �  � �  ���  � � � � � ��� �
(2.6)

One can show that under the assumption of finite (or even countable) state space,
control space and disturbance space, there always exists at least one policy in ��
 �
 such that � ���� � � � � ��
� � � �

. Hence, ��
� � � �
represents indeed the best expected

return over
�

-stages that can be obtained by a policy � �  . In order to stress this
fact, we will use “

�����
” operator instead of the “ ����� ” in the subsequent derivations,

whenever this is justified.
Observe that while ��
� � � �

is unique, the policy � which realizes that maximum is
not necessarily unique. Thus the maximum return is uniquely determined, but there
may be several optimal policies which yield this return.

The maximum expected return (over an infinite number of stages)

The maximum expected return (or value function) is the limit of the maximum
expected return over

�
-stages when

� � �
. It is denoted by � 
 (or

�
) and is

defined as follows
�

:

� 

� � � � � � � � � ��������	� ������ ��� � �

� #&%�
 ( �

�  
 � �  � �  ���  � � � � � ��� �
(2.7)

�
We do not have any problem with the limit because it is an infinite sum of numbers that are

bounded in absolute value by the decreasing geometric expression � � (� .



2.1. DYNAMIC PROGRAMMING : THE BASICS 37

Sufficiency of Markov policies

Below we state three important results, which plainly justify to restrict our attention
to the classes of Markov policies introduced above.

Finite horizon return equivalence: Given an initial probability distribution on
�

� ,
for every

�
and for every possible policy in  there exists a Markov policy

which yields the same expected return over
�

-stages. Thus, in terms of the
expected returns that can be obtained, the class of Markov policies is suffi-
ciently large to cover all possible behaviors.

Finite horizon optimality equivalence : For every
�

there exists a determinis-
tic Markov policy whose expected return over

�
-stages is equal to ��
� � � �

� � � �
. Therefore, even if the class of policies is restricted to the set of

deterministic Markov policies, one still has the guarantee to find in it at least
one policy whose return equals the maximum expected return over

�
-stages

of all admissible policies.

Infinite horizon optimality equivalence : There exists a deterministic stationary
(Markov) policy whose return is equal to

�
everywhere on

�
.

A deterministic stationary policy whose expected return is equal to the maximum
expected return everywhere is said to be an optimal stationary policy

�
and is de-

noted by � 
 . When facing an optimal control problem, our main objective will be
to compute an optimal stationary policy.

The Dynamic Programming equation

One remarkable property of the maximum expected return is that it satisfies the
equation

�
:

� � � � � � ���
�����������

� � � 
 � � � � ��� ��� � � � � � � � � ��� � �"�
(2.8)

known as the DP equation or the Bellman equation and that it is the unique solu-
tion of this equation.
The knowledge of

�
can be used to compute an optimal stationary policy. Indeed,

it can be shown that among the stationary policies all and only those which satisfy
�
We will often call abusively a policy the optimal stationary policy even if there may exist many

optimal stationary policies.�
The expectation is computed by using � " & ) * � � " &�� � # � ) .



38 CHAPTER 2. DYNAMIC PROGRAMMING

the following expression are optimal :

� 
 � � � � � ��� � ���
� � � � ���

� � � 
 � � � � ��� ��� � � � � � � � � ��� � � � �
(2.9)

We remark that the system dynamics and the reward function have to be known to
deduce � 
 from

�
.

The
�

-function

We use the notation
� � �

to represent the set of all possible state-action pairs� � � � � . Therefore, we have
� � � � � ��� � � � � � � � and � � � � � � � .

We define the
�

-function
� � � � � � 

as follows :

� � � � � � � � � � 
 � � � � ��� ��� � � � � � � � � ��� � � � � (2.10)

which implies :

� � � � � � ���
� ���������

� � � � � � � (2.11)

and therefore :

� � � � � � � � � � 
 � � � � ��� ��� � �����
��� � � ��� � � � ��� � � � � � � � � � � ��� � � ��� � � � (2.12)

� � � � � � represents the value of the expected return obtained by starting from state�
when the first action taken is � and when an optimal policy is followed in the

aftermath.
� � � � � � is referred to as the value of the

�
-function for the state-action

pair
� � � � � .

The
�

-function knowledge allows to directly compute an (actually all) optimal
stationary policy(ies) through the following expression :

� 
 � � � � � ��� � ���
� � � � ���

� � � � � � � (2.13)

Notice that in practice, the determination of an optimal stationary policy will most
of the time be realized from the

�
-function.

Characterization of the return of stationary policies

Expected returns of a deterministic stationary policy and of a randomized station-
ary policy can be characterized by similar expressions as the one that characterizes



2.1. DYNAMIC PROGRAMMING : THE BASICS 39

the value function. Indeed, it can be shown that the expected return � � of a deter-
ministic stationary policy is the unique solution of

�

� �
��� � � � � � 
 � � � � � � � ��� � � � � � � � � � � � � � � ��� � � �

(2.14)

and that the expected return � � � of a randomized stationary policy � � is the unique
solution of

�

� � �
� � � � �

� � � � � � 
 � � � � ��� ��� � � � � � ��� � � ��� � � � �
(2.15)

2.1.2 Infinite state spaces

We will consider later in this work optimal control problems for which the state
space (

�
) and/or the disturbance space ( � ) and/or the control space ( � ) are infinite.

The elements that make up the dynamic programming problem (the system dynam-
ics, the reward function, the policy) can be defined similarly when the spaces are
not finite anymore.
Concerning the results of the dynamic programming theory given in section 2.1.1,
they remain valid if � is a compact space and if some “continuity conditions” on

 � � � � ��� �

and
� � � � � ��� �

are satisfied
�
. Therefore if these conditions are satisfied

one can still state among other things that :

� there exists a deterministic stationary policy whose return is equal to the
maximum expected return

� the value function is the unique solution of the DP equation

� equation (2.9) is a necessary and sufficient condition characterizing all opti-
mal stationary policies.

2.1.3 Remarks

Terminal states

During the control process a terminal state can be reached (a state for which the
control process stops when it reaches it). The handling of systems with terminal

�
Expression (2.14) is an immediate consequence of the Bellman equation by choosing � " � ) *��� " � )	� .

The mathematical expectation is computed by using � " & # � ) * � � " &�� � # � ) � � " � � � ) .�
For a rigorous formulation of the conditions, the reader may refer to [HLL96] and [HLL99].

These conditions are supposed to be satisfied in all the optimal control problems we treat.



40 CHAPTER 2. DYNAMIC PROGRAMMING

states does not differ in principle from that of systems that do not have any terminal
states. Indeed a terminal state can be seen as a regular state in which the system
is stuck and for which all the future rewards obtained in the aftermath are zero.
Denoting by

� 
a terminal state, we thus have :

�  � � � �  � � ��� �
(2.16)


 � �  � � ��� � � �
(2.17)

If such a state is reached after � stages then the return obtained can be written :

� �
� #&%�
 ( �

�  
 ���  � �  ���  � � (2.18)

Such terminal states will be used to model undesirable conditions that the controller
should try to avoid reaching in any case. In our applications we will consider, for
example, that a terminal state is reached when the power system leaves its stability
domain. We will see in the applications how to penalize transitions toward such
terminal states.

Continuous-time dynamics

Although we assume discrete-time dynamics for the system, in this work we will
consider many systems having a continuous underlying dynamics described by :

�� � � � � � � ��� � �
(2.19)

Discrete-time control on such a system means that at instant
�

the controller ob-
serves the state of the system and sets the evolution of the control variable � over
the time interval

� � � � � � �
. Usually � is set to be constant (see for example [Oga95])

over this interval but as it will be illustrated in chapter 3 having � varying on the
time interval can also have some interest.

2.2 Computation of
�

, � � , � � �

The value function, the expected return of a deterministic stationary policy and the
expected return of a randomized stationary policy are respectively the unique solu-
tions of equations (2.8), (2.14) and (2.15). We describe hereafter iterative methods
to solve these equations. Practical implementations of these iterative methods when
the state space and the control space are finite are further detailed in section 2.3.



2.2. COMPUTATION OF
�

, � � , � �
�

41

Computation of
�

For any bounded function � � � � 
, we consider the function obtained by

applying the dynamic programming mapping ( � ) to � , and we denote it by :
�

� �
� � � � � �����

� � � � ���
� � � 
 � � � � ��� ��� � � � � � � � � ��� � � � � ��� � �

(2.20)

Since
�

� �
� � � �

is itself a bounded function defined on the state space
�

, we view �
as a mapping that transforms the bounded function � on

�
into a bounded function

� � on
�

. Notice that
�

has earlier been defined as a fixed point of this mapping.
Actually, this � mapping is a contraction mapping % �

. Indeed it can be shown that
for any pair of bounded functions � � � � � � 

we have :
�

� � � � �
� � � � �

� � �
� � �

� being a contraction mapping it has a unique fixed point
� % % , and moreover

the sequence of functions �
�
� converges (in

�
-norm) toward

�
, whatever the

bounded function � used as starting point. % �

Consequently, the maximum expected return satisfies :

� � � � � �������� � �
�
�
�
� ��� � � ��� � �

(2.21)

Expression (2.21) can be used to compute the maximum expected return, starting
with an arbitrary bounded function as initial guess.

Computation of � �

We introduce the � � mapping that transforms any bounded function � � � � 
into :

�
� � �

� � � � � � � � 
 ��� � � ��� � ��� � � � � � � ��� � � ��� � ��� � � � � � � � �
(2.22)

This mapping is also a contraction mapping whose unique fixed point is � � . If
applied an infinite number of times to any bounded function it converges to � � .
Consequently :

� �
� � � � ������ �	� �

� �
�
�
� � � � � ��� � �

(2.23)

� �
See section C.1 for the definition of a contraction mapping and the description of its properties.

� �

hence � is indeed uniquely defined as the fixed point of this mapping
� �

Notice that the set of bounded real-valued functions defined on an arbitrary set � is a Banach
space.



42 CHAPTER 2. DYNAMIC PROGRAMMING

Computation of
�
���

We introduce the mapping � � � that transforms any bounded function � � � � 
into :

�
� ���

�
�
� � � � �

� � � ��� � 
 ��� � � ��� � � � � � � ��� � � ��� � � � � ��� � �
(2.24)

This mapping is also a contraction mapping whose unique fixed point is � � � . If
applied an infinite number of times to any bounded function it converges to � � � .
Consequently :

� ���
� � � � ������ �	� �

� � �
�
�
� � � � � � � � �

(2.25)

Example 2.2.1 We illustrate hereafter the use of expression (2.21) to compute the maxi-
mum expected return.
Suppose the system described by the discrete-time equation :

���
	��  ����� ��� (2.26)

where the state space
�  � � 
��	� � 
 , ( ����. �
	 � � � � ( �

�
represents the terminal state

of the system that is reached if � goes outside the interval , ( ��� . ), the control space
� 

� � ( �!( � and
� ��� �! ��� � 
 � � � � � � . The reward function ' � ��� �����!� is equal to * if� � ��� � � 
 , ( ����. and if �  � � , � if ��� ��� � �� ( and � if � � ��� � ����� . The decay factor1  *���� .

We start the computation with a function
�

equal to zero on
�

:
� � � �  * � ��
 � .

Computation of
� � � � � :

� � ��� ��

����� ����
� if ��
 , ( ��� ,
* if � ��
� if ��
 .�� ����.
* if �  � �

Computation of
���.� ��� � :

� � � � � ��

����� ����
� if ��
 , ( ��� ,� � � if ����
� if ��
 .!� ��� .
* if �� � �



2.2. COMPUTATION OF
�

, � � , � �
�

43

Computation of
� � � ��� � :

� � � � � ��

����� ����
� if ��
 , ( ��� ,� � � if ����
� if ��
 .!� ��� .
* if �� � �

We notice that
� � �  � �.�

and therefore we have
�  ���.� ��� � . The computation process

is represented on figure 2.1.

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

�

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3.

� �

� −1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

� � �

Figure 2.1: Representation of �
�
�
� � �

The
�

-function can be computed by using equation (2.10) :

� � ��� � ( ��

����� ����
� if ��
 , ( ��� ,
( � � if ��
 , � � � ,
( � � � if �  �
* if �  � �

� � ���!( ��

����� ����
( � � � if ��)(� � � if ��
 .$( ��� .
� if ��
 .!� � ��.
* if �� � �

� ����� � ( � � � ������( � � � 
 , ( ��� , and
� � ��� � ( �  � � ���!( � otherwise. From expression

(2.13) we deduce the optimal stationary policy : � � ��� �� � ( if � 
 , ( ��� , and ( otherwise.
Although the system was composed of an infinite number of states, we managed to compute
the optimal stationary policy and the maximum expected return. But usually problems with
infinite state spaces cannot be solved so easily. Consider for instance a system dynamics
slightly modified through the introduction of a noise factor :

��� 	 �  ��� � ��� � ���



44 CHAPTER 2. DYNAMIC PROGRAMMING

where ��� is drawn according to the standard Gaussian distribution and
�  , � ( �!( . . The

computation of the value function and the optimal stationary policy by using expression
(2.21) becomes much more difficult. In chapter 3 we provide methods to compute numeri-
cally an approximate solution of such optimal control problems.

2.3 Finite state and control spaces : computational meth-
ods

In this section we suppose that the state space (
�

) and the control space ( � ) are
finite and we

� define the notion of a Markov Decision Process (MDP)

� explain how to compute the structure of the MDP that the optimal control
problem corresponds to

� reformulate the � , � � and � � � mappings by using the MDP structure to
represent the system dynamics and reward function

� deduce from this new formulation a method to compute � �

� introduce the value iteration algorithm, the Gauss-Seidel version of the value
iteration algorithm and the policy iteration algorithm as a means of solving
the optimal control problem.

2.3.1 Markov decision processes

A Markov Decision Process (MDP) is defined through the following objects : a
state space

�
, a control space � , sets

� � � �
of available actions at states

� � �
,

transition probabilities � � �
�
� � � � � , � � � � � � �

, � � � � � �
and a reward function


 � � � � � denoting the one-stage reward obtained by using action � in state
�

[FS02].
MDPs can be seen as a particular type of the discrete-time optimal control problem
stated in section 2.1 where the system dynamics is expressed using a transition
probabilities formulation and where the reward does not depend on the disturbance
parameter � anymore.



2.3. FINITE STATE AND CONTROL SPACES : COMPUTATIONAL METHODS 45

2.3.2 Definition of the MDP structure from the system dynamics and
reward function

If the state space is finite, it means that
�

is now described by the finite set % � :

� � � � % �
�

� � ����� � � � � � (2.27)

The expected reward obtained by choosing action � in state
� ' is given by :


 � � ' � � � � � � � 
 ��� ' � � ��� � � � (2.28)

where the expectation is taken with respect to the conditional probability distribu-
tion � � � � � � ' � � � .
The transition probabilities can be computed from the system equation (2.1) and
the known distribution of � � � �	� � � � � of the input disturbance �  . More precisely,
we have

� � ��� � � ' � � � � � � � !
# ����$ � � � � ' � � ��� � � � � (2.29)

where the expectation is taken with respect to the conditional probability distribu-
tion � � � � � � ' � � � .
Equations (2.28) and (2.29) define the structure of the Markov Decision Process
equivalent to the original optimal control problem, in the sense that the expected
return of any control policy applied to the original problem is equal to its expected
return defined for this MDP in the following way :

�
�� � � � � �

� ������������� � 	�� � � � ������� �  	�� � �
�
� #&%�
 ( �

�  
 � �  � �  � � � � � ��� �
(2.30)

Example 2.3.1 In this example we introduce a control problem having a finite number of
states. This control problem is used in the sequel to illustrate different types of algorithms
and is referred to as the four-state control problem.
The system dynamics is described by the discrete-time equation :

��� 	 �  ����� ����� ��� (2.31)

where
�  � ( ��� ��� ��� � � , �  � � ( �!( � , � � � �� � � ��
 � � � � � � and

�  � � ( � * �!( � . If
the value of � � 	 � computed by equation (2.31) is different from ( , � or � then the terminal

� %
The symbol �

�
( � -�� ) is used to denote an element of the finite state space � as well as the

state of the system at time � . Nevertheless, this notation will be used in a context that will remove
any ambiguity.



46 CHAPTER 2. DYNAMIC PROGRAMMING

state � � is reached. The probabilities of occurrence of � � are :
� � � ���� � ( � ��� � ��� �  * � � � ,� � � ���! * � ��������� �! *���� and

� � � ���! ( � ��� � ��� �! *�� � � . The reward obtained is zero
everywhere ( ' � � ��� ��� �������  * ) except when the terminal state is reached. It equals � if����� ����� ���  ( and � if ��� � ��� � ��� � � . The decay factor 1 is taken equal to * � � .
By using equations (2.28) and (2.29), it is possible to compute the structure of the Markov
Decision Process the control problem corresponds to.
By way of example we detail the computation of ' � � ��( � , that is the average reward obtained
when taking ��)( in state � �� .

' � � ��( �  �
�����

� � ��� � � �!( � ' � � ��( � �!�

 � � � � ( � � �!( � ' � � �!( � � ( � � � � � * � � �!( � ' � � �!( � * � � � � ��( � � �!( � ' � � ��( �!( �
 * � � ��� * � * � ��� * � * � � ��� �
 ( � � �

By proceeding similarly we can compute the other terms ' ������� � . The results of the compu-
tation are : ' ��( � � ( �� � � � � , ' � � � � ( �  * �
	 � , ' � � � � ( �  * , ' ��( �!( �� * , ' � � ��( �  ( � � �
and ' � � ��( �� � �
	 � .
To illustrate how the transition probabilities of the MDP are computed we detail the com-
putation of & ��� � � � �!( � , that is the probability to reach the terminal state when taking �  (
in state ���� .

&�� � � � � ��( �  �
�����

� � � � � � �!( � %������� � ��� � �!( � �!���

 � � � � ( � � ��( � % ������ � � � � � � � * � � �!( � % ������ � � ���
� � ��( � � ��( � % �� � � � � � �

 * � � ��� * � * � ��� * � * � � ��� (
 * � � �

By proceeding similarly we obtain : & ��( ��( �!( �  * � � � , &�� � � ( �!( �� *���� , & � � ��( �!( �  *�� � � ,&�� � � � ( ��( �  * , & ��( � � �!( �  * , &�� � � � �!( �  * � � � , &�� �2� � �!( �� *���� , & ��� � � � ��( �  * � � � ,&���( � � ��( �  * , &�� � � � �!( �  * , & � � � � �!( �  * � � � , &�� � � � � ��( �  * �
	 � , & ��( ��( � � ( �  * � � � ,&�� � � ( � � ( �  * , & � � ��( � � ( �  * , &�� � � � ( � � ( �  * �
	 � , &���( � � � � ( �  * � � , &�� � � � � � ( � 
* � � � , & � � � � � � ( �� * , &�� � � � � � � ( �� * � � � , &���( � � � � ( �� * � � � , & � � � � � � ( �� * � � , & � � � � � � ( � 
* � � � and &�� � � � � � � ( �� * .

2.3.3 MDP structure computation

Equations (2.28) and (2.29) can be rewritten as follows :


 � � ' � � � � � ��� �����
� ���

� � � ��� � 
 � � ' � � ��� � � � � � (2.32)

� � ��� � � ' � � � � � ��� �����
� ���

� � � ��� � ! # ����$ � � � � ' � � ��� � � � � � �
(2.33)



2.3. FINITE STATE AND CONTROL SPACES : COMPUTATIONAL METHODS 47

In chapter 5, equations similar to (2.32) and (2.33) will be used to reconstruct the
MDP structure from observations gathered by interacting with the system. In this
context the expectation operator will be replaced :

� in the case of equation (2.32) by a sum on the rewards observed while taking
action � in state

� '
� in the case of equation (2.33) by a sum on the states reached while taking

action � in state
� ' .

2.3.4 Rewriting of the mappings using a MDP structure

By using the MDP structure to rewrite the mapping � , we obtain :

�
� �

� � � ' � � �����
����� � � � � � 
 ��� ' � � � � �

�
� � � � � � ��� � � ' � � � � � ��� � � � � ' � � � (2.34)

Expression (2.34) can be easily evaluated for each
� ' � � .

Similarly we can rewrite the mapping � � as follows :

�
� � �

� � � ' � � � 
 � � ' � � � � ' � ��� �
�
� � � � � � � � � � ' � � � � ' � � � � � � � � � � ' � � � (2.35)

The � � � mapping can also be rewritten :

�
� ��� �

� � � ' � � �
����� � � � � �

� � � � � ' � � 
 � � ' � � �

� �
�
� � � � � � ��� � � ' � � � � � ��� � � � � ' � � � (2.36)

2.3.5 Computation of
�
�

There exists a straightforward way to estimate the value of ��� . Indeed if we con-
sider the � -dimensional vectors

� �

����
�
�
� �
%
�

�
� �

�
�

...
�
� � � �

�����
� � � � �

����
�
� �

� �
%
�

� �
� �

�
�

...
���

��� � �

�����
� � � � � �

����
�

� � �
� �
%
�

� � �
� �

�
�

...
� � �

� � � �

�����
� � (2.37)



48 CHAPTER 2. DYNAMIC PROGRAMMING

denote by � � the � � � transition probability matrix

� � �
��
�

� � �
%
� �
% � �

� �
%
� �

�����
� ��� � � � % � �

� �
%
� �

...
. . .

...
� � �

%
� � � � � � � � � � �����

� � � � � � � � � � � � � �

���
� (2.38)

and by 
 � the � -dimensional reward vector


 � �
��
� 


���
% � �

���
%
� �

...

 � � � � � ��� � � �

���
� (2.39)

then equation (2.35) can be rewritten in matrix form as follows

� � � � 
 � � � � � � � (2.40)

The expected return of the policy � is the unique solution of this equation. Hence
we can write :

� � � � � � � � 
 � � � � � � � � (2.41)

This latter equation can be viewed as a system of � equations with � unknowns,
which can also be written as

� ! � � � � � � � � 
 � (2.42)

or, equivalently,

� � � � ! � � � � � #&% 
 � (2.43)

where
!

denotes the � � � identity matrix. The invertibility of the matrix is guaran-
teed since the DP equation has a unique solution for any reward function. Equation
(2.43) represents a direct way to compute the expected return of a policy � .

2.3.6 Value iteration algorithm

The value iteration algorithm computes the value function through the use of ex-
pression (2.21). The algorithm is detailed in figure 2.2. It can also be used to
compute the expected return of a policy ( ��� ) by considering that

� � � � � � � � � � � .



2.3. FINITE STATE AND CONTROL SPACES : COMPUTATIONAL METHODS 49

Figure 2.2: The value iteration algorithm

Initialize arbitrarily �
� � ' � for all

� ' � �
Repeat indefinitely

� 
 
�� 
 � � � � �
Repeat once for all

� ' � �
� �
��� ' ��� �����

��������� � � � 
 � � ' � � � � �  ��� � � � � ��� � � ' � � � � � ��� �"�
� 
 
�� 
 � � � � ����� � � 
 
�� 
 � � � � � � � ��� ' � � �

� � ' � � �
�
�

� �

If � 
 
�� 
 � � � � � then stop the algorithm and use � as an approximation of�

Error bounds on
�

The parameter � triggers the stopping of the algorithm. A too large value of � can
lead to important errors in the computation of

�
while a too small value can cause

the algorithm to iterate too many times. Notice that the precision of
�

so computed
is well controlled independently of the initial condition of the iterative algorithm.
Indeed, it can be shown that for every initial vector � , state

� ' and iteration � of the
algorithm we have

�
�
�
�
� � � ' � ��� � � �

�
�
� % � � � � ' ���	� � � %� � � � ' � (2.44)

� �
�
�
� % � � � � ' ��� � � � %

� �
�
�
�
� � � ' ��� � �

where the error bounds
� � and

� � are defined as :

� � � �
� � �

�����
� � � � � � �

�
�
� � � ' � � �

�
� #&% � � � � ' � �

� � � �
� � �

� ���
� � � � � � �

�
�
� � � ' � � �

�
� #&% � � � � ' � � �



50 CHAPTER 2. DYNAMIC PROGRAMMING

By expression (2.44) one can see that �
�
� belongs to the interval :

� � � � � � � � � � � � (2.45)

Therefore, the approximation of
�

computed by using the value iteration algorithm
lies necessarily in the interval :

� � � �
� � �

� � � � �
� � �

� � � (2.46)

Convergence to the optimal policy

Let us denote by � � the estimate of
�

returned by the value iteration algorithm. In
order to compute an estimate of the optimal stationary policy from the estimated
value function we have first to compute � � � and then determine a policy � � satis-
fying the equation

� � � � � � � � � (2.47)

Notice that the use of equation (2.47) to compute an estimate of the optimal station-
ary policy is equivalent to introducing the estimate of the value function computed
by using the value iteration algorithm into the right side of equation (2.9) and com-
pute for each state

�
of the system the value of the control variable that maximizes

it.
It can be shown that we have the following bound on the suboptimality of � � so
computed :

� ���
� � � � � � � � ' � � � � � � � ' � � � �

% # � �
� ���
� � � � � � � � � � � � ' � � � � � � ' � � (2.48)

� ��� �� � � � � � � � � � ��� ' � � � � � � ' � ��� �

and hence

�����
� � � � � � ��� ' � � � � � � � ' �"� � � � � �

� � �
�

(2.49)

From this inequality we can deduce that the computation of the optimal stationary
policy by using the value iteration algorithm with a sufficiently small value of �

leads to the exact solution. Indeed, let us consider the set of all non-optimal sta-
tionary policies � � and let us consider their optimality gap

� � � ���
� � � with respect

to the optimal policies. Since the number of possible stationary policies is finite (
�



2.3. FINITE STATE AND CONTROL SPACES : COMPUTATIONAL METHODS 51

and � being finite), the minimum gap of these suboptimal policies is bounded away
from zero, say equal to � � �

. Under these conditions, using � such that
� � � �
% # � � � ,

necessarily implies that

� � � � � � � � � �
and hence that � � � � 
 �

�
-function value iteration

The use of the value iteration algorithm requires, at the end of the estimation of the
value function, an additional step to compute the optimal stationary policy. One
way to avoid this step is to modify the value iteration algorithm in order to get an
estimate of the

�
-function rather than an estimate of

�
. The operations that are

required in this respect to deduce the optimal stationary policy from the
�

-function
estimate consist only in computing for each

�
of the system the value of � � � ��� �

that maximizes
� � � � � � . This version of the value iteration algorithm is represented

in figure 2.3 % � .
Figure 2.3: The value iteration algorithm :

�
-function computation

Initialize arbitrarily
� � � ' � � � for all

� ' � � and for all � � � � � ' �
Repeat indefinitely

� 
 
�� 
 � � � � �
Repeat once for all

� ' � � and for all � � � � � ' �
�
�
��� ' � � ��� � 
 � � ' � � ��� �  ��� � � � � ��� � � ' � � � �����

� � ��� � � � �
� � ��� � � � � �

� 
 
�� 
 � � � � ����� � � 
 
�� 
 � � � � � �
�
��� ' � � � � � ��� ' � � � � �

If � 
 
�� 
 � � � � � then stop the algorithm
� � �

�

Example 2.3.2 This example illustrates the value iteration algorithm on the four-state con-
trol problem detailed in example 2.3.1. Many of the concepts introduced in this section
such as the error bounds and the estimation of the stationary policy suboptimality are also
illustrated.

� �
Proof of convergence of this algorithm is given in section C.4.



52 CHAPTER 2. DYNAMIC PROGRAMMING

Table 2.1 represents the values of
�

obtained at different stages of the value iteration algo-
rithm when

�
is initialized to * everywhere.

Table 2.1: Value iteration algorithm : illustration on the four-state control problem� � � , � ����( � � � , � ��� � � � � , � ��� � � � � , � � � � � � � , � ,
0 0 0 0 0
1 2.25 1.25 3.75 0 3.75 0
2 2.53125 2.34375 4.21875 0 1.09375 0
3 2.56641 2.59766 4.27734 0 0.253906 0
4 2.5708 2.64404 4.28467 0 0.0463867 0
5 2.57135 2.65167 4.28558 0 0.00762939 0� 2.57143 2.65306 4.28571 0 0 0

Suppose that the value iteration algorithm is stopped when � �� . By using expression
(2.44), we can compute the interval that

� ��( � belongs to. We obtain� � ��	 ( � � � /����� " /��	� � * � � * � �  � ��( �  � � ��	 ( � � � /��	���" /���� � � ��
 ��� * � � � �����	�
�
 �� � ����	 ( � 	  � ��( �  � ��
 ( 	�	 �
Of course, this result is consistent with the value of

� ��( �  � � ��	 (�� � computed by using
an arbitrarily large number of iterations.
By using equation (2.47) it is possible to get an approximation � of the optimal stationary
policy from

���.�
. This approximation must satisfy the equation

� " �  � � ��� � � . By way
of example we detail the computation of � ��( � . We have
� "�� ��� - � ��( �  ' ��( ��( � � 1 � � & ��( ��( �!( � � � ��( � � &�� � � ( ��( � � � � � � �

& � � ��( �!( � � � � � � � & ��� � ��( �!( � � � � � � ���
 * � * � ��� � * � � ��� � � ��	�*�� � *������ � ��
 ��� * � � * � � ��� � � � � � 
�	 � * � * �
 ( ��� ( 	� �� "�� ��� - "�� ��( �  ' ��( � � ( � � 1 � � & ��( ��( � � ( � � � ��( � � & � � ��( � � ( � � � � � ���

& � � ��( � � ( � � � � � � � &�� � � ��( � � ( � � � � � � � �
 � � � � � *������ � *�� � ��� � ����	�*�� � * ��� � ��
 ��� * � � *�� � � � � � � 
�	 � *�� 	 ��� *�� �
 � ����	 ( � ���

Therefore one must have � ��( �  � ( . If we proceed similarly for ��� � � and ��� � � we obtain��� � �� ( and � � � �  ( . The bound on the policy suboptimality can be computed through
the use of expression (2.48) :

������ � ��! , � � �  � � � " ���  �$.  /����� " /��	� � � ��
 � ( 
�	 � � ��
 ��� * � � � /��	���" /��	� � * � * �
� ������ � ��! , � � �  � � � " � �  �$.  * � * *�	�
 � �



2.3. FINITE STATE AND CONTROL SPACES : COMPUTATIONAL METHODS 53

2.3.7 Gauss-Seidel version of the value iteration algorithm

The value iteration algorithm implies the handling of two vectors � and � � where
� � stores the new value of the estimate of the value function. Only when the new
estimate of the value function has been evaluated for all the states of the system, it
replaces the old estimate � in further computations.
Another type of algorithm known as the Gauss-Seidel version of the value iteration
algorithm uses the new estimate of the maximum expected return of a state imme-
diately to compute new estimates of the maximum expected return for the other
states. This algorithm is described in figure 2.4 % � .
The convergence of the Gauss-Seidel algorithm can be substantially faster than that
of the value iteration algorithm (see [BT89]). But the comparison is sometimes
misleading because the ordinary methods are usually used in combination with
error bound methods (

� � and
� � , see equation (2.44)).

Figure 2.4: The Gauss-Seidel version of the value iteration algorithm :
�

-function
computation

Initialize arbitrarily
� � � ' � � � for all

� ' � � and � � � ��� ' �
Repeat indefinitely

� 
 
�� 
 � � � � �
Repeat once for all

� ' � � and for all � � � � � ' �
� ��� � � � � � � � � � ' � � �

� � � ' � � ��� � 
 � � ' � � � � �  � � � � � ��� � � � ' � � � �����
��� ������� � �

� � � � � � � � �
� 
 
�� 
 � � � � ����� � � 
 
�� 
 � � � � � � � � ' � � � � � ��� � � � � � � �

If � 
 
�� 
 � � � � � then stop the algorithm

There is also a more flexible form of the Gauss-Seidel method which selects states
in arbitrary order to update their maximum expected return. This method maintains
an approximation on � to the optimal vector

�
, and at each iteration it selects and

replaces �
� � ' � by � �

� � ' � . At each iteration, the choice of state
� ' is arbitrary

except that all states must be selected an infinite number of times. This method is
� �

Proof of convergence of this algorithm is given in section C.4.



54 CHAPTER 2. DYNAMIC PROGRAMMING

an example of an asynchronous fixed point iteration method [Ber81].

2.3.8 Policy iteration algorithm

The policy iteration algorithm (proposed first in [Bel57]) generates a sequence of
stationary policies, each with improved expected return over the previous one.
Given the stationary policy � and the corresponding expected return � � , an im-
proved policy � � is computed by maximizing the DP equation corresponding to � � ,
that is � �

�
��� � � ��� (it can be shown that ���

� � � � � ���
� � � � �

with the inequality
becoming strict for at least one

��� �
if � is not optimal), and repeating the process

until the optimal stationary policy is reached. This algorithm is known to converge
in a finite number of iterations to the optimal stationary policy and its tabular ver-
sion is given in figure 2.5. The main weakness of this algorithm is that it requires
the solving of the equations

� ! � � � � � � � � 
 � . The dimension of this system is
equal to the number of states and thus if the state space is large, this algorithm does
not stay attractive anymore.

Figure 2.5: The Policy Iteration algorithm

Initialize arbitrarily a stationary policy � � � ' � for all
� ' � �

Repeat

Given the stationary policy � , compute � � by solving the linear system of
equations

��! � � � � � � � � 
 �
If � � � � � � then stop the algorithm

Obtain a new stationary policy � � satisfying � �
�
��� � � ���

� � � �

Example 2.3.3 This example is aimed to illustrate the use of the policy iteration algorithm.
This algorithm is used to compute the optimal stationary policy of the four-state control
problem described in example 2.3.1.
We start with an initial policy � / such that � / � � �  ( � � 
 � . We compute the average
rewards associated to this policy and the transition probability matrix and deduce from their
knowledge the value of

� "��
by using equation (2.43).



2.3. FINITE STATE AND CONTROL SPACES : COMPUTATIONAL METHODS 55

' " � 

���
�

*( � � �� �
	 �
*

����
� � � " � 

���
�
* � � � * � � * � � � * �
* � * � � � * � � *�� � �
* � * � * � � � *�� 	 �
* � * � * � ( �

����
� � � " � 

���
�
( � � 	�* � 
� ��
 � � *�
� � � � ��	 (

*

����
� �

The new policy � � obtained by solving the equation
� "�� � " �  � � " �

is such that � � ��( � � ( , � � � � �� ( and � � � � �� ( .
The computation of the average rewards and the transition probability matrix corresponding
to � � allows the determination of

� " �
:

' " � 

���
�

� � � �( � � �� �
	 �
*

� ��
� � � " � 

���
�
* � � � * � * � *�� 	 �
* � * � � � * � � *�� � �
* � * � * � � � *�� 	 �
* � * � * � ( �

� ��
� � � " � 

���
�

� � ��	 (�� �� ��
 � � *�
� � � � ��	 (
*

� ��
� �

The computation of � �
by solving the equation

� "
	 � "��  � � "��
leads to a policy that is

equal to � � everywhere and the iterative process can stop. We have � �  � � and
� " �  �

.
From the knowledge of the value function

�
we can easily compute the

�
-function by

using equation (2.10). The
�

-function is represented in table 2.2. Remark that � � � � � is
indeed equal to ���� �����	 ��� � � � � ������� � .

Table 2.2:
�

-function representation� � � ��� � ( � � � ���!( �
1 2.57143 1.52041
2 1.72449 2.65306
3 1.52041 4.28571

2.3.9 The modified policy iteration algorithms

When the number of states is really large it becomes time consuming to solve the
linear system

� ! � � � � � � � � 
 � at each stage of the policy iteration algorithm. One
way to get around this difficulty is to solve the linear system iteratively by using
for example the value iteration algorithm. The algorithm that uses this strategy is
called the modified policy iteration algorithm [PS78, PS82]. In fact we may even
consider solving the system

� ! � � � � � ��� � 
 � only approximately by using a
limited number of value iterations. However, one can show that in this latter case
the modified policy iteration algorithm loses the property to converge in a finite



56 CHAPTER 2. DYNAMIC PROGRAMMING

number of iterations because the system is not solved perfectly. If the number of
value iterations is only one, then this type of algorithm behaves exactly like the
value iteration algorithm.

2.3.10 Randomized stationary policy evaluation

The algorithm represented in figure 2.6 is used to compute the expected return of a
randomized stationary policy. It consists of a Gauss-Seidel implementation of the
algorithm inspired by the � ��� mapping (equation (2.36)).

Figure 2.6: Randomized stationary policy evaluation

Initialize arbitrarily �
� � ' � for all

� ' � �
Repeat

� 
 
�� 
 � � � � �
Repeat once for all

� ' � �
� ��� � � � � � � �

� � ' �
�
� � ' ���  � ������� � � � � � � � � � � 
 � � ' � � ��� �  � � � � � � � � � � ' � � � � � � � � �
� 
 
�� 
 � � � � ����� � � 
 
�� 
 � � � � � � � � ' � � � ��� � � � � � � �

If � 
 
�� 
 � � � � � then stop the algorithm

Example 2.3.4 This example illustrates the computation of the expected return of a ran-
domized stationary policy on the four-state control problem described in example 2.3.1.
We have already computed the optimal stationary policy of this control problem by using
two algorithms : the value iteration algorithm (example 2.3.2) and the policy iteration al-
gorithm (example 2.3.3). The optimal stationary policy is : � � ��( �  � ( , � � � � �  ( and� � � � ��)( .
The randomized stationary policy we consider is known as the � -Greedy policy ( * � � � ( ).
This policy consists in selecting, while being in � , � equal to � � � � � with a probability of( � � . Otherwise the value of � is chosen randomly with the same probability among the
elements of

� � � � .
Therefore we have � � Greedy � � � � � ��� � � )( � � � �� � � � � and � � Greedy ����� � �  �� � � � � if
���+� � ��� � . If we use the algorithm described in figure 2.6 to compute the expected return
of the � -Greedy policy for different values of � , we obtain the results gathered in table 2.3.



2.4. INFINITE STATE SPACES 57

If �  * then
� � " Greedy  �

. Observe that the larger the value of � the smaller the expected
return of the � -Greedy policy (

� � � " Greedy  � � 	 " Greedy if � � � � � ).

Table 2.3: � -Greedy policy

� � � " Greedy ��( � � � " Greedy � � � � � " Greedy � � �
0. 2.57143 2.65306 4.28571

0.1 2.50884 2.55571 4.12586
0.2 2.44117 2.46005 3.9623
1. 1.71494 1.74712 2.51494

2.4 Infinite state spaces

Generally speaking if the state space is infinite, the optimal stationary policy cannot
be computed exactly anymore.
However if the disturbance space and the control space remain finite, it is still
possible to compute exactly the optimal stationary policy pointwise i.e., for each��� �

. To achieve this we proceed as follows :

� we determine which states can be reached from a state
�

in a maximum
number of

�
stages and denote by

�
this reachability set

� we determine all the stationary policies that can be defined on
�

� we compute the expected return over
�

-stages

� � � � � � �
� 	�� �

�
� #&%�
 ( �

�  
 � �  � � � �  � ���  � � � � � ���

for each of these policies (it requires the computation of � � ��� �
for a maxi-

mum of ��� ��� policies, the maximum being reached if � � � � � � � � � ���
�

)

� we compute the maximum of � � � � �
over all the possible policies and denote

it by � 
� � � �
.

It can be shown that if all the policies for which the expected return over
�

-stages
is higher or equal to ��
� � � � 	

% # � � � associate to
�

the same control variable value,



58 CHAPTER 2. DYNAMIC PROGRAMMING

then they coincide for
�

with ��
 . Therefore by choosing
�

large enough, it is
possible to determine the optimal action to be associated with a state

�
and to have

an estimation of the maximum expected return by using the expression :

� 
� � � � � �
�

� � � ���
� � � � � � � 
� � � ��� �

�
� � � ���

�

The main drawback of this method is that it can require huge amounts of computa-
tion and of memory, especially if the value of � is close to

�
. Some smart imple-

mentations exist (see [CCPBS98]) but the computational burden involved remains
high and most of the time out of reach of today’s computer capabilities.

2.5 Summary

In this chapter we have presented the main results of the dynamic programming
theory that will be used in the subsequent chapters. We have focused on the partic-
ular case of infinite-time horizon control problems with bounded rewards and strict
exponential decay. Among the results presented, there were some implementable
algorithms that allow us to solve such control problems under the condition that
their state spaces and control spaces were finite. Unfortunately, similar algorithms
do not exist for infinite state space control problems. Strategies to solve at least
partially these infinite state space control problems will be addressed in the next
chapter.



Chapter 3

Approximate solutions for DP
problems

In the preceding chapter various algorithms have been proposed to solve the dy-
namic programming problem in the context of finite state and control spaces. While
the finiteness of the control space is not too restrictive in practice, these algorithms
are not applicable to infinite state spaces, and moreover, even for finite state spaces,
if the number of states is large they tend to become inefficient. In this chapter we
propose a way to avoid these difficulties by constructing approximate solutions to
control problems with infinite (or finite, but very large) state spaces. Essentially,
this approach consists in three steps :

1. associate to the original control problem defined in an infinite state space a
finite Markov decision process using a manageable number of states;

2. use the algorithms of the preceding chapter to define an optimal control pol-
icy for the reduced problem;

3. extend this control policy to the original problem.

We describe two different methods to define a finite Markov decision process based
respectively on the idea of aggregate states and of representative states, and we
provide also a way to evaluate the quality of the approximate policy obtained.
The resulting methods are illustrated by academic examples, and in chapter 4 they
are evaluated in more detail in the context of a simple but realistic electric power
system control problem.

59



60 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

3.1 Introduction

This chapter is devoted to the resolution of discrete-time optimal control problems
related to systems having an infinite (or too large) number of states. Rather than
looking for exact solutions that are most of the time impossible to determine ex-
actly, we present some techniques that are able to provide some good approximate
solutions.
These techniques consist in constructing a finite MDP from the infinite state space
control problem elements (notably the system dynamics and the reward function)
and in exploiting the finite MDP solution in order to get an approximation of the
infinite state space control problem solution. The procedure is summarized in fig-
ure 3.1. These techniques provide a good approximation of the control problem
solution if the finite MDP is able to catch the control problem main features and if
its solution is correctly extended.

Figure 3.1: Approximate solutions for dynamic programming

Construct a finite MDP � from the initial control problem.
Solve the MDP � .
Extend the solution of the MDP � in order to get an approximate solution to the
initial problem.

We present two techniques for solving approximately these infinite state space con-
trol problems. The first one is inspired from the aggregation methods that can be
found in the DP literature [Ber75, HL86, Whi78, Whi79]. We will name it the
aggregation technique. The second one is more tailor-made for problems with con-
tinuous state spaces. It consists roughly in selecting a finite number of “represen-
tative”states from the infinite state space and in associating to each of these states
a state of the finite MDP. The transition probabilities and the rewards that define
the MDP structure are computed both by using the rewards and system dynam-
ics knowledge at these selected states and geometrical or distance considerations
(see [SK00, Mun00] for related work). This technique will be referred to as the
representative states technique.
In order to differentiate the symbols related to the MDP that approximates the con-
trol problem to the symbols related to this control problem itself, we use the suffix
� . (For more information the reader may refer to the nomenclature at the beginning
of the thesis.) For example, the term MDP � refers to the finite MDP that is used to



3.2. AGGREGATION TECHNIQUE 61

catch the main characteristics of the original control problem.

3.2 Aggregation technique

3.2.1 Approximate MDP

The procedure consists in lumping together states of the original system into a finite
number

�
of disjoint subsets

�
% �
�

� � ����� � � ! such that
� � �

%
� �

�
�

�����

�
�
! . Each of these subsets is aggregated into a single state that can be seen as

an aggregate state. The
�

states obtained from the aggregation process form the
sought MDP � . The MDP � is solved and the results obtained for each aggregate state
are extended to all the states composing it. We denote the set of these aggregate
states by

� � .
Let us denote by

�
� % �
�

� � � ����� � � �! (
� � � � � � % �

�
� � � ����� � � �! � ) the aggregate states

that correspond to the subset
�
% �
�

� � ����� � � ! , and for each � let us denote by � ' � � �
a positive weight (or density % ) function defined on

� ' , such that � � � � � ' � � � � �
.

Then the transition probabilities of the MDP � and their associated rewards are de-
fined according to the equations

�

:


 � � � �' � � � � �

� � � � � � 
 � � � � ��� � � � � � ' � � ' � � � � (3.1)

� � � ��� ��� 
 � � � � ��� � � � � � � � � � � �	� � � ' � � � (3.2)

� � � � �� � � �' � � � � �

� � � � � � ! � � � � � � � � ��� � � � � � � ' � � ' ��� � � (3.3)

� � � ��� ��� ! � � � � � � � � ��� � � � � � � � � � � � �	� � � ' � � � (3.4)

which can be rewritten if the original state space
�

is finite :


 � � � �� � � � � �
��� � � � ' � � � 
 � � � � � (3.5)

� � � � �� � � �' � � � � �
��� � � � ' � � � �

� � � � � � � �
�
� � � � � (3.6)

�

If the original state space is countable 
 � " � ) would be a probability mass function, otherwise it is
a probability density function; notice that we do not suppose that 
 � " � ) denotes the true conditional
probability � " � � � - �

� ) .
�

Equation (3.3) can also be written as follows: 
�� " ��� � ��� # � ) * � "�� " � # � #�& ) - � � � � -
�
� # 
 � " � )') .



62 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

where � ���
�
� � � � � and 
 � � � � � represent respectively the original control problem

system dynamics and reward function expressed by using a MDP formulation (see
section 2.3).
Equation (3.3) represents the probability for the next state to belong to

� �
after

taking action � assuming that the current state
�

is randomly selected in
� ' accord-

ing to the probability distribution � ' � � � . Similarly, equation (3.1) represents the
average reward obtained after taking action � while being in the set

� ' with a prob-
ability distribution on

�
equal to � ' � � � . The terms � ' � � � can also been interpreted

as the weight a state
� � � ' of the system has in the aggregation process i.e., how

much it influences the characteristics of the aggregate state
�

�' .
Concerning the control variable � , we limit its value to a finite number of possi-
bilities to make the computation of the whole MDP � structure feasible. We thus
constraint � to belong to a finite set � � � � with

� �
� �

�
� � � � and

� �
���

�' � �

� � � � � ��� � ' . � �
��� �

will be used to refer to the set
� �

� �
�' � such that

� � � ' .
The set of all possible state-action pairs � � � � � � � � � �

� � � and � � � �
� �

�
� � is

denoted by
� � � � � .

3.2.2 Extension of the MDP solution to the original problem

Once the MDP � is built and solved, its solution (characterized by the
� � -function)

is extended to the original control problem.
The strategy chosen consists in extending trivially the

� � values of the aggregate
states to all the states they are composed of. We denote by ��

the approximation of
the

�
-function that has been obtained. We thus have :

�� � � � � � � � � ��� �' � � � if
� � � ' � � � � � � � � � � � � � � (3.7)

The approximation of the optimal stationary policy is deduced from ��
:

�� 
 � � � � � ��� �����
� ��� � � ��� �� � � � � � � ��� � �

(3.8)

Notice that if
� �

��� � �� � � � �
then �� � � � � � is not defined for some values of � �

� � � �
. But since we deduce from ��

the approximation of the optimal stationary
policy, this implies that the search for the optimal action to be taken while being in
state

�
is restricted to

� �
� � �

.
Obviously, the policy computed by using equation (3.8) depends on the way the
state space has been partitioned, on the choice of the probability distributions � ' � � �
and on the control sets

� �
���

�' � chosen. The ideal choice for the
� ' , � ' and

� �
� �

�' �
would be the one which would lead to a good approximation of the optimal station-
ary policy without requiring a too vast amount of computation. We do not provide



3.2. AGGREGATION TECHNIQUE 63

any algorithm that could help to do this choice automatically but we stress that a
good insight into the original control problem can already give some clues.

Example 3.2.1 To illustrate the aggregation technique we use the four-state control prob-
lem described in example 2.3.1.
The state space of the system is equal to � ( ��� ��� � � � � . We lump together these states to
obtain three disjoint subsets

� � , � � ,
�

� with
� �  � ( ��� � , � �  � � � and

�
�  � � � � . The

value of the different &  � � � are chosen as follows : & � ��( �� * � � , & � � � �  * � � , & � � � �  (
and & � ��� � �  ( . Concerning the control sets, we take

� �  �
and

� � � � � �  � � � � � � 
� 
.

The state space of the system being finite, we can use equations (3.5) and (3.6) to compute
the MDP

�
structure. We detail hereafter the computation of & � � � � � � � � � ��( � , & � ��� � � � � � � �!( � ,& � ��� �� � � � � ��( � and ' � � � � � ��( � .

& � � � � � � � � � ��( �  & � ��( � � &���( � ( ��( � � &�� � � ( �!( ��� � & � � � � � &���( � � ��( � � &�� � � � ��( � �
 * � � � � * � � � � * � � � � * � ��� � * � * � � � �
 * � �& � � � � � � � � � ��( �  & � ��( � & � � ��( �!( ��� & � � � � &�� �2� � �!( �
 * � � � *�� � � � *������ * � �
 * � � 	 �& � � � �� � � � � ��( �  & � ��( � & ��� � ��( �!( � � & � � � � & ��� � � � �!( �
 * � � � * � * � ��� *�� � �
 * � ( � �' � � � � � ��( �  & � ��( � ' ��( ��( � � & � � � � ' � � �!( �
 * � � � * � * � ��� ( � � �
 * ��
 � �

Table 3.1: Solution of the MDP �
� � � � ��� � � � ( � � � � � � �!( �
� � � 2 1.92857� � � 1.28571 4.28571� �� / /

Once the MDP
�

structure is determined, its
� �

-function can be computed. The
� �

-function
is given in table 3.1.



64 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

We can use expression (3.7) to compute
��

and expression (3.8) to get the approximation
of the optimal stationary policy. We obtain

�� � ��( �� � ( , �� � � � �� � ( and
�� � � � �� ( . This

policy is different from the optimal stationary one. Indeed it has been shown previously
that � � ��( �  � ( � � � � � � )( and � � � � �� ( .

3.2.3 Equivalence between
�

and �
�

We have seen how to construct a MDP � from the original control problem (equa-
tions (3.1) and (3.3)) and how to extend the solution of the MDP � to get an ap-
proximation of the

�
-function (equation (3.7)), and from it an approximation of

the optimal stationary policy (equation (3.8)).
We describe hereafter some sufficient conditions on the original control problem
and on the MDP � structure in order to have an equivalence between the approximate
solution and the real solution, that is in order to make ��

coincide with
�

. These
conditions of equivalence between

�
and ��

are used in chapter 6 to justify the
algorithms we introduce to reconstruct the MDP � structure from interaction with
the system.

Sufficient equivalence conditions

The equivalence conditions are expressed by the following three equations :

' � � � � � � �� + � , ' ��������� �!�#. � ��� 
 � ( �� ! � ��� � � � � 
 � � ��� � � � � ��
 � 
(3.9)

& � � � �� � � � � � �� + � , % !�� � � � ��� �����!���$. � ��� �'
 
 � ( �! � ! �	� � � � � 
 � � � � � ��� � ��
 � 
(3.10)

� ��� �  � � � � � � � ��� 
 � ( �! ! � �	� � � � � 
 �  � (3.11)

� Condition (3.9) actually means that the average reward obtained while taking
an action � in

�
has to be identical for all

�
belonging to a same subset.

� Condition (3.10) actually means that for all
�

belonging to a same subset, the
probability to arrive in a subset

� �
while taking action � has to be the same.

� Condition (3.11), on the other hand, implies that the whole original control
set has to be used to reconstruct the MDP � structure ( ��

will therefore be
defined

� � � �
and

� � � � � � �
).



3.2. AGGREGATION TECHNIQUE 65

Proof

We prove hereafter that if conditions (3.9), (3.10) and (3.11) are satisfied then ��

coincides with
�

everywhere.
The DP equation for the MDP � can be written as follows :

� � � � � � � �  ' � � � � � � � � 1
�
�
� - � &

� � � �� � � � ��� � �����	
� ����� � � �� � � � ��� �� ��� � �

which holds
��� 
 � ( �! � ! �	� � � � � 
 � � � � � � �

By using conditions (3.9) and (3.10) this latter expression implies that :

� � ��� � � � �  + � , ' � ��� ����� �$. � 1
�
�
� - �

+ � , % !�� � ����������� �!��� ��� �	
� ��� ��� � �� � � � � � �� ��� � �$.

which holds
��� 
 � ( �! � ! �	� � � � ��
 �  � � ��
 � � ��� � � �

By using condition (3.11) we can state that :

� � � � � � � �  +
� , ' ��������� �!�$. � 1

�
�
� - �

+
� , % !�� � � � ��� �����!��� ��� �	

� ��� � � � � � 	 � � � � � � � � �� � � � �#.

which holds
��� 
 � ( �! � ! �	� � � � ��
 �  � � ��
 � ��� � �

Using equation (3.7) we can write :
�� � ��� � �  + � , ' � ��� ����� � � 1 ��� �	

� ��� � � � � � 	 � � � � �� � ��� ��� ��� �!� � � � �$.
which holds

� ��
 � � � ��
 � � � � �
��

satisfies the DP equation of the original control problem everywhere. The so-
lution of this equation being unique, ��

coincides with
�

when conditions (3.9),
(3.10) and (3.11) are satisfied. QED

3.2.4 Equivalence conditions used to define the MDP �

Equivalence conditions (3.9) and (3.10) suggest a way to build the MDP � structure
different from the one defined by equations (3.1) and (3.3). Indeed, one may rea-
sonably suppose that the “less” these equivalence conditions are violated, the better
the approximation of the

�
-function will be.



66 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

Therefore one could for example compute 
 �
� �

�' � � � and � �
���

�� � � �' � � � as follows :

' � � � � ��� �  ���� � ���� ���
�
� ��� � � 0

� +
� , ' � ��� �����!�#. � � (3.12)

& � � � �� � � � � � �� �
�  � ���� ���
�
� ��� � � 0

� + � , % !�� � � � ��� �����!���$.�� � (3.13)

with � ' being a set of states selected from
� ' .

By noting that :

�
�  � ���� ��� + �	� � 0 � + � , % ! � � ����������� �!� �#. � � � � 
 �  � &  � � ��
 
+

� � � � �� % !�� � ����������� �!���� ��
 �  � &  � � ���
and

�
�  � ���� ��� + ��� � 0 � + � , ' � ��� ����� �$. � � � � 
 �  � &  � � ��
  +
� � � � � ,

' � ��� ��� �!�� � 
 �  � &  � � �#. �

equations (3.1) and (3.3) that we have used to define the MDP � structure can be
seen as a particular case of equations (3.12) and (3.13) where the summation is
replaced by the expectation with respect to � ' � � � .
Equations similar to equations (3.12) and (3.13) will be used in chapter 6 to build
the MDP � structure from interaction with the system.

3.2.5 Difficulties to compute the MDP � structure

Computation of the MDP � structure by using expressions (3.1) and (3.3) cannot be
achieved most of the time if the state space is infinite due to the impossibility of
computing exactly the right hand side of these expressions. One way to circumvent
these difficulties is to estimate numerically these terms. The main idea of such
numerical schemes is to modify both the � ' ��� � and the � � � � � � � � � such that they
respectively become different from

�
for only a finite number of

��� � ' and a finite
number of � � � .
One way to guarantee the numerical scheme convergence i.e., that it converges
to the MDP � structure defined by equations (3.1) and (3.3) when the amount of
computation increases, is to choose the

�
and the � that intervene in the building

process according to the � ' ��� � and � � � � � � � � � probability distributions themselves.



3.2. AGGREGATION TECHNIQUE 67

The tabular version of a convergent numerical scheme is given in figure 3.2. If� ' � � and
� ��� � � � � � � � � ����� � � � then this numerical scheme converges

to the exact solution. The choice of � according to � � � � � � � � � in order to compute� � � � � ��� �
and 
 ��� � � ��� �

is strictly equivalent to simulate the system for one time
step starting from

�
with the control variable value � and to observe the next state

and the reward obtained.

Figure 3.2: Aggregation technique : numerical estimation of the MDP � structure

Initialize
� �

� �
� � � � � � � � and 
 �

���
� � � � to

� � � � � � � �
� � � and

� � � � �
� �

�
�

Repeat
� ' times for each � � � � � ����� � � �

Choose a state
��� � ' according to the probability distribution � ' � � �

Repeat
� � �

times for each � � � �
� �

�' �
Choose � according to � � � � � � � � � and compute

�
� � � ��� � � ��� �

and

 � 
 ��� � � ��� �

.

Determine to which
�

� � the state
�
� corresponds� �

� �
� � � � �' � � ��� � �

� �
� � � � �' � � ��� �


 �
� �

�' � � ��� 
 �
� �

�' � � � � � # � � � � �� � ������ ����� � � � ��� � � � �� � ���
� �

���
�� � � �' � � ��� � � ��� �� � � �� � ���� � ����� � � � � � � � � �� � ��� � � ��� � � � � ����� � � � and

� � � � �
� �

�' �

3.2.6 Continuous state spaces

In this work, the aggregation technique is used for systems with continuous state
spaces. The process of dividing a continuous state space into a finite number of
disjoint subsets is known as discretization of the state space.
On each discretized region of the state space the approximate

�
-function is then

considered to be constant as well as the approximation of the optimal stationary
policy computed from it.
Figure 3.3 represents the discretization of a three-dimensional continuous state
space. One can reasonably suppose that the smaller the discretized regions are,
the better the optimal control problem solution is approximated.



68 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

�

� �

� �
� �

Figure 3.3: Discretization of the state space (three-dimensional representation)

Example 3.2.2 In order to illustrate the aggregation technique on a system having a con-
tinuous state space we consider the control problem described at the end of example 2.2.1.
Its characteristics are recalled hereafter.
The system dynamics is described by the discrete-time equation :

��� 	������� � ��� � � � �
The state space

�  , ( ��� . 	 � � (the terminal state � � is reached if � goes outside the
interval , ( � ��. ), the control space

�  , � ( �!( . , � � � �! � � � 
 � � � � � � and the noise
factor ��� is drawn according to the standard Gaussian distribution.
The reward ' � ��� ��� �!� is equal to * if � � � � � 
 , ( � ��. , � if � � � � �  ( and � if� � � � � � � . The decay factor 1  *���� .
We study the results obtained by using the aggregation technique for three different state
space discretizations.
The first discretization consists in partitioning the state space into � disjoint subsets (

� � 
, ( ��� , , � �  , � � ��. and

�
�  � � � � ), the second into 
 disjoint subsets (

�   , ( � *�� � � � � �
( � �!( � ��� *�� � � � � � ( � , with

� 
 � ( ��� ��� � � � , � �  , � ��
 ��� . , ���  � � � � ) and the last one
into � ( disjoint subsets

�   , ( � * � ( � � � � ( � �!( � ( � *�� ( � � � � ( � , with
� 
 � ( ��� �! � ! �!(  � ,� � /  , � �� � ��. , � � �  � � � � ). The &  � � � are such that the probability to draw each � of

� 
is the same.
The control space being infinite, we consider the finite subset

� �  � � ( ��( ��� �
to

construct the MDP
�

and choose
� � � � � �  � �

for all � � 
 � � � � � � � ! � � where � � � ! �
denotes the state of

� �
that corresponds to � � .

To estimate the MDP
�

structure, we use the algorithm described in figure 3.2 with
�  

( *�* * and
� � �  ( * * * . These values are large enough to ensure that the MDP

�
structure

computed does not differ much from the one defined by equations (3.1) and (3.3).



3.3. REPRESENTATIVE STATES TECHNIQUE 69

Once the MDP
�

is solved i.e., once the
� � � � � ��� � values are computed, the solution ob-

tained is extended to the original control problem by using equation (3.7). Each of the
approximate

�
-functions is represented in figure 3.4.

From the approximate
�

-function, we can deduce the approximate optimal stationary pol-
icy by using equation (3.8). For example we can see in figure 3.4a that the policy obtained
when

� � �  � consists in taking �  ( everywhere while the policy obtained when
� � �  
 consists in taking � )( only on the interval , ( � � ����. . If

� � � �� ( the policy is
still different and consists in choosing �� � ( on the interval , ( ��( � � , and ��)( on , ( � � ��� . .
It is important to be able to estimate the quality of the policy i.e., how close the approximate
policy is to the optimal one, in order to determine which state space discretization has led
to the best policy. This topic is addressed in section 3.4.

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� ��� � % �

�� ��� � #&% �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� ��� � % �

�� ��� � # % �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� � ��� % �

�� � ��� # % �

(a)
� � �  � (b)

� � �  
 (c)
� � � �� (

Figure 3.4: Approximation of the
�

-function for different state space discretiza-
tions

3.3 Representative states technique

3.3.1 Approximate MDP

The representative states technique consists in selecting a finite number of states
from

�
and in defining between these states a MDP � structure. The MDP � structure

definition is based on the knowledge of the system dynamics, the reward function
and a notion of “distance” between the system states.
The

�
states of

� � � � � � % �
�

� � � ����� � � �! � can be seen both as states of the MDP �
and states of

�
. To compute the MDP � structure we introduce the function � �� � � � � � � � � � such that  � � � � � �

� � � � �
� � � � � � � �

and �
���

� � � �
� �� � � �

� � � . The value of �
� � � � �

�
can be seen as the probability for

�
to belong

to
�

� or “how close”
�

is from
�

� . Some of these concepts are illustrated on figure
3.5.



70 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

�

�

� � �

� � � � � ��� � � � �

� ������� � � �

� ������� �� �

� ��

� �� "��

� � ��� � �� "�� �

� ������� �� �

� ��

Figure 3.5: State space represented by a finite number of states

In the representative states technique, the transition probabilities and the rewards
of the MDP � are defined by the following relations :


 � ��� �' � � � � � � � 
 � � �' � � ��� �"�
(3.14)

� � � � �� � � �' � � � � � � � �
� � � � �' � � ��� � � � �� � � (3.15)

Concerning the possible values for the control variable � used in the MDP � struc-
ture computation, we limit them again to a finite set � � � � . The condition
imposed on

� �
� �

�
�

is to be a subset of � � and to be such that
� �

� �
�
� � � � �

�
�
. �

We then denote by
� �

� � �
the set that is composed of the intersection of the sets� �

���
�
�

where
�

�
� � � is such that �

� � � � �
� �� �

.

The set of all possible state-action pairs � � � � � � � � � �
� � � and � � � �

� �
�
� � is

denoted by
� � � � � .

%
The terms ! � " �� # � ) , 
� " �� � � �� # � ) and � � " �� # � ) are sometimes written for some ���- � � " �� )

even if they are not defined for these values of the control variable. This has been done in order to
ease the notations. When confronted with such terms one should simply consider them as equal to
zero.



3.3. REPRESENTATIVE STATES TECHNIQUE 71

3.3.2 Extension of the MDP solution to the original problem

Once the finite MDP � structure is computed, one can solve it in order to compute
its

� � -function. From its knowledge we define the approximate
�

-function as
follows :

�� � � � � � � �
� � � � � �

��� � � � � � � � � � � � � � ��� � � � � � � � � � � (3.16)

The approximate optimal stationary policy is deduced from ��
by :

�� 
 � � � � � ��� �����
� ��� � � ��� �� � � � � � � ��� � �

(3.17)

If
� �

� � � �� � � � �
then �� � � � � � is not defined for some values of � � � � � �

. Since
the approximate optimal stationary policy is deduced from ��

, the search for the
optimal action to be taken while being in state

�
is limited to

� �
��� �

.
Obviously, the resulting approximate solution depends on the way the function �
is chosen, on the states of

�
selected to represent

� � and on the
� �

� �
�
�

subsets.

3.3.3 Equivalence between
�

and �
�

We have seen how to construct a MDP � from the original control problem knowl-
edge (equations (3.14) and (3.15)) and how to extend the solution of the MDP � to
get an approximation of the

�
-function (equation (3.16)), and from it an approxi-

mation of the optimal stationary policy (equation (3.17)).
We describe hereafter some sufficient conditions on the original control problem
and on the MDP � structure so as to have an equivalence between the approximate
solution and the real solution, that is in order to make ��

coincide with
�

. These
equivalence conditions are used in chapter 6 to justify the algorithms we introduce
to reconstruct the MDP � structure from interaction with the system.

Sufficient equivalence conditions

The equivalence conditions are expressed by the following four equations :

�
�
� ��! �

� � ��� � � � ' � ��� � � � �� + � , ' � ��� ��� �!�$. � � ��
 � � � ��
 � � � � � (3.18)

�
�
� ��! �

� � ��� � � � & � � � � � � � � � � �  + � , � � � � ��� �����!����� � � �$. � � � � � 
 � � � (3.19)

� ��
 � � � ��
 � � � � �



72 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

� � � �� � � ��� � � � ��
 � (3.20)

��� �	 ��� ��� � � �
�
� ��! �

� � ��� � � � � � � � � ��� �  �
�
� ��! �

� ������� � � ��� �	 ��� � � � � � � � � � � � � � � ��
 � (3.21)

Proof

We prove hereafter that if conditions (3.18), (3.19), (3.20) and (3.21) are satisfied
then ��

coincides with
�

everywhere.
The DP equation for the MDP � can be written as follows :

� � ��� � ��� �  ' � ��� � � � � � 1 �
�
� � ��! �

& � ��� � � � � � ��� � �����	
� ��� � � � � � � � � ��� � � � � � �

which holds
� � � 
 � � � � ��
 � � � � � �

We can state that :
�

�
� ��! �

� ������� � � � � ��� � � � �  �
�
� ��! �

� ������� � � , ' � � � � � � � �
1 �
�
� � ��! �

& � � � � � � � � ��� � �����	
� ����� � � � � � � � � � � � � � � �$.

which holds
� ��
 � � � � 
 � � � � �

By using conditions (3.18) and (3.19) we can write :
�

�
� ��! �

� � ��� � � � � � � � � ��� �  + � , ' ��������� �!�$. �
1 �
�
� � ��! �

+ � , � � ����������� �!����� � � � ��� �	
� ��� ��� � � � � � � ��� � � ��� � �#.

which holds
� ��
 � � � ��
 � � � � �

Conditions (3.20) and (3.21) and equation (3.16) imply that :
�� � ��� � �  + � , ' � ��� ����� � � 1 ��� �	

� ��� � � � � � 	 � � � � �� � ��� ��� ��� �!� � � � �$.
which holds

� ��
 � � � ��
 � � � �



3.3. REPRESENTATIVE STATES TECHNIQUE 73

��
satisfies the DP equation of the original control problem everywhere. The so-

lution of this equation being unique, ��
coincides with

�
when conditions (3.18),

(3.19), (3.20) and (3.21) are satisfied.

3.3.4 Equivalence conditions used to define the MDP �

Equivalence conditions (3.18) and (3.19) suggest a way to build the MDP � structure
different from the one defined by equations (3.14) and (3.15). Indeed, one may
reasonably suppose that the “less” these equivalence conditions are violated, the
better the approximation of the

�
-function will be.

Therefore one could for example select from
�

a finite set of states � and deter-
mine the 
 �

� �
�' � � � terms (

� � � � � � ����� � � � ) by computing the vector
� �  ! that

minimizes :

�
��� �

� !�
')( %

�
� � � � �' � � � � � � � � � 
 � � � � ��� � � � �

(3.22)

and by equating 
 �
� �

�' � � � with
� � � � .

Similarly, one could define the � �
� �

�� � � �' � � � terms (
� � � � � � ����� � � � ) by computing

the vector
� �  ! that minimizes :

�
� ��� �

�
�
 - �

� � ��� � � � 0 � � � � + � , � � ����������� �!� � � �� �$.�� � (3.23)

and by equating � �
� �

�� � � �' � � � with
� � � � .

Notice that the determination of all the terms � �
� � ��� � � � requires minimizing

�
ex-

pressions of the type (3.23). One can show that if the solution of each minimiza-
tion problem is unique, then we can guarantee that  !� ( %

� �
���

�� � � �' � � � � �
(section

A.3.1). However, one cannot guarantee that
� � �

� �
�� � � �' � � � � � �

by using such a
method. In practice, one can solve this problem by truncating and renormalizing
these values.
If � is equal to

� � , then it is straightforward to see that the computation of the
MDP � structure by minimizing expressions (3.22) and (3.23) leads to the same
MDP � structure as the one computed by using expressions (3.14) and (3.15).
Equations similar to equations (3.22) and (3.23) will be used in chapter 6 to build
the MDP � structure from interaction with the system.



74 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

3.3.5 Difficulties to compute the MDP � structure

Computation of the MDP � structure implies the ability to evaluate the right hand
sides of equations (3.14) and (3.15). This evaluation cannot be achieved most of
the time if the disturbance space � is infinite. To circumvent this difficulty we
can estimate these right hand sides numerically. The main idea of such numeri-
cal schemes is to modify the � � � � � � � � � probability distributions such that they
become different from zero for only a finite number of � � � .

When the amount of computation increases, one way to guarantee the numerical
scheme convergence i.e., it converges to the exact computation of the MDP � struc-
ture (as defined by equations (3.14) and (3.15)), is to choose the value of � that
intervenes in the building process according to the � � � � � � � � � probability distribu-
tions themselves. The tabular version of a convergent numerical scheme is given in
figure 3.6. If the system is deterministic then the value of

� � �
can be chosen equal

to
�
. If the system is stochastic, then

� ���
must become infinitely large in order to

ensure that the numerical scheme converges to the MDP � structure.

Figure 3.6: Representative states technique : numerical estimation of the MDP �
structure

Initialize
� �

� �
� � � � � � � � and 
 �

���
� � � � to

�
,
� �

� � � � �
� � � and

� � � � �
� �

�
�

Do for each � � � � � ����� � � �
Repeat

� � �
times for each � � � �

� �
�' �

Choose � according to � � � � � � �' � � � and compute
�
� � � ��� �' � � ��� �

and

 � 
 ��� �' � � ��� �

.

Do for all
�

� �
� � �� �

���
� � � � �' � � ��� � �

� �
� � � � �' � � � � �

� �
� � � � �

�


 �
� �

�' � � ��� 
 �
� �

�' � � � � � # � � � � �� � ������ � ��� � � � ��� � � � �� � ���
� �

���
�� � � �' � � ��� � � ��� �� � � �� � ���� � ����� � � � � � � � � �� � ��� � � ��� � � � � ����� � � � and

� � � � �
� �

�' �



3.3. REPRESENTATIVE STATES TECHNIQUE 75

3.3.6 Triangulation technique

The triangulation technique may be used to define the function � over continuous
state spaces. We suppose here that

�
is a bounded subset of

 �
.

The triangulation technique consists in partitioning the state space
� �  �

into
simplices and in considering that the set

� � is composed by the vertices of these
simplices. The function �

� � � � �
�

is computed by assuming that it is zero for all
elements

�
�
� � � which do not correspond to a vertex of the � -simplex to which

�
belongs. It implies that at most � � �

states
�

�
� � � are such that �

��� � � �
� �� �

.

If the set � � % � � � � ����� � � �
� % � � � � contains the vertices of an � -simplex to which�

belongs, then �
� � � � %

� � �
��� � � �

� � ����� � �
� � � � �

� %
�

are computed by solving the
linear system

�
:

�

� �,

� ������� �� �
� ��

� ������� �, �

� ��

� �
� ������� �� �

Figure 3.7: Triangulation of the state space. Two-dimensional representation.

��� " � #�� � )%# � " � #�� � )%#������ # � " � #��
	�� � ) represent the barycentric coordinates of � in the simplex.



76 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS��������� ��������
 �

� %')( %
� � � � � � � ' � � � � �

� � � � ' � � �
 �

� %')( %
� � � � � � � ' � � � � �

� � � � ' � � �
...

 �
� %')( %

� � � � � � � ' � � � � �
� � � � ' � � �

 �
� %')( % �

��� � � ' � � �

(3.24)

where �
� � � and

� � � � represent respectively the value of � and
�

according to the
� th dimension.

�

Remark that the triangulation technique is invariant with respect to a linear trans-
formation of the state space and therefore frees itself from the tuning of parameters
linked to the scaling of the variables that define a state.
In most cases we will apply the triangulation technique in the following way :

1. we first partition the state space into a finite number of � -rectangles by using
a regular grid;

2. we then partition each � -rectangle into simplices such that the vertices of the
simplices coincide with the vertices of the � -rectangle. The partitioning of
an � -rectangle into simplices is discussed in appendix B.

Example 3.3.1 This example illustrates the use of the triangulation technique. The illus-
tration is carried out on the control problem described in example 2.2.1.
We select in

�
a subset of states that are used to determine

� �
. The set chosen is� ( �!( ����	 � � � � � � � . To this set corresponds the set

� �  � � � � ��� � � ��� �� ��� �� � . � �
is chosen

equal to
�

( � � ( �!( � ) and
� � � � � � equal to

� � � � � 
 � � � � � �� � . The computation of the
MDP

�
structure is done by using equations (3.14) and (3.15). By way of example we detail

the computation of & � ��� �� � � � � �!( � . By using equation (3.15) we can write :

& � � � �� � � � � �!( �  + , � � � � � � � ��( � � � �� �#.
 � ��( ����	 � � ( � � �� �
 � � � ����	 � ��� �� �

� � � ����	 � � � �� � is determined by using the triangulation technique. The set of the vertices of
the ( -simplex that encloses � ����	 � is composed of two elements � � � and � �� . Using equation
(3.24), we can write :� � � ����	 � � ( ����	 � � � � � ����	 � ��� � � � � � � ����	 � � � � � � � ����	 � � � �� �� *� � � ����	 � � � � � � � � � � ����	 � ��� �� �� (
�
If � belongs to the intersection of several simplices this definition will provide the same result

whatever the one chosen among these latter.



3.3. REPRESENTATIVE STATES TECHNIQUE 77

By solving this system we obtain
� � � ����	 � � � � � �  �

� and
� � � ����	 � � � �� � ��� . Therefore

we have & ��� �� � � � � ��( ����� .
The transition probabilities & � � � � � � � � � � are given in table 3.2.

Table 3.2: Transition probabilities computed by using the triangulation technique

� & � � � � � � � � �!( � & � ��� � � � � � � � ( �
� � � 0 0� � � �

� 0� �� �� 0� �� 0 1

Once the MDP
�

structure is computed and solved, we can compute the value of the ap-
proximate

�
-function. The results are represented on figure 3.8. By using equation (3.17)

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

(a) �����	 ��� ��� � � �� � ��� � � (b)
�� � ��� � ( � (c)

�� � ���!( �

Figure 3.8: Triangulation technique used to define the function � . The states
selected from

�
to represent

� � are
�
,
����� ��


, � and
� 

.

it is possible to compute an approximation of the optimal stationary policy. We obtain a
control strategy that consists in taking �  � ( on the interval , ( ��� � * � 
���� , and �  ( on
the interval .!� � * � 
���� ��� . . At �  � � * � 
���� the value of the control variable value can be
either

� ( or ( (
�� � � � * � 
���� � � ( �  �� � � � * � 
���� �!( � ). The approximate optimal stationary

policy differs from the exact one (computed in example 2.2.1) on the interval , � ��� � * � 
���� . .
Example 3.3.2 We illustrate the representative states technique on the control problem
described in example 3.2.2.( ��( � ( �!( � � �! � ! � � and � � are the representative states.

� � �
is equal to � � . � � � corresponds

to the state ( , � � � to ( � ( ,  ! ! , � � � � to � and � � � � to � � .
The control space being infinite, we consider a finite subset

� �  � � ( ��( � of it to construct
the MDP

�
structure and choose

� � � � � �� � �
for all �

� 
 � � �	� � � � � � .



78 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

The function
�

is defined by using the triangulation technique.
The disturbance space being infinite, we use the algorithm described in figure 3.6 to com-
pute the MDP

�
structure. Once the structure is computed we solve the MDP

�
and compute

the approximate
�

-function by using equation (3.16).
The results obtained for different values of the term

� � � used in figure 3.6 are represented
on figure 3.9.
To each of these approximate

�
-functions corresponds an approximate optimal stationary

policy (equation 3.17). In example 3.3.1 we were able to compare the approximate optimal
policy computed with the real one. But for this control problem we do not know the optimal
policy. Therefore we cannot determine by comparison with the optimal policy which one
among the three policies is the best.
In section 3.4 we introduce an algorithm that attributes to each policy a score value, which
assesses how close a policy is to the optimal one.

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��
�� ��� � % �

�� � � � #&% �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� � � � % �

�� ��� � # % �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� � ��� % �

�� � ��� # % �

(a)
� � � )( (b)

� � �  ( * (c)
� � �  ( *�*

Figure 3.9: Numerical estimation of the approximate
�

-function. � � � � ��� .

Note that on figure 3.10 we have drawn the
�

-function obtained for different
� �

when
choosing

� � � equal to ( *�* * . This figure has to be compared with figure 3.4.

Problem with the boundary

The triangulation of the state space is not always possible because it requires that
the state space

�
is contained in a finite number of simplices with their vertices

inside
�

.
A two-dimensional illustration of the problems of a strictly convex boundary is
carried out in figure 3.11a. The grayish areas represent the regions of

�
that are

not recovered by any simplices whose vertices are represented by the black bullets.
By increasing the number of black bullets or by better arranging them one can de-
crease the surface of these areas, which, however, will never disappear completely
if � � � remains finite.



3.3. REPRESENTATIVE STATES TECHNIQUE 79

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� ��� � % �

�� � � � #&% �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

�� ��� � # % �

�� ��� � % �
��

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

�� � � � % �

�� ��� � # % �

��

(a)
� � �  � (b)

� � �  	 (c)
� � � �� �

Figure 3.10: Approximate
�

-function computed for different sizes of
� � with� � � � �������

Boundary of
�

Black bullet

(a)
� � � �

(b)
� � �� �

Figure 3.11: Boundary and triangulation



80 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

Two strategies can be used to overcome this problem. One consists in mixing
the aggregation technique with the representative states technique while the other
one consists in choosing the vertices of the simplices outside

�
in order to ensure

that the simplices entirely cover
�

. This latter strategy makes sense if the system
dynamics and reward function can still be defined for states close to the boundary
but outside

�
. Such a procedure is illustrated on figure 3.11b and is used notably

in chapter 4.

3.3.7 Other methods to determine
�

The only method we have described to define the function � is the triangulation
technique. The main advantage of this technique is that once the triangulation of
the state space is realized, the value of � is determined without having to tune any
parameters so as to weight one direction of the state space according to another.
But many other functions � could also be used. For example if

� � � � � � � is a dis-
tance defined on

�
, we could consider the function � defined by the expression :

�
� � � � � � �

����� ����
�

���
� � � � �� � � � � � � �

���
� � � � � � if

� �� �
�' � � � � � � � � ����� � � �

�
if

� � �
��

otherwise

or any other expression that satisfies �
� � � � �

��� � � � � � � � � � � �
�
� � � and

 � � � � � �
� � � � �

� � � � ��� �
and gives an idea of “how close”

�
is to

�
� .

3.4 Quality of the approximate policy computed

As stated in chapter 2, the control problem objective is to find the stationary policy
that maximizes the expected value of the return whatever the initial state is i.e., to
find the policy ��
 that maximizes

� ��� �

� �
� � � � �������� � �

� 	�� �

�
� #&%�
 ( �

�  
 ���  � � � �  � ���  � � � � � ��� �
(3.25)

The better a policy fulfills this objective, the better it approximates the optimal
policy. We could thus evaluate a policy � by computing the norm

�
� � � � �

� � �



3.4. QUALITY OF THE APPROXIMATE POLICY COMPUTED 81

or any other “norm” measuring the distance of a policy from the optimal one. Un-
fortunately, in most practical applications, the optimal policy is unknown before-
hand and this criterion is therefore not usable. In other words, we need to define a
criterion able to compare the quality of two approximate policies without resorting
to the knowledge of the true optimal policy or value function.
Of course, we can say that the policy � % better approximates the optimal policy than
the policy � � if ��� � ��� � � ��� � � � � � � � �

. Unfortunately the use of such a criterion
to compare two policies is most of the time not helpful because if the inequality
does not hold for just one

��� �
, nothing can be concluded. We therefore decided

to design a more pragmatic criterion to compare the policies’ quality. It consists in
associating to a policy � a score defined by the expression :

score of � � ��������	� �
� 	�� �

�
� #&%�
 ( �

�  
 � �  � � � �  � ���  � � � �
� �

�
� �

(3.26)

where � �
� �

�
�

is the probability (or weight) put on the initial state
�

� ( � �
� � �

is
defined on

�
). According to this criterion � % is better than � � if the score of � % is

higher than the one of � � .
Obviously, the score computed for each policy and therefore also the result of the
comparison depend on � �

� � �
.

In particular, if � �
� � �

is different from zero for only one element
�

of
�

then the
comparison between two policies � % and � � amounts to comparing the value of
� � � ��� �

and � � � � � �
.

If � �
� � �

represents a uniform probability distribution, then the comparison between
� % and � � amounts to comparing the average of � � �

and � � �

over the whole state
space.
Notice however that whatever the chosen probability distribution � �

� � �
, no policy

can have a score greater than the optimal one.
In the simulations of chapter 4 we will see that to evaluate the quality of policies it
is useful to consider several probability distributions � �

� � �
in order to concentrate

the comparisons on various regions of interest of the state space.

Example 3.4.1 The control problem used is the four-state control problem defined in ex-
ample 2.3.1.
We are going to evaluate the score obtained by an � -Greedy policy on this control problem.
The � -Greedy policy has been introduced in example 2.3.4 and the expected return of this
policy

� � " Greedy is given in table 2.3 for different values of � .
The initial probability distribution that intervenes in the score computation is defined as
follows :

� / ��( �  �
� ,

� / � � �  �
� ,

� / � � �  �
� and

� / � � � �  * . The detail of the score



82 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

computation for the � -greedy policy with �  *�� ( is :

score of � -Greedy  � / ��( � � � � " Greedy ��( � � � / � � � � � � " Greedy � � ���
� / � � � � � � " Greedy � � � � � / � � � � � � � " Greedy � � � �

 (� � � � ��*���� � � (� � � � � � ��	 ( � (� � � � ( � ����
 � * � *
 � � *�
 ��� 	

The scores obtained for different values of � are gathered in table 3.3. The larger the value
of � the smaller the score.

Table 3.3: Score obtained for different values of �

� score
0. 3.17006

0.1 3.06347
0.2 2.95450
1. 1.99233

Example 3.4.2 The control problem used is the four-state control problem defined in ex-
ample 2.3.1.
In the examples 2.3.2 and 2.3.3 we saw how to compute the optimal stationary policy of
the control problem and obtained : � � ��( �� � ( , � � � � � )( and � � � � ��)( . The maximum
expected return i.e., the expected return that corresponds to the optimal stationary policy,
is :

�!" � ��( ���� � ��	 ( � � ,
�!" � � � �� � ��
 � � *�
 and

�!" � � � �� � � � � ��	 ( .
If we define

� / � � / � as follows :
� / ��( �� �

�
� � / � � �  �

�
� � / � � �� �

�
� � / � � � �� * and use

equation (3.26) to compute the score corresponding to the optimal policy, we obtain :

score of � �  � / ��( � � � " � ��( ��� � / � � � � � " � � � � � � / � � � � � " � � � �
 (� � � � ��	 (�� � � (� � � ��
 � � *�
 � (� � � � � � ��	 (
 � � ( 	�* *�


The four-state control problem has also been used in example 3.2.1 to illustrate the aggrega-
tion technique. The policy � obtained by using the aggregation technique was : ����( �  ( ,��� � �  ( and � � � �  ( . With the value iteration algorithm (figure 2.2) to compute the
expected return of this policy, we obtain :

� " ��( �  ( � � 	�* � 
 ,
�!" � � �  � ��
 � � *�
 and� " � � �  � � � � ��	 ( . By proceeding similarly we can compute the score of � . We get a

value of � �
	�
��
�	 which is smaller than the score corresponding to the optimal policy.



3.4. QUALITY OF THE APPROXIMATE POLICY COMPUTED 83

Numerical estimation of the score

If the state space is infinite the score of a policy � as defined by equation (3.26)
can most of the time be estimated only numerically. The numerical estimation of
the score implies among others to be able to estimate the expected return � �

� � �
of a policy � . To estimate � �

� � �
, we run simulations starting from

�
� � �

with
the policy � and observe at each stage the reward obtained. Although computation
of the expected return requires simulating the system during an infinite number of
stages (if no terminal state is reached), we truncate the estimation of the expected
return to its first � terms knowing that the answer obtained will stand in the interval

�
� �

� � � � �
�

� � � � �
� � � � � ��� �

�
� � � � �

�
(3.27)

where � � represents the bound on the rewards. An algorithm that allows the numer-
ical estimation of the score is represented on figure 3.12. The end of the episode
designates either the fact that the system is stuck in a terminal state or that the
maximum number of steps in a simulation has been reached.

Example 3.4.3 Hereafter we use the control problem detailed in example 3.2.2. There
we have computed approximate optimal policies by using the aggregation technique for
different discretizations of the state space. We have already mentioned that we were unable
to decide which discretization led to the best approximation of the optimal policy. Now,
we are going to use equation (3.26) to compute a score value for these different policies in
order to determine which one is the best.
The probability distribution on the initial states is chosen such that

� / � � � represents a uni-
form probability distribution on

� �	� � � � and that
� / ��� � �� * .

The state space being infinite, we use the algorithm given in figure 3.12 to compute the
scores. The number of simulations is chosen equal to ��*�* * and each simulation is run until
the terminal state � � is reached. The results obtained are represented in table 3.4. The finer
the discretization, the better the score. Although we cannot compare these scores to the
score obtained by the optimal stationary policy (because we do not know this policy), we
can still compare them to the score obtained by a policy that would consist in choosing
actions at random i.e., while being in a state � the action taken is drawn randomly in the
set � � ( �!( � . This random policy gives a score of � ��� � , well below the score of the three
policies obtained by using the aggregation technique.
In example 3.3.2, we have computed by using the representative states technique different
policies corresponding to different sizes of the disturbance space subsets used to compute
the MDP

�
structure (different

� � � ). The scores of these different policies (computed by
using the algorithm depicted in table 3.12 with the same probability distribution on the
initial states and the same algorithm parameters as detailed before) are given in table 3.5.
The larger the disturbance space subsets, the better the policy obtained (according to the
score criteria).



84 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

Figure 3.12: Numerical estimation of the score of a policy �
Initialize � � � 
 � and � � � � � 
�� � � � � � � � � � � to zero
Repeat until the maximum number of simulations is reached

Choose
�

according to a given probability distribution

Initialize � � � 
 � � � � � � � � � � � to zero

Initialize
� � ����� to

�

Initialize the state of the system to
�

Repeat until the end of an episode

Apply action � � � � on the system

Simulate the system for one step

Observe the reward 
 obtained and the state
�
� reached

� � � 
 � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � ������� 

� � ����� � � � � � �����
� � �

�

� � � � � 
�� � � � � � � � � � � � � � � � � 
�� � � � � � � � � � � � �

� � � 
 � � � � � 
 � � %� � ! � � �	� ' ! ��
 �  '� ���
� � � � 
 � � � � � � � � � � � � � � � 
 � �

Table 3.4: Score obtained for different discretizations of the state space

� � �
score

3 3.42
6 3.49

21 3.51



3.5. BELLMAN ERROR METHOD 85

Table 3.5: Score obtained for different sizes of the disturbance space subsets

� � � score
1 3.03

10 3.48
100 3.51
1000 3.52

3.5 Bellman error method

The aggregation technique and the representative states technique consist in :

� determining an approximation architecture that allows one to compute �� � � � � �
from a parameter vector

� �
, each component of this vector corresponding to

the value of the
� � -function evaluated at an element of

� � � � � (equation
(3.7) for the aggregation technique and equation (3.16) for the representative
states technique)

� computing the optimal value
�

 of the parameter vector

�
by solving the DP

equation of the MDP � structure.

On the other hand, to solve this problem one could rather select from
� � �

a finite
set � of state-action pairs and solve the following optimization problem :

� � �� � �
� � � 	 � ���

� �� � ��� ��� 0 � � +
� , ' � ��� ����� � � 1 �����	 ��� � � � � � 	 � � � � �� � � � ��� ����� � � ��� 0 �#. � � � (3.28)

where we have used the notation �� � � � � � � � rather than �� � � � � � in order to stress
the dependence on the parameter vector

�
.

Solving this optimization problem is equivalent to minimizing the error in the Bell-
man equation. Methods that consist in minimizing the error in the Bellman equa-
tion are referred to as the Bellman error methods [SS85, Bai95]. If ��

can represent
exactly the

�
-function, expression (3.28) is equal to zero whatever the finite set � .

We have introduced the Bellman error method here in order to compare its rationale
with the other approaches described in this chapter. A technique inspired from this
method will be introduced in chapter 6 in the context of reinforcement learning in
infinite state spaces.
�
The parameter vector � represents the parameters of the approximation architecture.



86 CHAPTER 3. APPROXIMATE SOLUTIONS FOR DP PROBLEMS

3.6 Summary

We have described two techniques to compute approximations of the optimal sta-
tionary policy for control problems with infinite state spaces.
We recall that both techniques consist in defining from the original control problem
a finite Markov Decision Process that catches its main characteristics and in using
the MDP � solution to approximate the optimal stationary policy of the original
control problem. These techniques suppose, like the DP techniques used to solve
control problems with finite state spaces, that the system dynamics and the reward
function are known.
We will provide a detailed case study comparing these methods in the next chapter,
in the context of a simple but representative power system control problem.
In the subsequent chapters we will see how control problems can be solved by
adapting these techniques to situations where the system dynamics and the reward
function are not known explicitly anymore but can be observed along various sys-
tem trajectories.



Chapter 4

A simple FACTS control problem

In this chapter we

� describe the characteristics of a power system composed of one machine
connected to an infinite bus through a transmission line and controlled by
a Flexible Alternative Current Transmission System (FACTS) device and ex-
plain the electrical power oscillations damping problem;

� formulate the control problem as a discrete-time optimal control problem
such that the electrical power oscillations are well damped if the optimal
stationary policy is used to control the FACTS;

� explain how to apply the computational strategies detailed in the previous
chapter in order to solve the control problem, compare the different results
obtained and discuss the policy robustness.

We notice that this FACTS control problem is rather simplified with respect to real
world conditions. In particular, we suppose full observability of the system state
and neglect in the dynamics most of the existing control loops installed on real
power systems (prime-mover control, voltage control and power system stabilizers).
Last but not least, most real power systems are composed of many more than just
the two machines considered here (the infinite bus is an idealization of a very large
machine representing in a simplified way the remaining system). Nevertheless, we
will see that this problem is sufficiently rich to encounter the purpose of this chapter,
which is to show how such a practical problem can be formulated as an infinite
horizon optimal control problem and to study and compare the main features of the
different algorithms proposed in the previous chapters.

87



88 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

4.1 The OMIB power system

4.1.1 The system dynamics

The type of FACTS used is a TCSC (Thyristor Controlled Series Capacitor) which
can be considered as a variable reactance (more often a capacitance) in series with
a transmission line . We denote by

�
FACTS an equivalent 60 Hz steady state

reactance of the TCSC. A negative value of
�

FACTS means that the FACTS is
acting like a capacitance. In the present study we neglect the time constant of the
FACTS device and hence consider that

�
FACTS represents the control variable of

the problem and is deemed to be able to vary infinitely rapidly % .
The simplified power system model on which the FACTS is installed consists of
a single synchronous generator (machine) connected to an infinite inertia machine
through a transmission line. This simplified power system will be referred to as an
OMIB (One-Machine Infinite Bus) system.
Figure 4.1 sketches the structure of this power system where the symbol

�
system

embeds the generator transient reactance, the transformer reactance and the line
reactance.

����������

� �
FACTS

� �
system

Figure 4.1: The one-machine infinite bus (OMIB) system

The system dynamics is described by the following equations :

�� � � (4.1)
�
� � � ! �� �� (4.2)

where � ! is the mechanical power of the machine, ��� its electrical power,
�

its
inertia, � its rotor angle (w.r.t. a reference synchronous with the infinite machine),
and � its rotor speed. � ! is assumed constant whereas � � varies with � according
to the following expression :

� � �
� �

�
system

� �
FACTS

�
��� � � (4.3)

�

The TCSC model considered here is much simplified. More complex models exist. In this
respect, we advice the reader to refer to [HG00] and references therein.



4.1. THE OMIB POWER SYSTEM 89

�
is the terminal voltage of the machine and

�
the voltage of the infinite bus

system.
The values of all the system parameters expressed in per unit are chosen as follows :

� � �
,
� � �

, � ! � �
,
� � � ���� � �



�

�



�


� � � � � � � �*� � , and

�
system � � ���

.
The line reactance has been chosen equal to

� � ���
(it corresponds more or less to

the reactance of a � ��� km, � 
�� kV line), the transformer reactance to
� ��� � and the

machine transient reactance to
� � � . The value of the FACTS reactance

�
FACTS

belongs to the interval
� � � ����� � � � � , corresponding to a maximum of

�*�
percent of�

system which can be compensated.

Note that often a term �
�
� � is added to the right hand part of equation (4.2),

in order to represent the natural damping of the power system. This term has been
deliberately removed here ( � � �

) so as to emphasize that the damping is produced
only by the FACTS itself.
While this power system model is extremely simplified, it is still representative of
the main physical features of the practical problem of power system electrome-
chanical oscillations damping. Moreover, the parameters are adjusted to represent
realistic orders of magnitude.

4.1.2 State space trimming

Limitation of the control problem to the stability domain

Although the system dynamics (equations (4.1) and (4.2)) is defined whatever the
value of � or � , we limit the control problem state space to the region of the
plane

� � � � � that represents the stability domain of the uncontrolled OMIB system
(
�

FACTS � �
). The separatrix is represented on figure 4.2a.

Analytical characterization of the stability domain

The states
� � � � � that are inside the stability domain satisfy the inequality

�

�
�
�

�

�� ! � �
� �
� �	� � � � � � � � ��� � � ����� �

(see [Pai89] for more information), the equality occurring for the points that lie on
the boundary. Inside this domain, the value of � (expressed in 
 � �

) always lies in
the interval

� � � � �	� � � � � � � � � while the value of � (expressed in 
 � ��
 � ) belongs to� � � ��� � � � � � ��� � � � � . This also implies that the value of � � is always in the interval� � � � � ���� � � � ������� � .



90 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

Stable equilibrium point

Inside the stability domain (represented on figure 4.2a) the uncontrolled system has
just one stable equilibrium point defined by

� � � � � � � � � � � � � ���
�

system � !� � � � � � � � ��� � � � � � �
to which corresponds an electrical power transmitted in the line equal to � ! .

Trajectories

All the trajectories of this uncontrolled system that start inside the stability region
remain in it and are closed. This implies among other things that the electrical
power transmitted in the line is not damped (see equation (4.3)) and oscillates in-
definitely if the starting point of a trajectory is different from the stable equilibrium
point. The evolution of this electrical power over a period of

� 
 � when the the
initial angle value ( � ) is

�
and the initial speed value ( � ) is

� 
 � � 
 � is represented
on figure 4.2b. Note that we can say that the electrical power transmitted in the line
oscillates around the value � ! because it can be shown that

������ �	�
�

�
� �

�
� � � � � � � � � !

if the system stays indefinitely in the stability region.

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

2.5

2.

1.5

1.

0.5

0.0

−.5

−1.

0.0 2.5 7.5 10. 12.5 15.5.

���

� "�� )

���

(a) Stability domain (b) � � � �

Figure 4.2: Uncontrolled system



4.2. OPTIMAL CONTROL PROBLEM FORMULATION 91

4.2 Optimal control problem formulation

In chapter 2 we have seen that the two main elements that intervene in the defini-
tion of a DP problem are the system dynamics and the reward function (with its
associated decay factor � ).

4.2.1 Discrete-time system dynamics

The system dynamics of the power system is described by equations (4.1) and
(4.2). This system has continuous-time dynamics (where the control variable is�

FACTS). Discrete-time control on such a system means that at instant
�

the con-
troller observes the state of the system and sets the evolution of the control variable�

FACTS over the time interval
� � � � � � �

. The infinite state space
�

is composed of
the stability region represented on figure 4.2a plus a terminal state that is reached
if the observed state has left the stability domain. The time between

�
and

� � �
is

chosen equal to
� � � 
�� � . This time discretization, the bounds on

�
FACTS and the

fact that
�

FACTS can change infinitely rapidly imply that the control space � (the
set of all � ) of the discrete-time control problem is composed of all the functions
defined on an interval

� � � � ��� 
�� � that take their values on
� � � ����� � � � (the interval in

which
�

FACTS is constrained to stay). Moreover, we have
� ��� � � � � ��� �

for
this control problem and a disturbance space � which is empty due to the fact that
the system dynamics is deterministic.

4.2.2 Reward definition

Our aim is to define a reward function 
 ��� � � ��� �
and a decay factor � such that the

stationary policy � 
 that maximizes

��������	� �
� 	�� �

�
� #&%�
 ( �

�  
 � �  � � � �  � ���  � � � � � ���

also leads to the damping of the electrical power oscillations.
We have chosen (electrical powers are expressed in per unit) :


 ���  � �  ���  � �
�
� � � � � � � �� !

�
if

� 
� %

�� � 
� ����� if

� 
� % �

� 

and � � � � ���
.

The choice of � � ��� � � � � � !
�
as reward if

� 
� % is still in the stability domain implies

that the closer the instantaneous electrical power is to its value at the equilibrium



92 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

point, the larger the reward obtained. Therefore the policy that maximizes the
sum of the rewards will also drive the system into regions of the state space where
oscillations of the electrical power are small and especially to the equilibrium point
where they vanish.
The value of � ( � � � � ���

) has been chosen close to
�

in order to ensure that the
rewards importance does not decay too rapidly with time, in comparison with the
time constant of the system oscillations. With this value, �  reaches a value of 10%
after 114 time steps i.e., after 5.7 seconds of real time, which is about 6 to 7 times
larger than the natural oscillation period of the system (see figure 4.2b).
If the system goes outside the stability domain, the reward gotten is equal to a large
negative value ( � ����� ). This choice intends to guarantee that the optimal control
policy does not drive the system outside the stability domain because the return
obtained would be very low. We notice that this value of reward is (by far) larger
in absolute value than the maximal value of

� � � � � � � � !
�
in all our simulations.

Hence the bound on the rewards � � is also equal to
�*���

.

4.3 Optimal control problem solution

The FACTS control problem has an infinite state space which implies that we are
not able to compute the exact optimal stationary policy but just an approximation of
it. The computation of the approximate optimal policy will be done by using the ag-
gregation technique and the representative states technique explained respectively
in sections 3.2 and 3.3.

4.3.1 Aggregation technique

State space discretization

The first phase of the aggregation technique consists in partitioning the state space�
into

�
different disjoint subsets

�
% �
�

� � ����� � ! . If we take
�
! equal to � �  �

then the subsets
�
% �
�

� � ����� � � ! # % must cover the stability domain represented on
figure 4.2a. In order to partition (see section 3.2.6) this continuous domain into

� ��
disjoint subsets, we use a regular grid. The grid structure we use is represented

on figure 4.3a. The subsets of the state space that are defined by this kind of grid
have the same shape except for the ones that intersect with the boundary. The
discretization step of this grid according to the variable � is, in a first stage, chosen
equal to one fiftieth of the difference between the maximum value of � and the
minimum value of � on

� � � �  � (
��� � � � # � # ��� � � � �� � � � ��� � �����

). Its discretization
step according to the variable � is, in a first stage, chosen equal to one fiftieth of



4.3. OPTIMAL CONTROL PROBLEM SOLUTION 93

the difference between the maximum value of � and the minimum value of � on� � � �� � ( % % � � � � # � # % % � � � � �
� � � � � � �������

). In the sequel we call it the

�� � 
��

grid;
this discretization will be compared both with coarser and finer ones in order to
assess the impact of this parameter on the results.

(a)
Discretization

(aggregation technique)
(b)

Triangulation
(representative states technique)

Figure 4.3: Discretization and triangulation of the state space

The second phase of the aggregation technique consists in associating to each sub-
set

� ' a probability distribution � ' � � � . The probability distribution � ' � � � is simply
chosen equal to a uniform probability distribution on

� ' , no other choice being
justified a priori.

Control space discretization

In a first stage, we limit the control space � � to two elements, both of which con-
sider constant

�
FACTS values on the time interval

� � � � � � �
. But for one element of

� � this value is equal to
�

(the FACTS is acting at the minimum level of its capac-
ity) while for the other it is equal to � � ����� (the FACTS is acting at full range of its
capacity). Denoting by its value an element of the control space that corresponds to
a constant value of

�
FACTS over the interval

� � � � � � �
, we write : � � � � � � ����� � � � .

Moreover we take
� �

� � � � � �
� ��� � � � �� � .

Subsequently, we will assess the effect of using a richer set of possible control
actions.



94 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

MDP � structure estimation

The elements � ' , � ' and
� � having been chosen, we can compute the structure of

the MDP � defined by the equations (3.1) and (3.3). Since the state space is infinite,
we must evaluate these expressions numerically. To this end, we use the algorithm
detailed in figure 3.2. Notice that since the original system is deterministic, the val-
ues of the

� � �
terms can be taken equal to

�
. On the other hand, we decided to take

the values of
� ' approximately proportional to the size of the subset

� ' to which
they correspond (therefore the subsets of

�
which intersect with the boundary of

the stability region will have a value of
� ' smaller than the subsets which do not in-

tersect with the stability boundary (see figure 4.3)), and such that  !$#&%')( %
� ' � � � .

Actually, the procedure that we have used to generate
� ' points in each cell slightly

departs from the scheme defined in figure 3.2. Indeed, rather than sampling sep-
arately

� ' points in each cell, we sample the total number of points (  ! # %' ( %
� ' )

uniformly inside the complete stability region and then allocate each point to the
region it falls in. In principle, this introduces some more variance in the estima-
tion procedure, but for the quite large number of points considered in the present
simulations, we have found that this does not lead to any significant differences.
We start by using a value of

� � � �*�������
, leading to a rather small value of

� ' � �
.

Subsequently we will increase these numbers to see how they affect the quality of
the resulting control policy.

Control policy determination

We compute the
� � -function of the MDP � by using the Gauss-Seidel version of

the value iteration algorithm with � � � ������� �
(figure 2.4). Then, using equations

(3.7) and (3.8) in order to compute respectively an approximation of the
�

-function
and from it an approximation of the optimal stationary policy, we obtain the policy
represented on figure 4.4a. The grayish areas represent regions of the state space
in which the policy consists in choosing

�
FACTS equal to � � � ��� while the white

areas designate regions where the control variable value is equal to
�
.

The scattering of white and gray areas seems rather random and is obviously not
likely to represent a very efficient policy. We have simulated the power system
by using this control law (which means that each

� ��� 
�� � we observe
� � � � � and

use the control law in order to set the value of
�

FACTS over the next
� � � 
�� � ) in

order to see what happens in terms of damping. For example, figure 4.4b represents
the evolution of the electrical power observed over a period of

� 
 � when starting
the simulation with

� � � � � � � � � � � . We indeed clearly see that the power system
oscillations are not damped. We will shortly see that this is because the aggregation



4.3. OPTIMAL CONTROL PROBLEM SOLUTION 95

technique has produced a policy that is unable to approximate sufficiently well the
optimal stationary policy.

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

2.5

2.

1.5

1.

0.5

0.0

−.5

−1.

0.0 2.5 7.5 10. 12.5 15.5.

���

� "�� )

(a) Policy computed (b) ��� � �

Figure 4.4:

���� 
��

grid and  ! # %' ( %
� ' � ���������

Policy score evaluation

We can estimate the score of this policy (see section 3.4). The score computation
requires choosing a probability distribution on the initial states. We take it equal
to a uniform probability distribution on

� � � �  � . Since the state space is infinite,
the score evaluation i.e., the evaluation of expression (3.26), is done numerically
by using the algorithm described on figure 3.12. The maximum number of steps pa-
rameter of this algorithm is chosen equal to

�������
which implies that the estimation

of the return
� � �

�
�

lies in the interval

, ( ��� / � � *����� � / / /( � * ���� ( *�* � ( ��� / � � *����� � / / /( � *����� .  , ( � � / � � � � � ( � ( * "
� � ( ��� / � � ��� � ( � ( * "

� . �
For these estimations, the maximum number of simulations parameter is taken equal
to � 
������ . These parameters have been tuned in order to ensure that expression
(3.26) is approached with a sufficient accuracy and they are used each time we
compute the score for the OMIB system whatever the initial probability distribution
may be.
The policy represented on figure 4.4 gives a score value of � � � � � 
 � . If we proceed
to the score computation for a policy that chooses always

�
FACTS � � � ����� , we



96 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

obtain a score value equal to � 
�� � � ��� � . A policy for which
�

FACTS is always
equal to

�
everywhere gives a score of � 
 � ��� � ��� while a completely random policy

(a policy for which, while being in a state
�

we choose arbitrarily a control variable
value equal to

�
or � � ����� ) gives a score value of � � � ����
 ��� . We can observe that

the policy computed via the aggregation technique has a worse score than the ones
which choose constant

�
FACTS value.

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

2.5

2.

1.5

1.

0.5

0.0

−.5

−1.

0.0 2.5 7.5 10. 12.5 15.5.

���

� "�� )

(a) Policy computed (b) ��� � �

Figure 4.5:

�� ��
��

grid and  ! # %' ( %
� ' � �����������

Analysis of results and variations

One may wonder why the aggregation technique has provided such poor results.
Actually, we found that the problem comes from the way the � ' � � � probability dis-
tributions are approximated by the numerical estimation scheme. Indeed, if we take
 ! # %' ( %

� ' � �����������
rather than

���������
and perform all the computations again, we

obtain the stationary policy represented on figure 4.5a that gives much better results
in terms of electrical power oscillations damping. The evolution of the electrical
power when using this policy and starting from

� � � � � � � � � � � is represented on
figure 4.5b. The score is now equal to � � 
	��� � ��
 .
Another choice of the subsets

� ' , of the � ' or of the
� � control sets would have

led to another MDP � structure and therefore to another approximation of the op-
timal stationary policy. For instance, if we modify the way the state space is dis-
cretized by choosing this time a � 
�� � 
 grid and do all the computations with
 "! # %' ( %

� ' � �*�������
, we obtain the stationary policy represented on figure 4.6a. Its



4.3. OPTIMAL CONTROL PROBLEM SOLUTION 97

score is equal to � �	� � �	� � � . The evolution of the electrical power corresponding
to a simulation starting from the state

� � � � � � � � � � � when using the policy just
computed is represented on figure 4.6b. At the sight of the result obtained, it can
seem surprising that the number of points (  "! # %' ( %

� ' ) used to compute the MDP �
structure is sufficient while it was not when a finer grid was used (see figure 4.4).

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

2.5

2.

1.5

1.

0.5

0.0

−.5

−1.

0.0 2.5 7.5 10. 12.5 15.5.

���

� "�� )

(a) Policy computed (b) ��� � �

Figure 4.6: � 
 � � 
 grid and  ! # %' ( %
� ' � ���������

The relation that exists between the score obtained by the control policy and the
number of points chosen in

� � � �  � to compute the MDP � structure is illustrated
on figure 4.7 for three different discretizations of the state space (done by a � 
$� � 

grid, a


�� � 
��
grid and a

�*��� � �����
grid). The score of the policy increases when

the number of points used to compute the MDP � structure increases i.e., when the
� ' � � � are better approximated by the numerical scheme. We can also note that for a
same score value, the finer the grid, the more points needed to compute the MDP �
structure. As the number of points increases, the grid that represents the finest
discretization of the state space is finally the one that offers the best policy, even if
the scores obtained are then close.
We note that this relation between the number of cells in the discretized model and
the number of samples that have to be simulated to yield a good policy is directly
related to the so-called bias-variance tradeoff well known in estimation theory.
Indeed, the finer the grid, the better the policy obtained in asymptotic conditions,
but also the larger the number of samples needed to estimate the parameters of
the MDP � with sufficient accuracy. We observe that in the present application, the
refinement of the grid leads to a rather small reduction of bias and a direct increase



98 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

in variance.

0.0 1.e+5 2.e+5 3.e+5

−65.

−60.

−55.

−50.

−45.

� 0�� � 0

� � � ����
��� �

�
	

��� � ��

+ 0�0�� + 0�0

Figure 4.7: Score obtained as a function of  "! # %' ( %
� ' for different state space

discretizations.

4.3.2 Representative states technique

The use of the representative states technique pursues two main objectives :

1. to select a finite number of representative states from the original control
problem

2. to define the function � .

Interpolation scheme and control space

Here, the selected representative states will be located at the intersection of the lines
that define a regular grid.
The function � is defined by using the triangulation technique. Due to the convex-
ity of the state space boundary, the triangulation will recover

� � � �  � completely
only if some of the representative states are outside

�
(section 3.3.6). On figure

4.3b we have drawn a schematic representation of the state space triangulation.
The regular grid used is the


�� � 
��
grid described in the previous paragraph and the

control set � � is chosen equal to � � � ����� � � � � with
� �

���
�
� � � �

� �
�
� � �

� � �  � .



4.3. OPTIMAL CONTROL PROBLEM SOLUTION 99

MDP � computation

Computation of the MDP � structure can be done by evaluating the expressions
(3.14) and (3.15). Notice that since the OMIB system dynamics is deterministic
these expressions can be computed exactly as opposed to the aggregation technique
where they could only be approximated through sampling. The use of the algorithm
described on figure 3.6 with

� � � � �
thus leads to the exact computation of the

MDP � structure.

Control policy computation and score

Once the MDP � is solved (the Gauss-Seidel version of the value iteration algorithm
has been used with � � � ������� �

(figure 2.4) to solve this control problem), we
can use equation (3.16) to compute an approximation of the

�
-function. From it

we deduce an approximation of the optimal stationary policy by using expression
(3.17).

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

(a) Policy computed (b) Trajectory in the phase plane

Figure 4.8: Representative states technique.

�����
��

grid used

The policy obtained is represented on figure 4.8a where the grayish areas represent
regions of the state space where the approximate optimal control policy consists in
choosing � � � � ����� while the white areas are regions where � is chosen equal to
zero.
The score obtained for this policy by choosing � �

� � �
equal to a uniform probability

distribution on
� � � �  � is equal to � � 
	� � � � � .

The trajectory obtained by simulating the system from
� � � � � � � � � � � when this



100 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

policy is used is represented on figure 4.8b. The system “gets closer” to the equi-
librium point of the system, a sign that the electrical power oscillations are well
damped. The number of elements comprised in

� � is equal to
��� ���

,
� � �	�

being
represented on figure 4.8a plus the terminal state

� 
.

Variations

If we use the same computational scheme but this time with a � 
 � � 
 grid, we
obtain the policy represented on figure 4.9a whose score is � � 
	� � ��� � . The evolu-
tion of the electrical power transmitted in the line when using this policy and when�

� � � � � � � is represented on figure 4.9b.

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

2.5

2.

1.5

1.

0.5

0.0

−.5

−1.

0.0 2.5 7.5 10. 12.5 15.5.

���

� "�� )

(a) Policy computed (b) ��� � �

Figure 4.9: Representative states technique. � 
 � � 
 grid used

4.4 State and control space discretization variants

In section 4.3 we have seen how to compute approximate optimal policies for the
FACTS control problem. In this section we study systematically the influence of
the technique used (aggregation or representative states technique), the grid used
and the control set � � on the policies obtained.

We consider the � 
 � � 
 , 
�� � 
��
and

�*��� � �*���
grids and the following three



4.4. STATE AND CONTROL SPACE DISCRETIZATION VARIANTS 101

control sets :

� �% � � � � � ��� � � � �
� �� � � � � � ��� � � � ��� � � � � ��� � � � � ��� � � � � �
� �� � � � � � ��� � � � ��� � � � � ��� � � � � ��� � � � � �

� � FACTS
� � � � � � ��� � � � ��� � �

� ����
�� � � � � � � � ��� 
�� � � �
� � FACTS

� � � � � � ��� �
�

� ����
�� � � � � � � � � � 
�� � ���

with
� � �

�
�

equal to the corresponding control set
� �

�
� � �

� � �� � . Note that two
elements of � �� do not correspond to a constant value of

�
FACTS on the interval� � � � � � �

.
To each policy we attribute three different scores corresponding to three different
probability distributions on the initial states (equation (3.26)).
These probability distributions differ by the initial states selected in the different
subsets of

�
(
� � � �  � , � � and

�
� � ) represented on figure 4.10a.

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

�
� � � � �

� �

� � �

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

��� * +

��� *,+�� +

(a)
Three different subset of

�
used for the score computation

(b) Stability domain and � !
Figure 4.10: Phase plane

� � � �� � represents the stability domain of the uncontrolled OMIB system,
�

�
encloses the states of

�
that satisfy the equation

�

�
�
�

�

�� ! � �
� �
� �	� � � � � � � � � 
 � �



102 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

and
�

� � encloses the states of
�

that satisfy

�

�
�
�

�

� � ! � �
� �
� �	� � � � � � � � � ��� 
	�

These three sets contain the stable equilibrium point of the uncontrolled OMIB
system and their boundary corresponds to a trajectory of the uncontrolled system
(
�

FACTS � �
).

Each of these three scores can highlight certain features of the policy evaluated. For
example if a policy scores well in the domain

�
� � , it means that the policy is able to

limit the magnitude of the residual oscillations observed on figures and 4.5b, 4.6b
and 4.9b.

In order to obtain good results with the aggregation technique, it is necessary to
approximate accurately the � ' distributions. This has been achieved by choosing
 ! # %' ( %

� ' � � � ����� � ����� (section 4.3).

The different scores computed are represented in table 4.1, which suggests the fol-
lowing observations.

Table 4.1: Scores obtained for different ways to compute the MDP �

score Aggregation Representative states

� �% � 
 � � 
 
���� 
�� ����� � ����� � 
 � � 
 
���� 
�� �*����� �*���
� � � �� � -45.7783 -45.4948 -45.1414 -45.2602 -45.1323 -44.9836�

� -7.7821 -7.7084 -7.2964 -8.5559 -7.5203 -7.6974�
� � -4.3010 -1.9856 -1.3261 -3.2941 -1.7097 -2.1120

� �� � 
 � � 
 
���� 
�� ����� � ����� � 
 � � 
 
���� 
�� �*����� �*���
� � � �  � -45.5320 -45.1381 -45.1156 -45.2254 -44.9398 -45.0051�

� -8.0571 -7.4946 -7.0881 -7.8403 -7.3256 -7.1877�
� � -2.4281 -1.5511 -1.1113 -2.1668 -1.3313 -1.1646

� �� � 
 � � 
 
���� 
�� ����� � ����� � 
 � � 
 
���� 
�� �*����� �*���
� � � �  � -45.8621 -45.3057 -45.3147 -45.2238 -44.9575 -44.9396�

� -8.4662 -7.5461 -7.2803 -8.5865 -7.1309 -7.0877�
� � -2.8150 -1.6641 -1.0763 -3.2834 -0.9528 -0.8580



4.4. STATE AND CONTROL SPACE DISCRETIZATION VARIANTS 103

4.4.1 About the different scores

The smaller the domain used to compute the score, the larger its interval of vari-
ation. Indeed we have respectively for the scores corresponding to the domains� � � �� � , � � and

�
� � the intervals

� � � 
 � � � � � � � �� � � � ��� � , � � � � 
�
�
 � � � � � ��� ��� �
and

� � � � � � ��� � � � ��� 
���� � . The best scores are provided by the representative states
technique with a

����� � �*���
grid and the � �� control set. The worst are achieved by

using a � 
 � � 
 grid (with the aggregation technique for the scores that correspond
to the domains

� � � �  � and
�

� � and the representative states technique for the
score that corresponds to

�
� ).

4.4.2 About the technique used

It is difficult to assess exactly which technique gives the best results. If we use a
�� � 
��
grid we always obtain better results with the representative states technique.

However this observation does not hold true anymore with a � 
 � � 
 or a
�*����� �*���

grid. Nevertheless, due to the fact that the best results for the three scores are
always obtained with the representative states technique, this one may be preferred.
The preference can be strengthened if we take into account the larger amount of
computation necessary to compute a policy with the aggregation technique.

4.4.3 About the grid used

For the aggregation techniques, the finer the grid, the better the scores are. Al-
though this tendency is still verified for the representative states technique if we
limit the comparison to the � 
 � � 
 and the


�� � 
��
grids, this does not hold true

anymore if we consider the
�*��� � �����

grid. Sometimes the

�� � 
��

grid gives better
results.
One may wonder why sometimes the results are worse with a finer grid. It seems
reasonable to assume that the finer the grid is, the better the scores should be.
Figure 4.11 answers this question. It shows the evolution of the electrical power
when using the policy computed by using a

����� � �����
grid, the representative states

technique and � �% as control set. The residual electrical power oscillations do not
have the same aspect as the ones observed on figure 4.5b, 4.6b and 4.9b. In this case
the residual oscillations have a harsh aspect caused by rapid changes of

�
FACTS

when the system moves around its equilibrium point. This phenomenon is linked
to some “misfortune” in the way the grid is placed on the phase plane. For example
by shifting the grid of

� � � �
to the right in the � direction we obtain a policy with a

score related to
�

� equal to � � � � ��� � and a score related to
�

� � equal to � ��� � � ��� .
These scores are higher than the corresponding ones obtained with the


�� � 
��
grid.



104 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

2.5

2.

1.5

1.

0.5

0.0

−.5

−1.

0.0 2.5 7.5 10. 12.5 15.5.

���

� "�� )

Figure 4.11: Rapid changes of the control variable value around the equilibrium
point

4.4.4 About the control set used

In general, the control set � �� offers better results than � �% . The most striking im-
provements correspond to the scores related to

�
� � for which small variations of�

FACTS are needed to smooth small oscillations of the system. Although the best
scores are obtained for � �� , the use of this control set sometimes deteriorates the
quality of the result observed especially when the grid is coarse. The finer the grid
the better the influence a complex control set tends to have on the scores computed.

4.5 On the combined use of multiple MDP
�

We report here on some preliminary investigations that we have carried out in order
to further improve performances. The idea, inspired from the so-called ensemble
techniques used in automatic learning [Die00], consists in exploiting in parallel
several MDP � structures and combining the optimal decisions provided by these
models into a single one using a majority vote. This works as follows when the
aggregation technique is used

�

:

� choose a reference grid;

� for this choice, create � approximation structures MDP �' , � � � � � � � � � � ,
by shifting the reference grid in the state-space by a randomly drawn offset

�

It is straightforward to extend the procedure to the representative states technique.



4.5. ON THE COMBINED USE OF MULTIPLE MDP � 105

vector;

� draw a sample
� � of states in the original state-space (in the same way as

previously described);

� for each MDP �' , use this sample of states (together with the computed suc-
cessors and rewards associated to each admissible control value) in order to
estimate the transition probabilities and reward function of this MDP �' ;

� for each MDP �' thus obtained, determine the
� � -function by dynamic pro-

gramming and deduce from it the corresponding control policy �� 
' for the
original problem;

� define the “team control policy” by majority vote on the individual policies
i.e., by

�� 
� � � � � � ��� �����
� ��� � � ���

��
' ( %

! # � $ � �� 
' � � � � � (4.4)

This approach is liable to reduce variance with respect to a single model and it
is also liable to reduce the bias introduced by the discretization grid. Notice that
this scheme evokes also a multi-agent control scheme where several agents propose
their control decision to a higher level control agent, which uses this information to
decide about the actual control to be applied to the system.
Table 4.2 shows the assessment of this technique in identical conditions to those
used in the preceding section, with three different grid sizes and both approximation
techniques, in the case of the � �% control set. In these simulations, the random offset
is drawn with a uniform distribution over one grid cell located at the origin of the
state space. The upper part of the table recalls the scores of table 4.1; the lower part
shows the scores obtained with a team of 10 control agents.
We observe that the performance is increased significantly in the regions close to
the stable equilibrium point (regions

�
� and

�
� � ) in all cases. All in all, the best

results are obtained with a rather coarse � 
 � � 
 grid and the representative states
technique. The global performances (scores averaged over the set

� � � �  � ) are also
improved, except for the

������� �����
grids where they are very slightly decreased.

Notice that for the aggregation technique these simulations have been carried out
for very large samples (

� � � � � ����� � ����� ) and hence do not really highlight the
variance reduction capability of this approach. This latter will be illustrated in
chapter 7 by comparing the scores obtained for growing sample sizes.



106 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

Table 4.2: Combined use of multiple MDP �

Aggregation Representative states

Classical � 
 � � 
 
���� 
�� �*����� �*��� � 
 � � 
 
���� 
�� �*����� �*���
� � � �  � -45.7783 -45.4948 -45.1414 -45.2602 -45.1323 -44.9836�

� -7.7821 -7.7084 -7.2964 -8.55596 -7.5203 -7.6974�
� � -4.3010 -1.9856 -1.3261 -3.2941 -1.7097 -2.1120

� � ��� � 
 � � 
 
���� 
�� ����� � ����� � 
 � � 
 
���� 
�� �*����� �*���
� � � �  � -45.2853 -45.1383 -45.1562 -44.9469 -45.0006 -45.0394�

� -7.5978 -7.4607 -7.1205 -7.2080 -7.2091 -7.2255�
� � -1.4207 -1.5430 -0.9828 -1.1780 -1.1360 -1.2338

4.6 Robustness of the control law

In this section we discuss the robustness of the control law i.e., how the stationary
policy computed behaves when the original system dynamics (described by equa-
tions (4.1) and (4.2)) changes. The robustness of the control law is studied for three
different types of modifications of the system dynamics : a change in a parameter
value, an introduction of noise and an addition of an Automatic Voltage Regulator
(AVR) to the synchronous machine (this modification altering the order of the sys-
tem dynamics). The control law whose robustness is studied uses the representative
states technique with a


�� ��
��
grid and � � � � � � ����� � � � � (section 4.3). For each

modification of the system dynamics we compare the score of this policy (referred
to as the original policy) with the score of a policy computed by taking into account
the new system dynamics (referred to as the tailor made policy).

4.6.1 Robustness to a parameter change

The parameter we change in the original system dynamics is the mechanical power
� ! produced by the generator. We increase it by

�*�
percent, that is we take � !

equal to
��� �

(note that an increase in the generator mechanical power modifies the
stability domain of the system as represented on figure 4.10b).
The scores obtained with the original policy (for three different probability distri-
butions on the initial states (section 4.4) by noting that this time

� � � �  � is chosen
equal to the stability domain of the uncontrolled power system for which � ! � ��� �

)
are gathered in the second column of table 4.3. If we use the representative states



4.6. ROBUSTNESS OF THE CONTROL LAW 107

technique with a

�� � 
��

grid and a control space � � � � � � ����� � � � � (section 4.3)
to compute a new control law by taking into account the fact that the mechanical
power of the generator has been modified, we obtain the scores represented in the
third column of table 4.3. Although the score values of the tailor made policy are
better, the difference is not so important, a sign that the control law robustness to a
modification of the generator production is good.

Table 4.3: Robustness of the control law to a parameter change

score Original policy Tailor made policy� � � �  � -43.5461 -43.4572�
� -6.96496 -6.80716�
� � -1.61503 -1.42858

4.6.2 Robustness to noise

The noise is introduced in the original system dynamics by considering that the
voltage

�
of the infinite bus system is not constant anymore but expressed by the

equation :
� � � � � where � is a noise factor. The value of � is drawn accord-

ing to a Gaussian distribution (with a zero mean and
� � � standard deviation) and

refreshed in the integration process each
� � � � � . The scores obtained with the orig-

inal policy are represented in the second column of table 4.4 while those obtained
with a tailor made policy are gathered in the third column. This tailor made policy
is computed by using the representative states technique with a


�����
��
regular grid

and a control set � � � � � � � ��� � � � � (section 4.3). Because the system dynamics
is stochastic, the parameters of the MDP � structure could not be computed exactly
and were estimated by using the algorithm explained in figure 3.6 with

� � �
equal

to
�����

.
The robustness of the control law to noise is even more impressive than its robust-
ness to a change of the mechanical power of the synchronous machine.

4.6.3 Robustness to modeling

In order to test the robustness of the control law to an increase in the system dy-
namics order, we add an AVR to the original OMIB system. This AVR modifies the
field voltage of the synchronous machine (represented by

�
) in order to ensure that

the voltage at the middle of the electrical distance between
�

and
�

tends to reach



108 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

Table 4.4: Robustness of the control law to noise

score Original policy Tailor made policy� � � �� � -47.2678 -47.2436�
� -8.96947 -8.90631�
� � -3.24162 -3.06327

a reference value
�

AVR (the FACTS is supposed to be installed after the middle

of the electrical distance between
�

and
�

; i.e., just after the
�

system
� reactance).

The system dynamics can be described by the set of equations :
�� � � (4.5)

�
� � � ! � � �� (4.6)

�� �
�

AVR �
�

middle of the electrical distance
� AVR

(4.7)

where
�

AVR represents the AVR voltage reference, � AVR the AVR time constant
and

�
middle of the electrical distance the voltage at the middle of the electrical dis-

tance between
�

and
�

, just before the FACTS.�
middle of the electrical distance is equal to

����( � * � � � system�
system

� �
FACTS

� + �����
� � *���� � system�

system
� �

FACTS

� � � �
����( � *���� � system�

system
� �

FACTS

� + � ��� � � � (4.8)

and we have chosen � AVR � � �������
and

�

AVR � �
. Besides, we suppose that

�
belongs to the interval

� � � � � ��� � � which means that there is a limitation on the
synchronous machine field voltage.
The use of the original policy on this system implies that the value of the control
variable depends only on the value of

� � � � � and not on the newly created state
variable

�
. The score values computed for this original policy (the initial states

used for the scores computation have a value of
� � �

with their values of � and �
chosen as previously) are gathered in the second column of table 4.5. These score
values are surprisingly good compared to the ones computed for the system without
AVR (table 4.1). This is due to the fact that the AVR produces some damping itself.
Indeed, the policy that would consist in choosing the value of the control variable



4.6. ROBUSTNESS OF THE CONTROL LAW 109

at random among � � � � � ����� � gives a score corresponding to
� � � �  � equal to

� 
�� ����� 
�
 while it was � � � ����
 ��� without AVR.
In order to compute the tailor made control law, we define a new state space equal
to

� � � ����� + ��
 � � � � � ��� ��
 stability domain of the original system and
+ 
 , * �� ��( � (�. � 	 � � � �

and from this new state space we select the representative states. The
� � � � � values

of the representative states correspond to the values chosen to design the original
control law. Their

�
values belong to the

� �
elements set � � � � � � � � � � ����� � ������� � ��� � � .

The representative states are at the intersection of the lines that define a regular
grid in

 � having a discretization step according to the state-variable
�

(denoted
by � �

) equal to
� � � � .

Concerning the control set � � , we choose it equal to � � � ����� � � � .
Once the triangulation is done by using the algorithm described in appendix B,
we can compute the approximation of the optimal stationary policy. By evaluating
this policy we obtain the scores represented in the third column of table 4.5. And
these scores are surprisingly worse than the ones obtained with the original policy.
This is caused by a too coarse � -grid according to the state variable

�
. Indeed, by

decreasing � �
the trend can be reversed (as illustrated in table 4.5).

Remark that table 4.5 shows also the excellent robustness of the original control
law to the addition of an AVR.

Table 4.5: Robustness with respect to system modeling

score
Original
policy

Tailor made policy
� � � � ��� � � � � � ��� � � � � � ����� 


� � � �� � -38.0874 -38.6561 -38.1497 -37.9342�
� -5.9032 -6.4278 -6.0341 -5.8917�
� � -1.7608 -2.3210 -2.0147 -1.7530

It may be interesting to note that with � �
equal to

� ����� 

the MDP � numbers

� �*
�� �
states (

� � � � � � � � �
) whereas the MDP � corresponding to the original control policy

is composed of
��� � �

states. This exponential increase in � � � is the main limita-
tion to the application of the aggregation or the representative states techniques to
power systems modeled with a large number of state variables. Nevertheless, the
high robustness of the control law suggests that we could still design the control
policy for a less complex system and extend the results to the large system.



110 CHAPTER 4. A SIMPLE FACTS CONTROL PROBLEM

4.7 Summary

In this chapter we have investigated in detail the application of the two techniques
introduced in chapter 3 to compute approximations of the optimal stationary policy
for control problems with infinite state spaces in the context of a simple FACTS
control problem.
We found that both techniques allow us to solve this non-trivial control problem in
a quite satisfactory way. The aggregation technique however intrinsically presents
a bias variance tradeoff which was not observed in the representative states tech-
nique.
Obviously, these discretization techniques lead in both cases to a combinatorial
explosion of the computing effort with the size of the system state space. However,
the resulting control policies are found to be quite robust with respect to modeling
errors. In particular, we observe that using a reduced order system model to tune
the control policy could be an approach to limit this computational problem in
practice. Another approach, not investigated in the present thesis would consist of
using adaptive multidimensional discretization techniques such as regression trees
or nearest-neighbor like methods [BEW03].
The main limitation of the approaches investigated in this chapter is related to the
fact that they need an explicit analytical description of the system dynamic model
and reward function (more precisely, they need to be able to sample these models
at an arbitrary point in the state space and for an arbitrary value of the control
input).
Together, these two difficulties somewhat reduce the usefulness of these techniques
to simple power system control problems for which a good enough analytical sim-
ulation model is available. Nevertheless, given the flexibility of the framework and
the robustness of the resulting control policies, we believe that a significant number
of power system control problems could be solved quite efficiently in this way.
In the following chapters of this thesis, we will study how to solve control problems
when only the system trajectory can be observed through some particular measure-
ments i.e., without using an analytical description of system dynamics and reward
functions. The resulting extensions of the DP based techniques, called reinforce-
ment learning, are applicable in a much larger range of conditions. In particular,
in chapter 7 we will use the “simple FACTS control problem” to assess these re-
inforcement learning algorithms and in chapter 9 we will consider a full fledged
multi-machine power system control problem, while relaxing completely observ-
ability requirements and time-invariance assumptions. Finally, in chapter 10 we
will provide a discussion of the different practical schemes that could be envisaged
in order to apply these techniques to almost any power system control problem.



Chapter 5

Reinforcement learning

In chapter 2 we have seen how solutions of optimal control problems with finite
state spaces and control spaces could be computed. The procedure described there
consisted first in defining from the reward function and the system dynamics knowl-
edge a MDP equivalent to the initial control problem and in solving it by using
classical DP algorithms such as the value iteration or the policy iteration algo-
rithm. In this chapter, we describe how to solve such control problems but without
assuming that the system dynamics and the reward function are known explicitly.
To compensate for this lack of information on the control problem, we only sup-
pose that the system can be controlled according to any policy and that we are
able to observe at each step of the control process the current state and the reward
obtained.

The algorithms that determine the policy used for controlling the system and use the
observations to learn information about the control problem solution are referred
to as reinforcement learning algorithms. Their description is the purpose of this
and the next chapter of this thesis. The present chapter focuses on finite state and
action spaces, while the next chapter focuses on the extension of these ideas to
infinite state spaces, according to an approach similar to that of chapter 3.

For a more intuitive description of the reinforcement learning algorithms, the reader
may refer to [SB98]. We also kindly advise him to consult [BT96] for a deeper
mathematical analysis, especially concerning the convergence issues of the non-
model based algorithms.

111



112 CHAPTER 5. REINFORCEMENT LEARNING

Figure 5.1: Generic reinforcement learning method

Repeat indefinitely

� � �
Observe state

� 
Action Selection : take action �  � � � �  �
Repeat until the end of the episode

Observe state
� 
� % and the reward value 
 

Action Selection : take action �  � %
� � � � 

� %
�

Learning
� � � � �

5.1 The generic reinforcement learning method

This chapter is devoted to the computation of the solution of discrete-time optimal
control problems (as defined in chapter 2) for which the system dynamics and re-
ward function are unknown. To overcome this absence of knowledge we suppose
that the system can be controlled according to any policy and that at each time
step

� � �
we can observe the state

� 
� % of the system and the value of the reward


  � 
 ���  � �  ���  � .
The reinforcement learning methods aim at solving such kind of problems. These
methods decide on the choice of the action �  for all

�
and use the observations made

in order to learn the control problem solution. A generic version of a reinforcement
learning method is represented on figure 5.1 % .
Two modules compose a reinforcement learning algorithm. One is the Action Se-
lection module that provides the algorithm with a method to decide which action to
take while being in a state and the other is a Learning module that uses the observa-

�

In this generic version of the RL methods we have considered that the period during which the
reinforcement learning algorithms interact with the system is partitioned into episodes. An episode
begins at

� * 0 and ends when the control process is stopped. We have considered in this generic
algorithm that when the control process is stopped it is restarted again, in some fashion, which yields
a new episode.



5.2. ACTION SELECTION 113

tions done on the system to learn information about the control problem solution.
The Action Selection module design amounts to choosing a policy. This policy is
often asked to meet two characteristics that are usually incompatible. One is to
be able to use at best the information already obtained about the control problem
solution and the other to guarantee that the speed at which the information is learned
is maximal.
There are basically two families of Learning modules, that is two families of meth-
ods, which allow to use the observations done on the system in order to learn the
control problem solution. They are known as the model based and the non-model
based methods. The model based methods reconstruct the MDP structure that cor-
responds to the control problem and solve it by using DP algorithms (to provide an
estimate of the

�
-function) while the non-model based techniques directly learn its�

-function without reconstructing any model.
The Action selection section (section 5.2) presented in this chapter actually holds
valid for systems with both finite and infinite state spaces, contrary to the Learning
sections that, in the present chapter, suppose that the number of system states is
finite.

5.2 Action selection

We will see in the next two sections that the Learning modules provide an estimate
of the

�
-function of the control problem, which is refreshed each time new ob-

servations are done on the system. In order to have convergence of the estimated�
-function to the exact

�
-function of the control problem, all these Learning mod-

ules require that for each
��� �

, each action � � � � � �
is taken an infinite number

of times. Any policy that achieves this is able to drive the Learning module to a
correct estimation of the

�
-function and by using equation (2.13) to determine the

optimal policy too.
But the choice of the policy may not be just realized in order to guarantee the
correct estimation of the

�
-function. Indeed, the choice of the policy may also

be motivated by the fact that it can use the information gathered by the learning
process in order to obtain at each instant

�
the best possible return

�  �
��
� (  �

� #  
 � � � � � � ��� � � �

This implies that the policy should exploit the current estimate of the
�

-function to
decide which action to take. This can be done by taking, while being in state

�
, the



114 CHAPTER 5. REINFORCEMENT LEARNING

Figure 5.2: Action selection : � -Greedy policy

Input : Current state
�

of the system
Choose a number at random in the interval

� � � � � with a uniform probability.
If the number is inferior to � then choose the control variable value randomly
in

� � � �
. Otherwise choose the control variable value randomly in � � �

� � � � � � ��� � � � � �����
� � ��� � ���

� � � � � � � � .

action � that satisfies

� � � ��� �����
� � ��� � ���

�� � � � ��� � �

where
��

denotes the current estimate of the
�

-function. Unfortunately, with such
a strategy the Learning module is not ensured to get sufficient information to con-
verge to the right solution. While being in a state

�
, it is possible that the policy

will always consist in triggering the same action, without even evaluating the effect
of the others.
Thus, an ideal policy would be a policy that causes the fastest convergence of the
Learning module to the exact solution of the control problem while ensuring at the
same time that the return obtained is the best. Unfortunately, the more you achieve
one of these objectives the less the other is met. In the reinforcement learning
literature this is known as the exploration-exploitation tradeoff. It assumes that
the more exploration you do, e.g. the more often the action is taken at random, the
worse the return you obtain is and vice versa. There exists a vast literature about this
tradeoff and we kindly advise the reader to consult for example [Meu99], [Meu96]
or [ACBF02] and references therein in order to obtain more accurate information
about it.
The policy we use in the applications is the so-called � -Greedy policy ( � � � � � � � ).
It consists in selecting with a

� � � � � probability an action that maximizes
� � � � � �

and with a probability � an action taken at random among
� � � �

. The larger the
value of � is, the more exploration and the less exploitation the policy does. When
the policy chooses in state

�
an action � that maximizes

�� � � � � � , we usually say that
the policy has chosen a greedy action while if the action chosen does not maximize

�� � � � � � we say that a non-greedy action has been taken.
The � -Greedy policy has already been used in examples 2.3.4 and 3.4.1 and its
tabular version is given in figure 5.2. Moreover the tradeoff between exploration
and exploitation is illustrated in example 5.3.1 on the four-state control problem.



5.3. LEARNING : MODEL BASED TECHNIQUES 115

Figure 5.3: Learning : model based technique

Estimation of the MDP structure
Resolution of the MDP

5.3 Learning : model based techniques

5.3.1 Introduction

The model based methods use the observations done on the system in order to
estimate the structure of the MDP that corresponds to the control problem i.e., in
order to estimate the 
 � � � � � and � � �

�
� � � � � values

� � � � � � � and
� � � � � � �

, and
to solve this MDP in order to get an estimate of the

�
-function of the system and

therefrom an estimate of the optimal policy. The procedure is sketched on figure
5.3 where we have divided the Learning module into two distinct modules. One
that is responsible for the estimation of the MDP structure and the other for the
MDP resolution.
We will describe two algorithms that allow estimating the MDP structure from the
observations done on the system. One will be referred to as the Kalman Filter like
algorithm

�

(section 5.3.2) and the other as the Stochastic Approximation algorithm
(section 5.3.3) � . These algorithms have been named according to the numerical
methods they use (described in appendix A) to carry out the MDP structure estima-
tion.
The resolution of the MDP can be based for example on the value iteration or the
policy iteration algorithms explained in chapter 2. Nevertheless the use of such
algorithms in this context requires some specific attention, this will be the subject
of section 5.3.4.

5.3.2 Kalman Filter like algorithm

The Kalman Filter like algorithm is represented on figure 5.4. At each stage
� � �

of the control process, the algorithm uses the values of
�  , �  , 
  and

� 
� % to refresh

�

This estimation is also known as the Maximum Likelihood Estimation (MLE) of the MDP
structure.%

In section 6.6, when describing Learning modules for infinite state space control problems, we
will see that an algorithm coming from the same family as the Stochastic Approximation algorithm
described here implies less computational burden than an algorithm coming from the same family as
the Kalman Filter like algorithm presented here.



116 CHAPTER 5. REINFORCEMENT LEARNING

Figure 5.4: Estimation of the MDP structure : Kalman Filter like algorithm

Input :
�  , �  , 
  and

� 
� %�

� �  � �  ��� �
�

� � �� �  � � �


 � �  � �  ��� 
 � �  � �  ��� %� ������� � �'� � 
  � 
 � �  � �  � �
Repeat for all

� � �
� � � � �  � �  � � � � � � �  � �  � � %� ������� � ��� � ! # �
$ � �  � %

� � � ��� � �  � �  � �

the MDP structure. If
� � �

the function �
� � � � � defined on

� � �
represents the

number of times the action � has been triggered while being in state
�

. The value
of this function is initialized to

�
everywhere at the beginning of the learning. If

� � �
, more weight is given to the last observations in the MDP structure estima-

tion. This feature has been added in order to ensure that the reinforcement learning
algorithm can act in a time-varying environment

�
. For time-invariant systems,

�

should obviously be chosen equal to
�
.

Let
� ��� � � � be the number of times the particular state-action pair

� � � � � has been
visited

�
. Let � � � � be the value of the random variable � the � th time the state-

action pair
� � � � � has been visited. Each � � � � is drawn independently according to

� � � � � � � � � .
It can be shown that the value of 
 � � � � � estimated by the algorithm minimizes

� ��� � � ��
')( %

� � � � � ��� # ' � 
 � � � � � � 
 � � � � ��� � � � � � � �
(5.1)

Similarly it can be shown that the value of � � �
�
� � � � � computed minimizes

� � � � ����
' ( %

� � ��� � � � # ' � � � �
�
� � � � � � ! # � � $ � � � � � � ��� � � � � � � � �

(5.2)

If
� � �

, the estimate of the MDP structure converges to the right MDP struc-
ture i.e., the 
 � � � � � and � � �

�
� � � � � terms estimated by the algorithm converge re-

spectively to
� � � 
 � � � � ��� � �

and
� � � ! # � � $ � � ��� � � ��� � � �

(equations (2.28) and(2.29)),

if each state-action pair is visited an infinite number of times.
�
Time-varying systems will not be encountered in this chapter but will in chapter 9.�
By “a visit of a state-action pair " � # � ) ”, we mean that the action � has been selected while being

in state � .



5.3. LEARNING : MODEL BASED TECHNIQUES 117

Figure 5.5: Estimation of the MDP structure : Stochastic Approximation algorithm

Input :
�  , �  , 
  and

� 
� %
 � �  � �  ��� 
 � �  � �  ��� � � � 
  � 
 � �  � �  � �

Repeat for all
� � �

� � � � �  � �  � � � � � � �  � �  � � � �
� ! # � $ ��� # 

� % $
� � � � � � �  � �  � �

In section A.3.2 we provide a deeper insight into the way the MDP structure is
estimated by the Kalman Filter like algorithm and highlight notably that this esti-
mation procedure is a particular case of the general iterative algorithm described in
section A.1.

5.3.3 Stochastic Approximation algorithm

The Stochastic Approximation algorithm used to estimate the MDP structure is
represented on figure 5.5. At each stage

� � �
of the control process, this algorithm

uses the knowledge of
�  , �  , 
  and

� 
� % to refresh the MDP structure estimation.

For this algorithm to hold valid, one has to initialize the 
 ��� � � � and � � �
�
� � � � �

values
� �

� � � � �
and

� � � � � � �
at the beginning of the learning. These values

can be initialized almost arbitrarily since they just have to satisfy two conditions :� � � � �
�
� � � � � � �

and  �� � � � � ���
�
� � � � � � �

.

In order to have a first guess on these values that stands as close as possible to the
solution, we will, when a state-action pair

� �  � �  � is met for the first time, initialize

 � �  � �  � to 
  and � � � � �  � �  � to

!
# � $ � �  � %
� � ��� �

.

Convergence conditions

It can be shown that the MDP structure estimated by the Stochastic Approximation
algorithm converges to the right MDP structure if each state-action pair

� � � � � is
visited an infinite number of times and if the parameters � � �

� � � � � ( � � �

��� � � � rep-
resents the value of � � the � th time the state-action pair

� � � � � has been visited)



118 CHAPTER 5. REINFORCEMENT LEARNING

and � � �

� � � � � satisfy (appendix A) :
��
� ( %

�
# � � � $ �

� � � � � � �
(5.3)

��
� ( %

�
� # � � � $ �

� � � � � � � �
(5.4)

We remark that if we store during the learning for each state-action pair
� � � � � the

value
� � � � � � that represents the number of times the action � has been taken while

being in state
�

and if we take � � and � � equal to

�
�

� ��� � � �
� �

(5.5)

with
� � 
 � � � �

then equations (5.3) and (5.4) are satisfied. If
� � �

, the
Stochastic Approximation algorithm behaves like the Kalman Filter like algorithm
with

� � �
.

In section A.3.3 we provide a deeper insight into the way the MDP structure is
estimated by the Stochastic Approximation algorithm and highlight notably that
the estimation is based on the iterative algorithm described in section A.2.

Obtaining the same estimation as with the Kalman Filter like algorithm

Suppose that we keep in a set all the four-tuples
���  � �  � 
  � �  � %

�
obtained during

the learning. Suppose that each element of this set has the same probability to be
selected. If we repeat an infinite number of times the sequence of operations that
consists in selecting an element of the set and in using it as input of the Stochastic
Approximation algorithm, we will converge to an estimate of the MDP structure
that is identical to the one obtained by using a Kalman Filter like algorithm for
which

� � �
(see section A.2.3 for more details).

5.3.4 Resolution of the MDP

The resolution of the MDP might be done by using the DP programming algorithms
explained in chapter 2 (value iteration, policy iteration, ����� ). Each time the MDP
structure is refreshed, one of these algorithms can be run in order to get a new
estimate of the

�
-function. But such a strategy has two main disadvantages :

� it requires the structure of the MDP to be completely initialized (the � � �
�
� � � � �

and 
 � � � � � to be initialized
� � � � � � �

and � � � ��� �
at the beginning of

the learning)



5.3. LEARNING : MODEL BASED TECHNIQUES 119

� it can lead to high computational burden since it implies solving the DP prob-
lem completely at each stage of the learning process.

In this section we describe some modifications to the Gauss-Seidel version of the
value iteration algorithm (described in figure 2.4) in order to overcome these diffi-
culties. Similar modifications could be done to the other DP algorithms but are not
detailed here.

Using the old values of the
�

-function as the starting point of the DP algorithm

At each stage of the learning, the structure of the MDP is modified only slightly. It
can seem reasonable to say that a minor change in the MDP structure induces only a
minor change in the

�
-function. In this way of thinking, rather than to initialize the� � � � � � values to arbitrary values at the beginning of the algorithm, we initialize

them to the values of the
�

-function previously computed in order to speed up the
convergence of the DP algorithm.

Pair
��� � � � not yet visited : no modification of

� ��� � � �
The key part of the Gauss-Seidel version of the value iteration algorithm detailed
in figure 2.4 is to realize DP iterations i.e., operations of the type :

� � � � � � � � 
 � � � � � � �
�
� � � � � � �

�
� � � � � �����

� � � � � � � �
� � �

� � � � � � � (5.6)

A DP iteration with a state-action pair
��� � � � that has not yet been visited implies

initializing 
 ��� � � � and � � �
�
� � � � � � � � � �

to arbitrary values. We rather do not
realize any DP iteration on a state-action pair that has not yet been visited and keep
constant its corresponding

� � � � � � value (the value
� � � � � � was initialized to).

Pair
���

� � � � � not yet visited : modification of the DP iteration

Some of the state-action pairs
���

� � � � � that intervene in the DP iteration (see equa-
tion (5.6)) may not have been visited yet and thus their

�
values are equal to the

value to which they were initialized at the beginning of the learning process. These
initial values can be quite distant from their real values which can, through equation
(5.6), lead to a really bad estimate of the

�
-function in some other states.

In most situations, this problem has no real impact on the speed of convergence.
Nevertheless, a temporary wrong value of

�
can strongly influence, for some con-

trol problems, the way the reinforcement learning algorithm interacts with the sys-
tem while choosing a greedy action. This will be illustrated in section 9.2.7 where



120 CHAPTER 5. REINFORCEMENT LEARNING

we will have to modify the DP iteration in order to obtain a good behavior of the
reinforcement learning algorithm. An appropriate modification of the DP iteration
consists in redefining it as follows :

� � � � � ��� � 
 � � � � ��� �
�
� � � � � � �

�
� � � � � �����

� � ��� � ��� � �
� � �

� � ��� � � (5.7)

where
�
�
� �

�
� � � � �

�
� � � � � � � � �

�
� � � �

� � � � � has not yet been visited � if the state�
� has already been visited and

�
�
� �

�
� � � ���

�
�

otherwise.

Further reduction of computational burden

Despite the modifications brought to the Gauss-Seidel version of the value iteration
algorithm, the computational burden can still be too heavy especially if the RL al-
gorithm interacts with a real system for which a time constraint on the computation
duration is associated to each time interval

� � � � � � � � � .
One strategy to alleviate the computational burden is to solve the MDP only par-
tially, that is to do only a few DP iterations each time the MDP structure is re-
freshed. Such a strategy is similar to the one adopted by the asynchronous fixed
point iteration algorithm explained in chapter 2. In this algorithm the DP itera-
tion locations were chosen at random. We propose here a smarter approach to the
choice of the state-action pairs on which to realize a DP iteration. It consists in
executing first a DP iteration on the state-action pair

� �  � �  � for which � � �
�
� �  � �  �

and 
 � �  � �  � have just been refreshed, then on its predecessors
�
, then on the pre-

decessors of the predecessors and so on. This strategy can be particularly efficient
if the transition probability matrices are sparse.
The tabular version of such an algorithm that we have named Prioritized Sweep-
ing algorithm (by analogy with the name of a model based reinforcement learning
method that was using a similar algorithm to solve the MDP (see [MA93])) is rep-
resented on figure 5.6. On this figure, � � � 
 ! � � indicates the maximum number of
DP iterations that are allowed to be done each time the MDP structure is refreshed.
On the other hand, � is a small value aimed to reject for further DP iteration the
state-action pairs that precede a state whose

� ��� � � � value is deemed to have been
too slightly modified to cause any significant changes in the

�
values of its prede-

cessors.
�
Predecessors of a state � � (or of a state-action pair " � � # � � ) ) are meant to be the state-action pairs" � # � ) such that the next state observed after taking action � in state � has already been, during the

learning process, � � .



5.3. LEARNING : MODEL BASED TECHNIQUES 121

Figure 5.6: Resolution of the MDP : Prioritized sweeping algorithm

Input :
�  and � 

Empty Queue
Put state-action pair

� �  � �  � in Queue and set � � � 
 � �
Repeat until Queue is empty or � � � 
 � � � � 
 ! � �

Take the state-action pair (
� � � ) from the head of Queue

� � 
 � � � � ��� �  �� � � � � ���
�
� � � � � �����

� � ��� � � � �
� ���

� � � � � � � � � � � �
� � � � � � � � � � � � � � �� � � 
 � � � � 
 � �

If
� � � �

�
then put all state-action pairs that precede

�
at the end of Queue

Example 5.3.1 In this example we apply the model based reinforcement learning algo-
rithms to the four-state control problem defined in example 2.3.1.
The policy used is an � -Greedy policy with �  * � ( (Action selection module). The struc-
ture of the MDP is reconstructed by using the Kalman Filter like algorithm (Estimation of
the MDP structure module) and the estimated MDP is solved at each stage of the control
process by using the Gauss-Seidel version of value iteration algorithm (Resolution of the
MDP module). An episode ends only when the terminal state � �

is reached. The initial
state of each episode is chosen at random among

� ��� � � � and the
�

-function is initialized
to * everywhere at the beginning of the learning.
In such conditions, figures 5.7a, 5.7b and 5.7c represent the evolution of the

�
-function

estimated. The symbol
���

is used for Learning Time that is measured in number of
episodes

�

. The dotted lines represent the value of the exact
�

-function, that is the
�

-
function computed while knowing the system dynamics and the reward function. We
can see that the estimate of the

�
-function converges to its exact value. Note that the

number of episodes necessary to get an estimate of the
�

-function that gives by equation
(2.13) a correct estimate of the optimal stationary policy is small. Indeed this occurs when� ��( � � ( � � � ��( �!( � , � � � � � ( �  � � � �!( � and

� � � � � ( �  � � � ��( � which happens after

�
The number of episodes is not necessarily the most adequate measure of the learning time. In-

deed the length of an episode depends on the policy which itself depends here on the � -function
estimated at each instant and therefore also on the Learning module used. A better measure would
have been the number of transitions from

�
to

��� + . However in the RL literature the learning time is
often characterized in terms of episodes.



122 CHAPTER 5. REINFORCEMENT LEARNING

only � � episodes.

−1.

0.0

1.

2.

3.

4.

5.

6.

0.0 100. 200. 300. 400.

�

� � % � #&% �

� � % � % �
� � −1.

0.0

1.

2.

3.

4.

5.

6.

0.0 100. 200. 300. 400.

�

� �

� � � � % �

� � � � #&% �
−1.

0.0

1.

2.

3.

4.

5.

6.

0.0 100. 200. 300. 400.

�

� �

� � � � % �

� � � � #&% �

(a) State ( (b) State ( (c) State �
Figure 5.7:

�
-function estimated during the learning process

If we compute the score (see equation (3.26) with
� / ��( �  �

� ,
� / � � �  �

� ,
� / � � �  �

�

and
� / � � � �  * ) obtained by evaluating after each episode the estimate of the optimal

policy obtained from the estimate of the
�

-function, we get the curve labeled “Greedy”,
represented on figure 5.8a � . The “Non-Greedy” curve represents the score corresponding
to the � -Greedy policy. This curve illustrates better the return observed during the learning
process. The larger the value of � , the larger the difference between these two curves will
be.

0.0 100. 200. 300. 400.

2.

2.25

2.5

2.75

3.

� �

���
Greedy

Non-Greedy

100. 200. 300. 400.

2.

2.25

2.5

2.75

3.

0.0 � �

��� � ( ��� �

� ( ��� %

100. 200. 300. 400.

2.

2.25

2.5

2.75

3.

0.0

� ( � � %
� ( ��� �

� �

���

(a) �  *�� ( (b) Greedy (c) Non-Greedy

Figure 5.8: Exploration-exploitation tradeoff

We can also use the four-state control problem to illustrate the exploration-exploitation
tradeoff. Suppose that we have another reinforcement learning algorithm, similar to the



Note that due to the fact that the scores computed can have a high variance (the initial states are

chosen at random, the action taken while being in � is chosen randomly the first time � is met, the use
of an � -Greedy policy, � ��� ) the learning process has been repeated

� 0�0 times and the scores obtained
have been averaged.



5.3. LEARNING : MODEL BASED TECHNIQUES 123

one just used in this example ( � -Greedy policy, Kalman Filter like algorithm, value iteration
algorithm, same initialization of the

�
-function), except that the � factor of the � -Greedy

policy is now equal to * � � . The greedy scores (which assess the goodness of the learned
policy) computed for the two reinforcement learning algorithms are represented on figure
5.8b. The larger the value of � (i.e. the more exploration), the better the score of the
policy computed. By the end of the learning process, the two curves meet since that both
reinforcement learning algorithms have learned a policy that coincides with the optimal
policy. Figure 5.8c represents the non-greedy scores (which assess the goodness of the
return obtained during the learning process since they correspond to the � -Greedy policies
used during the learning) computed for the two reinforcement learning algorithms. At the
beginning of the learning, the larger the exploration factor � , the larger the non-greedy score
obtained. But after less than one hundred episodes the tendency is inversed and the tradeoff
between exploration and exploitation appears.
On figure 5.9a we have represented the score curves obtained while using this time a
Stochastic Approximation algorithm in order to estimate the MDP structure. The coef-
ficients � 4 and � � that represent the amount of correction done at each iteration have been
chosen constant. With such a choice, equation (5.4) is not satisfied anymore, and this
prevents us from stating anything about the MDP structure that will be estimated by the
algorithm. We can observe that with a choice of � 4  � �  *�� * � , the learning of the struc-
ture is slow but the result obtained after ��* * episodes is quite good. With � 4 and � � chosen
equal to * � � , the score is perhaps better at the beginning but as the learning process pro-
ceeds, this advantage fades in favor of Stochastic Approximation algorithms using smaller
values of � 4 and � � . Among the three variants represented, the choice � 4  � �  *�� (
seems to realize at best the compromise between the learning speed and the quality of the
estimate obtained at the end of the learning period.

0.0 100. 200. 300. 400.

2.

2.25

2.5

2.75

3.

� �

���

�  ( �
�
( � � � �

�  ( �
�
( ��� �

�  ( �
�
( ��� %

0.0 100. 200. 300. 400.

2.

2.25

2.5

2.75

3.

� �

���

SA with
� ( �

SA with
� ( � � � �

SA with
� ( % ( � KF)

0.0 100. 200. 300. 400.

2.

2.25

2.5

2.75

3. �  ( �
�
( ��� %

� �

���
SA with

� ( % ( � KF)

(a) � 4 and � � constant (b) � 4 and � � non constant (c) Constant vs non constant

Figure 5.9: Score curves for different variants of the Learning module.

On figure 5.9b, score curves are represented when the parameters � 4 and � � used in the
Stochastic Approximation algorithm satisfy an equation of the type (5.5). As aforemen-
tioned, if

�
is chosen equal to ( in this equation, the Stochastic Approximation algorithm

is equivalent to the Kalman Filter like algorithm used with
�  ( . Observe that when

�



124 CHAPTER 5. REINFORCEMENT LEARNING

Figure 5.10: Learning : non-model based technique

�
-function correction

is chosen equal to � , bad results are obtained by the learning. Indeed if
�

is larger than ( ,
equation (5.3) is not satisfied anymore : the decrease rate of � 4 and � � is too fast to allow
for a right estimate of the MDP structure. The value of

�  * � � � leads to the violation
of equation (5.4) : � 4 and � � decrease too slowly to ensure the convergence. It must be
noticed that the corresponding score curve is less attractive than the one obtained by using
the Kalman Filter like algorithm.

On figure 5.9c, we have compared the two strategies, � 4 and � � constant vs non constant;
observe that the best result is obtained when � 4 and � � satisfy indeed equations (5.3) and
(5.4).

5.4 Learning : non-model based techniques

5.4.1 Introduction

Contrary to the model based methods, non-model based methods directly learn the
value of the

�
-function of the system without reconstructing any model of the con-

trol problem. The type of non-model based method we use in this work belongs
to the temporal difference class of methods. With respect to other classes of non-
model based methods

�
, its two main characteristics are to correct the value of the�

-function at each stage
� � �

of the control process and to base the correction of� � � � � � not only on the observations done but also on the value of the
�

-function
for other state-action pairs than

� � � � � . The Learning module for this type of non-
model based methods is sketched on figure 5.10 and reduced to a single purpose :
a

�
-function correction. In this section we describe two types of

�
-function cor-

rection modules. One, known as
�

-learning, corrects at time
� � �

only the value
of

� � �  � �  � while the other, known as
� � ���

, performs corrections at time
� � �

not
only on

� � �  � �  � but also on
� ���  # % � �  #&%

�
,

� ���  # � � �  # �
�
,

� � �  # � � �  # �
�
, ����� .



5.4. LEARNING : NON-MODEL BASED TECHNIQUES 125

Figure 5.11:
�

-function correction :
�

-learning algorithm

Input :
�  , �  , 
  and

� 
� %� � � 
  � � �����

����� � � � � � �
� � � 

� % � �
� � � � ���  � �  �

� � � �� �  � � � � � �� �  ��� � �

5.4.2
�

-learning

The
�

-learning algorithm was first introduced in [Wat89] and is sketched on figure
5.11. At time

� � �
, it uses the four-tuple

���  � �  � 
  � �  � %
�

as input and updates� � �  � �  � . The
� � �  � �  � update is done through the computation of the temporal

difference

� � �  � �  � � � 
  � � �����
� � � � � � � � �

� � � 
� % � �

� � � � � �  � �  � (5.8)

that depends on the four-tuple
� �  � �  � 
  � �  � %

�
and on the

�
values in state

�  and� 
� % . The temporal difference � represents the difference between an estimate


 � �  � �  ���  ��� � �����
����� � � � � � �

� � � 
� % � �

�

of
� � � �� �  � based on the observations in

� � �
, and the current estimate. In this

sense the temporal difference provides an indication as whether the current estimate
should be raised or lowered.
Once the temporal difference � is computed, the current estimate of

� � �  � �  � is
refreshed by adding � � ( �

� �
), � being the stepsize used for updating

� � �  � �  � .
Let � � be the value of � at the � th stage of the algorithm (i.e. the � � �

th time the�
-function is updated), and let us define � � � � � � � :

� as being equal to � � if at the � th stage of the algorithm,
� � � � � coincides with���  � �  � (i.e. if

� � � � � � is updated at the � th stage of the algorithm)

� as being equal to
�

if at the � th stage of the algorithm,
� � � � � does not coin-

cide with
� �  � �  � .

�
There exists another class of non-model based reinforcement learning methods known as Monte-

Carlo methods that update the value of � " � # � ) only at the end of an episode without using the
estimate of the � -function for other state-action pairs than " � # � ) . These methods are not used in this
work; for more information the reader may refer to [Rub81], [SS96] or [BD94].



126 CHAPTER 5. REINFORCEMENT LEARNING

The convergence of the
�

-learning algorithm (proved in [WD92]) occurs if the
� � ��� � � � are nonnegative and satisfy (for every state-action pair

� � � � � ) :
��
� ( �

� � ��� � � � � � � (5.9)

��
� ( �

�
�� � � � � � � � �

(5.10)

The proof is detailed in section C.5. Note that satisfaction of expressions (5.9) and
(5.10) implies that every state-action pair has to be visited an infinite number of
times.
Remark that in order to use this algorithm, one has to initialize the

�
-function at the

beginning of the learning process. Note also that if the system is deterministic and
the

�
-function correctly estimated then the temporal difference � would always be

equal to zero.
If � � � � � � � � � � � � � � �  � , that is if the

�
-learning algorithm is used to

evaluate a stationary policy � , then the
�

-learning algorithm is referred to as the
TD(0) algorithm.
One of the main difficulties encountered with the

�
-learning algorithm is linked to

the � � ��� � � � values choice. Indeed, even if it is easy to choose these values such
that conditions (5.9) and (5.10) are satisfied, one observes that when they decrease
too fast (while still satisfying conditions (5.9) and (5.10)), unaffordable learning
times may be required to converge to a “good” solution. This is why the � value
used inside the

�
-learning algorithm is often chosen constant in examples treated

in the literature.

5.4.3
� �����

� �����
algorithm : principle

The
�

-learning algorithm corrects at time
� � �

only
� ���  � �  � , leaving unchanged

the other components of the estimated
�

-function. On the other hand a model based
algorithm refreshes at time

� � �
the estimates of 
 � �  � �  � and � � � � �  � �  � and then

solves (at least partially) the MDP structure which may lead to a modification of
the

�
-function not only for

� �  � �  � , but also for the predecessors of
� �  � �  � , the

predecessors of the predecessors, ����� . The
� �����

algorithm has an intermediate be-
havior since it corrects at time

� � �
the

�
-function not only for

� �  � �  � but also for� �  #&% � �  # %
�
,
� �  # � � �  # �

�
, ����� . The corrections are realized by backpropagating at

each
� � �

the temporal-difference factor � ���  � �  � along the system trajectory.



5.4. LEARNING : NON-MODEL BASED TECHNIQUES 127

� 1 � � � � � ����� ��� �
� � ��� � �����1 � � �������������� � ���#" � � ���#" � �

1 � � � ���#"�� �����#"����
� ��� �#"�� � � �$"�� �

�� (� � � � � � (

Figure 5.12:
� �����

:
�

-function correction

Intuitive sketch of
� ��� �

based on
�

-learning

Let us first recall that the
�

-learning algorithm consists in computing at time
� � �

of the control process a factor � � �  � �  � defined by equation (5.8) and to refresh the
estimate of

� � �  � �  � by adding the value of � � � �  � �  � .
Suppose now that the stepsize � is chosen equal to

�
, and suppose that we already

know at time
�
, � , ����� ,

�
what the value of � � �  � �  � will be. Suppose also that

if
� � � ' � � ' � is increased by a certain value, then

�����
����� � � � � � � � ' � � � increases by the

same value.

Under these assumptions one could modify the value of � ���  #&% � �  #&%
�

at time
�

of
the control process by adding a factor � � � �  � �  � in order to anticipate the variation
that will occur in

� � �
on

� � �  � �  � . And by proceeding recursively, we can see
that a way of anticipating this variation on

� � �  � �  � is to add to each � ���  #
� � �  #

� �

a factor �
�
� � �  � �  � (� � � � � ����� � � � ).

Such an intuitive reasoning leads to the
� � ���

algorithm which adopts a backward
view in order to compensate for the impossibility to predict at time

� � � � �
(
� � �

� � � ����� � � � ) the value of � � �  � �  � . This algorithm is sketched on figure 5.12.

Hence, the
� � ���

algorithm corrects at time
� � �

not only
� � � �� �  � by a factor

� � � �  � �  � , but also the
�

values of the preceding state-action pairs
� � �  #

� � �  #
� �

by a factor �
� � ���

�
� ���  � �  � (� � � � � ����� � � � ) taking into account both the discount

factor � and a trace-decay factor
�

.

The trace-decay parameter
�

(
� � � � �

) has been introduced in order to possibly
down-weight the amount of correction done on the state-action pairs preceding� �  � �  � , but it is usually chosen close or equal to

�
. Note that if

� � �
then the� �����

algorithm is identical to
�

-learning.



128 CHAPTER 5. REINFORCEMENT LEARNING

Watkins’s
� �����

algorithm

There exist many variants of the
� ��� �

algorithm. One of them is known as Watkins’s� �����
algorithm whose tabular version is represented in figure 5.13. The function� � � � � � stores what is known as the eligibility trace. The higher the value of the

eligibility trace for a state-action pair, the greater the amount of correction realized
on its corresponding

�
value. The particularity of this Watkins’s version of the� �����

algorithm is that it sets the eligibility trace to
�

each time a non-greedy action
is taken. The reason for this is that when a non-greedy action is taken in

� � �
one

cannot suppose anymore that

“if
� � � 

� % � �  � %
�

is increased by a certain value, then
�����

����� � � � � � �
� ��� 

� % � �
�

is also increased by the same value”

which was assumed to motivate the corrections that the
� �����

algorithm does along
the trajectory.
Concerning the initialization of the algorithm depicted in figure 5.13, the value of
the

�
-function must be initialized at the beginning of the learning and � � � � � � must

be set equal to
� � � � � � � � � � �

at the beginning of each episode.

Figure 5.13:
�

-function correction : Watkins’s
� ��� �

algorithm

Input :
�  , �  , 
  , �  � % and �  � %� � � 
  � � �����

����� � � � � � �
� � � 

� % � �
� � � � ���  � �  �

� � �  � �  � � � ���  � �  ��� �

Do
� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � �
If

� � � 
� % � �  � %

� � �����
� � ��� � � � � � �

� � � 
� % � � �

�
then � � � � � � � � � � � � � � � , else

� � � � � � � �

Convergence issues

Convergence of the
� �����

algorithm is not guaranteed except if � � ��� � � � � � �
� � � �  � and if � � is satisfying expressions (5.9) and (5.10). In this particular



5.4. LEARNING : NON-MODEL BASED TECHNIQUES 129

case the control policy is given beforehand, and the algorithm is known as TD(
�

)
[JJS94].

Example 5.4.1 We illustrate in this example an application of a non-model based rein-
forcement learning algorithm on the four-state control problem. Model based algorithms
were also applied to this control problem in example 5.3.1.

−1.

0.0

1.

2.

3.

4.

5.

6.

0.0 200. 400. 600. 800.

�

� � % � # % �

� � % � % �
� � −1.

0.0

1.

2.

3.

4.

5.

6.

0.0 200. 400. 600. 800.

�

� �

� � � � % �

� � � � #&% � −1.

0.0

1.

2.

3.

4.

5.

6.

0.0 200. 400. 600. 800.

�

� �

� � � � % �

� � � � # % �

(a) State ( (b) State � (c) State �
Figure 5.14:

�
-function estimated during the learning process

The policy used is an � -Greedy policy (Action selection module) and the algorithm used
to learn the

�
-function is the

�
-learning algorithm (Q-function correction module). The

value of the parameter � is chosen constant and equal to *�� ( . At the beginning of the
learning we initialize the value of the

�
-function to zero everywhere. An episode ends

only when a terminal state � � is reached and the initial state of each episode is chosen at
random in

� � � � � � . Under such conditions, figures 5.14a, 5.14b and 5.14c represent the�
-function after each episode of the learning process. Because � does not satisfy equation

(5.10), the values of the
� � ��� � � terms won’t converge to their exact values represented

by the dotted lines on the figures. Even if the
�

-function does not converge to the exact
value, the estimate of the optimal policy that we can deduce from it is correct after only �
learning episodes. Indeed after � episodes we have already obtained

� ��( � � ( � � � ��( �!( � ,� � � � � ( �  � � � �!( � and
� � � � � ( �  � � � �!( � .

Figure 5.15a represents the score evolution (computed in the same conditions as in example
5.3.1) of the estimate of the optimal policy for different values of � . At the end of the
learning (which occurs after ( *�* * episodes), the best score is obtained for the smallest
value of � , that is the value which “violates” the least equation (5.10). Nevertheless a
too small � value could slow down the learning process even if eventually it offers better
results.
Figure 5.15b compares the performances of a model based algorithm ( � -Greedy policy
with �  * � ( , Kalman Filter like algorithm, Gauss-Seidel value iteration) and a non-model
based algorithm ( � -Greedy policy with �  * � ( , � -learning, �  *�� ( ). We obtain better
performances for the model based algorithm except at the very beginning of the learning. In
fact, we will see throughout this work that model based algorithms offer consistently better



130 CHAPTER 5. REINFORCEMENT LEARNING

0.0 200. 400. 600. 800.

2.

2.5

3.

2.25

2.75

� �

� ( ��� �

� ( � � %

���
� ( ��� �

0.0 200. 400. 600. 800.

2.

2.5

3.

2.25

2.75

� �

���

�
-learning, � ( ��� %

Model-Based

0.0 200. 400. 600. 800.

2.

2.5

3.

2.25

2.75

� �

���

� ( ��� % � � ( ��� �

� ( ��� % � � ( � �

(a) Different values of � (b) MB vs NMB (c)
�  * vs

�  * ��
Figure 5.15: Four-state control problem : score curves

performances (for a comparison between the performances of model based and non-model
based algorithms see [AS97] ).
Figure 5.15c compares the performances of the Watkins’s

� � � � algorithm ( �  *�� ( , � 
* �� ) and the

�
-learning algorithm ( �  *�� ( ). The

�
-learning score curve being above the

Watkins’s
� � � � score curve, we can conclude that the use of the eligibility trace did not

speed up the learning.

0.0 200. 400. 600. 800.

2.

2.5

3.

2.25

2.75

� �

���

� ( ��� %

� � �
� � � � � �

��� �

0.0 200. 400. 600. 800.

2.

2.5

3.

2.25

2.75

� � �
� � � � � �

��� �

� �

���

� ( � � %

0.0 200. 400. 600. 800.

2.

2.5

3.

2.25

2.75

� ( � � �

� ( ���

� �

���

(a)
�  * (b)

�  *��� (c)
�  * vs

�  *���
Figure 5.16: The � � terms satisfy the convergence conditions

So far � has been chosen constant. One may wonder whether the results improve signif-
icantly when conditions (5.9) and (5.10) are satisfied. If in the

�
-learning algorithm we

choose �  �
� � � � � 	 � � (

� � ��� ����� � representing the number of times the state-action pair
������� ����� has been visited) we obtain the score curve sketched on figure 5.16a and labeled
“
) � ,�� � ,

) � �, �� ”. On the same graphic we have also drawn the score curve
corresponding to � constant. As we can observe, the results are better (except perhaps at
the very beginning of the learning) when conditions (5.9) and (5.10) are indeed satisfied.
Moreover, when these two conditions are satisfied the performances of the Watkin’s

� � � �
algorithm strongly increase (figure 5.16b) and, contrary to what was observed when � was



5.5. LEARNING MODULES : A UNIFIED VIEW 131

chosen constant, the use of the eligibility trace does not slow down the learning anymore
(figure 5.16c).

5.5 Learning modules : a unified view

Suppose that we have kept trace of all the four-tuples
��� �� �  � 
  � �  � %

�
obtained

while interacting (in some arbitrary way) with the system. Suppose also that each
state-action pair has been visited at least once during this interaction.
We propose three different ways of computing from this trace an estimate of the�

-function.

1. Each element of the trace is used a single time as input to the Kalman Fil-
ter like model updating algorithm (figure 5.4). After that, the

�
-function is

estimated by solving the MDP structure thus computed.

2. We repeat an “infinite” number of times the sequence of operations, which
consists first in selecting at random an element of the trace and then in using
it as input to the Stochastic Approximation algorithm (figure 5.5). The

�
-

function is estimated by solving the MDP structure thus computed.

3. Suppose that each element of the trace has the same probability to be se-
lected. We repeat an infinite number of times the sequence of operations,
which consists first in selecting an element of the trace and then in using it
as input of the

�
-learning algorithm (figure 5.11).

We claim that the
�

-function estimated by each of these three procedures is the
same. We already mentioned previously that under such conditions the Kalman
Filter like algorithm and the Stochastic Approximation algorithm led to the same
estimate of the MDP structure. Thanks to the DP equation solution uniqueness, the�

-function estimated by the two corresponding ways will also be the same.
It is straightforward to see that the

�
-learning algorithm will also lead to the same

estimate of the
�

-function. Indeed, when an element
���  � �  � 
  � �  � %

�
of the trace

is used as input of this algorithm, one can consider :

� 
  as being drawn independently from a probability distribution having as
average the value of 
 � �  � �  � estimated by the Kalman Filter like algorithm

�
� 
� % as being drawn independently according to the probabilities � � � � �  � �  �

estimated by the Kalman Filter like algorithm



132 CHAPTER 5. REINFORCEMENT LEARNING

and everything happens for the
�

-learning algorithm as if it were interacting with
a finite state space control problem having as MDP structure the one estimated by
the Kalman Filter like algorithm. The convergence property of

�
-learning implies

that the
�

-function obtained corresponds indeed to this MDP structure.

5.6 Summary

In this chapter we have described several reinforcement learning methods that al-
low resolving discrete-time optimal control problems for which the system dynamics
and the reward function are unknown. To compensate for the absence of knowledge
of the system dynamics and the reward function, the reinforcement learning algo-
rithms control the system and observe at each stage of the control process the state
of the system and the reward obtained.
We have first discussed what control strategy these algorithms should use in order
to ensure that the information learned about the control problem is already well ex-
ploited but without preventing further learning (exploration-exploitation tradeoff).
Then we have presented two families of methods that are able to solve, by learning,
the control problem. One (the model based family) consists in reconstructing the
MDP structure that corresponds to the control problem and in solving this MDP
by using classical DP algorithms. The other (the non-model based family) learns
directly the

�
-function of the control problem (or equivalently the

�
-function of the

MDP that corresponds to the control problem). For these two families of methods
we have described several types of algorithms and discussed their convergence to
the exact solution.
All these algorithms hold valid only if the state space is finite. Next chapter is
devoted to the description of reinforcement learning algorithms in infinite state
spaces. For the model based algorithms the procedure will consist in learning the
structure of a MDP � (the Markov Decision Process that approximates the initial
control problem (along the ideas of chapter 3)) while the non-model based algo-
rithms will directly learn the

� � -function of a MDP � without explicitly reconstruct-
ing its structure.



Chapter 6

Reinforcement learning in infinite
state spaces

In this chapter we introduce “Learning” modules able to act when the state space is
infinite, by combining the two MDP � approximation schemes introduced in chapter
3 with the four reinforcement learning algorithms of chapter 5. This combination
leads to two categories of “Learning” modules. One will reconstruct a MDP �
structure and solve it in order to compute a

� � -function (model based technique)
while the other will learn directly a

� � -function (non-model based technique). We
describe the eight algorithms and characterize their convergence conditions in or-
der to highlight their main properties and relationships.

This rather lengthy and technical chapter is the core of the theoretical part of this
thesis. We have organized it in three parts, so as to make its reading a little eas-
ier. The first part (sections 6.1 and 6.2) provides a synthetic overview of the main
principles that are applied in order to formulate algorithms and characterize their
convergence properties. The second part (sections 6.3 to 6.5) concern the detailed
derivation of the learning algorithms in the context of the aggregation technique,
and the third part (sections 6.6 and 6.7) does a similar job with respect to the
representative states technique. Some of the related mathematical details and con-
vergence proofs are collated in appendices A and C.

The described algorithms are illustrated in the present chapter on an academic
problem. In chapter 7 we provide an empirical comparison of most of these combi-
nations in the context of a real-world though simple FACTS control problem already
introduced in chapter 4.

133



134CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Figure 6.1: Learning : non-model based technique

� � -function correction

Figure 6.2: Learning : model based technique

Estimation of the MDP � structure
Resolution of the MDP �

6.1 Overview

In chapter 3 two families of techniques were introduced to compute approximate
solutions for infinite state space control problems, namely the aggregation tech-
nique and the representative states technique. In the following sections we discuss
how to design the Learning modules described in figure 6.1 and 6.2 for each one of
these techniques.
The design consists in keeping the same approximation architectures as those used
in chapter 3 (section 3.5) in order to compute the discrete

� � -function from inter-
action with the system, and extend it to the infinite state space. Before discussing in
detail the different schemes, we first provide a quick overview of their main ideas.

6.1.1 Model based techniques : general scheme

In this section we make some preliminary comments concerning the model based
algorithms that will be discussed in detail in sections 6.3 and 6.6.

MDP � structure reconstruction

Model based algorithms aim at reconstructing an MDP � structure such that the
��

-function deduced from the MDP � solution is able to approximate well the
�

-
function of the original control problem.
When the system dynamics and the reward function were known (chapter 3), we
presented a way to compute the MDP � structure (equations (3.1) and (3.3) for the
aggregation technique and equations (3.14) and (3.15) for the representative states
technique. We explained in sections 3.2.4 and 3.3.4 that this way consisted in



6.1. OVERVIEW 135

adopting an MDP � structure that “violates the least” the equivalence conditions
between the MDP � and the initial control problem.
The procedure we will use in this chapter to design the model based algorithms
follows the same philosophy. The MDP � structure will be refreshed each time new
observations are available in order to “satisfy at best” the equivalence conditions
between the MDP � and the original control problem.

Resolution of the MDP �

Concerning the Resolution of the MDP � modules that are part of the model based
Learning modules, we will not describe them in this chapter, since the considera-
tions of section 5.3.4 are still applicable here. Indeed, the only difference is that
here it is the MDP � rather than the MDP representing the initial control problem
which is solved iteratively and repeatedly during the reinforcement learning proto-
col.
The only remark that must perhaps complement section 5.3.4, in the present con-
text, concerns the Prioritized sweeping algorithm described on figure 5.6. Recall
that this algorithm takes as input the state-action pair

� � � � � for which the values of
� � �

�
� � � � � and 
 � � � � � have been refreshed by the Estimation of the MDP structure

module at the current iteration, and introduces it into the Queue at the beginning of
the algorithm. In the context of the representative states technique, this needs to be
slightly modified since at each iteration several state-action pairs of the MDP � are
refreshed by the Estimation of the MDP � structure module. To adapt the Prioritized
sweeping algorithm to this observation we simply use as input of the algorithm all
the state-action pairs

� �
� � � � for which the values of 
 �

� �
� � � � and � �

� �
� � � � � � � �

have been refreshed at the current iteration, and put all these state-action pairs on
the Queue.

6.1.2 Non-model based techniques : general scheme

Below we explain the generic procedures we will follow to design non-model based
algorithms (in section 6.4 for the aggregation technique, and in section 6.7 for the
representative states techniques).
This procedure is inspired from the

�
-learning algorithm and the

� �����
algorithm

introduced in chapter 5 for a tabular representation of the
�

-function. Here we view
the approximate ��

-function induced by either of the two approximation schemes
as a function depending on a finite dimensional parameter vector

�
. In our context,

this parameter vector corresponds to the values of the
� � -function of the finite

MDP � implicitly used by these schemes. The function �� � � � � � � � is itself defined



136CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

by the way the
� � -function is extrapolated over the original state space (section

3.5).

�
-learning and advantage updating [BT96] [SB98]

Recall the form of the
�

-learning algorithm in the case of a finite state space (see
section 5.4.2) : at time

� � �
the observed four-tuple

� �  � �  � 
  � �  � %
� % is used to

compute the temporal difference

� � �  � �  � � 
  � � � ���
� � � � � � � � �

� � � 
� % � �

� � � � �  � �  � � (6.1)

and to update the value of the tabular function
� �

� � � � at the last visited state-action
pair, according to :

� � �  � �  � � � � �  � �  ��� � � � �  � �  � � (6.2)

We remind that this algorithm converges to the optimal
�

-function under appropri-
ate conditions on the stepsizes � (equations (5.9) and (5.10)).
Let us extend this algorithm to the case where a parametric

�
-function of the

form �� � � � � � � � is used. Equation (6.2) provides us with a desired update for
�� � �  � �  � � � . Since the only way to change ��

is to change the parameter vector�
, we compute the gradient

� �� ������� � �"� � �� � of this function with respect to the param-
eter vector. Indeed, this latter indicates in which way

�
should be updated so that

�� � � � � � � � moves in the desired direction. Based on this argument, the following
iteration is suggested :

� � � �
� � � �  � �  ��� �� � �  � �  � � �

� �
�

(6.3)

This iteration is known as advantage updating and algorithms based on it are fre-
quently used. Nevertheless, to our knowledge theoretical justifications of these
algorithms and convergence results are quite limited.
Notice that the particular case of a tabular

�
-function would correspond to a pa-

rameter vector with as many components as entries in the table, i.e. one component
per state-action pair. Moreover, in that case, equation (6.3) actually degenerates
into equation (6.2).

�

where &(� is drawn independently from � � " � � � �%# � ��) , and ! � * !�" � �$# � �%#'&(�') and � � � � *� " � �$# � �%#'&(�')



6.1. OVERVIEW 137

� �����
and advantage updating [BT96] [SB98]

The extension uses the same philosophy, but adapted to the
� �����

algorithm. The
latter uses the four-tuple

� �  � �  � 
  � �  � %
�

to compute the temporal difference and
to update

� � �  #
� � �  #

� �
(
� � � � � � ����� � � � ) according to :

� � �  #
� � �  #

� � � � � �  #
� � �  #

� ���
� � � �  � �  � � � ���

� �
(6.4)

With an approximate
�

-function of the form �� ��� � � � � � we could then compute� �� � � � � � � � � � � � � �� � for each value of � , and use these gradients to update
�

in the fol-
lowing way :

� � � �
� � � �  � �  �

�
� ( �

� �� � �  #
� � �  #

� � � �
� �

� � ���
� �

(6.5)

We observe that this method requires computing at an iteration at time
� � �

,
� � �

times an expression of the type
� �� � � � ��� � �� � . One strategy commonly used to avoid

this is to replace the value of
� �� � � � � � � � � � ��� � �� � (� �� �

) in the iteration by its value
computed at time

� � � � � �
. This leads to the following algorithm :

� � � � ��� � � � �� ���  � �  � � �
� � (6.6)

� � � �
�

� � 
  � � � ���
� ������� � � � � �� � � 

� % � � �
� � � �� � �  � �  � � � � (6.7)

where
�

is a vector of the same dimensionality as the parameter vector
�

which
plays the role of the eligibility trace used in the tabular version of the

� �����
algo-

rithm. Note that
�

is re-initialized to
�

at the beginning of each learning episode.

Bellman error methods and RL

When the system dynamics and the reward function are known, one strategy com-
monly used to compute the parameters of the approximation architecture consists
in minimizing the error in the Bellman equation. This approach known as Bellman
error methods has been briefly discussed in section 3.5.
When the system dynamics and the reward function are unknown, the Bellman error
methods can still suggest a way of determining the parameters of the approximation
architecture based on a sample � of four-tuples encountered during the learning.

�

These two values may differ because the value of � at time
� � � � + is not equal to the value of

� at time
� � + .



138CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

The adaptation of equation (3.28) is straightforward and leads to the following
optimization problem :

��� �
�

� �
������� � � � � � � � � � � � � �

�
�� ���  � �  � � � � � 
  � � �����

����� � � � � � � �� � � 
� % � � �

� � � � � � � (6.8)

where � is the set of four-tuples
� �  � �  � 
  � �  � %

�
already observed at a certain

iteration of the reinforcement learning protocol.
Strictly speaking, this optimization problem should be solved at each step

� � �
of

each episode and taking into account the full set of four-tuples already encountered
during the current and all past episodes. Obviously an efficient implementation of
this idea would call for incremental formulas allowing to maintain an approxima-
tion of the gradient of equation (

� � �
), each time a new four-tuple is included into � .

We did not investigate this type of algorithm but believe that the parallel between
equation (6.8) and the

�
-learning algorithm (equation (6.3)) may suggest further

ideas.
Notice that if ��

can represent the
�

-function of the original problem exactly and
if each state-action pair has been visited an infinite number of times during the
learning, it can be shown that the function ��

obtained by solving (6.8) is equal to
the real

�
-function.

6.1.3 Action selection

Before closing this section, it should be noted that the approximation of the
�

-
function ( ��

) that will be finally obtained by using the Learning modules with the
aggregation or the representative states technique will only be defined for all pairs� � � � � such that

� � �
and � � � �

��� �
(see equations (3.7) and (3.16)). The

Action Selection modules that use the approximate
�

-function ( ��
) in order to select

an action � � � � � �
will not hold valid anymore if

� � � � �� � �
� � �

. This will
notably be the case for the � -Greedy policy defined in figure 5.2. Therefore, when
mentioning that an � -Greedy policy is used in a reinforcement learning algorithm
used with an infinite state space control problem we will consider the version of the

� -Greedy algorithm sketched on figure 6.3.

6.2 About convergence properties

In the following sections we will discuss in detail various combinations of algo-
rithms and approximation schemes and investigate their asymptotic convergence
properties when the number of time-samples and/or episodes grows to infinity. In



6.2. ABOUT CONVERGENCE PROPERTIES 139

Figure 6.3: Action selection : � -Greedy policy

Input : Current state
�

of the system
Choose a number at random in the interval

� � � � � with a uniform probability.
If the number is inferior to � then choose the control variable value randomly
in

� �
� � �

. Otherwise choose the control variable value randomly in � � �
� �

��� � � �� � � � � � � �����
��� ��� � ����� �� ��� � � � � � .

order to clarify and simplify the comparisons of these various properties we will
use a unified scheme to state such convergence properties. Below, we first explain
our notations for convergence properties, then discuss why it is necessary in the
current context to impose restrictive conditions in order to satisfy them.

Definition of a convergence property

A convergence property of a Learning module is defined through the following
elements :

� conditions on the way the sampling is realized (referred to as Input). These
are basically conditions on the way the four-tuples

� �  � �  � 
  � �  � %
�

used as
input of the learning algorithm are generated

� conditions on the values of the parameters inside the algorithm (referred to
as Algorithm)

� conditions on the control problem (referred to as Control problem). These
are basically conditions on the system dynamics and the reward function

� the solution to which it converges if the above three families of conditions
are fulfilled (referred to as Solution).

By way of example we have, for the algorithm defined on figure 5.4 and entitled
“Estimation of the MDP structure : Kalman Filter like algorithm” the following
convergence property :������ �����

Input : each state-action pair is visited an infinite number of times

Algorithm :
� � �

Control problem : /

Solution : converge to the MDP structure defined by equations (2.28) and (2.29).



140CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

On the requirement for restrictive sampling conditions

We will see later in this chapter that most of the convergence properties of the
Learning modules can only be established if some rather restrictive conditions are
done on the way the sampling is realized.
In order to provide some intuitive clues about this necessity, let us first consider
the case of the aggregation technique. Figure 6.4 represents a trajectory in a dis-
cretized state space. We focus on the state

�  � � ' . At time
� � �

the four-tuple� �  � �  � 
  � �  � %
�

will be used in the Learning module either to update � �
� � � � �' � �  �

and 
 �
���

�' � �  � or to refresh directly the value
� �

� �
�' � �  � .

� 	
� �

� � 	��

���
	 �

���

�
�

���#"�� � 

Figure 6.4: Aggregation technique : trajectory in a discretized continuous state
space

We remind that in chapter 3 states in a particular region
� ' were sampled directly

(and independently of everything else) through a probability distribution � ' � � � and
controls were sampled (actually screened) independently in

� � � �
for each such

state. Notice that this sampling scheme was implementable in the context of chapter
3 thanks to the direct access to the system dynamics

� � � � � ��� �
, and led to various

convergence properties.
In the context of reinforcement learning the situation is quite different; indeed, the
state-action pairs encountered during a particular episode necessarily follow a sys-
tem trajectory (see figure 6.4) and the control values depend on the current value
of the ��

-function i.e., on all past state-action pairs encountered during the learn-
ing protocol. This introduces a complex statistical dependency among successive



6.2. ABOUT CONVERGENCE PROPERTIES 141

state-action pairs, and makes it difficult if not impossible, to prove general conver-
gence properties without supplementary assumptions on the way the samples are
eventually generated by an algorithm.
On the other hand, if in some context we assume that each pair

� �  � �  � is drawn
independently from a certain probability distribution � (which occurs for example
if we use a probabilistic policy that does not vary during the learning

�
and one-step

episodes with the initial state of each episode being drawn independently from a
probability distribution), then some convergence properties can be recovered.
At this point, note that for one type of algorithm presented in this chapter (namely
the model based Kalman filter like algorithm), this condition can be relaxed, be-
cause the algorithm reconstructs the MDP � structure by giving to each observation
the same weight, no matter the order in which these observations take place. There-
fore, in this case some convergence properties can be found under a less restrictive
assumption, namely that the infinite sample composed of all the state-action pairs
visited can be assumed to have been generated by a probability distribution

�
.

Let us now consider the case where the RL algorithms are used with the representa-
tive states technique. Figure 6.5 represents a trajectory in a triangulated state space.
As with the aggregation technique, convergence properties will be formulated un-
der the assumption that the state-action pairs

���  � �  � visited during the learning are
drawn independently from a probability distribution. Moreover another problem,
specific to the proposed non-model based algorithms, also occurs. Indeed, we will
see that in this particular context, we are able to prove convergence properties only
%
Let us clarify what we understand by this sentence. By context, we mean a stochastic mechanism

which produces sequences " � � # � �')%# � *,+ # � # � � � that are used by a reinforcement learning algorithm.
We say that this sequence is assumed to be drawn independently from a certain probability measure �
defined over � � � , if any finite subset of these random variables " � � � # � � � ) # � � � # " � � � # � � � ) #���� -
� are mutually independent and if each one is distributed according to � . Under these conditions one
can possibly show that some convergence property holds with probability 1, which means that the
set of sequences generated by the mechanism which would lead to the violation of this convergence
property has probability 0.�

An � -Greedy policy is a probabilistic policy that varies during the learning because the function�
� it uses to select an action varies.�

Let us also clarify this statement. We say that a particular sample " � �$# � ��) # � * + # � # � � � can be
assumed to have been generated by a probability distribution, if there exists a probability measure
defined over � � � , such that for every measurable subset

���
� � � it is true that

�
	��	���
� 	�� �� � � &�� " � �%# � �')

� * � " � ) �
Note that this statement concerns a particular sample, and not the mechanism which is used to gen-
erate this sample. Under these conditions, one can possibly show that some convergence property
holds for this particular sample.



142CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

� �,

� ��
� ��

� ��

� ��

� � �

��� � ����� � � �� �
� ��������� �, �

� � � � 	�� ��� �� �
���
	�� � �����
	�� ��� � � �� � ��� 	�� � � �

�
�

� ��� � ��� �� �
���#"��

Figure 6.5: Representative states technique : trajectory in a triangulated state space

if we furthermore assume that each state-action pair
� �  � �  � visited is such that

� 
coincides with an element of

� � (that is with a black bullet of figure 6.5).

Violation of restrictive sampling conditions in the applications

Even if some restrictive conditions on the way of realizing the learning are required
in order to have convergence properties, they will be most of the time violated in
the applications considered in this work. Violation of these restrictive conditions
does not mean that the algorithms do not converge anymore but, rather, that we are
unable to characterize the solution to which they are going to converge.

Interest of convergence conditions

Since the convergence conditions that we will state generally make unrealistic as-
sumptions on the sampling mechanism, their practical usefulness is questionable.
Nevertheless, we found it interesting from a conceptual point of view to state these
conditions, since we believe that they highlight theoretical features of the different
algorithms and thereby improve our intuitive understanding of their main similari-
ties and differences.



6.3. MODEL BASED AGGREGATION TECHNIQUE 143

Figure 6.6: Estimation of the MDP � structure : Kalman Filter like algorithm used
with the aggregation technique

Input :
�  , �  , 
  and

� 
� %

If �  �� � �
� �  � then exit.

Determine to which
�

�' �  corresponds.
�

� �
�' � �  � � �

�
� �

�' � �  � � �


 �
� �

�' � �  ��� 
 �
� �

�' � �  ��� %� � � �� � ����� � 
  � 
 �
���

�' � �  � �
Repeat once for all � � � � � ����� � � �

� �
� �

�� � � �' � �  ��� � �
� �

�� � � �' � �  ��� %� � � �� � � ��� � ! � � � �  � % � � � �
� �

�� � � �' � �  � �

6.3 Model based aggregation technique

In this section we use the aggregation technique to formulate two model based al-
gorithms. One relies on a Kalman filter like algorithm to update the MDP � structure
(see appendix A.1) while the other is based on a stochastic approximation algorithm
(see appendix A.2). Both algorithms are inspired from the procedure outlined in
section 6.1.1. Hence, they will try to determine

� a value for 
 �
���

�' � � � that “stands close” to
� � � 
 � � � � ��� � � � � ��� � '

� a value for � �
���

�� � � �' � � � that “stands close” to
� � � ! � � � � � � � � ��� � �"� � � � � � ' .

6.3.1 Kalman Filter like algorithm

This algorithm is sketched on figure 6.6. It takes the four-tuple
� �  � �  � 
  � �  � %

�

as input, checks whether �  � � �
� �  � (if �  �� � �

� �  � then no structure up-
date is done), identifies in which subset

� ' the state
�  stands and then updates


 �
� �

�' � �  � and � �
� � � � �' � �  � . We note that in the present case and if

� � �
, the func-

tion �
� �

� � � � defined on
� � � � � represents the number of times the action � has

been taken while being in the subset corresponding to
�

� . The value of this func-
tion is initialized to

�
everywhere at the beginning of the learning. If

� � �
, more

weight is given to the more recent observations in the MDP � structure estimation.



144CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Rationale

Let
� �

���
�' � � � be the number of times the action � ( � � � �

���
�' � ) has been taken

while being in
� ' . Let

� � � � and � � � � be respectively the value of
�  and �  the

� th time the action �  � � has been taken while being in
� ' .

It can be shown that the value of 
 �
���

�' � � � estimated by the algorithm minimizes

� � ��� �� � � ��
� ( %

� � � � � �� � ��� # � � 
 � ��� �' � � � � 
 � � � � � � � ��� � � � � �
� �

Similarly it can be shown that the computed value of � �
� �

�� � � �' � � � minimizes

� � � � �� � ����
� ( %

� � � ��� �� � � � # � � � � � � �� � � �' � � � � ! � � � � ��� � � � � � ��� � � � � � �
� �

Suppose now that the infinite sample composed of all the state-action pairs
� � � � �

visited (with � � � �
��� �

) can be assumed to have been generated by a probability
distribution � 
 � � � � ' ��� � � � � � . If

� � �
, then the values of 
 �

���
�' � � � and � �

� �
�� � � �' � � �

estimated by the algorithm minimize respectively

�

� ��� � � � � 
 � � � �' � � � � 
 � � � � ��� � � � � � � ��� � ' � � 
 � � � � ' ��� � � � � � �

and

�

� � � � �
� � � � ��� �� � � �' � � � � ! � � � � � � � � ��� � � � � � � � ��� � ' � � 
 � � � � ' ��� � � � � � � �

Convergence properties

The convergence properties of the algorithm described in figure 6.6 are
�

:

� Input : each state-action pair
� �

� � � � � � � � � � is visited an infinite number
of times

�

Algorithm :
� � �

Control problem : the equivalence conditions (3.9) and (3.10) are satisfied
by the approximation architecture

�
The following convergence properties are not an exhaustive list of the algorithm’s convergence

properties but the ones that give interesting insights about the algorithm behavior.�
By visit of a state-action pair " � � # � ) when using the aggregation technique, we mean that the

action � has been triggered while being in the subset �
�

corresponding to � � .



6.3. MODEL BASED AGGREGATION TECHNIQUE 145

Solution : it converges with probability 1 to the MDP � structure defined by
equations (3.1) and (3.3)

�

� Input : one-step episodes are used, with � �
� � �

given by :

� �
� � � �

������ �����
�
% � %

� � �
if
� � �

%�
� � �

� � �
if
� � �

�

...�
! � !

� � �
if
� � �

!
with

� ' � �
and  !' ( %

� ' � �
, and the probability to select an action � �

� �
� �

�' � while being in any state of
� ' is the same and different from zero.

Algorithm :
� � �

Control problem : /
Solution : it converges with probability 1 to the MDP � structure defined by
equations (3.1) and (3.3)

� Input : the infinite sample composed of all the state-action pairs
��� � � � visited

(with � � � �
� � �

) can be assumed to have been generated by the probability
distribution � 
 � � � � ' ��� � � � � � and each state-action pair

���
� � � � � � � � � � is

visited an infinite number of times
Algorithm :

� � �

Control problem : /
Solution : it converges for this sample and with probability 1 with respect to
disturbance process to the MDP � structure defined as follows :

� � � � �� � � �' � � � � �

��� � � �
� ! � � � � � � � � ��� � � � � � � � � ' � � 
 � � � � ' ��� � � � � �"�

� � �
� � � � ! � � � � � � � � ��� � � � � � � � � � ' � � 
 � � � � ' ��� ��� � � � �


 � � � �' � � � � �

��� � � � � 
 ��� � � ��� � � � � ��� � ' � � 
 � � � � ' ��� � � � � � �
� � �

� � � � 
 � � � � ��� �"� � � � ��� � ' � � 
 � � � � ' � � � � � � � � �

6.3.2 Stochastic Approximation algorithm

We have adopted a repetitive and partly redundant style here in order to ensure that
each algorithm description is self-contained and thus can be read independently of
the others.



Note that if there exists a MDP � structure that satisfies equations (3.9) and (3.10) then the MDP �

structure defined by equations (3.1) and (3.3) does not depend on 
 � " � ) anymore.



146CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Figure 6.7: Estimation of the MDP � structure : Stochastic Approximation algo-
rithm used with the aggregation technique

Input :
�  , �  , 
  and

� 
� %

If �  �� � �
� �  � then exit.

Determine to which
�

�' �  corresponds.

 �

� �
�' � �  ��� 
 �

� �
�' � �  ��� � � � 
  � 
 �

���
�' � �  � �

Repeat once for all � � � � � ����� � � �
� � �

�� � � �' � �  � � � � �
�� � � �' � �  ��� � �

� ! � � � � 
� %

� � � � �
� � � �' � �  � �

This algorithm is represented on figure 6.7. At each
� � �

it takes as input the
four-tuple

� �  � �  � 
  � �  � %
�

and refreshes the MDP � structure if �  � � �
���  � .

Notice that in the particular case for which � � � � � � %� � ��� �� � ��� � where
� �

� �
�' � �  �

represents the number of times the action �  has been taken while being in
� ' , this

algorithm behaves exactly as the Kalman Filter like algorithm (with
� � �

).

Convergence properties

Let �
# � � � $ � be the value of �

# � � � $ at the � th stage of the algorithm.
We define �

# � � � $ �

� �
�' � � � (

� � �
�' � � � � � � � � � ) :

� as being equal to �
# � � � $ � if at the � th stage of the algorithm � � �  and�  � � '

� as being equal to
�

if at the � th stage of the algorithm � �� �  or
�  �� � '

and introduce the following condition :
��
� ( �

�
# � � � $ �

� � � � � � � � �
��
� ( �

�
� # � � � $ �

��� � � � � � � � � � � � � � � � � � � � � (6.9)

The convergence properties of the algorithm described in figure 6.7 are :

� Input : each state-action pair
� �

� � � � � � � � � � is visited an infinite number
of times
Algorithm : the �

# � � � $ �

� �
� � � � are non negative and satisfy condition (6.9)

�
�
These conditions on the ���  �

�
��� " �� # � ) terms imply also that each state-action pair " � � # � ) -

� � � � � has to be visited an infinite number of times.



6.4. NON-MODEL BASED AGGREGATION TECHNIQUE 147

Control problem : the equivalence conditions (3.9) and (3.10) are satisfied
Solution : it converges with probability 1 to the MDP � defined by equations
(3.1) and (3.3)

� Input : one-step episodes are used, with � �
� � �

given by :

� �
� � � �

������ �����
�
% � %

� � �
if
� � �

%�
� � �

� � �
if
� � �

�

...�
! � !

� � �
if
� � �

!
with

� ' � �
and  !' ( %

� ' � �
, and if the probability to select an action

� � � �
� �

�' � while being in any state of
� ' is the same and different from

zero
Algorithm : the �

# � � � $ �

� �
� � � � are non negative and satisfy condition (6.9)

Control problem : /
Solution : it converges with probability 1 to the MDP � structure defined by
equations (3.1) and (3.3)

� Input : one-step episodes are used, each state-action pair
� �

� � � �
�

is drawn
independently according to the probability distribution � �

� � � � � and each
state-action pair

� �
� � � � � � � � � � is visited an infinite number of times.

Algorithm : the �
# � � � $ �

� �
� � � � are non negative and satisfy condition (6.9)

Control problem : /
Solution : it converges with probability 1 to the MDP � structure defined as
follows :


 � � � �' � � � � �

� � � � �
� 
 � � � � ��� � � � � ��� � ' � � �

� � � � � �
� � �

� � � � 
 ��� � � ��� � � � � � � � � ' � � �
� � � � � �

� � ��� �� � � �' � � � � �

� � � � � � ! � � � � � � � � ��� � � � � � ��� � ' � � �
� � � � � �

� � �
� � � � ! � � � � � � � � ��� � �"� � � � � � � ' � � �

��� � � � � �

6.4 Non-model based aggregation technique

This section presents algorithms which update the
� � -function without explicitly

reconstructing any MDP � structure. The value of the approximate
�

-function will



148CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Figure 6.8:
� � -function correction :

�
-learning algorithm used with the aggrega-

tion technique

Input :
�  , �  , 
  and

� 
� %

If �  �� � �
� �  � then exit.

Determine to which
�

�' the state
�  corresponds

� � � 
  � � �����
����� � ��� � � � � �� � � 

� % � �
� � � �� � �  � �  �

� �
���

�' � �  � � � �
���

�' � �  � � � �

be deduced from the
� � -function by using equation (3.7) that we remind hereafter :

�� � � � � � � � � ��� �' � � � if
� � � ' � � � � � � � � � � � � � � (6.10)

6.4.1
�

-learning algorithm

The algorithm is represented on figure 6.8. At each
� � �

it takes the four-tuple� �  � �  � 
  � �  � %
�

as input and updates
� �

� �
�' � �  � (with

�  � � ' ) leaving the other
components of the

� � -function unchanged.
This algorithm is an immediate consequence of the advantage updating method
described in section 6.1.2 (equation (6.3)) by noting that according to equation

(6.10) we have
� �� � � � ���
� � � � � �� � ��� � �

if
��� � ' and

�
otherwise.

Convergence properties

Let � � be the value of � at the � th stage of the algorithm.
We define � � � � �' � � � (

� ���
�' � � � � � � ) :

� as being equal to � � if at the � th stage of the algorithm, � � �  and
�  � � '

� as being equal to
�

if at the � th stage of the algorithm, � �� �  or
�  �� � '

and introduce the following condition :
��
� ( �

� � � � � � � � � � �
��
� ( �

�
�� ��� � � � � � � � � � � � � � � � � � � � (6.11)

The convergence properties of the algorithm described in figure 6.8 are :



6.4. NON-MODEL BASED AGGREGATION TECHNIQUE 149

� Input : each state-action pair
� �

� � � � � � � � � � is visited an infinite number
of times
Algorithm : the � � � � � � � � are non negative and satisfy condition (6.11)
Control problem : equivalence conditions (3.9) and (3.10) are satisfied
Solution : it converges with probability 1 to the

� � -function corresponding
to the MDP � whose structure is defined by equations (3.1) and (3.3)
The proof is given in section C.6

� Input : one-step episodes are used, with � �
� � �

given by :

� �
� � � �

������ �����
�
% � %

� � �
if
� � �

%�
� � �

� � �
if
� � �

�

...�
! � !

� � �
if
� � �

!
with

� ' � �
and  !' ( %

� ' � �
, and the probability to select an action � �

� �
� �

�' � while being in any state of
� ' is the same and different from zero

Algorithm : the � � � � � � � � are non negative and satisfy condition (6.11)
Control problem : /
Solution : it converges with probability 1 to the

� � -function corresponding
to the MDP � defined by equations (3.1) and (3.3)
The proof is given in section C.6

� Input : one-step episodes are used, each state-action pair
� �

� � � �
�

is drawn
independently according to the probability distribution � �

� � � � � and each
state-action pair

� �
� � � � � � � � � � is visited an infinite number of times

Algorithm : the � � � � � � � � are non negative and satisfy condition (6.11)
Control problem : /
Solution : it converges with probability 1 to the

� � -function corresponding
to the MDP � whose structure is defined as follows :


 � � � �' � � � � �

� � � � �
� 
 � � � � ��� � � � � � � � ' � � �

��� � � � �
� � � � �� � � �' � � � � �

� � � � � � ! � � � � � � � � ��� � � � � � � � � ' � � �
� � � � � � �

The proof is given in section C.7.

6.4.2
� �����

algorithm

Iterations (6.6) and (6.7) used with ��
defined by using an aggregation technique

lead to the algorithm described in figure 6.9 where the function � represents the



150CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Figure 6.9:
� � -function correction : Watkins’s

� �����
algorithm used with the ag-

gregation technique

Input :
�  , �  , 
  , �  � % and �  � %

If �  �� � �
� �  � then exit.

Determine to which
�

�' �  corresponds
� � � 
  � � �����

����� � ��� � � � � �� � � 
� % � �

� � � �� � �  � �  �
� � � �' � �  ��� � � � �' � �  ��� �

Do
� � �

� � � � � � � � �
� �

� �
� � � ��� � �

� �
� � � � � � � � � � � � � �

If �� ��� 
� % � �  � %

� � � ���
� � ��� � � � � � � � �� � � 

� % � � �
�

then � � � � � � ��� � � � � � � � � � , else

� � � � � � � � �

eligibility trace % �

. This algorithm differs nonetheless from the one suggested by
iterations (6.6) and (6.7) by setting the eligibility trace to zero each time a non-
greedy action is chosen. This feature has been discussed in section 5.4.3 when
introducing the

� �����
algorithm.

For this algorithm to hold valid, eligibility trace � must be set to zero at the begin-
ning of each episode.
Remark that if

� � �
or if one-step episodes are used then the algorithm acts like

the
�

-learning algorithm.

6.5 Aggregation technique : a unified view

Suppose that we have kept in a set the four-tuples
���  � �  � 
  � �  � %

�
obtained while

interacting with the system. Suppose also that each action � � � �
� �

�' � has been
chosen at least once while being in

� ' .
We propose three different ways of computing the

� � -function from this set.

� �
Remark that with the aggregation technique the vector

���� �
� � �� � �
� � does not depend on � anymore

(its components can only be equal to 0 or + ) and therefore the algorithm described by iteration (6.5)
modifies � exactly like the algorithm described by iterations (6.6) and (6.7).



6.5. AGGREGATION TECHNIQUE : A UNIFIED VIEW 151

1. Each element of the set is used once as input of the Kalman Filter like al-
gorithm (figure 6.6). The

� � -function is estimated by solving the MDP �
structure computed this way.

2. We suppose that each element of the set has the same probability to be se-
lected. We repeat an infinite number of times the sequence of operations that
consists first in selecting an element of the set and then in using it as input
of the Stochastic Approximation algorithm (figure 6.7). The

� � -function is
estimated by solving the MDP � structure computed this way.

3. We suppose that each element of the set has the same probability to be se-
lected. We repeat an infinite number of times the sequence of operations that
consists first in selecting an element of the set and then in using it as input of
the

�
-learning algorithm (figure 6.8).

The
� � -function estimated by each of these three procedures is the same. This can

be shown by adopting the same reasoning as the one carried out in section 5.5.

Example 6.5.1 We describe in this example an application of the reinforcement learning
algorithms used with the aggregation technique on the infinite state space control problem
defined in example 3.2.2. We recall that in example 3.2.2 we used the aggregation technique
in order to compute

��
from the dynamics and reward function specification.

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� ��� � % �

�� ��� � # % �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� ��� � % �

�� ��� � # % �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� � ��� % �

�� ��� � #&% �

(a) ( * * episodes (b) ��*�* episodes (c) ( * * * episodes

Figure 6.10: Representation of ��
at different stages of the learning process

As in example 3.2.2, we partition the state space into six disjoint subsets
�   , ( � *�� � �� � � ( ����( � � � * � � � � � � ( � , with

� 
 � ( ��� � � � � � , � �  , � ��
 � ��. and
���  � � � � . The control

space
�  , � ( �!( . being infinite we use a finite subset of it to define

� �
. This subset is

chosen equal to � � ( ��( � . � � ��� � � is chosen equal to
� �

everywhere on
� � � � � �� � .

The type of Action Selection module we choose is an � -Greedy policy with �  *�� ( . The
Learning module used is a model based algorithm for which the Estimation of the MDP

�



152CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

structure is done by using the Kalman Filter like algorithm. The Resolution of the MDP
�

module consists in solving at each time step
� � ( the MDP

�
by using a Gauss-Seidel

version of the value iteration algorithm.
The

� �
-function is initialized to zero everywhere at the beginning of the learning.

The initial state of each episode is chosen at random among , ( ��� . and an episode ends only
when the terminal state � � is reached.
The

��
function obtained after ( *�* episodes is represented on figure 6.10a. According to

this
��

function the optimal stationary policy consists in taking �� � ( on , ( �!( � � , and, � ��
 ��� . and �� ( elsewhere. If we compare this result with the one computed for the
same discretization of the state space and the same

� �
when the system dynamics and

reward function were known (figure 3.4b) we see that the results are different. But after ��*�*
episodes the results obtained in terms of approximation of the optimal policy are equivalent
( �� � ( only on the interval , ( �!( � � , ) (see figure 6.10b).
By comparing the

��
function obtained after ��*�* episodes and ( * *�* episodes (figure 6.10c),

one can remark that the most significant variations of
��

occur where
�� ������� � � �� � � � . In

these regions the learning was slower and did not converge even after ��* * episodes. This is
because the � -Greedy policy chosen favors, while being in state � , the action � that satisfies�� ������� �� �� ��� � .

3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �
NMB, � ( ��� % , � ( �

Model based, KF

NMB, � ( ��� % , � ( ��� �

3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �

� � � ( �
� � � ( � %

100. 300. 500. 700. 900.

2.7

2.9

3.1

3.3

3.5

���

� �

� � ( # #&% � % $
� � ( # #&% � � � % $

(a) MB vs NMB algorithms (b) Influence of
� � �

(c) Influence of
� � �

Figure 6.11: Score curves

If we compute the score obtained by the policy after each episode of the learning (esti-
mation of equation (3.26) while choosing

� / � � � as a uniform probability distribution on� �	� � � � and �  � -Greedy policy with �  * ) we obtain the curve drawn on figure 6.11a
and labeled “Model based, KF”

���
. On the same figure are also drawn the score curves

obtained when non-model based algorithms are used as Learning modules. As we can ob-
serve, the performances of the NMB algorithms are worse than those obtained by the MB

� �

The score curve drawn is in fact the average of the score curves obtained by
� 0�0 learning pro-

cesses. This operation has been realized in order to ease the comparison between the different learn-
ing techniques that otherwise would be more difficult due to the harsh aspect of the score evolution
especially at the beginning of the learning process.



6.6. MODEL BASED REPRESENTATIVE STATES TECHNIQUE 153

algorithm. One can notice that the use of an eligibility trace (
�  * ���	 ) deteriorates the

performances of the NMB algorithms, especially at the beginning of the learning.
On figure 6.11b we have drawn the score curves computed by the same reinforcement
learning algorithm ( � -Greedy policy with �  * � ( , MB with KF) but for two different dis-
cretizations of the state space. An increase in

� � �
slows down the learning process. This

is because a more complex MDP
�

structure requires a larger learning time to be recon-
structed. However by the end a finer discretization of the state space can lead to better
results. The same type of observations can be done concerning the influence of

� �
on the

score curves. An increase in
� � �

also increases the complexity of the MDP
�

structure.
The influence of

� �
on the score curves is illustrated on figure 6.11c. Remark also on this

figure that the starting points of the two score curves are different. This is due to the fact
that at the beginning of the learning (

���  * ),
�� � ��� � � is equal to zero everywhere. It

implies the policy evaluated at
���  * is the randomized stationary policy that consists

in choosing, while being in state � , all actions � 
 � �
with the same probability (see fig-

ure 6.3 with �  * ). Different
� �

lead to different randomized stationary policies, which
explains why the starting points of the score curves are different.

6.6 Model based representative states technique

In this section we adapt the two model based algorithms to the representative states
technique. Both algorithms are inspired from the procedure explained in section
6.1.1. They try to determine

� values for 
 �
���

� % � �
� � ����� � 
 �

� �
�! � �

�
such that  !' ( % �

� � � � �' � 
 �
���

�' � � � “stands
close” to

� � � 
 � � � � ��� � � � � ��� �
� values for � �

� �
� � � � � % � �

� � ����� � � �
���

� � � � �! � �
�

such that  !')( % �
� � � � �' � � �

� �
� � � � �' � � �

“stands close” to
� � � �

� � � � � � ��� � � � � �
� � � � ��� � .

6.6.1 Kalman Filter like algorithm

This algorithm is sketched on figure 6.12 % �

.
It takes the four-tuple

� �  � �  � 
  � �  � %
�

as input, checks whether �  � � �
� �  � (if

�  �� � �
� �  � then no structure update is done) and updates 
 �

� � � �  � and � �
� � ��� � �  � .

� �

The main drawback of this algorithm is linked to the high computational burden it requires since
it inverses at each

� � + the � � � matrix
� " � ��) . Even if the computational burden can be lightened

by exploiting the fact that the matrices
� " � ) are symmetrical and sparse (

� " � ) � � can only become
different from zero if there exists a � - � such that

� " � # � �� ) and
� " � # � �� ) are both different

from zero), they can still remain high. The Stochastic Approximation algorithm we present in section
6.6.2 allows also the MDP � structure estimation without requiring such high computational burden.
However its convergence properties are lesser.



154CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Figure 6.12: Estimation of the MDP � structure : Kalman Filter like algorithm used
with the representative states technique

Input :
�  , �  , 
  , �  � %

If �  �� � �
� �  � then exit.� � � � � �
���  � � �' � � � � � � � ����� � � �

�
� �  ��� �

�
� �  ��� ��� �

Estimation of the rewards :� � � � � 
 �
���

�' � � � � � � � � � ����� � � �� � � �
�

� �  � # % � 
  � � � � � �

 �

� �
�' � � ��� � � � � � � � � � � ����� � � �

Estimation of the transition probabilities :
Do

� � � � � � ����� � � �
� � � � � � �

� �
�� � � �' � � � � � � � � � ����� � � �

� � � �
�

� �  � # % � �
��� 

� % �
�

�� � � � � � � �

� �
� �

�� � � �' � � � � � � � � � � � � � � ����� � � �



6.6. MODEL BASED REPRESENTATIVE STATES TECHNIQUE 155

This algorithm is based on the Kalman filter like algorithm described in section
A.1.3. For this algorithm to hold valid, one has to initialize 
 �

� � � � � to arbitrary val-
ues at the beginning of the learning, � �

� � ��� � � � to values such that  "!� ( %
� �

���
�� ��� � � � �

�
and the

� � �
matrix �

� � � to � ! with � � �
,
� � � � � (such initialization of the

�
� � � matrix is done in order to ensure its invertibility at each stage of the learning

process).
Let

� � � � be the number of times the action � ( � � � � ) has been taken during the
learning. Let

� � � � and � � � � be respectively the value of
�  and �  the � th time the

action � � �  has been taken.
Suppose that � � �

. It can be shown that the values of 
 �
� �

� % � �
� � ����� � 
 �

���
�! � �

�

estimated by the algorithm minimize
� � ����
� ( %

� � � ��� # � � !� ' ( %
�

� � � � � � � �' � 
 � ��� �' � � � � 
 � � � � � � � ��� � � � � �
� �

(6.12)

Similarly it can be shown that the computed values of � �
� �

� � � � � % � �
�
, ����� , � �

� �
� � � � �! � �

�

minimize
� � ����
� ( %

� � � ��� # � � !� ' ( %
�

� � � � � � � �' � � � � � � � � � �' � � � � �
� � � � � � � � � ��� � � � � � � � � � �

� �
(6.13)

One can guarantee that  !� ( %
� �

� �
�� ��� � � � � �

at each stage of the learning (section

A.3.1). However, one cannot state that
� � �

� � ��� � � � � � �
. So, before using these

transition probabilities to compute the
� � -function, one should “correct” them in

order to ensure that  !� ( %
� �

� �
�� ��� � � � � �

and
� � �

� � ��� � � � � � �
are satisfied (the

reader can refer to figure 6.13 for a way to correct these transition probabilities).
Suppose now that the infinite sample composed of all the state-action pairs

� � � � �
visited (with � � � �

��� �
) can be assumed to have been generated by a probability

distribution � 
 � � � � ' � � � � � � � . Then it can be shown that if
� � �

, the estimated
values of 
 �

� �
� % � �

�
, ����� , 
 �

� �
�! � �

�
minimize

�

��� � � � � �
!�
' ( %

�
� � � � �' � 
 � � � �' � � � � 
 ��� � � ��� � � � � � � � 
 � � � � ' � � � � � � � �

and that the computed values of � �
� �

� � � � � % � �
�
, ����� , � �

� �
� � � � �! � �

�
minimize

�

� � � � � � �
!�
' ( %

�
��� � � �' � � � � � � � � � �' � � � � �

� � � � � � ��� � � � � � � �
� � � � � 
 � � � � ' ��� ��� � � � � �



156CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Convergence properties

We define for each � � � � the � � � matrix
� � � � :

� � � �  �  + � , � � ��� � � � � ������� �� ��� ��� ������� 4 ������ � ��� � �$. ��� �'
 
 � ( �� ! ! �	� � � (6.14)

the � -vector ' � � � :

' ��� ��� � �� +
� � � � � ,

� ������� � � ' ��������� �!�� ��� � � ��� 4������� � ��� � �$. ��� 
 � ( �! ! � �	� � (6.15)

and the �
�

� matrix
� ��� � :

� ��� �  �  +
� � � � � ,

� � ��� � � � � � ����������� �!����� �� ��� ��� ������� 4������� � ��� � �$. ��� ��
 
 � ( �� ! ! ��� � �(6.16)

The convergence properties of the algorithm described in figure 6.12 are :
� Input : one-step episodes starting from an element of

� � are used and each
state-action pair

� �
� � � � � � � � � � is visited an infinite number of times.

Algorithm :
� � �

Control problem : /
Solution : it converges with probability 1 to the MDP � structure defined by
equations (3.14) and (3.15).

� Input : the infinite sample composed of all the state-action pairs
��� � � � visited

(with � � � �
� � �

) can be assumed to have been generated by the probability
distribution � 
 � � � � ' ��� ��� � � � , each action � � � � has been triggered an infinite
number of times and

� � � � (equation (6.14)) is invertible
� � � � � .

Algorithm :
� � �

Control problem : /
Solution : it converges for this sample and with probability 1 with respect to
the noise process to the MDP � structure defined as follows :


 � ��� �' � � � � � � � � � #&% 
 � � � � � � �
� � � � �� � � �' � � � � � � � � � # % � � � � � ' �

where the
� ���

matrix
� � � � , the � -vector 
 � � � and the

� ���
matrix � � � �

are defined respectively by expressions (6.14), (6.15) and (6.16).

6.6.2 Stochastic Approximation algorithm

Algorithm description and properties

The algorithm (based on the stochastic approximation algorithm described in sec-
tion A.2) is sketched on figure 6.13. It takes the four-tuple

� �  � �  � 
  � �  � %
�

as



6.6. MODEL BASED REPRESENTATIVE STATES TECHNIQUE 157

Figure 6.13: Estimation of the MDP � structure : Stochastic Approximation algo-
rithm used with the representative states technique

Input :
�  , �  , 
  , �  � %

If �  �� � �
� �  � then exit.� � � � � �
���  � � �' � � � � � � � ����� � � �

Estimation of the rewards :� � � � � 
 �
���

�' � � � � � � � � � ����� � � �� � � �
� � � 
  � � � � � �


 �
� �

�' � � � � � � � � � � � � � � ����� � � �
Estimation of the transition probabilities :
Do

� � � � � � ����� � � �
� � � � � � �

� �
�� � � �' � � � � � � � � � ����� � � �

� � � �
� �

�
�

� � 
� % �

�
�� � � � � � � �

� �
� �

�� � � �' � � � � � � � � � � � � � � ����� � � �
Correction of the transition probabilities (� �

� � ��� � �  � is constrained to stay in
� � � � � ) :

Do
� � � � � � ����� � � �

� �
� �

�� � � �' � �  ��� ����� � � � ����� � � � � �
���

�� � � �' � �  � � � � � � � � � ����� � � �
Do

� � � � � � ����� � � �
� � � � 
�� � � � � � � � � �� !� ( %

� �
� �

�� � � �' � �  �

� �
� �

�� � � �' � �  ��� � � � � �� � � �� � ������ � ! � � � � � � ' 
 ' �� � � � � � � ����� � � �



158CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

input, checks whether �  � � �
���  � (if �  �� � �

� �  � then no structure update is
done) and updates 
 �

� �
� � �  � and � �

� � � � � � �  � if �
� � �� � �

� �� �
.

For this algorithm to hold valid, 
 �
� � � � � and � �

� �	��� � � � must be initialized. To this
end we proceed as follows : if �

� �  � � �
� �� �

and 
 �
� �

� � �  � has not yet been
initialized then 
 �

� �
� � �  � and � �

���
� � � � � � �  � are initialized respectively to 
  and

�
� � 

� % �
�

� �
�
. This initialization strategy is adopted in order to get the best possible

initial guess of the MDP � structure.
We remark the similarity between this algorithm and the one described in figure
6.12. The only difference comes from the fact that the �

� �  � #&% matrix is replaced
by the scalar �

# � � � $ . It implies that the algorithm does not require inverting an� � �
matrix at each

� � �
, and this alleviates considerably the computational

burden.
Note that once the estimation of the MDP � structure is realized, the transition prob-
abilities � �

� � � � � �  � are corrected in order to ensure that they stay in the interval� � � � � .
Convergence properties

Let �
# � � � $ � be the value of �

# � � � $ at the � th stage of the algorithm.
We define �

# � � � $ �

� � � (
� � � � � ) :

� as being equal to �
# � � � $ � if at the � th stage of the algorithm � � � 

� as being equal to
�

if at the � th stage of the algorithm � �� � 
and introduce the following condition :

��
� ( �

�
# � � � $ �

� � � � � �
��
� ( �

�
� # � � � $ �

� � � � � � � � � � (6.17)

We define for each � � � � the � � � matrix
� � � � :

� ��� �  �  + � , � ������� � � � ������� �� �� ��� � / � ��� � �$. ��� ��
 
 � ( �� ! � ��� � � (6.18)

the � -vector ' � � � :

' � � ��� � �  +
� � � � � ,

� � ��� � � � ' ��������� �!��� ��� � / � ��� � �$. ��� 
 � ( �! � ! �	� � (6.19)

and the �
�

� matrix
� ��� � :

� ��� �  �  +
� � � � � ,

� � ��� � � � � � � � ��� �����!����� �� ��� ��� � / ������� �#. ��� �'
 
 � ( �! ! � �	� � � (6.20)



6.6. MODEL BASED REPRESENTATIVE STATES TECHNIQUE 159

The convergence properties of the algorithm described in figure 6.13 are % � :

� Input : one-step episodes starting from an element of
� � are used and each

state-action pair
� �

� � � � � � � � � � is visited an infinite number of times.
Algorithm : the �

# � � � $ � are non negative and satisfy condition (6.17).
Control problem : /
Solution : it converges with probability 1 to the MDP � structure defined by
equations (3.14) and (3.15).

� Input : one-step episodes are used, each state-action pair
� �

� � � �
�

is drawn
independently according to the probability distribution � �

� � � � � and each
action � � � � is triggered an infinite number of times.
Algorithm : the �

# � � � $ � are non negative and satisfy condition (6.17).
Control problem : /
Solution : it converges with probability 1 to the MDP � structure defined as
follows :


 � ��� �' � � � � � � � � � #&% 
 � � � � � � �
� � � � �� � � �' � � � � � � � � � # % � � � � � ' �

where the
� ���

matrix
� � � � , the � -vector 
 � � � and the

� ���
matrix � � � �

are defined respectively by expressions (6.18), (6.19) and (6.20).

Values of � � and � �

If �
# � � � $ is chosen equal to

�
�

� � � �
� �

(6.21)

where
� � 
 � � � �

, then condition (6.17) is satisfied. The main disadvantage
of this strategy is that the value of �

# � � � $ is only linked to the number of times a
control action has been chosen and not to the region of the state space visited. This
choice implies in particular that when visiting for the first time a region of the state
space, �

# � � � $ can already be small, which may penalize the learning speed.
� %

Strictly speaking, we need to suppose that the algorithm is slightly modified such that the correc-
tion on the transition probabilities aiming to ensure that they stay in the interval

� 0 # +�� is not realized
anymore.



160CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

To avoid this we define the function
� �

���
� � � � that is initialized to zero everywhere

on
� � � � � at the beginning of the learning and updated each time a state-action

pair
� � � � � is visited as follows :

� � � � � � � ��� � � � � � � � ��� �
��� � � � � � � � � � � (6.22)

By proceeding so, we may interpret the value of
� �

� �
� � � � as being the number

of times the action � has been taken while being in the state
�

� . Then, if �
# � � � $ is

chosen for example equal to

� ��� � � � �
�

 � � � � � �
� � � � �

� �
�
� �

� � � �
� � � � (6.23)

it will depend not only on the number of times the action � has been taken but also
on the “number of times the region around

�
has been visited”.

Obtaining the same estimation as with the Kalman Filter like algorithm

Suppose that we keep in a set all the four-tuples
���  � �  � 
  � �  � %

�
obtained during

the learning. Suppose that each element of this set has the same probability to be
selected. If we repeat an infinite number of times the sequence of operations that
consists first in selecting an element of the set and then in using it as input of the
Stochastic Approximation algorithm we will converge (if the MDP � structure that
minimizes (6.12) and (6.13) is unique) to an estimate of the MDP � structure that is
identical to the one obtained by using a Kalman Filter like algorithm. In the above
procedure we suppose that the algorithm is slightly modified so that the correction
on the transition probabilities terms aiming to ensure that they stay in the interval� � � � � is not realized anymore and that

� � �
.

6.7 Non-model based representative states technique

This section presents algorithms which update the
� � -function without explicitly

reconstructing any MDP � structure. The value of the approximate
�

-function will
be deduced from the

� � -function by using equation (3.16) that we remind here-
after :

�� � � � � � � �
� � � � � �

��� � � � � � � � � � � � � � ��� � � � � � � � � � � � (6.24)



6.7. NON-MODEL BASED REPRESENTATIVE STATES TECHNIQUE 161

Figure 6.14: Q � -function correction :
�

-learning used with the representative states
technique

Input :
�  , �  , 
  and

� 
� %

If �  �� � �
� �  � then exit.

� � � 
  � � �����
����� � ��� � � � � �� � � 

� % � �
� � � �� � �  � �  �

Repeat for all
�

�
� � �

� �
� �

� � �  � � � �
� �

� � �  � � � � �
���  � � �

�

6.7.1
�

-learning algorithm

The algorithm is described on figure 6.14. At each
� � �

it takes the four-tuple� �  � �  � 
  � �  � %
�

as input and updates
� �

� �
� � �  � for all

�
�
� � � for which �

� �  � � �
� ���

leaving the other components of the
� � -function unchanged.

This algorithm is an immediate consequence of the advantage updating method
described in section 6.1.2 (consider equation (6.3) and observe that according to

equation (6.24) we have
� �� ��� � � �� � � ��� � � ��� � �

� � � � �
�
).

Convergence properties

Let � � be the value of � at the � th stage of the algorithm.
We define � � � � �' � � � (

� ���
�' � � � � � � ) :

� as being equal to � � if at the � th stage of the algorithm, � � �  and
�  � �

�'
� as being equal to

�
if at the � th stage of the algorithm, � �� �  or

�  �� � �' .
The convergence properties of the algorithm described in figure 6.14 are :

� Input : one-step episodes starting from an element of
� � are used and each

state-action pair
� �

� � � � � � � � � � is visited an infinite number of times.
Algorithm : the � � � � � � � � are non negative and satisfy condition (6.11).
Control problem : solution of the MDP � whose structure is defined by equa-
tions (3.14) and (3.15) satisfies the equivalence condition (3.21).
Solution : it converges with probability 1 to the

� � -function corresponding
to the MDP � defined by equations (3.14) and (3.15).
The proof is given in section C.8.



162CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

Figure 6.15: Q � -function correction : Watkins’s
� � ���

used with the representative
states technique

Input :
�  , �  , 
  , �  � % and �  � %

If �  �� � �
� �  � then exit.

� � � 
  � � �����
����� � ��� � � � � �� � � 

� % � �
� � � �� � �  � �  �

Do
� �

�
� � �

� � � � � �  ��� � � � � � �  ��� �
� �  � � �

�

Do
� � �

� � � � � � � � � �
� �

� �
� � � ��� � �

� �
� � � � � � � � � � � � � �

If �� ��� 
� % � �  � %

� � � ���
� � ��� � � � � � � � �� � � 

� % � � �
�

then � � � � � � ��� � � � � � � � � � , else

� � � � � � � � �

� Input : one-step episodes starting from an element of
� � are used and each

state-action pair
� �

� � � � � � � � � � is visited an infinite number of times.
Algorithm : the � � � � � � � � are non negative and satisfy condition (6.11).
Control problem : /
Solution : it converges with probability 1 to the

� � -function which terms
are the unique solution of the system of equations :

� � � � � ��� �  ' � � � � � � � �
1 �����	
� ��� ��� � ������� � � � � � 	 � � �

�
�� ��! �

& � ��� �� � � � ��� � � � � � �� ��� � � � � � � � � � 
 � � ��� �

where 
 �
� �

�' � � � and � �
� �

�� � � �' � � � are defined respectively by equations (3.14)
and (3.15) and

� � � � � ��� �' � � � denotes an element of
�

that can be reached
when taking action � in state

�
�' .

The proof can be deduced from the reasoning done in section C.8 to prove
the preceeding convergence property.



6.7. NON-MODEL BASED REPRESENTATIVE STATES TECHNIQUE 163

6.7.2
� �����

algorithm

Iterations (6.6) and (6.7) used with ��
defined by using a representative states tech-

nique (equation (3.16)) lead to the algorithm defined in figure 6.15 where the func-
tion � represents the eligibility trace % � . This algorithm differs nonetheless slightly
from the one suggested by iterations (6.6) and (6.7) by setting the eligibility trace to
zero each time that a non-greedy action is chosen. This feature has been discussed
when introducing the

� �����
algorithm (section 5.4.3).

For this algorithm to hold valid, one should initialize the eligibility trace � to zero
at the beginning of each episode.

Example 6.7.1 We describe in this example an application of the reinforcement learning
algorithms used with the representative states technique. The control problem considered
here has been detailed in example 3.2.2. In example 3.3.2, we treated the same control
problem by assuming that the reward function and the system dynamics were known and
by using the representative states technique.

−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� ��� � % �

�� ��� � # % �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� ��� � % �

�� ��� � # % �
−1.

0.0

1.

2.

3.

4.

5.

6.

1. 1.5 2. 2.5 3. �

��

�� � ��� % �

�� ��� � #&% �

(a) ( * * episodes (b) ��*�* episodes (c) ( * * * episodes

Figure 6.16: Representation of ��
at different stages of the learning process

The control problem state space is composed of , ( � ��. 	 � � . We consider seven representative
states : ( �!( � � �!( ��� ��� � � ��� � 
 � � and � � . The control space being infinite we consider just a
finite subset

� �  � � ( �!( � and choose
� � � � � �  � �

for all � � 
 � � � � � � � . The
�

function is defined by using a triangulation technique.
The Action Selection module is composed of an � -Greedy policy with �  *�� ( . As Learning
module we use a model based algorithm for which the Estimation of the MDP

�
structure is

done by using the Stochastic Approximation algorithm. The parameters � 4 and � � used to
estimate the rewards and the transition probabilities (figure 6.13) are chosen both constant

� �
Remark that with the representative states technique the vector

���� �
� �  � � �
� � does not depend on �

anymore (its components can only be equal to
� " � # ��� � ) , � " � # ��� ) , ����� , � " � # ��� ) or 0 ); therefore

the algorithm described by iteration (6.5) modifies � exactly like the algorithm described by iterations
(6.6) and (6.7).



164CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

and equal to *�� ( . The Resolution of the MDP
�

module consists in solving at each time step� � ( the MDP
�

by using a Gauss-Seidel version of the value iteration algorithm.
The initial state for each episode is chosen at random in the interval , ( � ��. and an episode
stops only when the terminal state � � is reached.
In such conditions the

��
functions we have obtained after ( * * , ��* * and ( * * * episodes of

learning are respectively represented on figures 6.16a, 6.16b and 6.16c. These representa-
tions can be compared to the one obtained by using the representative states technique when
assuming that the reward function and the system dynamics are known (figure 3.10b). It is
important to note that due to the fact that � 4 and � � were chosen constant, the estimation of
the MDP

�
structure will not converge. This induces continual variations of the

� �
-function

and thus also of
��
.

3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �

�  ( �
�
( ��� � �

�  ( �
�
( ��� %

�  ( �
�
( ��� �

3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �

� ( ��� � �

� ( �

� ( ��� � � � ( %
3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �

� ( ��� � �

�  ( �
�
( ��� %

(a) � 4 and � � constant (b) � 4 and � � not constant (c) Constant vs not constant

Figure 6.17: Score curves for different variants of the Learning module.

The influence of the values of � 4 and � � on the learning is illustrated on figure 6.17a. The
larger their values ( � 4  � �  *�� � ) the faster the learning is at the beginning. However the
score obtained at the end of the learning period i.e., after ( * * * episodes, is slightly better if
the values � 4 and � � are chosen small ( � 4  � �  * � * � ). These observations motivate us
to use values of � 4 and � � not constant anymore during the learning period but large at the
beginning and decreasing with the learning time. For example, we represent on figure 6.17b
score curves corresponding to � 4 and � � values defined by equation (6.23). The parameter

�
indicates the rate of decrease of these values. A value of

�
larger than ( (here � ) leads

to a very bad convergence of the algorithms because it drives � 4 and � � to decrease too
rapidly. On the other hand when

�
is chosen equal to a small value (see the curve for which

�  * � � � ) the decrease of � 4 and � � can not be sufficient to obtain the best performance
of the Learning module. Among the four values of

�
considered ( * � � � , *�� 	 � , ( � and � ), the

best results were obtained with
�  * �
	 � . Figure 6.17c compares the performance of both

strategies, � 4 and � � constant or decreasing with the learning time. The best results are
observed when non-constant values are used for � 4 and � � . Indeed, this allows both a fast
learning at the beginning of the learning period and an excellent score value at its end.
We can also compare the performances of the model based and the non-model based al-
gorithms used with the representative states technique. This is illustrated on figure 6.18a



6.7. NON-MODEL BASED REPRESENTATIVE STATES TECHNIQUE 165

3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �

MB,
� ( ��� � �

NMB, � ( � � % , � ( ���NMB, � ( ��� % , � ( ��� �

3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �
Aggregation (MB)

Representative states
(MB,

� ( � � � �
)

3.5

3.3

3.1

2.9

2.7
100. 300. 500. 700. 900.

���

� �
Aggregation (NMB)

Representative states (NMB)

(a) MB and NMB
Representative states
technique

(b) MB algorithms
Representative states vs
aggregation technique

(c) NMB algorithms
Representative states vs
aggregation technique

Figure 6.18: Score curves

where three score curves are displayed. The best score curve is once again obtained by
using a model based technique. The performances of the two non-model based techniques
described in this chapter are similar with however a slight advantage for the

�
-learning

algorithm (no eligibility trace) notably at the beginning of the learning.
In this example we have illustrated reinforcement learning algorithms used with the repre-
sentative states technique; one may wonder whether the results thus obtained are better or
worse than those obtained when the reinforcement learning algorithms are used with the
aggregation technique. The comparison is difficult because for the aggregation technique
the performances of the algorithms depend notably on the way

�
is discretized and for the

representative states technique on the states selected from
�

. However, in order to attempt
some kind of answer, we have drawn on figure 6.18b the score curves obtained for model
based reinforcement learning algorithms used with the aggregation technique (curve that
was previously drawn on figure 6.11a and labeled “Model based, KF”) and with a repre-
sentative states technique (curve that was previously drawn on figure 6.17b and labeled
“

�  *�� 	 � ”). The performances of model based RL algorithms are better when used with
the representative states technique than with the aggregation technique. Note that an oppo-
site conclusion could be reached if the tuning of parameters � 4 and � � is inadequate. By
drawing a similar graphic, related this time to the non-model based algorithm, we obtain
the figure 6.18c. This figure also highlights the better performances of RL algorithms when
used with the representative states technique.

Example 6.7.2 In this example we focus on the Kalman Filter like algorithm used with
the representative states technique (figure 6.12). The control problem,

� �
,
� �

, the Ac-
tion module, the Resolution of the MDP

�
module and the learning conditions are chosen

identical to those previously chosen in example 6.7.1.
The matrix

� � � � is initialized to *�� *�* ( % � � 
 � �
where

%
is the

� � � � � � �
identity

matrix. When used to compute the
� �

-function the estimated transition probabilities are



166CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES

3.3

3.1

2.7

2.9

3.5

50. 100. 200.150.

���
Kalman Filter

� �
Stochastic Approximation

Figure 6.19: Kalman Filter like algorithm vs Stochastic Approximation algorithm

corrected in order to ensure that * � & � � � �� � � � ��� � � ( and
) �� - � & � � � �� � � � � � �� ( . The

correction is carried out by using a similar procedure as the one used in figure 6.13.
By proceeding so we obtain the score curve labeled “Kalman Filter” represented on figure
6.19. The other score curve (labeled “Stochastic Approximation“) drawn on this figure
represents the score evolution when the Stochastic Approximation algorithm is used to
estimate the MDP

�
structure (with �  4

� � � given by equation (6.23) and
�  * �
	 � ). The

Kalman Filter like algorithm gives slightly better results.

6.8 Summary

In this chapter we have seen that it is possible to compute approximations of the
optimal stationary policy for systems with infinite state spaces when the system dy-
namics and the reward function are unknown. Broadly, the strategy used to this end
consists in assuming that the initial infinite state space control problem could be
represented more or less equivalently by a finite Markov Decision Process (MDP �
in short) and in using reinforcement learning algorithms to learn either the struc-
ture of this MDP � (model based algorithms) or directly its

� � -function (non-model
based algorithms).
Eight algorithms that result from the combination of two different approximation
architectures with two model based and two non-model based reinforcement learn-
ing strategies have been described and discussed using a unified framework. For
most of these algorithms convergence properties have been stated and the intrinsic
relationships among the different methods have been highlighted. We have also
shown that it was possible to apply the Bellman error methods in this context, and
have suggested some further directions to make them practically useful.
We would like to stress that the class of optimal control problems is a very rich set
of problems and we do not believe that any of these algorithms could pretend to



6.8. SUMMARY 167

be superior to the others in general. Rather, we observe that the paradigm of rein-
forcement learning offers a rich set of approaches among which we should choose
the most appropriate one to a particular practical problem. While for a given prob-
lem it is not possible to decide a priori which of the presented approaches will be
more efficient in terms of learning speed or quality of the solution obtained, it is
always possible to select some method based on other a priori considerations such
as the amount of computational resources available and the ease of implementation
or the freedom one has in terms of state space sampling.
In the next chapter and in chapter 9 we will apply some of these algorithms to
practical power system control problems in order to highlight their practical use-
fulness. We will see that with the developed methodology we are indeed able to
compute from interaction with an infinite state space system a control law that per-
haps does not converge to the optimal stationary policy but can still give a good
approximation of it, with acceptable performance in a rather broad set of condi-
tions.



168CHAPTER 6. REINFORCEMENT LEARNING IN INFINITE STATE SPACES



Chapter 7

Revisit of a simple FACTS control
problem

In this chapter we apply some of the reinforcement learning algorithms described
in chapter 6 to the power system control problem studied in chapter 4. We con-
sider both model based and non-model based algorithms combined with either the
aggregation technique or the representative states technique.

The simulations are carried out using an ad hoc time domain simulation software
that we developed on purpose for this research and which is coupled with our rein-
forcement learning software. The reinforcement learning algorithms are combined
with an � -greedy control policy with a small value of � which in principle would
allow using these algorithms in interaction with a real power system, once a rea-
sonable control policy has been tuned off-line during simulations.

The conditions under which these algorithms are used are kept identical to those
used in chapter 4 (sampling period, power system model parameters, discretization
grids) in order to allow us to compare the solution thus obtained with the previously
obtained ones.

We would like to stress that the simulations provided here will be complemented in
chapter 9 by much more extensive ones under more realistic conditions. Actually,
chapter 9 aims to demonstrate the practical feasibility of these approaches in the
context of power system control problems, while the simulations performed in the
present chapter aim at providing more insight into the behavior of the different
algorithms of chapter 6.

169



170 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM

7.1 Reinforcement learning and the aggregation technique

This section describes the application of the reinforcement learning algorithms
combined with the aggregation technique and discusses the results obtained for
the optimal control problem (discrete-time system model and reward definition)
formulated in section 4.2.
The first part of the procedure aims to partition the state space

�
into a finite

number of disjoint subsets
� ' and to define the finite sets � � and

� �
� � �

such that
� � � � and

� �
� � � � � � � �

. We choose a

�� � 
��

grid to partition
� � � �  � and to

consider that
� 

is the only element of a subset
� ' (see chapter 4 for more details).

Concerning the control sets, we have chosen them such that � � � � � � ����� � � � � and� �
��� � � � � � � ��� � � � �� � .

The second part of the procedure consists in defining the content of the Learning
module used in the reinforcement learning algorithm. Two families of Learning
modules can be used. The first is related to the model based techniques and the
second one to the non-model based techniques. We will use first a model based
Learning module and compare later on the results thus obtained with those provided
by non-model based techniques.

7.1.1 Model based techniques

MDP � structure learning

We have first to decide what kind of algorithm we are going to use as Estimation
of the MDP � structure module. We have decided to choose the Kalman Filter like
algorithm detailed in figure 6.6.

Dynamic programming algorithm

The use of a model based reinforcement learning algorithm implies defining a
method that solves the MDP � (definition of the Resolution of the MDP � module).
If the MDP � is solved completely at each step of the learning by using for exam-
ple the Gauss-Seidel version of the value iteration algorithm (see figure 2.4), the
computational burden can become excessive. So we rather decide to use the Pri-
oritized sweeping algorithm defined in figure 5.6 (with � � � 
 ! � � equals to

�*�
and

� � � ������� �
) to solve only partially the MDP � during an episode. At the end of an

episode, we use the Gauss-Seidel version of value iteration algorithm to solve the
MDP � completely. The value of the

� � -function is initialized to zero everywhere.



7.1. REINFORCEMENT LEARNING AND THE AGGREGATION TECHNIQUE171

Action selection module

The third part of the procedure must result in the definition of the Action Selec-
tion module. The Action Selection module we choose is composed of an � -Greedy
policy with � � � � � �

. The � value has intentionally been chosen small in order
to proceed as if the RL algorithms were interacting with a real power system for
which it would be important to exploit almost at its best the approximation of the
optimal policy computed during the learning. An � -Greedy policy with a larger
value of � would tend to speed up the learning while reducing the use it does of the
already learned control law.
Note that with an � -Greedy policy as Action selection module and since the

� � -
function is initialized to zero everywhere, the action taken is chosen at random in
� � when the subset

� ' is visited for the first time (figure 6.3).

Learning protocol

The learning protocol is defined by the way episodes are initialized and terminated,
and by the sampling rate used by the learning algorithms and control module.
As in chapter 4, a sampling period of


�� � � is used for the control module, and the
reinforcement learning module is called at the same rate % . Note that this sampling
period is not directly related to the time-step used by the underlying time-domain
simulation program, although it obviously defines an upper bound on this latter.
Concerning an episode of the learning, the initial state of each episode is in our
simulations chosen at random with a uniform probability distribution among the
states of

� � � �  � .
An episode is terminated either if a terminal condition is reached (the state of the
system leaves the stability domain) or if a maximum number of steps is reached.
In these simulations the maximum number of steps is limited to

� � ��� , which cor-
responds to

���
seconds of real-time.

Discussion of results

Table 7.1 summarizes the quality of the control policies obtained by the reinforce-
ment learning method as a function of the number of episodes used (see figure

�

In our presentation of reinforcement learning algorithms we have implicitly assumed that these
rates are always identical. Nevertheless, most of these algorithms could easily be adapted so as to
reduce the rate at which they are called with respect to the rate at which the control module is called.
This could be useful in situations where real-time constraints are incompatible with the amount of
computational resources available.



172 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM

4.10a and section 4.4 for a reminder on how the scores are computed and for the
geometrical representations of the domains

� � � �  � , � � and
�

� � ).

Table 7.1: Score for different � �
� � �

as a function of the learning time

� � score� � � �� � �
�

�
� �

10 -66.1966 -25.1192 -5.8464
500 -49.0173 -8.9007 -1.3772
1000 -46.8442 -7.9074 -1.3845
5000 -46.5598 -7.4852 -1.3681
10000 -46.4072 -7.3692 -1.3193
100000 -45.2974 -7.3159 -1.3189

The different scores computed after
���

,

����

,
�������

,

������

,
���������

and
�*���������

episodes
yield the following observations and explanations.

� At first the learning of the control law is faster in the domain
�

� � than in� � � �  � . Indeed after

����

episodes the score related to
�

� � has almost
converged contrary to the score related to

� � � �  � . We explain this by
the fact that the trajectories of the system tend to converge to this small

�
� �

region centered on the stable equilibrium point of the system as soon as the
learning module is able to learn something about how to stabilize the system.
Therefore the subsets

� ' that belong to this region are visited much more
often and the learning is faster there.

Notice that this observation has also led us to limit an episode duration to
a relatively small time (chosen here equal to

���
seconds) and to choose as

initial state of an episode a state drawn at random in
� � � �  � . If such a

strategy was not used, for example if an episode ended only when a terminal
state was reached, the states far from the stable equilibrium point of the sys-
tem would be visited still more rarely and the learning in these areas would
be even slower. Note that rather than defining time bounded episodes, one
could use a value of � much larger in the � -Greedy policy. Indeed, with such
a choice the control law would be much more different from the optimal one
and would even drive the system far from the stable equilibrium point of the
system where bad rewards are observed.

� The second important observation drawn from table 7.1 is the impressive



7.1. REINFORCEMENT LEARNING AND THE AGGREGATION TECHNIQUE173

quality of the control law observed by the end of the learning period i.e., after�*��� � ����� episodes. Comparing these scores to the results obtained with the
aggregation technique where the system dynamics and the reward function
were known (table 4.1) for which the three score values corresponding to
the domains

� � � �  � , � � and
�

� � are respectively � � 
	��� ����� , � � � � ����� and
� ��� ��� 
 � , one can see that the policy obtained after

�*��� � ����� episodes by
using the reinforcement learning technique is even better.

The reason is probably linked to the high number of episodes used in the
reinforcement learning procedure. Indeed, the

����� � ����� episodes used can
roughly be considered to represent approximately

� � ��� � ����� � ����� � � � � � ����� � �����
one-step episodes. This has to be compared to the

� � ����� � ����� � ��� � �
� � ����� � ����� carefully chosen one-step episodes that have been used in chap-
ter 3 to compute the MDP � structure. Of course for the same number of
one-step episodes the procedure used in chapter 3 should be better, in partic-
ular because each action is used the same number of times in each subset

� '
and the number of times each subset is visited is independent of whether or
not it is close to the stable equilibrium point of the OMIB system.

On figure 7.1 we have represented the control law obtained at different stages of the
learning process. The gray tiles represent areas of the state space where the value
of the control variable � is chosen equal to � � � ��� (the FACTS acts at full range of
its capacitance) while the white areas represent areas of the state space in which the
FACTS capacitance is chosen equal to

�
. Notice that in figure 7.1a, there exist areas

of the state space
�

without tiles. These areas correspond to regions of the state
space that have not yet been visited during the learning and thus where nothing can
be stated about the control variable value. As the learning process proceeds, one
can observe that the organization of the tiles becomes better and better. These six
figures can be compared to figure 4.5a where a similar control law was represented
but computed by assuming that the system dynamics and the reward function were
known.

Influence of the discretization grid size on convergence

One can wonder how the discretization of
�

(the way the
� ' are chosen) influ-

ences the learning process. It must be noted that the number of states composing
the MDP � will be higher if the

� ' are chosen smaller. Therefore the amount of in-
formation needed to reconstruct the MDP � structure will in principal also be higher.
Thus we can expect that to a finer discretization of the state space will correspond
a slower learning of the control law with the possibility that by the end the quality



174 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

(a) After
���

episodes (b) After

����

episodes

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

(c) After
�*�����

episodes (d) After

������

episodes

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

(e) After
���������

episodes (f) After
�����������

episodes

Figure 7.1: Control law at different stages of the learning process



7.1. REINFORCEMENT LEARNING AND THE AGGREGATION TECHNIQUE175

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45.

���

� 0�� � 0 + 0�0�� + 0�0

�� � ��

�
	

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45. � 	 � * �
� 	 � * �

���

� 	

(a) Influence of the discretization (b) Influence of the control set

Figure 7.2: Score curves for RL algorithms used with the aggregation technique

of the control law observed will be higher.
The actual behavior is highlighted on figure 7.2a where the score curves are drawn
for three different discretizations of the state space. These score curves can seem
to be surprising in the sense that they illustrate that a finer discretization does not
tend to penalize too much the learning speed. Indeed if one compares for example
the � 
�� � 
 curve with the


��$� 
��
curve, it is impossible to state firmly that even at

the very beginning of the learning the rougher the discretization of the state space,
the better the control law quality. But the comparison is in fact misleading due to
the type of policy used ( � -Greedy policy with a very small value of � ) and the way
the

� � -function is initialized (
� � -function is initialized to

�
everywhere). Since the

rewards can only be negative, these two choices make the policy prefer an action
that has never been triggered before while being in the subset

� ' (if during the
learning

�  � � ' and if action � has never been triggered before while being in� ' then �� � � � � � � �
). This kind of policy behavior indirectly provides a lot of

exploration in areas having a fine discretization and thus tends to favour, at least at
the first stages of the learning process, the quality of the control law learned.

Influence of the control space size

As far as the influence of the control set � � is concerned, figure 7.2 clearly shows
that a larger control set is unfavourable to the learning speed of the algorithms
because of the higher complexity it induces in the structure of the MDP � . Never-
theless, it can be expected that after a certain learning time the results obtained with



176 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45.

���

�
	
Model based (LSE)

� -learning, � * 0 � +

−65.

−60.

−55.

−50.

−45.

0.0 25000. 50000. 75000.

� 	
� * 0

� * 0 �����

���

(a) MB vs NMB (b)
�

-learning vs
� �����

Figure 7.3: Score curves for RL algorithms used with the aggregation technique

a more complex control set should improve.

7.1.2 Model based vs non-model based RL algorithm

Till now, the type of Learning module we have used belonged to the model based
techniques family, the family of techniques that reconstruct the structure of a MDP �
in order to deduce from it the value of the

� � -function. One can wonder how
the non-model based techniques perform on the OMIB control problem. This is
illustrated on figures 7.3a and 7.3b. Figure 7.3a shows that model based algorithms
learn faster (as it was already the case in all the other examples treated in this work).
Figure 7.3b illustrates the performances of a non-model based algorithm used with
an eligibility trace. The score obtained at the beginning of the learning is better
when an eligibility trace is used (

� � � � � �
) even if the tendency reverses itself after

approximately
��� � ����� episodes. Concerning the score curve related to the use of an

eligibility trace, it can also be observed that its evolution is less smooth than when
no eligibility trace is used (

� � �
). This less smooth aspect is notably because the

subsets of
�

corresponding to the tiles that intersect with the stability boundary of
the OMIB system represent smaller regions of the state space. This indeed implies
that these subsets are less often visited (a phenomenon made even worse by the
fact they stand far from the stable equilibrium point of the system) and that “their
learning speed” is extremely slow. These slow learning speed regions can induce,
when eventually visited, a large temporal difference � (figure 6.8) even if the

�
-

function is already well approximated in the other regions of the state space. This



7.2. REPRESENTATIVE STATES TECHNIQUE 177

large temporal-difference � is used in the non-model based algorithm to correct the� � -function and its too large magnitude corrupts the already well estimated
� � -

function. This phenomenon is amplified by the use of the eligibility trace because
the � factor computed intervenes in the correction of many

� �
���

� � � � terms rather
than one when

� � �
. Therefore it is not surprising to observe a non-smooth

evolution of the score curve corresponding to
� � � � �	�

.

7.2 Representative states technique

In this section we describe application to the FACTS control problem of reinforce-
ment learning algorithms combined with the representative states technique.

7.2.1 Procedure

We define
� � by selecting from

�
the states that stand at the center of the tiles

defined by a

�� � 
��

grid (plus of course the state
� 

). The function � is defined
by using a triangulation technique. The triangulation of the state space is identical
to the one described in figure 4.3b. We choose � � � � � � � ��� � � � and

� �
��� � �

� �
� ��� � � � �  � .

The Action Selection module is composed of an � -Greedy policy with � � � ��� �
.

A learning episode lasts
��� � and the initial state of each episode is chosen at ran-

dom among
� � � �  � .

The scores of the obtained control policies are evaluated in the same fashion as
before.
As Learning module we adopt a model based algorithm such that the Estimation
of the MDP � structure module is composed of the Stochastic Approximation algo-
rithm defined on figure 6.13 (with � � and � � computed by using equation (6.23)
with

� � � � ��

) and such that the Resolution of the MDP � module is composed of a

mix between the Prioritized sweeping algorithm and a Gauss-Seidel version of the
value iteration algorithm (which is only used at the end of an episode).
Notice that the Stochastic Approximation algorithm rather than the Kalman Filter
like algorithm is used here because in the context of the representative states tech-
nique the latter algorithm leads to much higher computational burden than in the
aggregation technique. Indeed, its use on this OMIB control problem would require
(with the choice of

� � realized) inverting at each time step a
����� � � ��� � �

matrix
which would lead to a (too) high computational burden.

�

�

It can be shown that the matrices
� " � ) (see figure 6.12) would remain sparse during the learning.

Indeed
� " � ) � � (the term of the matrix

� " � ) that stands at the intersection of the � th line and the
�

th



178 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45.

� -learning, � * 0 � +

���

�
	
Model based (SA,

� * 0 � � � )

−65.

−60.

−55.

−50.

−45.

0.0 25000. 50000. 75000.

�
	

���

� * 0 �����

� * 0

(a) MB vs NMB (b)
�

-learning vs
� �����

Figure 7.4: Score curves for RL algorithms used with the representative states tech-
nique

7.2.2 Resulting score curves

Under these learning conditions, we obtain the score curve represented on figure
7.4a and labeled “Model based (SA,

� � � � ��

)”. On the same figure is also repre-

sented the score curve corresponding to a Learning module made up of a non-model
based algorithm (curve labeled “

�
-learning, � � � � �

”). We notice that, once again,
the model based algorithm offers better performances than the non-model based
one.
Score curves corresponding to the non-model based algorithms used either with or
without the eligibility trace are represented on figure 7.4b.
As for aggregation technique, the score curve related to the use of the eligibility
trace (

� � � � � �
) has a harsher evolution than the one that corresponds to

� � �
.

This phenomenon has already been noticed but one can wonder why it becomes
more important than with the aggregation technique and why the score evolution is
not smooth anymore even when

� � �
(see for example figure 7.6b where the score

curves are represented for the aggregation and the representative states technique).

column) can become different from zero only if there exists a state � - � such that
� " � # � �� ) and� " � # ��� ) are both different from zero. With the choice of

�
realized in the present simulations, the

number of terms per line (and column) that can be different from zero is at maximum � . Algorithms
exploiting the symmetrical and sparse aspect of the matrices

� " � ) could therefore be used to lighten
the computational burden associated to the determination of their inverse. However such algorithms
were not implemented in the framework of this research.



7.2. REPRESENTATIVE STATES TECHNIQUE 179

Greyish state

The
� �

value of this state
is only corrected in

� � ( if � �
belongs to the greyish area.

Greyish area

Figure 7.5: Problem with the representative states technique and the boundary

The explanation that we found is highlighted on figure 7.5, on which the tiles repre-
sent the subsets

� ' used with the aggregation technique while the bullets represent
the states of

�
that can be associated with elements of

� � when the representa-
tive states technique is used. Note that some of these states are located outside

�
because the simplices defined by triangulation technique have to cover the whole
state space (section 3.3.6). Each black bullet can be associated with a subset

� '
while the grayish bullets cannot. These grayish bullets correspond to states of the
MDP � defined by using the representative states technique while they do not have
a corresponding role for the aggregation technique. The learning speed for these
states is therefore extremely small because their

� � values are very rarely corrected
(see the geometrical interpretation sketched on figure 7.5). But once they intervene
in the learning process they corrupt the already well estimated

� � values of the
other states and so foil the estimated optimal control law which leads to a sudden
decrease of the score curve. We note that the number of such perturbing (gray-
ish) states created when using a


�� � 
��
grid is equal to

� �
, which seems small,

compared to the total number of states of the MPD � (
��� � �

), but is obviously large
enough to further destroy the quality of convergence of the non-model based meth-
ods applied to the simple FACTS control problem.



180 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45.

���

�
	

Aggregation (MB, KF)

Representative states (MB, SA,
� * 0 � � � )

−65.

−60.

−55.

−50.

−45.

0.0 25000. 50000. 75000.

�
	

���

Aggregation (NMB,
� * 0 )

Representative states (NMB,
� * 0 )

(a) Model based algorithms (b) Non-model based algorithms

Figure 7.6: Comparison between RL algorithms used either with the representative
states technique or the aggregation technique

7.2.3 Comparison with the aggregation technique

Even if the representative states technique used with non-model based reinforce-
ment learning algorithms offers less good results for the OMIB control problem
than the aggregation technique due notably to some specific problems related to
the boundary, one should not be discouraged to use the representative states tech-
nique with model based reinforcement learning algorithms.
Indeed, let us consider figure 7.6a which provides a synthetic comparison between
model based techniques applied either with the aggregation or the representative
states technique. We see that in terms of convergence speed, the performance of
the representative states technique used with a model based reinforcement learning
algorithm is really impressive. We believe that the results could be even better if a
Learning module using the Kalman Filter like algorithm (figure 6.12) was used in-
stead of the Stochastic Approximation algorithm (figure 6.13) thanks to the stronger
convergence properties the Kalman Filter like algorithm has.

7.3 On the combined use of multiple MDP
�

Before concluding this chapter let us report on some preliminary investigations
concerning the use of multiple MDP � , already introduced in section 4.5. Recall
that this idea consists in using in parallel a certain number of MDP � approximation



7.4. SUMMARY 181

architectures obtained by randomization of the origin of the discretization grid.
In the context of reinforcement learning, the use of this technique consists in run-
ning in parallel several learning agents (one for each version of the approximation
architecture) which are all fed at each time-step with the four-tuple gathered from
interaction with the system. In order to decide at each time-step how to control the
system, a higher level agent would then apply the majority vote among the control
decisions suggested by the lower level agents, together with an � -greedy strategy to
ensure the desired degree of exploration.
Figure 7.7 shows the learning curves obtained by using this approach (with a team
of 10 agents working in parallel) together with the aggregation technique (the
Kalman Filter like algorithm is used to reconstruct the MDP � structure) and in
the context of different grid sizes. Figures 4.7(a), (b), and (c) provide these curves
respectively for the grid sizes of � 
 � � 
 , 
�� � 
��

, and
����� � �����

. For the sake
of comparison, we have also drawn on these figures the curves obtained with a
single control agent, i.e. in the classical way (curves previously drawn on figure
7.2a). We observe that with the two coarser discretizations, the effect is to speed
up the learning quite significantly. Figure 4.7d shows on a same diagram the three
“10 MDP � ” curves, highlighting the fact that for the smaller grid sizes the “multi-
agent” approach is able to provide a good compromise between learning speed and
asymptotic behavior.
We believe that these improvements are mainly due to the variance reduction effect
of the “randomizing and averaging combination” which is well known in the litera-
ture on automatic learning [Geu02]. In addition, let us recall that also in asymptotic
regime the policy is improved by this technique in the regions close to the stable
equilibrium point (see section 4.5). These observations suggest that the technique
reduces the variance and at the same time the bias of the approximation architec-
ture. Notice that such an improvement would be specially interesting in the context
of higher dimensional applications where the variance will further increase due to
the curse of dimensionality effect.
Although the investigations presented here are preliminary, they suggest that the
combination of model-based reinforcement learning methods and ensemble meth-
ods used in automatic learning are a promising direction for further research.

7.4 Summary

In this chapter we have studied empirically the behavior of reinforcement learning
algorithms for discrete-time control problems with continuous state spaces.
This study has been carried out in the context of a simple, yet representative, power



182 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45. 10 MDP �
1 MDP �

�
	

��� 500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45. 10 MDP �
1 MDP �

� 	

���

(a) � 
 � � 
 grid (b)

�� ��
��

grid

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45.

10 MDP �
1 MDP �

���

�
	

500. 1000. 1500. 2000.0.0

−65.

−60.

−55.

−50.

−45.

� 0�� � 0

�� � ��

+ 0�0�� + 0�0

� 	

���

(c)
�*����� �*���

grid (d) 10 MDP �

Figure 7.7: Score obtained as a function of learning time
� �



7.4. SUMMARY 183

system control problem. We believe that the use of this problem to study and develop
reinforcement learning algorithms for power system control problems has many
advantages over both purely academic problems and more large scale real power
system problems. With respect to the former it allows us to exploit our physical
understanding of this problem in order to interpret more effectively the obtained
results. With respect to the latter, the small size of the system allows one to run more
extensive simulations (in particular to evaluate scores of the resulting policies) and
try out a larger number of learning algorithms variants. Also, the fact that the
state space of our problem is two-dimensional allows one to show graphically the
resulting policies, which is useful for quick appraisal of the results.
Among the findings of this chapter the main ones are as follows.

� Reinforcement learning algorithms allow indeed to determine by pure in-
teraction a near optimal control policy for a sensible power system control
problem.

� Model based techniques offer significantly better and faster convergence
properties than non-model based ones.

� It is impossible to state firmly whether the aggregation technique is better
than the representative states technique. The aggregation technique gave bet-
ter results with non-model based algorithms while the representative states
technique was performing better with model based algorithms.

� Convergence speed is strongly influenced by the way the system is controlled
and by the complexity of the solution learned.

We can complement these findings with the robustness results already found in
chapter 4, which still hold valid here since the type of control policy determined
is essentially the same.



184 CHAPTER 7. REVISIT OF A SIMPLE FACTS CONTROL PROBLEM



Chapter 8

Dynamic programming in
continuous-time

This chapter is dedicated to the study of optimal control problems in the continuous-
time case. Throughout this chapter we will stress that many of the ideas explained
in previous chapters can be extended here although there exist some difficulties
specific to the continuous-time case. We first define the type of continuous-time
optimal control problem we use. Then we introduce the Hamilton-Jacobi-Bellman
(HJB) equation used to characterize, at least partially, the value function. This
equation corresponds to the Dynamic Programming (DP) equation introduced in
the discrete-time case (chapter 2), but contrary to this DP equation many other
functions than the value function can satisfy the HJB equation. We propose a way
of solving this equation by discretizing the HJB equation space. The aim of the dis-
cretization is to define from the knowledge of the system dynamics and the rewards a
finite Markov Decision Process and to solve it in order to extend its characteristics
in terms of value function,

�
-function and optimal control policy to the original

system. To some extent it is a procedure similar to the one used in chapter 3 to
solve discrete-time optimal control having an infinite number of states. We mention
the convergence properties of this MDP and explain how its characteristics can be
learned from interaction with the system. This last aspect is in some sense similar
to chapter 6 content. Academic examples will be used to illustrate the different
concepts and the FACTS control problem introduced in chapter 4 will be treated.
In this chapter we limit ourselves to the deterministic case. The stochastic case can
be found in [Mun97] where references to further work are given. Moreover, the
content of this chapter is largely inspired from reference [Mun00] that the reader
could consult for more information.

185



186 CHAPTER 8. DYNAMIC PROGRAMMING IN CONTINUOUS-TIME

8.1 Hamilton-Jacobi-Bellman equation

There exist two possible approaches for continuous-time optimal control problems.
One is known as Pontryagin’s maximum principle [PBGM62] and is not considered
here. The other approach known as the dynamic programming approach [Bel57] is
the one adopted. In this section we present the basic elements of the continuous-
time optimal control problem considered, such as type of system dynamics, re-
wards, policy and reinforcement functional used. We then introduce the Hamilton-
Jacobi-Bellman equation as a way of solving this continuous-time optimal control
problem and illustrate these concepts on an academic example.

The system dynamics

Let
� � � �

be the state of the system at time
�
, which belongs to a closed and bounded

subset
� �  �

. We denote by � � the boundary of this subset. The temporal
evolution of the system depends on the current state and the control action � � � � �
� , where � , a closed subset of


, is the control space; it is defined by the controlled

differential equation :
� � � � �

� � � � ��� � � � � � � � � � � (8.1)

The function
�

is considered to be Lipschitzian with respect to its first argument :
there exists a (positive) constant

� � such that :

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � �

(8.2)

For any initial state
�

� at time
� � �

, the choice of a control function � � � � leads, be-
cause the system dynamics (8.1) is deterministic, to a unique trajectory

� � � �
(figure

8.1). For any system trajectory we denote by � � �
the time at which the trajectory

exits from the set
�

i.e., such that
� �

�
� � � � and

� �
�
� � � � ��� � �

� � � � �
� � �� �

for a sufficiently small � .

Rewards

We define a current reinforcement 
 � � � � � � � � � � 
and a boundary reinforce-

ment � � � � � � � � 
. The parameter � ��� � � � � is the discount factor that weights

short-term rewards more than long-terms rewards. Unlike the discrete case, in the
continuous case we need to consider two different reinforcement functions : 
 is
obtained and accumulated as long as the trajectory remains in

�
, whereas � occurs

whenever the trajectory reaches the boundary of the state space and then exits (if



8.1. HAMILTON-JACOBI-BELLMAN EQUATION 187

it does). We suppose that these reinforcement functions are Lipschitzian according
to the state variable in their corresponding domain of definition.

Control policies

We define a policy � such that � � � � � � � � � and a stationary policy � such
that � � � � � .

The reinforcement functional

We define the reinforcement functional J which depends of the initial state
�

and
the policy � :

�
� ��� � � � �

�
�  
 ��� � � � � � � � � � � � � � � � � � �

�
� � � �

�
� �

where � denotes the exit time of the trajectory, which is dependent on the initial
state

�
and the control policy � .

The objective of the control problem is to find the policy � that maximizes the
reinforcement functional for any initial state

�
.

We define the value function (denoted by
�

or ��
 ), the maximum value of the
reinforcement functional as a function of the initial state at time

� � �
:

� � � � � ������ �
� � � � �

�

� ��� �

� �

� %

� �

Figure 8.1: Trajectories in the state space



188 CHAPTER 8. DYNAMIC PROGRAMMING IN CONTINUOUS-TIME

The Hamilton-Jacobi-Bellman equation

By using the dynamic programming principle one can prove that if the value func-
tion is differentiable with respect to

�
, it necessarily satisfies the Hamilton-Jacobi-

Bellman (HJB) equation :

� � � � ��� � � �����
��� �

� � � � � �
� �

� � � � � � ��� 
 � � � � � � � �
(8.3)

where
� � ������ � denotes the gradient of

�
at
�

. Additionally it can be shown that
�

must satisfy the following boundary condition :

� � � � � � � � �
for

��� � � �
The boundary condition is an inequality (and not an equality) because at some
boundary points (for example at

�
%
� � � on figure 8.1) there may exist a control

� � � � such that the corresponding trajectory stays inside
�

and whose reinforcement
functional is strictly superior to the immediate boundary reinforcement � � �

%
�
.

An important result that can be drawn from the HJB equation is the stationarity of
the optimal policy. Indeed, it can be shown from (8.3) that the optimal policy is
given by :

� 
 � � � � � ��� ������ � �
� � � � � �

� �
� � ��� � � ��� 
 � � � � � � (8.4)

which defines indeed a stationary policy.
Dynamic programming computes the value function in order to find the optimal
control solution with a stationary policy.

Properties of the value function

One can show that if at any point of the boundary of the state space there exists a
value of the control such that the corresponding trajectory is not tangential to the
boundary then the value function is continuous (see [BP90] for the proof). In gen-
eral however the value function is not differentiable everywhere. This means that
we cannot expect to find solutions differentiable everywhere for the HJB equation.
Now if we look for solutions differentiable almost everywhere for this equation, we
find that many solutions other than the value function solve the HJB equation. Next
example illustrates these concepts.

Example 8.1.1 Consider the system dynamics
�
�

� � �� with
�  , ( ����. , � �  � ( � � � and�  � � ( ��( � . The value of the current reinforcement ' is * everywhere on

� � �
and



8.1. HAMILTON-JACOBI-BELLMAN EQUATION 189

0.5 1. 1.5 2. 2.5 3. 3.5

1.

1.5

2.

2.5

3.

3.5

4.

4.5

5.

�

�
0.5 1. 1.5 2. 2.5 3. 3.5

1.

1.5

2.

2.5

3.

3.5

4.

4.5

5.

�

�
(a) Value function (b) A solution of the HJB equation

Figure 8.2: Value function and solutions of the HJB equation

the boundary reinforcement is such that � ��( �  � , � � � �  � . The decay factor 1 is chosen
equal to *���� . An optimal policy thus corresponds to a policy which reaches one of the two
exit points in minimum time. For each start state � there are obviously only two candidate
control strategies: either ��)( � � ��� * or �� � ( � � ��� * . Any other control policy would
consist of wasting time (and reward). We thus can deduce that the value function is defined
by :

� � � �  ��� � ��� ��( � � 1
� "�� ��� � � � � 1 � � " � � �

� � � � � 
� � � *���� � "��

if , ( ��( � � � �* ��.� � *���� � " �
if .$( � � �  * � ��� . �

The value function is represented on figure 8.2a. At �  ( � � � �* � the function is not dif-
ferentiable anymore. The optimal control variable value can be determined using equation
(8.4) where the value function is differentiable. We find that the optimal control is equal
to ( when the derivative of

�
is positive and equal to

� ( when this derivative is negative.
Thus the optimal control is

� ( on , ( ��( � � � �* � , , ( on .$( � � �  * � ��� . . It cannot be determined
uniquely at �  ( � � �  * � by using equation (8.4) due to the non differentiability of the value
function at this point. Actually, at this point the two possible values of � are equivalent in
terms of reward.
The HJB equation is given by :

� � � ��� � 1 � ����� � � � � � �
� � � � � � ��� �

� � � (8.5)

with the following boundary conditions :
� ��( � � � ��( � and

� � � � � � � � � . The value
function is not the unique function to satisfy this HJB equation almost everywhere with



190 CHAPTER 8. DYNAMIC PROGRAMMING IN CONTINUOUS-TIME

the corresponding boundary conditions. Indeed, figure 8.2b represents another continuous
solution that satisfies the HJB equation almost everywhere with the boundary conditions� ��( �  � ��( � and

� � � �  � � � � . If you introduce the value of this function in equation
(8.4), you will obtain a stationary policy that is different from the optimal stationary policy.
Indeed, the control variable value computed is equal to

� ( if
��� � � �
�
�  * and � ( if

��� � � �
�
� �

* , which obviously is a suboptimal control (at least in the part of the state space where it is
different from the real optimal control function).

8.2 Convergent numerical approximation scheme

The main idea to approximate the HJB equation using a convergent numerical
scheme is to discretize it into a Dynamic Programming (DP) equation for some
Markov Decision Process, to solve the DP equation obtained and to extend the
results computed to the initial control problem. It is roughly equivalent to the pro-
cedure adopted in chapter 3 to solve discrete-time optimal control problems with
infinite state spaces since we define by discretizing the HJB equation a MDP that
catches the initial control problem main characteristics.

In this section we explain how to discretize the HJB equation and how to solve the
MDP obtained, and discuss the characteristics of the solution obtained.

Discretization of the HJB equation

There exist different ways to discretize the HJB equation into a DP equation for
some MDP. The method we present here is known as finite differences method
[Kus90, KD92].� � , � � ,

�
� are used to represent respectively the state space of the MDP, the finite

control space of the MDP with � � � � and a state of the MDP.

� is used as suffix to specify whether we refer to an element of the initial control
problem or an element of the MDP and to denote the discretization step.

As it was the case in chapter 3 with the representative states technique, there is a
correspondence between each element of

� � and an element of
 �

. This is illus-
trated on figure 8.3a where the white and black bullets can be associated to elements
of
� � . Therefore we will also use

�
� to denote the state of

 �
it corresponds to.

To discretize the HJB we proceed as follows. Let � % � � � � ����� � � � , be a basis of
 �

.
The system dynamics is given by

� � � �
% � ����� �

� � � .
Let the positive and negative parts of

� ' be :
� �' � � ��� � � ' � � � , � #' � ����� � � � ' � � � .



8.2. CONVERGENT NUMERICAL APPROXIMATION SCHEME 191

For any discretization step � , let us consider the regular grid % :

� � � � � �
��
')( %

� ' � ' � � ' ��� � � � � �
Let � � � denote the set of points defined by

� � � � � � � � � � � � �
such that at least one adjacent point

� ��� � � ' � � �
and let

� � be defined by
� � � � � � ��� � � � � � � �

Elements of
� �

� � � � can be interpreted as being black bullets of figure (8.3a)
while elements of � � � as white bullets. � � � is called the frontier of

� � .

�

� �

� � �
	 � � ��
� �

��� � � � � ��� � � 
� �
� � %

� � �

��� � � � � % �
� � 
� �

(a) Discretization of the state space (b) A geometrical interpretation

Figure 8.3: Discretization of the state space

The finite differences method consists in replacing the gradient
� � ��� � �� � by the for-

ward and backward difference quotients of
�

at
�

�
� � �

� � � � in direction � ' :

� �' � � ��� � � �
�

�
� � � � � � � � � ' � � � � � � � � �

� #' � � ��� � � �
�

�
� � � � � � � � � ' � � � � � � � � � �

�

The way the grid is defined is not well suited for some problems because it imposes the grid to
contain the origin of the system and requires a same discretization step

�
for each direction of the

state space. These constraints can however be circumvented by first realizing a coordinates change
on the system.



192 CHAPTER 8. DYNAMIC PROGRAMMING IN CONTINUOUS-TIME

Thus the HJB equation can be approximated by the following equation :

� � � � � � � � 1 � �����	 � � � ,
�
�
 - �

��� 	 � � � � � � � � 	 � � � � � � ��� " � � � � � � � � " � � � ��� ��� � ' ��� � � � �$.  *��

Knowing that
� � � ��� � � is an approximation of

� �
�  � � �

as � � tends to
�
, we

deduce the following approximation equation
�

: for
�

�
� � �

� � � �

� � � � � �� �����	 � � � ,
�

� � ��� � � � � �� � � ' � �
� ��� � � 1 ������
	�� �� ��� ��� � �

�
�
� ��! �

& ��� � � � � � � � � � � � � � � �#. (8.6)

with &�� � � � � � � � � ��
� ���� � � � � 	 �� � � � � � 	 � � � for �

� �  � ��� � � 
* otherwise

(8.7)

which is a DP equation for a finite Markov Decision Process whose state space is� � , control-space � � and probabilities transitions are � � �
� � � � � � � � . A geometrical

interpretation of these transition probabilities is carried out on figure 8.3b.
For the boundary condition, we define the terminal states’ value function (assuming
that � �

�

�
is defined on � � � ) :

� � � � � � � � � � � � for
� � � � � � � (8.8)

The optimal stationary policy can be computed by introducing the
� � -function :

� � ��� � � � � 
�

� � ����� � � � �� � � ' ���
� � � � � 1 ���� �
	�� �� ��� ��� � �

�
� � ��! �

&�� � � � � � � � � � �����	 � � �
� � ��� � � � � � �

Therefore we have

� � 
 ��� � � � � ��� �����
��� � � � � � � � � � � � (8.9)

The solution of equation (8.6) is discussed in the next paragraph.

�

We denote by ����� � * � 	� �
�
� �
� � the + -norm of any vector � -�� 	 .



8.2. CONVERGENT NUMERICAL APPROXIMATION SCHEME 193

Solution of the MDP

We first define the �
� �

mapping by :

��� � � � � � �  ��� �	 � � � ,
�

� � � � � � � � �� � � ' � �
� � � ��� 1 ���� �
	�� �  ��� ��� � �

�
� � ��! �

&�� � � � � � � ��� � � � � � � �$.

and note that
� � is a fixed point of the �

� �
mapping. Since

� � � � �
% is bounded

from above � (by some value
� � ), �

� �
is a contraction mapping (see appendix C).

Indeed, it can be shown that :

�
�
� �

� % � �
� �

� �
� � � � ���� �

� % � � �
� � � (8.10)

Equation (8.10) guarantees that the �
� �

mapping has a unique fixed point. DP
iterative methods (value iteration algorithm, Gauss-Seidel version of the value iter-
ation algorithm, ����� ) can be used to compute this fixed point (

� � ).

Convergence to the real solution

Concerning the convergence of the finite differences approximation scheme, it can
be shown that under certain hypotheses (notably concerning the way � � converges
to � as � � �

) the solution
� � satisfies (see [Mun00]) :

�����

�
� �� �  �

� � � � � � � � � � �
uniformly on any compact � � � � � � �

(8.11)

Example 8.2.1 We illustrate the use of the finite differences numerical scheme on the con-
trol problem described in example 8.1.1.
The set

� �
is composed of four states denoted by � � � , �

� � , �
�
� and � �� . They correspond to a

value of � respectively equal to * � � , ( ��� , � � � and � ��� . The discretization step
�

is thus equal
to ( . � � � and � � � belong to

� � �
. They are terminal states with a value function respectively

equal to � and � (
� � � � � � �  � and

� � ��� �� �� � ). The discretized control-space
� �

is
chosen equal to

�
.

We can see that the term 1 ������
	�� �� ��� ��� � which intervenes in equation (8.6) is equal to 1 � � � � 
� �
and

� ��
 � �
.

If we use expression (8.7) to compute the transition probabilities we obtain the following
values : &�� � � � � � � � � � ( �  ( , & ��� �� � � � � �!( �� ( , & ��� � � � � �� � � ( �� ( , & ��� �� � � �� �!( �� ( , the other
terms being equal to * . The discretized HJB equation (8.6) becomes :

� � � � � � �  ����� � 1 � � � � � � � � 1 � � ��� �� ���  ��� � ��( � � * � � � � � � �� � �� � � � �� �  ����� � 1 � � � � � � � � 1 � � ��� �� ���  ����� � * � � � � ��� � � ����� � � � � (8.12)

% � � � � � � is bounded from above because � is Lipschitzian (equation 8.2) and � is bounded.



194 CHAPTER 8. DYNAMIC PROGRAMMING IN CONTINUOUS-TIME

By solving these two expressions we obtain
� � � � � � �  ( � � � and

� � � � �� �  � � � . The
optimal control variable value to associate to � � � and � �� can be found by computing the� �

-function and by using equation (8.9). We have � � � � � � �� ( and � � � � �� ��)( .
The results are represented on figure 8.4a while figure 8.4b represents the results obtained
by choosing

� �  � * �� �!( �!( � ( �! ! � ��� �� ��� ��� � ( � (
� � �  � � and

�  *�� ( ). The � symbols
indicate the

� �
value of the states of

� � �
, the � symbols the

� �
value of the states of� � � � � �

where the optimal control variable value computed is � ( and the
�

symbols the� �
value of the states of

� � � � � �
where the optimal control variable value computed is� ( .

We can observe the close similarity there exists between this approximate value function
and the exact one sketched on figure 8.2a.

0.5 1. 1.5 2. 2.5 3. 3.5

1.

1.5

2.

2.5

3.

3.5

4.

4.5

5.

�

�

o

+

+

o

0.5 1. 1.5 2. 2.5 3. 3.5

1.

1.5

2.

2.5

3.

3.5

4.

4.5

5.

�

�

o----++
++

++
++

++
+
+
+
+
+
+
+
o

(a) � � � � �
(b) � � � ��� �

Figure 8.4: Discretization of HJB

8.3 Learning of the control problem solution

In this section we will not discuss in detail about how to solve the continuous-time
optimal control problem without having any knowledge about the system dynam-
ics and the rewards i.e., just from interaction with the system. We refer the reader
to [Mun97] and [Mun00] for a quite complete survey of this problem. Roughly
speaking, there still exist two families of learning algorithms : model based algo-
rithms that learn the structure of the MDP and compute from its knowledge the

� � -
function and non-model based algorithms that learn immediately the

� � -function.
All these algorithms require a sampling rate that has to be correlated with the size



8.4. THE SIMPLE FACTS CONTROL PROBLEM 195

of the discretization step � and the system dynamics. It implies that a continuous
monitoring of the system trajectory is necessary which makes difficult the practical
feasibility of such learning algorithms.
From a theoretical point of view, it can be shown that the solution that would be
learned for a discretization step � does not necessarily converge to

� � as defined
by equation (8.6). However one can prove that if � � �

then the solution learned
converges to the value function of the system. But such a learning scheme would
require an infinite learning time and an infinite sampling rate.

8.4 The simple FACTS control problem

We treat hereafter the FACTS control problem introduced in chapter 4. The FACTS
control problem is first stated as a continuous-time optimal control problem, which
is then solved by using the finite differences numerical scheme described in section
8.2. We conclude by comparing the resulting control policy with the one obtained
in chapter 4 using a discrete-time formulation.

8.4.1 Rewards, decay factor and reinforcement functional

We remind first the OMIB system dynamics from section 4.1.1 :�� � � (8.13)
�
� � � ! �� �� (8.14)

with � � �
� �

�
system

� � �
��� � (8.15)

where � is the FACTS reactance. In the discrete-time case the reward used was

  � � � ���  � % �� !

�
when the system was standing in the stability domain , � �����

if the system went outside the stability domain in which case a terminal state was
reached. We were seeking for a stationary policy that was able to maximize the re-
turn  � ( � �  
  where � was taken equal to

� � ���
. The time between two successive

steps
�

and
� � �

was chosen equal to
� � � 
�� � .

The continuous case can be seen in some sense as the limit of the discrete-time
case when the time between two successive steps

�
and

� � �
tends to

�
. In this

way of thinking we will look after a stationary policy that is able to maximize the
functional :

�
��� � � � � � � � �

�

�  � � � � � � �� !
� � � � � �

� � � �
�
� �

(8.16)



196 CHAPTER 8. DYNAMIC PROGRAMMING IN CONTINUOUS-TIME

where � indicates the time for which the system goes outside the stability domain,
if it does (the state space

�
is defined as being the set of states that satisfy

�

�
�
�

�

�� ! � �
� �
� � � � � � � � � � ��� � � �����

(see chapter 4)). The current reward equals � � � � � � � � � !
�
and the boundary reward

� � � �
�
� �

is taken equal to � ����� .
Concerning the decay factor, that we have named

�
in order to avoid any confusion

with the discrete-time case, we take its value equal to � number of steps / second.
We thus have :

� � � � ��� � �
� � � ��� � �

, since the time step of
� ����
�� � was used in

the simulations of chapter 4. Such a strategy has been chosen in order to be able to
compare results between the discrete-time case and the continuous-time case.

8.4.2 The HJB equation for the simple FACTS control problem

If we introduce the OMIB system dynamics and the current reward into the HJB
equation we obtain :

� � � � � �����
��� �

� � �
� � �

� � �

� �

� ! �
� ��

system �
� � � � �

� � � � �
�

system
� � �

��� � �� !
� �

with the boundary conditions :
� � � � � � �*��� for

� � � � � (8.17)

We can use equation (8.4) in order to get some information about the optimal sta-
tionary policy of the system. We obtain :

� ��� �  �
�  ��� �	 � � ,
� �

� � � � � �
�
�

� � � � �!
system

	 	 � ��� �
�

� � + �
�

system
� � � ��� � � � � � .

 �
�  ��� �	 � � ,
� �

�
�

"
� �!

system
	 	

�
� ��� � � � + �

�
system

� � � ��� � � ��� � . � (8.18)

From equation (8.18) we can see that if �
��� � � �

, that is if � � �
( � � � � with

� �� �
does not belong to

�
) the optimal control variable value cannot be deter-

mined even if the value function
�

is known. We can therefore expect a change in
the optimal control variable value around the axis � � �

(as it was the case with
example 8.1.1).

�
being unknown, it is difficult to extract other information about

the optimal stationary policy by using equation (8.18).
In the next paragraph we discretize the HJB equation in order to compute an ap-
proximation of the optimal stationary policy.



8.4. THE SIMPLE FACTS CONTROL PROBLEM 197

−10.

−5.

0.0

5.

10.

−1. −.5 0.0 0.5 1. 1.5 2. 2.5 �

�

o
o
o
o
o
o
o

o
o

+
+
+
+

o
o

o

+
+
+
+
+
+
+
o

o

+
+
+
+
+
+
+
+
o

o

-
-
-
-
-

+
+
+
+
+
+
+
+
+
o

o

-
-
-
-
-
-

+
+
+
+
+
+
+
+
+
+
o

o
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
o

o
-
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
o

o
-
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
o

o
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-

o

o
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-

o

o
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-

o

o
+
+
+
+
+
+
+
+
+
+

-
-
-
-
-

o

o
+
+
+
+
+
+
+
+
+

-

o

o
+
+
+
+
+
+
+
+
+

o

o
+
+
+
+
+
+
+
+

o

o
+
+
+
+
+
+
+
+

o
+
+
+
+
+
+
+

o

o
+
+
+
+
+
+

o

o

+
+
+
+

o

o
+
+

o

o
+
o

o

o

o

o

o +

-

-
-

-

- - - -

-

-
-

-

-
-

-

-

-
-

-

-

-
-
-

-----

-
--
-

-
-

-------
--

-
- -

-
-
-

---
-----

-
-

- -
-

-

o-

-

-
-

-

-

Figure 8.5: Approximation of the optimal stationary policy computed by using a
finite differences method to discretize HJB equation

8.4.3 Discretization of the HJB equation for the OMIB case

If we discretize the HJB equation by using the finite differences method described
in section 8.2 and compute for each

�
� the approximate optimal control variable

value to be associated with ( � � being chosen equal to � � � � ��� � � � ), we obtain the
policy represented on figure 8.5. The

�
symbols represent states of

� � for which
the value of

� ��� � ���
� � � � � �

� �
� � � � is equal to

�
, the � symbols represent states of

� � for which the value of
� ��� � ���
��� � � � �

���
� � � � is equal to � � ����� and the symbols

� represent states of
� � that belong to � � � . If we compare this figure with a

representation of the approximate optimal policy computed in the discrete time case
(see for example figure 4.9a), we observe some strong similarities in the control
laws obtained. This is not surprising since the continuous-time optimal control
problem solved can be seen as the limit when

� � �
of the discrete-time one.

Trajectories of the system being clockwise, one can see that the switching occurs
later with the continuous-time control law than with the discrete-time one.



198 CHAPTER 8. DYNAMIC PROGRAMMING IN CONTINUOUS-TIME

8.5 Summary

In this chapter we have described ways to solve some optimal control problems in
the continuous-time case. The resolution procedure was similar to the one used to
solve discrete-time optimal control problems with infinite state spaces since a finite
Markov Decision Process is used to represent the original control problem solved
and that its solution is extended to the original control problem. We mentioned that
the computation of the finite MDP solution from interaction with the system rather
than by using the knowledge of the system dynamics and the rewards was diffi-
cult to achieve technically due to the necessity of monitoring the system trajectory
continuously.
Some results concerning the convergence to the exact solution when the discretiza-
tion step tends to zero have been presented. They do not have their equivalent in
the discrete-time case.



Chapter 9

Real world conditions

This chapter has been entitled “Real world conditions” in order to stress that we
will describe here several problems met when reinforcement learning algorithms
are applied to control real world systems with some constraints on the return ob-
tained during the learning, on the measurements realized on the system, on the
learning time and on the control hardware capabilities.
We also investigate potential problems linked to the non-stationarity of the environ-
ment in which the reinforcement learning methods would have to act in practice
since the operating point of real power systems changes continuously as transac-
tions appear and disappear.
We start by discussing these problems in the first section of this chapter and in the
aftermath some of the strategies induced from these discussions will be illustrated
and assessed on time-domain simulations of a four-machine power system.

9.1 Problems met when controlling a real world system

In the following subsections we describe and discuss different types of problems
met when using reinforcement learning algorithms to control a real world system
and propose strategies that can be adopted to overcome them. Our discussion is of
course strongly oriented by the control of electric power systems but part of these
considerations would also be applicable to many other real world problems.

9.1.1 Policy used when starting to interact with a real system

The Action Selection module of the reinforcement learning algorithm uses the esti-
mate of the

�
-function to select a control action (for example by using an � -Greedy

199



200 CHAPTER 9. REAL WORLD CONDITIONS

policy). When the reinforcement learning is initialized from scratch, this estimate
is possibly far from the true value during the early stages of learning. Its use can
thus lead to the selection of largely suboptimal control actions and, hence, “bad”
returns may be observed at the beginning of the learning. For some systems, and
especially real world systems, these “bad” returns reflecting bad control actions
may be unacceptable.
We propose two different strategies to cope with this problem.

Ad hoc control policy to start with

In order to overcome the problem one may try for example to design by other
means than the optimal control approach a policy that ensures a good (even though
not optimal) return and to use it at the beginning of the learning and then, as the
learning process proceeds, to shift progressively to an � -Greedy policy.
In the context of electric power systems there exist various linear and non-linear
approaches which can help to design such a first ad hoc control policy.

First use RL in the simulation environment

Another strategy could be achieved by making the difference between off-line and
on-line learning.
As opposed to on-line learning which directly interacts with a real system, off-line
learning consists in using the reinforcement learning algorithms to control a “copy”
of the system for which the return observed during the learning has no importance
(for example a numerical representation of the real world system we want to con-
trol). Thus, rather than starting from scratch in on-line mode, one may imagine
to use first the reinforcement learning algorithms in an off-line learning mode and
then, when the optimal stationary policy is sufficiently well approximated, to use
them in an on-line learning mode (or even to use the control law computed in the
off-line learning mode as such in the on-line mode without further learning).
It may (and it will, generally) happen that the control problem studied in the off-line
learning mode is not exactly the same as the one used in the on-line learning mode
(e.g. because simulation models never represent a real-system with hundred percent
accuracy). If the differences are very important, one may not assure anymore that
with such a strategy the return obtained at the beginning of the learning in the on-
line mode will be “good”. However, if the simulation model is reasonably accurate
then the initial policy so obtained should also be reasonably close to an optimal one
for the real system.



9.1. PROBLEMS MET WHEN CONTROLLING A REAL WORLD SYSTEM201

9.1.2 Non observable rewards

In some of the power system control problems the aim is to use local controls in
order to damp or stabilize system wide oscillations. For example, in the context
of transient angle instability one would like to use local measurements around a
particular power plant in order to detect and prevent impending loss of synchronism
of this plant with respect to the remaining machines of the system.
In such a situation, even if local measurements are used to trigger controls, it might
still be useful (and possibly preferable) to use global (i.e. system wide) information
to define the rewards. For example, in our transient stability example it would make
sense to use the rotor angles of all the machines connected to the power system to
define the reward signal, even though in real-life these quantities are not available
in real-time.
Since, by assumption these global reward quantities cannot be obtained in real-
time, such a scheme would prevent one from using the on-line learning mode.
Nevertheless, in off-line mode (e.g. using a standard time-domain simulation pro-
gram) these rewards could certainly be computed at each time step and fed into the
reinforcement learning algorithm to adjust its control policy.
Notice that in the problem that we will investigate later on in this chapter we could
have applied such a strategy, but we did not do so since we wanted to assess the
capability of reinforcement learning in on-line mode for this problem. Notice also
that this problem is intimately related to the problem of partially observable states
discussed in the next subsection.

9.1.3 Partially observable system state

Till now, it has been assumed that the state (in the sense of systems theory) of the
system could be observed perfectly. But usually, the observation of the state is
incomplete and noisy. The strategy we propose in this subsection to cope with the
partial observability of the state can be seen in a sense as one of the most simplistic
solutions that exist in the RL literature (see for example [CKL94], [Lit94], [KLC98]
and [Ast65]) but will prove to be very efficient in the examples treated in the next
section and has the main advantage to be able to fit perfectly into the considerations
used in the previous chapters.

Use of past observations and controls to define pseudo-states

The main idea of the strategy is to suppose that when the observation of the state is
incomplete and noisy, more information can be obtained about the current state of
the system by using the history of the observations realized on the system and the



202 CHAPTER 9. REAL WORLD CONDITIONS

actions taken by the reinforcement learning algorithms than by using only the last
observation. Then we define a “pseudo-state” from the history of the observations
done and the actions taken and proceed exactly as if it were really the real state of
the system. %
To define this pseudo-state we proceed as follows. First, we suppose that � rep-
resents the observation done on a system,

�
the set of all possible values for � , �

a pseudo-state of the system and � the set of all possible values of
� � . Then the

pseudo-state of the system at time
�

is defined by the following equation :

�  � � �  � �  # % � ����� � ������� � � �  # � � � � % � � �  # % � �  # � � ����� � ������� � � �  # � � � �
�

(9.1)

where
� � � and

� � � determine respectively the number of successive observations
and the number of successive actions taken by the reinforcement learning algo-
rithms that are used in the definition of the pseudo-state. The larger the values of� � � and

� � � are, the better the information about the state
�

contained in � may
be. But increasing these numbers also increases the size of � and may therefore pe-
nalize the learning speed. One should also note that when

� � ����� � � � � � � � � � � � ,
the number of elements that composes �  is smaller than when

� � � ��� � � � � �� � � � � � . This can lead the RL algorithm to choose bad control actions at the be-
ginning of an episode even if when

� � � ��� � � � � � � � � � � � the control actions
are chosen suitably.

Determination of the observation window length

One can think about setting up methods to determine automatically, while interact-
ing with the system, what the best choice would be for

� � � and
� � � . This has not

been investigated in this thesis and the way we will proceed to determine these two
numbers will be by trial and error.

9.1.4 Curse of dimensionality

The methodology developed in chapter 6 in order to use reinforcement learning
algorithms with infinite state space control problems can become insufficient when
the number of variables composing a state (i.e. the number of state variables) is
too high. Indeed, the Markov Decision Process aimed to catch the initial control

�

Our notion of “pseudo-state” is directly related to the notion of “information state” used in the
literature on optimal control of partially observable MDPs [Ber00].

�

Although the pseudo-states are used in the reinforcement learning as if they were the real state
of the system, we have chosen to denote them by another letter than � in order to stress that they are
just an estimation of it.



9.1. PROBLEMS MET WHEN CONTROLLING A REAL WORLD SYSTEM203

problem characteristics can then be composed of too many states to hope to obtain
a good approximation of the optimal stationary policy in a reasonable learning time
or even to match the computer capabilities � .
The solution we propose to overcome this difficulty is to define in a pragmatic way
from the state

�
of the system a pseudo-state � that is less “complex” than

�
and

that is able to catch the features of
�

that intervene mainly in the control problem
and then to use this pseudo-state in the reinforcement learning algorithms as if it
were the real state of the system.

9.1.5 Non-stationarity of the system

Throughout this work we have supposed that the system dynamics and the reward
function do not depend explicitly on the time

�
. Unfortunately, for many systems

and especially power systems, this assumption does not hold true anymore.
From a theoretical point of view, the systematic way to handle time-varying systems
in the dynamic programming framework consists in augmenting the state space by
one dimension representing time. However, the appropriateness of this approach,
which could be used in the context of off-line learning, strongly depends on the
ability to explicitly express the way system dynamics depend on time. In the con-
text of on-line learning, on the other hand, this approach is by itself not sufficient
since the time-dimension of the system corresponds to variations from which no
experience can be gained, because any particular time instant is experienced only a
single time. Thus, additional assumptions are necessary to handle this aspect.
Therefore, the strategy we propose here to deal with the non-stationarity of the
system assumes that the system changes “slowly” with time and consists in using
the same reinforcement learning algorithms as the ones used with time-invariant
systems but for which more weight is given to the last observations done on the
system.
In order to give more weight to the more recent measurements, one can for example
(as it has already been briefly discussed when explaining the different Learning
modules) :

� use
� � � � �

in the model based Learning modules that were using a
Kalman Filter like algorithm (figures 5.4, 6.6 and 6.12)

� choose � � and � � constants in the model based Learning modules that were
using a Stochastic Approximation algorithm (figures 5.5, 6.7 and 6.13)%

Note that an appropriate choice of � � � , ����� , ��� when using the representative states technique or
of � � , ����� , � � when using the aggregation technique can help to reduce the curse of dimensionality
effects.



204 CHAPTER 9. REAL WORLD CONDITIONS

� use � constant in the non-model based Learning modules (figures 5.11, 6.8
and 6.14).

Of course, if the reward function and the system dynamics are changing too “rapidly”
then such an elementary strategy will be foiled.

9.2 A real world power system control problem

This section is dedicated to the use of reinforcement learning algorithms to control
a FACTS device installed on a four-machine power system. First we will present
the power system used and pose the control problem. Then, rather than solving the
control problem by using the reinforcement learning algorithms in a similar way to
what has been done with the OMIB power system, we will use them as if they were
interacting with a real power system with all the constraints this can imply, that is
like if they were acting in an on-line mode. These constraints will keep away the
computed solution from the optimal one but as the simulation results will show it,
it will still be able to reach “acceptable” performances.
The results presented in this section are partially taken from [EW02]. A similar
four-machine power system is used in [GEW02] to illustrate the use of RL algo-
rithms (in an off-line mode) to compute the control law of a dynamic brake.

9.2.1 The four-machine power system

2
C7

G2 G4

6 7 9 10 11 3 G3

L7 L9 C9
4

TCSC
G1 1 5

Figure 9.1: A four-machine power system

The four-machine power system used here is represented on figure 9.1 and its char-
acteristics are largely inspired from [Kun94]. When this power system operates in
steady-state conditions, the machines, identified by the symbols

� �
,

� � , � � and
� �

, produce approximately the same power :
�����

MW and the two loads
� �

and



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 205

� �
consume respectively

� ���
and

� � ���
MW. This repartition of the active power

production and consumption causes a power transfer of about
� �*�

MW in the cor-
ridor connecting bus

�
to bus

�
. The two lines that compose the corridor are such

that the reactance of the one on which the FACTS is installed is twice as large as
the other.
The loads are modeled according to the exponential model :

� � � �
�
�
�

�

� � � � �
�
�
�
�

�

� �
(9.2)

where the subscript � identifies the values of the respective variables at the initial
operating conditions (for example � � of the load

� �
is equal to

�����
MW).

Each machine of this power system is modeled in the same way with
� 


state vari-
ables :

�
that correspond to the electrical model, � to the mechanical variables (the

rotor angle and speed), � to the AVR and
�

to the turbine (including the governor).
The type of FACTS used is a TCSC which can be considered as a variable reactance
placed in series with a transmission line. The reactance of the TCSC, denoted by�

FACTS, responds to the first order differential equation :

� �
FACTS
� � �

�
ref �

�
FACTS

� FACTS
(9.3)

where
�

ref represents the FACTS reactance reference and where � FACTS has
been chosen, in accordance with the technical specifications of such a FACTS de-
vice equal to

��� � � [HG00, Gha00].
The control variable for this system is

�
ref and it supposed to belong to the interval� � � ��� 
 � � � � � � � . A value of � � ��� 
 � � for
�

FACTS corresponds approximately to
a � � �

compensation of the line on which the FACTS is installed.
We will limit the control problem to the stability domain of this four-machine power
system. The state space

�
is then composed of all the states that belong to this

stability domain plus a terminal state
� 

that is reached if the power system goes
outside the stability region (see section 9.2.3, for further details on how we deter-
mine, on the basis of local measurements, whether the system has left its stability
domain).

9.2.2 Control problem definition

Discrete-time system dynamics

The four-machine power system has continuous-time dynamics which has been
briefly described previously. Discrete-time control on such a system means that we



206 CHAPTER 9. REAL WORLD CONDITIONS

have to set at each
�

the evolution of the FACTS reactance reference during the time
interval

� � � � � � �
. The time between

�
and

� � �
is chosen equal to


�� � � . For the
sake of simplicity we will constrain

�
ref to be constant on this time interval

�
.

If we denote an element of the control space by the value of
�

ref to which it
corresponds, we can then state that � � � � � ����
 � � � � . Moreover we have for this
control problem

� � � � � � � � ��� � � � �  � .
Controller input signal (observations)

In order to enable the proper operation of the reinforcement learning algorithm in
on-line mode all the quantities used by this algorithm must be defined on the basis
of real-time measurements that are used as input to the controller and to the learn-
ing agent. Since we want a local control algorithm we need to use measurements
available close to the location of the FACTS device.
We choose here a minimal set of a single local measurement, namely of the active
power flow through the line on which the FACTS is installed. This quantity is
obtained at each time step of


�� � � , and is denoted by � � � in the sequel. It is
used to define the rewards and pseudo-states used by the reinforcement learning
algorithm (including the detection of the terminal state).
Since the measurement is local we will neglect the data acquisition delay.

Rewards

Our aim is to find a reward function 
 � � � and a decay factor � such that the policy
that maximizes the expected return also leads to the damping of the electric power
oscillations in the line. This choice is motivated by the fact that damping improve-
ment of the electric power oscillations in the line can also lead to an overall increase
of the power system damping performances.
We have chosen � � � � ���

and


 � �  � �  ���  � �
�
� � � � � � � � � � � if

� 
� %

�� ��
� �*������� if

� 
� % �

�� (9.4)

where ��� � � � represents the electric (active) power transmitted through the line on
which the FACTS is installed at time

� � �
and � � represents the electric power

transmitted through this line when the system is in steady-state conditions. Jus-
tification for such choices are similar to the ones we gave when dealing with the
OMIB power system (see section 4.2).
�
When dealing with the OMIB system, the use of a non-constant FACTS reactance on the interval� � # � � +�� did not improve significantly the control law quality (chapter 4).



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 207

Note that there exist many equilibrium points for the system, one for each value
of
�

ref and therefore many values of � � . Rather than setting the value of � � at
the beginning of the learning process, we therefore estimate its value on-line (see
equation (9.6)). This choice has been adopted in order to have still an appropriate
reward definition when the power system production/consumption scheme or the
topology changes.

9.2.3 Reinforcement learning algorithm used in real conditions

In this section we will describe how the reinforcement learning algorithms aimed
to solve the control problem can be used in an on-line mode i.e., as if they were
interacting with the real power system. Among the different difficulties that such a
working mode involves, there is notably the partial observability of the system, due
to the fact that we suppose that only a local measurement of the electric power ���
transmitted through the line is available to the learning and control modules. Note
that if we manage to find a strategy to make the reinforcement learning algorithm
work well in such poor observability conditions, we can reasonably suppose that
we could only do even better if the observability conditions were better.

The pseudo-state

To define the pseudo-state that will be used inside the reinforcement learning algo-
rithms, we will use the strategy described in section 9.1.3.
Having already chosen the measurement, we take �  � ��� � and only need to define� � � and

� � � . Concerning these latter, preliminary simulations have shown that a
choice that leads to a satisfactory solution in a reasonable learning time is to take� � � � � and

� � � � � .
Thus the pseudo-state at time

�
is defined by the following expression

�
:

�  � � � � � � ��� � � � � � � � � � � �  #&% � �  # �
� �

(9.5)

Contrary to what has been said in section 9.1.3 we will consider that expression
(9.5) holds still valid if

�
equals

�
or

�
by considering that the values of ��� � � and � # '

( � � � � � ) correspond respectively to the values of the electric power transmitted
through the line and the values of the TCSC reactance reference � � 
���� � before
the reinforcement learning algorithms start interacting with the system.
�
Other definitions of the pseudo-state � � could also be used, like for example " � � � # � � � �

��� �
� � # ��� � � � � ��� �

� 	 # � � � � # � � � � ) . However these were not investigated.



208 CHAPTER 9. REAL WORLD CONDITIONS

Terminal state definition

In order to compute rewards and decide when the learning episodes should be
ended, we need a criterion to detect the loss of stability.
We decided to use a pragmatic criterion, based only on the local measurements
available to the reinforcement learning algorithm.
More precisely, we will suppose that the loss of stability of the system manifests
itself when large excursions of the electric power � � begin to appear (which is the
case in the simulations we have carried out). When

� � � � � will be greater than � 
��
MW

�
, we will consider that the system has gone outside its stability domain and

therefore set �  equal to
� 

(the terminal state of the system) rather than define it
through equation (9.5). When this terminal state is reached, we consider that a
blackout has occurred, and the RL algorithm stops interacting with the system. The
RL algorithm starts acting again when the power system has been brought back for
some duration to normal operating conditions.

Real-time reward computation

At each
� � �

we must be able to compute the reward 
  as defined by equation
(9.4) by using only the local measurements we have realized. We have just seen
that we considered that the state

� 
was reached when the electric power transmitted

through the line was larger than � 
�� MW. Then if
� � � � � �

�
is larger than � 
�� MW,

the value of 
  is set to � ��������� . If
� � � � � �

�
is smaller that � 
�� MW, one has to know

not only � � � � � to compute 
  but also � � . To realize an on-line estimation of � � ,
we suppose that ��� corresponds to the average value of � � transmitted through the
line and then compute it by averaging the successive values of � � measured. In
all the simulations that will be described hereafter, the � � estimate used in the 
 
computation will be given by the expression :

�
� � ���

% % � ��
� ( �

��� � � � � �

�
(9.6)

The reason for using only the value of � � measured in the last
� � ��� � 
�� � � � ��� �

to estimate � � rather than all values of � � available is to provide the algorithms
with some adaptive behavior, which is preferable when the power system operating
conditions change.
Note that the way ��� is defined consists of having a reward function that does not
depend only on the system state and the current action taken but also on the history
�
The electric power transferred in the line when the system is in steady-state conditions and the

TCSC is acting at full range of its capacity is equal + � � ��� + MW.



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 209

of the actions taken by the reinforcement learning algorithms and the states met.
Strictly speaking, the optimal control problem treated is then different from the one
stated in chapter 2.

State space and control space discretization

The reinforcement learning algorithms have to interact with a system for which the
sets � and � contain an infinite number of elements. To deal with such infinite
sets, one has at one’s disposal two kinds of techniques, the representative states
technique and the aggregation technique. Nevertheless we will use in the simula-
tions only the latter one

�
.

The � � finite set definition that this technique requires will be chosen in the RL al-
gorithms as being either equal to � � � ��� 
 � � � � � � �*� � � � � � ��� � � � 
 � � � � � � � (referred
to as ��� � � 


in the example) or to � � � ��� 
 � � �$� � � ��� � � � � (referred to as � � � �
in the examples). With such a choice for the � � sets it can be said that the control
variable � has been discretized using a constant discretization step of �
� � � � 
	� � �
( � � � � 


) or of �	� � � � � � ��� ( ��� ��� � ).
Concerning � , it must be noted first that due to the fact that we are going to
use an Action Selection module that will always select an action belonging to
� � , �  � � � � � � � � � � � � � � � � � � �  #&% � �  # �

�
will necessarily belong to

� � � 
�� � � 
�� � �� � � 
�� � � 
�� � � � � � 
�� � � 
�� � � � � � � � . The aggregation technique requires to de-
fine a finite number of disjoint subsets � ' (the equivalent of the

� ' subsets) such
that �  always belongs to one of these subsets (to each of these subsets is going to
correspond an element of � � (the equivalent of the set

� � )).
Each of these subsets we are going to use can be defined by such an expression :

� � � 
�� � � �	� � � � � 
�� � � � � � � �
� � � � � � � 
�� � � �	� � � � � 
�� � � � � � � �
��� �� � � � 
�� � � �	� � � � � 
�� � � � � � � �	� � � � � � � � � � � � �

where �	� � can be seen as the discretization step according to � �
�
, � � � � � � � �

and � � � � � � � � � � � ����� � � � � � � � � � with
� � � � � � � equal to the smallest integer

such as the condition
� � � � � � � � � � ����

� �
�

is verified. In the simulations we will
study two variants for the value of �	� � . In one case it will be chosen equal to



�
The section objective is not to illustrate which technique (aggregation technique or representative

states technique) is the best but rather to show that RL algorithms can be applied on a more complex
power system than the OMIB system already studied. We preferred the aggregation technique to the
representative states technique because it is easier to use.


The same discretization step has been used whatever the value of � � �
�

�
( � - � 0 #�+ # � � ) we refer

to. Another strategy would have been to take a discretization step varying with � .



210 CHAPTER 9. REAL WORLD CONDITIONS

MW (referred to as �	��� � 

in the examples) and in the other to � � 
 MW (referred

to as �	� � ��� � 
 in the examples).

Learning modules

Concerning the Learning module used, it will be either composed of a model based
technique that uses a Kalman Filter like algorithm as Estimation of the MDP � struc-
ture module and a Prioritized sweeping algorithm as Resolution of the MDP � mod-
ule (denoted by MB in the examples) or a non-model based technique that uses a�

-learning algorithm with � � � � �
(denoted by NMB in the examples). Whatever

the Learning module, the
� � -function will always be initialized to

�
everywhere.

Action selection module

The action selection module used will be an � -Greedy policy with � � � ��� �
. Note

that the value of � has been chosen sufficiently small to benefit almost completely
from the estimate of the optimal control law already computed. When the estimate
of the optimal control law has converged, one could set this value equal to

�
because

no exploration would be needed anymore. However, because we consider that the
power system operating conditions can change (and therefore the optimal control
policy) we always keep � �� �

.

Assessment of the quality of the obtained policies

Given the huge size of the pseudo state space and the practical impossibility to
initialize the system in a controlled way at an arbitrary point of this state space,
the score measure defined in chapter 4 to assess the control policies can not be
transposed to the present simulations.
Therefore, we define an alternative score measure based on the obtained policy’s
return at time

�
computed as follows :

�  � �
��
' (  �

' #  
 ' � %
�

(9.7)

At a given time instant this quantity is actually obtained with some delay by ob-
serving the rewards obtained at a certain number of subsequent time-steps (i.e. until
�
' #  becomes negligible).

As we will observe, by computing this value at each
�

while interacting with the
system, we will still be able to get an idea of how good the policy learned by the
RL algorithm is.



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 211

In the next four subsections we will describe how the RL algorithms we just de-
scribed behave while interacting with the power system. To simulate the power
system we have used the Simulink models [Mat].

9.2.4 Case I : control of the stable equilibrium point

155.

150.

145.

140.

135.

0.0 10. 20. 30. 40. 50. 60.  � � �

�
�

Figure 9.2: The system operates in steady-state conditions. The RL algorithm takes
control of the TCSC at

� � 
 � .

We suppose that the TCSC is working like a fixed capacitor at full range of its
capacity (

�
FACTS � � � ��� 
 � ) and that the power system is in steady-state con-

ditions. In such conditions the electric power transmitted through the TCSC is
constant and equal to

�	� � ��� �
MW. Then, at one instant, the reinforcement learning

algorithm (MB, �
��� � 

MW, � � � � 


) enters into action to control the TCSC.
Notice that the best control strategy one could adopt would be to choose � always
equal to � � ��� 
 � because by proceeding this way the electric power transmitted
through the line would stay constant and the reward obtained would be maximal
(indeed � � � � � and � � would both be equal to

� � � ��� �
MW and the reward 
  would

be equal to
�
).

But the reinforcement learning algorithm adopts another strategy. Indeed, the first
pseudo-state used inside the RL algorithm is equal to

� � � � � � � ��� � � � � � ��� � � � � � ��� � � � � ��� 
 � � � � ��� 
 � � �

Due to the fact that
� � � � � � � � �

,
� � � � �

� � �
� � � � , and that an � -Greedy policy

is being used, the value of � imposed by the Action Selection module is chosen at
random among � � . Thus the RL algorithm will certainly in a first time drive the
system away from its stable equilibrium point. The question is how far and how
long it will drive the system away from this equilibrium point.



212 CHAPTER 9. REAL WORLD CONDITIONS

To answer this question, we have depicted on figure 9.2 the temporal evolution of
the electrical power in the line during the first 60 seconds. We see that, at time� � � � � 
 � , when the RL algorithm begins to act, its interaction with the system in-
deed creates power oscillations. Nevertheless, quite quickly the algorithm is able to
find out how to control the stable equilibrium point. Indeed after � � � these electric
power oscillations have almost disappeared. The RL algorithm thus managed to
find quite quickly a control strategy that allows the system to reach again the stable
equilibrium point and stay in steady-state conditions.
Notice that, after

� �
of interaction, the number of pseudo-states of � � that have

actually been visited is equal to � � � , which is only a very small percentage of the
total number of such states, which is here equal to about � 
 � ��� �

.

9.2.5 Case II : damping of self-sustained power oscillations

125.� 

130.� 

135.� 

145.� 

150.� 

155.� 

160.� 

165.� 

0.0� 2.5� 5.� 7.5� 10.� 

140.� 

 � � �

�
�

Figure 9.3: Representation of the self-sustained electric power oscillations

We first consider the case where the TCSC is working like a fixed capacitor at
full range of its capacity (

�
FACTS � � � ��� 
 � ) but where the system dynamics

has been (slightly) modified so that the initial stable equilibrium point becomes an
unstable equilibrium point. This has been achieved by changing the parameters of
the AVR of the machines

� �
,

� � . Due to the unstable aspect of the equilibrium
point, the system will be driven away from it and electric power oscillations will
begin to grow. Saturation on the machines’ field voltage will however limit the
magnitude of these oscillations. Hence, after a certain time a stable limit cycle
appears. The evolution of � � over a period of

��� � when the limit cycle has been
reached is illustrated on figure 9.3.
Starting with this behavior, at a certain point in time, the reinforcement learning
algorithm (MB, �
��� � 


MW, � � � � 

) enters into action to control the TCSC,



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 213

125.� 

130.� 

135.� 

145.� 

150.� 

155.� 

160.� 

165.� 

0.0� 2.5� 5.� 7.5� 10.� 

140.� 

�
�

 � � �

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

0.0� 2.5� 5.� 7.5� 10.� 

�

 � � �
(a) � � � � (b) � � �

Figure 9.4: After ten minutes of control

in order to try to progressively reduce the amplitude of the limit cycle. For example,
figures 9.4a and 9.4b show the evolution of the electric power transmitted through
the line ( ��� ) and the control action taken (i.e. the value of � ) over a period of

�*� � ,
after

��� � � � of learning control (the reinforcement learning algorithm has imposed
each


�� � � the value of � for already
�*� � � � ). We observe that the magnitude of

the � � oscillations is still very large and that the evolution of the action � seems to
be driven by an almost random process. The control algorithm has not yet learned
sufficient knowledge about the control problem to act efficiently.

125.� 

130.� 

135.� 

145.� 

150.� 

155.� 

160.� 

165.� 

0.0� 2.5� 5.� 7.5� 10.� 

140.� 

�
�

 � � �

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

0.0� 2.5� 5.� 7.5� 10.� 

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

0.0� 2.5� 5.� 7.5� 

�

 � � �
(a) � � � � (b) � � �

Figure 9.5: After one hour of control

After
� �

of control (see figure 9.5a), however, the electric power transferred in the
line starts being well damped. At the same time, a more organized structure appears
in the sequence of control actions taken (see figure 9.5b).
After


 �
of control (see figures 9.6a and 9.6b), the results are further improved.



214 CHAPTER 9. REAL WORLD CONDITIONS

125.� 

130.� 

135.� 

145.� 

150.� 

155.� 

160.� 

165.� 

0.0� 2.5� 5.� 7.5� 10.� 

140.� 

�
�

 � � �

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

0.0� 2.5� 5.� 7.5� 10.� 

�

 � � �
(a) � � � � (b) � � �

Figure 9.6: After five hours of control

Now, the magnitude of the electric power oscillations has significantly decreased.
The variation of the control variable � has a periodic behavior of approximately
the same frequency (

� ��� � � ) as the electric power oscillations observed when no
control occurs. The harsh aspect of the electric power observed comes from the
discontinuous variation of

�
ref. Such behavior could possibly be circumvented by

increasing the time delay of the FACTS (image of the time needed by the TCSC
to meet the reactance reference

�
ref) or by using control variables � that do not

correspond necessarily to a constant value of
�

ref over the time interval
� � � � � � �

.

Policy quality evaluation and variants

To determine the quality of the policy obtained at time
�
, we will compute the return

at time
�

as defined by expression (9.7) and represent the curves
�  vs

�
on a figure.

But in order to avoid difficulties to visualize the results due to the high variance of�  , we will slightly modify this value by taking its average over the next minute
(denoted by

�  ).
The curve sketched on figure 9.7a and labeled “ ��� � � 


& MB” represents the�  evolution that corresponds to the learning process we have used. As we can ob-
serve, this curve converges around a value of � �*��� rather than

�
due to the fact that

there still exist small electric power oscillations at the end of the learning period.
On this figure three other curves are also drawn. They correspond to simulations
for which the size of the control set � � has been modified and/or the type of Learn-
ing module used. This allows us to draw some observations. First we can note that
for a same � � , model based techniques always offer better results. But we can also
see that for a same type of Learning module, the larger the � � size is, the slower



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 215

the learning is but the better the solution obtained will be. Note that an increase
in � � � also increases the number of states that compose � � (remind that �  is
equal to

� � � � � � � � � � � � � � � � � �  � �  # %
�

and therefore that the number of elements of
� � increases quadratically with ��� � ).

0.0 1. 2. 3. 4.

−500.

−400.

−300.

−200.

−100.

� " � )

� 	 � * ���
NMB

� 	 � * ���
MB� 	 � *�� � MB

� 	 � *�� � NMB

� �
0.0 1. 2. 3. 4.

−500.

−400.

−300.

−200.

−100.

� " � )
� � � "�� )�*�� or � � � "�� )�* �

� � � "�� )�* �

� �

(a) � � �
� � � � � � � � � � � � � � �  � (b) � � �

� � � �� ��� � � � � � � � � �  �
Figure 9.7:

�  as a function of the learning time

The simulations reported on figure 9.7b consider another variant of the control
space, where the control selected is such that

�  � � �  #&% �
� ��� � � � �  # %

� �
� � � ����� � � � ��� 
 � � �  #&% � �
�
� �

with �
� � � 
	� � � which means that the variation of the control variable from
one instant to the other is constrained to be smaller than �	� . This smaller set of
candidate control actions has been suggested by the behavior shown on figure 9.6b,
which indeed clearly highlights that the control varies, between two successive
time-steps, at most by a value of � �
� � � �*
	� � � . Figure 9.7b compares the
two cases using the model based RL algorithm. We clearly see that the learning
speed is much higher when the reduced control space is implemented (curve labeled
“ � � �

� � � � � or � � �
� � � � � ” against the curve labeled � � �

� � � � 

).

An apparently strange by-product of this enhancement is that also the solution ob-
tained at the end of the learning period is better when taking

� �
� � � �� � � . Our

explanation is that this is actually linked to the � -greediness of the control policy :
indeed when an action is taken at random, the choice

� �
� � � � � � is “more ran-

dom” than the choice �  � � �  #&% �
� ��� � � � �  # %

� �
� � � ����� � � � ��� 
 � � �  #&% � �
�
� � ,

and hence less favorable to yield large returns.



216 CHAPTER 9. REAL WORLD CONDITIONS

9.2.6 Case III : adaptation to time-varying conditions

The power system configuration is the same as in Case II but this time the load is
not constant anymore. The load variation is cyclic with a


 �
period

�
and has been

modeled according to the equation :

�
� � � � �

� � � � � � � �
� � � � � � � � �

�

 � � �����

� � � (9.8)

where � stands for the active or reactive parts of the load (the � � and
�

� terms of
equation (9.2) ) and where �

� � �
corresponds to the � � and

�
� terms used in Case

II. Moreover, in order to follow the load, the electric power production reference
on each machine has also been modeled by equation (9.8).

0.0 1. 2. 3. 4.

−700.

−600.

−500.

−400.

−300.

−200.

−100.

� " � ) � � �
� � * + 0 �

� � * 0 �

� � * � �

� �

Figure 9.8:
�  as a function of the learning time

We handle this case by introducing a forgetting factor in the Kalman Filter like
model based learning algorithm (

� � � � � 
�� �
) and using a discretization of re-

spectively �
� � � 

and � � � � 


. Figure 9.8 represents the resulting evolution of�  over a period of
� 
 �

, by showing on the same graph three curves corresponding
respectively to :

� the first cycle of 5 hours (curve labeled
� ' � � �

) : during this cycle the
reinforcement learning algorithm is kept inactive and thus the return directly

�
We have chosen a

� �
period for the load curve rather than a

� � �
period in order to lighten

the computational burden needed to simulate these
� + state variables power system during several

periods. With a larger period, the RL algorithm would have more time to adapt itself to changing
operating conditions and the results would probably be even better.



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 217

reflects the amplitude and periodicity of the limit cycle which is higher if the
load level is higher;

� the second cycle of 5 hours (curve labeled
� ' � 
 �

) : here learning is active
and slowly improves the behavior;

� the third cycle of 5 hours (curve labeled
� ' � ��� �

) : learning is still active
and still continues to improve the behavior, by almost completely removing
the periodic component.

An important feature that can be drawn from this figure is that even after
�

cycle of
control, the RL algorithm continues improving its ability to damp efficiently elec-
tric power oscillations. The RL algorithm behaves well for this non-autonomous
system due to its capability to adapt itself fast to a new environment.

9.2.7 Case IV : damping of oscillations caused by short-circuits

175.

150.

125.

100.

75.

50.

25.

0.0 10. 20. 30. 40. 50. 60.

�
�

 � � �
Figure 9.9: Representation of the electric power oscillations caused by a

��� � �
three-phase short-circuit at bus � ���

Suppose that the system is in the same configuration as in Case I and that the TCSC
is acting like a fixed capacitor. The evolution of the electric power transmitted
through the line is constant and equal to

� � � ��� �
MW. Suddenly, a three-phase short-

circuit % �

occurs at bus � ���
i.e., close to generator

� �
. This short-circuit is self-

cleared after
����� � . It causes electric power oscillations in the line on which the

TCSC is installed; they are represented on figure 9.9 when the short-circuit occurs
at
� � � � . Due to the natural damping of the power system these oscillations

disappear after a certain time.
� �

These short-circuits cause the system to lose its time-invariance property.



218 CHAPTER 9. REAL WORLD CONDITIONS

175.

150.

125.

100.

75.

50.

25.

0.0 10. 20. 30. 40. 50. 60.

�
�

 � � � 0.0 10. 20. 30. 40. 50. 60.

50.

100.

200.

250.

0.0

150.

�
�

 � � �
(a) First time the short-circuit is met (b) Fifth time the short-circuit is met

Figure 9.10: Representation of � � � � at different stages of the learning process

Let us see whether the TCSC controlled by means of RL algorithm would be able
to speed up this damping or whether on the contrary it would worsen it. To this
end, we simulate several scenarios during which several short-circuits are applied
successively. We suppose that a learning episode is such that the first fault % % hap-
pens � minutes after the RL algorithm ( ��� � � 


, �
� � � 

MW, MB) started

controlling the TCSC and that a new fault occurs after each ten minutes. When the
system reaches its terminal state (i.e. if

� � � � � � 
�� MW) a new learning episode is
launched.

Under such learning conditions, the evolution of the electric power obtained the
first time the fault is met is represented on figure 9.10a. Compared to figure 9.9,
one can see that the damping obtained is not better. This is not surprising since the
learning of a control law able to damp these oscillations will certainly require to
meet several times the fault.

It is surprising that the fifth time the fault is met, the system is driven to instability.
This is shown on figure 9.10b where the loss of stability is declared


�� ��� 
 � after
the fault inception where � � becomes greater than � 
�� MW. Rather than damping
the electric power oscillations, the TCSC controlled by means of reinforcement
learning algorithms has done the opposite : it has increased their magnitude to fi-
nally cause a loss of stability. Such behavior is linked to the fact that the algorithms
do not have yet enough information about the system dynamics and the reward
function to control it efficiently.

� �

A fault will always consist in a
� 0 � � three-phase short-circuit at bus � + 0 .



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 219

Reducing the probability of loss of synchronism

We attempt to avoid this destabilizing behavior of the reinforcement learning algo-
rithm by making another investigation.

First let us try to understand what happens. Consider first the curve labeled “
� �

used in the DP equation” on figure 9.11, which represents the (cumulative) number
of times the system loses stability as a function of the number of times the fault
has been met. The steady growth of this curve shows that indeed the RL algorithm
drives the system many times to instability rather than producing some damping
for the electric power oscillations, even after a large number of faults have been
seen. The explanation of this behavior is linked to the way the

� � -function has
been initialized. Indeed, suppose that the state � � has already been met but that not
all state-action pairs

� � � � � � � � � � �
� � �

�
have already been visited. In that case the� �

� � �
�

value that intervenes in the resolution of the MDP � problem will be equal to�
which is the best

� � value a state can have due to the fact that the reward (as we
have defined it in these simulations) is always negative. Thus, each time that a state
is encountered for which all possible actions have not yet been taken a problem
may arise. More precisely, if in some already visited state � � , some actions have
not yet been tried out, the resolution by DP of the MDP � structure will actually lead
to a policy that tries to make the system reach such states due to the high expected� � value they are believed to have. This causes the RL algorithms to somehow do
the opposite of what is desired, because it drives the system to visit many times
areas that are close to the stability boundary, which implies of course a high risk of
loss of stability.

One way to avoid such phenomena could be to initialize the
� � -function to a pes-

simistic value rather than zero but this strategy will provide the algorithm with less
exploratory behavior at the beginning of the learning (remind that the choice of the
action is done according to the

�
-function). Of course this could be circumvented

by changing the policy used. A more elegant way to deal with this problem is to
solve the MDP � structure differently by considering in the solution process only the
state-action pairs that have already been visited. Notice that this idea has already
been discussed in section 5.3.4. If we proceed this way in the present simulations,
we obtain the curve labeled “

� � � used in the DP equation” of figure 9.11. We ob-
serve that, under the same conditions this strategy leads to a much smaller number
of stability losses (only four times, the loss of stability occurring the

��

th time the

fault is met), which is much more acceptable.

In the subsequent simulations we will always use this modified version of the DP
algorithm.



220 CHAPTER 9. REAL WORLD CONDITIONS

0.0 25. 50. 75. 100. 125. 150.
0.0

5.

10.

15.

20.

25.

Nb times

reached
� � is

� � used in the DP equation

� � � used in the DP equation

Nb of times
the fault has
been met.

Figure 9.11: Number of times the loss of stability has been observed

Policy quality evaluation

The value of
�  observed after convergence of the RL algorithm

� � before the
fault inception and


 � � afterward is represented on figure 9.12 by the curve labeled
“RL algorithm”. At the beginning of the curve, the value of

�  is very negative
because large electric power oscillations occur (see figures 9.13a and 9.13b for
the corresponding electric power oscillations representation). As the magnitude of
these oscillations decreases,

�  increases to finally equal
�

when they disappear.
On figure 9.12 we have also drawn the value of

�  we would have observed by a
policy that would consist in using � constant and equal to � � ��� 
 � , rather than the

� -Greedy policy. We observe that the results obtained when the TCSC is controlled
by the RL algorithm are significantly better.
The evolution of � that corresponds to the � -Greedy policy is sketched on figures
9.14a and 9.14b. To large oscillations of � � correspond large variations of the con-
trol variable � . When the magnitude of the oscillations decreases, the � variations
tend also to decrease. The value of the control variable imposed by the RL al-
gorithm when the oscillations have disappeared becomes constant (except when a
non-greedy action is taken) and equal to � � ��� 
 � .
Finer discretization of pseudo-states

At this point one may perhaps be disappointed by the damping produced by the
RL algorithm. But one should keep in mind that many factors can foil the results



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 221

−1000.

−750.

−500.

−250.

0.0 10. 20. 50.30. 40.

−1250.

Fixed capacitor

� "�� )� �

RL algorithm

Figure 9.12:
�  obtained after convergence of the RL algorithm compared to

� 
obtained while using a fixed capacitor. �
� � � 


MW

175.

150.

125.

100.

75.

50.

25.

0.0 10. 20. 30. 40. 50. 60.

�
�

 � � � 0.0� 2.5� 5.� 7.5� 10.� 

175.

150.

125.

100.

75.

50.

25.

�
�

 � � �
(a)

��� � window observation (b)
�*� � window observation

Figure 9.13: Representation of � ��� � after convergence of the algorithm. �
� � �

MW



222 CHAPTER 9. REAL WORLD CONDITIONS

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

10. 20. 30. 40. 50. 60.

�

 � � �0.0

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

0.0� 2.5� 5.� 7.5� 10.� 

�

 � � �
(a)

��� � window observation (b)
�*� � window observation

Figure 9.14: Representation of � � � after convergence of the algorithm. �
� � �

MW

notably concerning the way the state has been defined or even the way the infinite
set � has been discretized. For example, if a finer discretization step on � � is used
( �	� � � � MW rather than �	� � � 


MW), the results obtained and represented
on figure 9.15, 9.16 and 9.17 are slightly better. But the price to pay for these
improvements has been an increase in the learning time because the number of � �
states that have been visited by the RL algorithm is now higher. Similarly, it can
be shown that if more observations and more actions are used to define a state then
the damping quality increases as well as, unfortunately, the learning time.

−1000.

−750.

−500.

−250.

0.0 10. 20. 50.30. 40.

−1250.

� "�� )

Fixed capacitor

� �

RL algorithm

Figure 9.15:
�  obtained after convergence of the RL algorithm compared to

� 
obtained while using a fixed capacitor. �
� � � � MW



9.2. A REAL WORLD POWER SYSTEM CONTROL PROBLEM 223

175.

150.

125.

100.

75.

50.

25.

0.0 10. 20. 30. 40. 50. 60.

�
�

 � � � 0.0� 2.5� 5.� 7.5� 10.� 

175.

150.

125.

100.

75.

50.

25.

�
�

 � � �
(a)

��� � window observation (b)
�*� � window observation

Figure 9.16: Representation of � � � � after convergence of the RL algorithm.
�	� � � � MW

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

10. 20. 30. 40. 50. 60.

�

 � � �0.0

0.0� 

−10.� 

−20.� 

−30.� 

−40.� 

−50.� 

−60.� 

0.0� 2.5� 5.� 7.5� 10.� 

�

 � � �
(a)

��� � window observation (b)
�*� � window observation

Figure 9.17: Representation of � � � after convergence of the RL algorithm. �
� ���
� MW



224 CHAPTER 9. REAL WORLD CONDITIONS

Rewards obtained during the faulted configuration

Another factor that corrupts the learned control law is linked to the fact that the RL
algorithm does not distinguish the no-fault from the fault configuration, two config-
urations in which the system dynamics differ a lot. By way of example suppose that
the system is in steady-state conditions and that the TCSC works at full range of its
capacity. The pseudo-state is equal to

� �	� � ��� � � �	� � ��� � � �	� � ��� � � � � ����
 � � � � ��� 
 � � .
Suppose that while being in this pseudo-state, the three-phase short-circuit oc-
curs. This short-circuit will drive the system in state space areas where the re-
wards obtained are bad (large electric power oscillations) and the RL algorithm
will interpret these bad rewards as a consequence of being in the pseudo-state� � � � � � � � � � � � � � � � � � � � � � � � ��� 
 � � � � ����
 � � rather than due to an outside perturba-
tion. This false interpretation foils the estimate of the

�
-function. One way to

avoid such a problem is to never use the four-uples
� �  � �  � 
  � � 

� %
�

as input of the
Learning modules each time �  or � 

� % are composed of electric power values that
correspond to the fault configuration.

9.3 Summary

In this chapter we have discussed and illustrated a certain number of problems that
have to be addressed when reinforcement learning algorithms are applied to real
world control problems.
Many of our considerations being driven by applications in the context of electric
power system control, they have also been illustrated by a case study on a realistic
electric power system FACTS control problem. During this case study we could
also identify and explain some additional problems which would have been difficult
to anticipate beforehand, such as the the destabilizing effect of the initialization
of the

�
-function as well as the necessity to provide adaptive capabilities to the

learning algorithm and the effectiveness of the latter in realistic conditions.
While, obviously, there is still a lot of work to do before this methodology reaches
complete maturity, we believe that these simulations on the one hand demonstrate
the feasibility of the reinforcement learning approach in real world power system
problems, and on the other hand underline the flexibility of the overall framework.
Last but not least, we believe that the discussions of this chapter highlight the fact
that in order to successfully apply these techniques in real-world conditions it is
necessary to combine a deep understanding of the theory and algorithms behind
the approach with physical understanding of the practical problem addressed. In
this latter respect, the large scale non-linear and multifaceted power system control
problems offer a particularly interesting and challenging ground of experimenta-



9.3. SUMMARY 225

tion. In the next chapter we will discuss why these applications also offer very
strong practical motivations for new control methodologies such as those devel-
oped in this thesis.



226 CHAPTER 9. REAL WORLD CONDITIONS



Chapter 10

Power system control and
reinforcement learning

This chapter is intended for power system engineers who want to grasp the possi-
bilities that reinforcement learning methods offer to control power systems.
In this chapter, we:

� expose our viewpoint on why power system control becomes more and more
important;

� review the different elements that make up a control scheme, the new techni-
cal possibilities we have to design present-day power system control schemes
and the difficulties associated therewith;

� describe a general procedure to design such control schemes;

� present reinforcement learning methods as a way to design agents and ex-
plain how they can meet power system control needs;

� review different power system applications that have already been tackled by
using reinforcement learning methods.

10.1 Power system control : a high priority

Power system stability is the property of a power system which enables it to re-
main in a state of equilibrium under normal operating conditions and to regain an
acceptable state of equilibrium after being subjected to a disturbance.

227



228 CHAPTER 10. POWER SYSTEM CONTROL AND RL

All around the world power system stability margins can be observed decreasing.
The reasons are multiple. We only point out three main reasons.

� The inhibition of further transmission or generation constructions by eco-
nomical and environmental restrictions. In many power systems, system
capacity has not kept pace with population growth or increased per-capita
use of electricity (load increase). As a consequence, transmission and gen-
eration must be operated closer to their limits, with smaller security margins
[Wil97, Kun00, oAGoSC97].

� The restructuring of the electric power industry. Restructuring processes are
performed in some power systems in order to implement competition at the
generation level, by unbundling vertical utilities into independent generation,
transmission and distribution companies. The unbundling processes decrease
the stability margins due to the fact that power systems are not operated in a
cooperative way anymore. It notably implies that generation companies can
operate in a way that threatens system security [DeM98].

� The multiplication of pathological characteristics when power system com-
plexity increases. Complex power systems exhibit many complex physical
behaviors that can lead to dramatic consequences. By way of examples we
can cite the risk of large scale oscillations originating from nonlinear phe-
nomena, frequency differences between weakly tied power system areas, in-
teractions with saturated devices, interaction among power system controls,��� �

[DeM98, oAGoSC00].

Beyond a certain level, the decrease in power system stability margins can lead to
unacceptable operating conditions and/or to frequent power system collapses. One
way to avoid these phenomena i.e., to increase power system stability margins, is
to control power systems more effectively.

10.2 Power system control : a generic description

All power system control schemes are characterized by three basic elements :

� the device(s) that is (are) utilized to influence the power system dynamics. It
can be a breaker, the excitation system of a generator, a FACTS,

� � �
� the agent(s) that controls (control) the device(s). It can be the logical rule

that switches on/off a breaker, a computer that determines new generation



10.2. POWER SYSTEM CONTROL : A GENERIC DESCRIPTION 229

patterns from the analysis of system security margins with respect to credible
contingencies, a PID controller,

� � �
� the observations realized on the power system and sent to the agent(s). These

carry information about the system topology, voltage at some buses, fre-
quency of the system,

� � �

Power System

Agent

(can be considered as belonging to the power system)

physical influence

action

physical influence

observations
Agent

action

action

Agent

Device

Device

Device

Figure 10.1: Power system and control : observations, agent, action, device and
physical influence

On figure 10.1 we have sketched some power system control schemes. Observa-
tions are realized on the power system and transmitted to agents that process them
in order to control appropriately the devices they are responsible for.
The main features of power system control schemes are as follows.

� Many agents can control the same device. An Automatic Voltage Regulator
and a Power System Stabilizer can be mentioned as example. Both these
agents control the generator excitation system. The AVR is aimed to modify
the excitation for the generator output voltage (or the voltage at another loca-
tion of the power system) to reach a specified value while the PSS function
has to control the generator excitation system to provide positive damping
torque to power swing modes.



230 CHAPTER 10. POWER SYSTEM CONTROL AND RL

� A same agent can control many devices. This is notably the case for an agent
responsible for system separation upon detection of an impending instability
since system separation can imply to open many lines, possibly combined
with load shedding.

� All agents do not observe the same information. The reason why all the ob-
servations realized on a power system are not transmitted to a single agent
that would control all the devices is double. Firstly, such a centralized con-
trol scheme would be particularly vulnerable to communication problems.
Secondly, some power system phenomena need the devices to react in a time
inferior to the one needed to transmit data over long distances.

� Agents can communicate with each other. This is notably true in relay coor-
dination. When a relay (the relay plays the agent role and breakers are the
devices it controls) identifies a “target”, it transmits “transfer trip” signals to
other relays. Relays that receive these transfer trip signals can use them to
either initiate or block actions [PT88].

Today there are many new possibilities to implement control schemes at our dis-
posal, a few of which are highlighted below.

� New control devices that can influence the power systems dynamics. These
new devices are mainly linked to the power electronics (SVC, TCSC,

� ���
).

� Better communication capabilities and data acquisition techniques so that
agents can get a better observability of the environment and send control ac-
tions to remote control devices (possibility of centralized controllers). Among
the most striking improvements in data acquisition techniques there are the
Phasor Measurements Units (PMU). These PMUs provide extremely accu-
rate stamping of the power system information by using the Global Posi-
tioning Satellite (GPS) time signal [Pha93]. Therefore phase measurements
coming from remote places of the power system can be used. These are
particularly welcome for control schemes aimed to damp power system os-
cillations between two areas of a power system.

� Better computational capabilities. The increase in computer capabilities al-
lows the realization of more complex studies to design control schemes.
It also makes feasible the building of more intelligent agents that use vast
amounts of computation to process the observations. To set an example, one
can imagine that after a disturbance inception, an agent would simulate the
system faster than the real time phenomena, in order to determine whether the



10.3. DESIGN OF CONTROL SCHEMES : A SYSTEMATIC APPROACH 231

system is going to be unstable or not. If the agent finds out that the system is
driven to instability, it could compute the appropriate corrective actions that
would save the power system stability. However for fast instability phenom-
ena (like transient stability phenomena) for which the instability can occur a
few hundred milliseconds after the fault inception, such procedures are still
out of reach of today’s computers capabilities.

All these new technological advances give the opportunity to realize more effi-
cient control schemes. But they also increase the burdens associated to the control
schemes design task because it implies the choice of the best one of the many pos-
sibilities that are offered. In this respect the power system swing modes damping
problem can be mentioned. Solutions commonly used consisted in adding PSS
to the generators. These PSS were using local measurements and were usually
designed by studying the power system behavior around some equilibrium points
(linear analysis of the power system). Nowadays there exist many possibilities to
solve this problem. One can for example use global measurements as PSS input,
install FACTS devices at appropriate locations, design the PSS by using more so-
phisticated methods than the ones linked to the linear analysis,

� � �
.

10.3 Design of control schemes : a systematic approach

The design or improvement of a control scheme is generally triggered by the fact
that some power system weaknesses have been identified (either by simulation or
by observing the real power system). When this happens, an appropriate family of
candidate control schemes possibly able to counteract them has first to be identi-
fied. Then, among these candidate schemes a particular one has to be identified as
the solution to be implemented in the field. Let us formalize this procedure in a
systematic way.
Basically, to design a control scheme, we start with at our disposal a set of obser-
vations

�
and a set of devices � (these devices already exist or can potentially be

installed at particular locations of the system under consideration).
Let CS

� � � � � % �
�
% �

�

%
� � ����� � � � � � � � � � � � � represent an � -agent control scheme,

where � ' and
� ' are subsets of respectively

�
and � , and where each

� ' denotes
one agent that processes the informations contained in � ' to control the devices
comprised in

� ' .
To decide whether one such a multi-agent control scheme is better than another
one, several factors must be taken into account : their ability to counteract the
power system instability, their cost of implementation, their technical feasibility,
their reliability,

��� �



232 CHAPTER 10. POWER SYSTEM CONTROL AND RL

To identify the best control scheme, one should (in principle) iterate on all the pos-
sible combinations � � � % �

�

%
� � ����� � � � � � � � � � , identify for each one the best combi-

nation of controlling agents
�
% � ����� �

� � , evaluate each scheme and sort out the best
one.
Clearly, in any realistic application the number of possible control schemes is vir-
tually infinite. But it is also true that, in most cases, some engineering knowl-
edge, cost considerations and technical constraints can help to strongly reduce the
number of candidate combinations � � � % �

�

%
� � ����� � � � � � � � � � on which one would

actually have to iterate.
Note however that the design of the agents

� ' can reveal itself to be much more
difficult. There are indeed several reasons for this.

� Power systems becoming more and more complex (increase in size, multi-
plication of the number of components linked to the power electronics,

� � �
), some of the simplifying assumptions and intuitive reasonings usually done
to design agents (based on some strong assumptions on the power system
dynamics) do/will not hold true anymore. This problem could be overcome
by relying more heavily on power system simulations.

� One must ensure that the control schemes do not decrease the performances
of other control schemes or even create stability problems that did not exist
before.

� Control schemes are usually designed from a power system model. Even if
good power system models exist, they never represent truly the real power
system. Strong assumptions are done in the way they are modeled [PS02].
The agents must therefore be robust in order to be able to act correctly even if
there exist some discrepancies between the model and the real power system.

� If the control schemes work well for some topologies or some operating con-
ditions of the power system, nothing guarantees that they will behave ade-
quately for other power system configurations. To overcome this problem,
one can design the agents such that their control strategy is robust. Another
solution consists in designing the agents such that they adapt themselves to
the changing environment. Agents installed on a power system that have a
changing behaviour do usually rely on outside interventions to change their
input-output relations. When dealing with new operating conditions, new
computations are done at a higher level (like computations done by a higher
level agent) and new control laws are sent to agents.



10.4. REINFORCEMENT LEARNING AS A TOOL TO DESIGN AGENTS 233

� The disturbances (short-circuit, sudden loss of a transmission element,
� � �

)
that occur on a power system are unpredictable to a large extent. Therefore
the design of the control scheme must be realized by using a set of plausible
disturbances. Because these disturbances rarely match the real ones, the need
for robust agents is further enhanced.

Actually, the methodology based on reinforcement learning developed in this thesis
provides a systematic approach to design such controlling agents. This is discussed
in the next section.

10.4 Reinforcement learning as a tool to design agents

Reinforcement learning methods can be seen as a panel of methods that allow
agents to learn a goal oriented control law from interaction with the system. The
reinforcement learning driven agents make observations on the system, take ac-
tions and observe the effects of these actions. By processing the experience they
accumulate from interaction with the system they learn an appropriate behavior (or
control law) i.e., how to associate suitably actions to the observations realized in
order to fulfill the specified objective. The more experience they accumulate, the
better the quality of the control law they learn. The learning of the control law from
interaction with the system, the goal oriented aspect of the control law and the abil-
ity to handle complex control problems are three distinguishing characteristics of
reinforcement learning methods.

10.4.1 Two modes of application

We have sketched on figure 10.2 the two modes of application for reinforcement
learning introduced in the preceding chapter. They are further discussed below.

On-line mode

The on-line mode of application consists in using the reinforcement learning driven
agent directly on the real system. This mode of application is sketched on figure
10.2a. Its main drawback originates from the fact that at the beginning of the inter-
action no experience is available to the RL driven agent to control adequately the
system. This absence of knowledge can lead the agent to control badly the system
(i.e. to be unable to fulfill well its objective) and therefore jeopardize its stability.
One solution to this problem is to use first the agent in a simulation environment.
Another solution is to use the RL driven agent in combination with a “traditional



234 CHAPTER 10. POWER SYSTEM CONTROL AND RL

Agent

Action Observations

Real system 

Action

Simulation model

Agent

Scenarios

Observations

fulfillment
objective

Observations
control strategy

(a) On-line mode (b) Off-line mode

Figure 10.2: Two modes of application

control law” that can already ensure a “good” power system behavior and to switch
to the learned control law only when its quality becomes sufficient.

Off-line mode

In an off-line mode, the RL driven agent interacts with a simulation model of the
system (figure 10.2b). Once the agent behavior is sufficiently good,

� one may extract the control law it has learned in order to implement it on the
real system. If no further learning occurs on the real system (the control law
learned in the simulation environment is used at such), the observations the
agent using the learned control law needs can be lesser than the ones required
by the RL driven agent in the simulation environment. Indeed it can get rid of
the observations needed to quantify how good it fulfills its objective. These
observations are identified as “Observations objective fulfillment” in figure
10.2b and the ones used for the control strategy (i.e. the observations needed
to identify a situation to which control actions are associated) as “Observa-
tions control strategy”. As way of example, suppose that a PSS is aimed to
damp inter-area oscillations. The observations needed to quantify the objec-
tive fulfillment could be the frequency in each area while the observations
used to map situations to action could be limited to local measurements;

� one may implement the RL driven agent on the real system where it will
benefit from the experience it has acquired in the simulation environment and
still be able to improve its behavior from interaction with the real system.



10.4. REINFORCEMENT LEARNING AS A TOOL TO DESIGN AGENTS 235

10.4.2 Usefulness of RL methods to power system control

Reinforcement learning methods can reveal themselves to be an interesting tool for
power system agents design for several reasons enumerated below.

� These methods work without making any strong assumptions on the power
system dynamics. Their only requirement is to be able to interact with the
system. These methods can therefore be applied to design all practical types
of control schemes.

� The control law these methods learn are closed-loop control laws known to
be robust. This closed-loop aspect is important notably when the real power
system is facing random perturbations that were not accounted for in the
simulation model. While a closed-loop control (or feedback) law will tend to
correct automatically for these, an open-loop (or precomputed) control law
takes no account of them.

� If the learning occurs in an on-line mode, there is no need for a power system
model. This is particularly interesting when it is difficult to model the power
system or when some phenomena are difficult to reproduce in a simulation
environment % .

� Even if some learning occurs first in an off-line mode, the additional learning
that takes place on the real system can improve the learned control law by
adapting it to the real system.

� RL methods open avenues to adaptive control since the RL driven agents
learn continuously and can therefore adapt to changing operating conditions
or change of power system topology.

� RL methods can be used in combination with traditional control laws to im-
prove their performances. As way of example, they could be used to deter-
mine parameters of control laws obtained by realizing a linear analysis of the
power system in which case the RL driven agent does not control directly
the device but well some parameters of another agent (representing the linear
control law) responsible for the device control.

� They open avenues to the design of a vast panel of intelligent agents that
could help operators to run efficiently a power system.

�

Notice nevertheless that it would be difficult to convince a utility to install and use a new class of
control device in situations in which it is hard to reproduce the phenomena in simulation and hence
demonstrate the efficacy and safety of the control in simulation.



236 CHAPTER 10. POWER SYSTEM CONTROL AND RL

10.4.3 Multi-agent systems

When many RL driven agents interact at the same time with a system, each of
them will try to act in order to fulfill at best its own objective as reflected by its
own reward signal. If the agents have divergent objectives they may enter into
competition. However, if each power system agent has roughly the same objective
i.e., to enhance power system stability, these competitions between agents can be
naturally limited. The key aspect for making all the RL agents work well together
is to be able to specify their goals such that satisfaction of one agent goal does not
prevent some others to reach theirs

�

.

10.5 Some problems already tackled by RL methods

The power system control problems that have already been tackled by using re-
inforcement learning methods can be classified into two categories. The first one
concerns the controllers that act continuously, like an Automatic Voltage Regula-
tor (AVR), a Power System Stabilizer (PSS), a turbine speed regulator, a FACTS
device controller, an Automatic Generation Control (AGC)

��� �
The second one

concerns controllers that act only to avoid power system breakdown after unfore-
seen events, such as a very rapid load increase or a severe fault that occurs during
stressed operational conditions. These controllers are referred to as System Protec-
tion Schemes (SPS) � [38.01] and the actions they take to counteract power system
instability phenomena are for example generation shedding, turbine fast-valving,
gas turbine start-up, load shedding, braking resistors, tap changers blocking

� ���
When dealing with continuously acting controllers, the amount of experience the
agents can gather from interaction with the real power system can be sufficient to
use the RL driven agents in an on-line mode. This is not the case anymore with
the System Protection Schemes since they rarely enter into action and therefore
produce little “real experience”.
Hereafter we review some of the applications that reinforcement learning methods
have already met in each of these categories

�
.

�

The conflicts of interests that may occur between RL driven agents having different objectives
have been used to model the different actors of a power system in a simulator known as SEPIA
[HBWS00]. In this simulator, the agents representing the generator companies have a reinforcement
learning module to help them to make price decisions when responding to requests for quotes. Gener-
ator companies make their price decision so as to maximize their individual payoff without worrying
about the payoffs obtained by other companies.%

Also known as Special Protection Schemes�
RL applications to power system control are still in their infancy. Many of the works reported

hereafter have been realized at the University of Liège in the service of Stochastic Methods.



10.5. SOME PROBLEMS ALREADY TACKLED BY RL METHODS 237

10.5.1 Continuously acting controllers

Control of a TCSC

Results obtained by controlling a TCSC by using RL methods are reported in this
work as well as in two papers : [Ern01] and [EW02].
In all these works, the RL driven agent controls the TCSC in order to damp electri-
cal power oscillations in the transmission line on which it is installed.
The main conclusions that can be drawn from these works are :

� observations that the RL driven agents need to control successfully the TCSC
can be limited to local measurements

� they are able to handle non-linear phenomena

� they provide robust control strategies

� when used in an on-line mode the RL driven agents first need to acquire some
experience in an off-line mode to avoid the endangering of the power system
stability.

The automatic generation control problem (AGC)

Another application of RL methods to continuously acting controllers is done in
[ARS02]. The authors reformulate the automatic generation control (AGC) prob-
lem as a stochastic multistage decision process and solve it in an on-line mode by
using RL algorithms.

10.5.2 System Protection Schemes

Usually these system protection schemes are designed heuristically by using trial
and error methods and result in open-loop control rules. These open-loop control
rules act in a case-based way (e.g. if one transmission line is lost then two genera-
tors are tripped) and do not take into consideration the real state of the system that
is reached after the fault.
Due to the fact that RL driven agents compute closed-loop control laws (they learn
how to map situations to actions) they can take into consideration the real system
state that is reached in the post-fault configuration. Moreover, the closed-loop na-
ture of the control law will make it much more robust.
Among the applications of RL algorithms used to System Protection Schemes de-
sign one can mention two works reported in [DEW00] and [GEW02]. In the first



238 CHAPTER 10. POWER SYSTEM CONTROL AND RL

article RL algorithms are used to design a generation tripping scheme for the Brazil-
ian power system and in the other one they are used to demonstrate their ability to
control a dynamic brake. The content of these two papers is briefly discussed here-
after.

Generation tripping

The power system considered is the Brazilian power system and the generation
tripping scheme is implemented at the Itaipu power plant. It is an hydraulic power
plant with

�
machines of

� ���
MW. The power plant is connected to the South part

and the South East part of the power system through long transmission lines. When
a severe contingency occurs, like a short-circuit followed by the loss of a transmis-
sion line, all the

�
generators reach within a few hundred milliseconds their speed

limit and are disconnected due to overspeed protection. The sudden loss of

 �����

MW of generation power can endanger the whole system integrity. The aim of the
closed-loop control law computed by using RL algorithms is to associate to the an-
gle and speed (angle and speed of the machines are the observations used by the RL
driven agents) of the hydraulic power plant generators control actions that consist
in shedding some machines before they reach their speed limit. Rather than los-
ing all the generators, only a few ones are shed, which diminishes the contingency
effects.
The control law computed by means of RL algorithm has the main advantage to
shed a number of generators proportional to the actual contingency severity and
not to the severest contingency unlike in the case with the SPS presently installed.

Dynamic brake

The power system used is an academic four-machine power system whose main
characteristics are reported in [Kun94].
The agent that controls the dynamic brake has a threefold objective : to damp
large electromechanical oscillations, to avoid the loss of synchronism between the
generators when a severe incident occurs and to limit the time the dynamic brake is
switched on.
The learning is realized by assuming that the system can be decomposed into two
areas such that the machines swing coherently inside each area and that one area
swings against the other. The RL driven agent uses as observations an image of the
frequency difference between the two areas. The control law obtained fulfills the
objectives and is even able to control the system successfully when some incidents
unseen during the learning phase are encountered.



10.6. SUMMARY 239

10.6 Summary

In this chapter we have first considered the problem of power system control from a
very general point of view, discussing the needs for more effective control systems
and the interest of systematic methodologies to help designing them.
The second part of the chapter is a “plaidoyer” for the use, in this context, of the
reinforcement learning approach investigated in this thesis.
We would like here to apologize for those works which we have forgotten to cite in
our short, and certainly not exhaustive, review of some publications, and reinsist
that we are quite concious of the fact that reinforcement learning is only one of the
many “hammers” that can be used to handle our “nail”.



240 CHAPTER 10. POWER SYSTEM CONTROL AND RL



Chapter 11

Conclusions and future prospects

11.1 Closure

A main objective of the research reported in this thesis has been to explore how re-
inforcement learning methods can be used to solve power system control problems
and to show the technical feasibility of these methods.
We have seen that these methods have two classes of applications to power system
control. The first one consists in using these reinforcement learning methods to
design intelligent agents that interact directly with the real power system and learn
from this interaction how to control it. These agents learn continuously and are
therefore able to adapt their behavior to changing operating conditions and mod-
ifications of the power system structure. Moreover, as the learning is performed
on the real system, there is no need to worry about the accuracy of a power sys-
tem model. This first class of applications has met one main difficulty, namely, the
reinforcement learning driven agents could drive the system to unacceptable oper-
ating conditions at the beginning of learning due to the lack of information they
had about the power system. Nevertheless, some solutions have been proposed to
overcome this difficulty. The second class of applications was related to the use
of reinforcement learning algorithms in a simulation environment and to the im-
plementation of the control law they have learned on the real power system. We
highlighted the many advantages of these learned control laws. Among them we
mention their ability to handle non-linear phenomena and their natural robustness.
The reinforcement learning methods have been presented as methods, which allow
one to learn the solution of optimal control problems from interaction with the sys-
tem. The solution of the optimal control problems taken into consideration could
be characterized by a

�
-function defined on the state-action pairs set. The learning

241



242 CHAPTER 11. CONCLUSIONS AND FUTURE PROSPECTS

consisted in determining this
�

-function from interaction with the system. We ex-
plained the difficulties to learn this function when the state space and/or the control
space are infinite. The strategy adopted to overcome these difficulties was to use an
approximation architecture to represent the

�
-function and to learn the parameters

of this approximation architecture. Two types of approximation architecture have
been studied as well as many algorithms that allowed to learn the parameters. These
algorithms can be classified into two families. The first reconstructs the structure
of a finite MDP and uses its solution to compute the value of the approximation
architecture parameters while the other one learns the parameters directly.
After having applied the different RL algorithms to control a TCSC installed on the
OMIB power system, we have used them to design intelligent agents aimed at con-
trolling a TCSC installed on a much larger power system. Although many technical
constraints have been taken into account, notably the ones linked to the state partial
observability and the learning time, the results obtained were very encouraging.

11.2 Problems, solutions and future research prospects

In this section we review some of the problems addressed in this thesis as well as
the proposed solutions. We also discuss some future research prospects.

� Resolution of a finite state space optimal control problem % with known system
dynamics and reward function (labeled as Problem I in the Introduction).
This problem has been treated in chapter 2 by using classical DP algorithms.

� Resolution of an infinite state space control problem with known system dynam-
ics and reward function (labeled as Problem II in the Introduction).
In chapter 3 two techniques that we named the aggregation technique and the rep-
resentative states technique have been introduced to solve this type of control prob-
lems. Both techniques consisted in defining from the infinite state space control
problem knowledge a finite MDP. The solution of the MDP was used to approxi-
mate the solution of the infinite state space control problem.
It would be interesting to attempt to define the finite MDP structure so as to approx-
imate at best the initial optimal control problem. For example, in the context of the
representative states technique this would require selecting the most representative
states and defining the most appropriate notion of distance between the states.
Other techniques, like the ones linked to the Bellman error method have not been
investigated but still face up roughly the same challenges since their performance

�

We remind that the expression “finite state space control problem” has been used throughout this
thesis to designate control problems having a number of states suitable for computers capabilities.



11.2. PROBLEMS, SOLUTIONS AND FUTURE RESEARCH PROSPECTS243

depends on the states selected for the minimization process and on the approxima-
tion architecture used to represent the

�
-function.

� Resolution of an optimal control problem with finite state space and unknown
system dynamics and reward function, the absence of knowledge of these elements
being compensated by the possibility of interacting with the system (labeled as
Problem III in the Introduction).
Two families of reinforcement learning algorithms to solve this problem have been
thoroughly investigated. The first one, known as model based, reconstructs the
structure of the optimal control problem and solves it while the other one, known
as non-model based, computes directly the optimal control problem solution. Con-
vergence proofs of these two families of algorithms are well established in the
literature.
However, a better investigation of the performances of model based versus non-
model based algorithms could be interesting. In the examples treated, model based
methods were always performing better.

� Resolution of an optimal control problem with infinite state space and unknown
system dynamics and reward function, the absence of knowledge of these elements
being compensated by the possibility to interact with the system (labeled as Prob-
lem IV in the Introduction).
The algorithms we have used to solve these problems can be classified into two
categories. The first is related to algorithms that learn the structure of a finite
MDP, solve it and extrapolate its solution to the initial control problem (model
based algorithm) whereas for the second category the learning consists in adapting
directly the parameters of an approximation architecture used to represent the solu-
tion. The best results have been obtained with the model based algorithms. Those
used when the states of the finite MDP correspond to states of the initial control
problem (model based algorithms used with the representative states technique)
were specific to this thesis and provided very promising results both in terms of
learning speed and quality of the solution obtained.
Admittedly, the ideal algorithm should be able to combine high learning speed and
quality of solution. In other words, it should combine ability to adapt automatically
the approximation architecture to the learning experience (the more learning expe-
rience is gathered in a region, the finer the approximation architecture can be in
this region) and/or to the control problem solution itself (a fine approximation ar-
chitecture is required in state space regions where the solution characteristics vary
a lot).

� Partial observability of the system.
The use of RL algorithms in partially observable environments has only been briefly
discussed. Basically the procedure we used consisted in defining a pseudo-state for



244 CHAPTER 11. CONCLUSIONS AND FUTURE PROSPECTS

the RL algorithms based on the history of the actions taken and observations done.
The history length used to define this pseudo-state was chosen heuristically. Meth-
ods able to select a history length automatically from interaction with the system
should be developed.

� Curse of dimensionality
The curse of dimensionality is the main limitation for a successful application of RL
methods to large control problems. A preprocessing of the system state before using
it as input of the RL algorithms as well as a proper choice of the approximation
architecture can help circumvent, at least partially, this problem. In this respect the
use of neural networks or regression trees as approximation architectures would be
worth to investigate.

� Influence of the policy on the solution obtained
Suppose that the return obtained during the learning has no importance (i.e. the
RL algorithms are used in an off-line mode). What kind of policy should be used
during the learning ? When dealing with finite state space control problems one
should certainly prefer a policy that favors the exploration since it will speed up the
convergence of the RL algorithms to the optimal solution.
When dealing with infinite state space control problems, an approximation archi-
tecture is used to represent the learned solution. Generally speaking, if the RL
algorithms converge, they will converge to something else than the optimal solu-
tion. One can wonder about the influence of the policy used during the learning
on the solution to which they converge. Should we still in this case use a policy
that favors the exploration to speed up the convergence or should we prefer a policy
that uses almost at best the information already obtained about the control problem
solution (i.e. a � -greedy policy with � small) ? It can reasonably be supposed that
with a policy that favors the exploitation the solution obtained would be better since
the observations would be concentrated along the optimal trajectory of the system.
Nevertheless, a firm conclusion would require a deeper study.

� Multi-agent systems
In this work we did not investigate systems in which many RL driven agents learn
at the same time.
Among the many difficulties that arise with such systems, one is linked to the non-
stationary environment in which each agent has to learn while the other agents are
free to change their behavior as they learn and adapt themselves. Another difficulty
arises from the “conflicts” appearing among the agents because each one of them
tries to maximize its return at the expense of the others.

� Off-line learning and system uncertainties
Suppose the RL algorithms are used in an off-line mode and that the control law
they compute is going to be implemented on a real system later on.



11.2. PROBLEMS, SOLUTIONS AND FUTURE RESEARCH PROSPECTS245

If the system dynamics and the reward function depend on a parameter vector
�

whose value is not known, how should we realize the learning in order to have a
control law that is “suitable” for all the possible values of

�
? Should we do the

learning for only one specified value of
�

and invoke the control law robustness to
justify its validity for control problems having other values of

�
? Or should we use

during the learning several types of episodes, each one of them corresponding to
a different value of

�
? Answers to these questions are important especially if we

want to use RL algorithms to control power systems whose operating conditions
vary continuously.



246 CHAPTER 11. CONCLUSIONS AND FUTURE PROSPECTS



Appendix A

Linear approximation functions

This appendix is mainly dedicated to :

� the description of an iterative method to solve the Weighted Least Square
Estimation (WLSE) problem %

� the description of a stochastic approximation algorithm used to minimize
iteratively an integral of a continuum of cost functions

� derivation of some proofs of propositions used in chapters 3, 5 and 6.

For a deeper insight into this chapter content the reader may refer to [DH01],
[BT96] and [May79].

A.1 Weighted Least Square Estimation (WLSE)

A.1.1 Problem statement

Let
�
% ,

�
� , ����� ,

�
�
�  �

,
� �  �

and � � � � �
. Usually

� � � � . We want to
determine the value of

� �  �
that minimizes the expression

��
')( %

� � # ' � � � � ' � � � � � � �

(A.1)

where
��� � � �

. If
� � �

the problem is known as the LSE problem.
�

This iterative method is inspired from the Kalman filtering algorithm developed in the context of
dynamic state estimation of stochastic systems with linear dynamics [Kal60].

247



248 APPENDIX A. LINEAR APPROXIMATION FUNCTIONS

If
���

is the
� � � matrix whose � th line is equal to

� ��� �
�

�
� ' � �

and
� � �  �

with� � � � � � � � �
�

� � � � � then expression (A.1) can be rewritten as follows
�

:

� ��� � � � � � � �
(A.2)

It can be shown that the value of
�

that minimizes (A.1) always satisfies the equa-
tion :

� �� ��� � � � �� � � �
(A.3)

If
� �� � �

is invertible, the value of
�

that minimizes expression (A.1) is unique.
Let us treat a particular WLSE problem. Suppose that � � �

,
� ' � � � � � � � �

� � � ����� � � � and
� � �

. By using equation (A.3) we can observe that the value of
�

that minimizes (A.1) satisfies :

� � � � �
�
�

��
')( %

� � � � � (A.4)

A.1.2 Resolution of the WLSE problem : pseudo-inverse

If
� �� ���

is invertible, then the value of
� �  �

that minimizes (A.1) satisfies the
equation :

� � � � �� ��� � #&% � �� � � �
(A.5)

� � �� ��� � #&% � �� is called the pseudo-inverse of
���

.

A.1.3 Kalman filter like algorithm

We describe hereafter an iterative algorithm aimed to compute the value of
�

that
minimizes (A.1) in

�
iterations. This algorithm being inspired from the Kalman

filter, it is referred to in this work as the “Kalman filter like algorithm”.
This algorithm proceeds as follows. It initializes an � � � matrix � to � ! (

!
is the

� � � identity matrix and � � �
) and

�
arbitrarily.

At stage � (
� � � � �

) of the iterative process, the algorithm updates successively
� and

�
as follows :

�
� �

�
� � � � �� (A.6)� � � �

� #&% � � � � � � � �� � � � � �
(A.7)

� ���	� � ��
 � � � * "��	� � ��
 � )� "��	� � ��
 � )



A.1. WEIGHTED LEAST SQUARE ESTIMATION (WLSE) 249

The matrix � being initialized to a positive definite matrix ( � ! with � � �
), it can

be shown that it stays positive definite during the iterative process. So its invertibil-
ity is ensured.
If � � �

then the value of
�

obtained after the � th iteration of the recursive algo-
rithm converges to a value of

�
that minimizes the expression :��

')( %
� � # ' � � � � ' � � � � � � � �

(A.8)

Usually rather than initializing � to � ! , one determines a number
�

such that the
matrix


�
' ( %

� ' � �' (A.9)

is positive definite, computes

� ��� �����
� ��� 	


�
')( %

� 
 # ' � � � � ' � � � � � � �

(A.10)

by using the pseudo-inverse method and uses the algorithm from stage
� � �

by
considering that the value of � and

�
obtained after stage

�
are respectively equal

to (A.9) and (A.10). By proceeding so we can guarantee that the value of
�

obtained
after � stages (

� � � � �
) minimizes (A.8).

Let us treat a particular case of the algorithm. Suppose that � � �
and that

� ' � � � �� � � � � � � ����� � � � . In such a context, the value of � obtained after the � th stage of
the algorithm is equal to  �' ( %

� � # ' . Hence the
�

update at stage � can be rewritten
as follows :

� � � � �

 �' ( %
� � # '

� � � � � � � � �
(A.11)

A.1.4 Infinite set of values
� � � � �

Let
�

be a random variable with a probability distribution � �
� � �

. Let
�

� be a function
of the random variable

�
that takes its values on

 �
and � � a function of the random

variable
�

that takes its values on


. Suppose that
�

� and � � are square integrable,
i.e. that

�
�
� � �

�
� � � � � � � � � � � � � � ��� � � � and

�
�
� �

� �
� � � � �

.

Then,
��� �  �

the quantity
� ��� � � �

�
� ��� � �

� � � �
� � � � (A.12)



250 APPENDIX A. LINEAR APPROXIMATION FUNCTIONS

is well defined and bounded. We will call this quantity the true risk of vector
�
.

Suppose now that
�

% ,
�

� , ����� ,
� � are

�
values of the random variable

�
that are

drawn independently according to � �
� � �

. Let
�

� ( � � and � � ( � � be respectively the
value of

�
� and � � when

� � � ' . Denoting by
� ' � �

� ( � � and
� � � � � � � ( � � , let us

define by

�
emp

��� � �
��
')( %
� � � � ' � � � � � � �

(A.13)

the so-called empirical risk. Let
�
� denote a (not necessarily unique) vector which

realizes the minimum in the right hand side of this equation, i.e.

�
� � � ��� ��� �

�
�

emp
��� � �

(A.14)

Then, one can show that the following two sequences converge (in probability) to
the same limit as

� � �
:

� ���
�
� �� � ���

� ��� 	
� ��� � � (A.15)

�
emp

���
�
� �� � ���

� ��� 	
� ��� � �

(A.16)

We paraphrase this statement by saying that when
� � �

the value of
�

that
minimizes the empirical risk (equation (A.1) with

� � �
) also minimizes the true

risk (equation (A.12)).
The preceding result is a particular case of the consistency property of the so-called
empirical risk minimization principle studied in statistical learning theory. The
latter theory generalizes these ideas to more complex (e.g. non-linear) model spaces
and studies also error-bounds in the finite sample case.

A.2 Minimization of an integral of a continuum of cost
functions

A.2.1 Problem statement

Under the assumptions (notably of square integrability) introduced in the preceding
section, we want to compute a vector

� �  �
that minimizes :

�
�
� ��� � �

� � � �
� � � �

(A.17)



A.2. MINIMIZATION OF AN INTEGRAL OF A CONTINUUM OF COST FUNCTIONS 251

We notice that the values of
�

that minimize expression (A.17) also satisfy :

�
�
� �

�
� � � ��� � �

� � � �
� � � � � � � � � � ����� � � � �

(A.18)

We define an � � � matrix
�

as follows :

� ' � � �
�
� �

�
� � � � �

� � �"� � � � � � � � � ����� � � � �
(A.19)

If
�

is invertible then the value of
�

that solves equation (A.18) is unique.
Let us treat a particular case of this minimization problem. Suppose that � � �

and�
�
� � � � �

. By using equation (A.18) we can see that the value of
�

that minimizes
expression (A.17) satisfies :

� � � � � �
�
�

� �
� �

(A.20)

A.2.2 Iterative algorithm

Hereafter we describe an iterative algorithm to solve the minimization problem
stated in section A.2.1. This algorithm belongs to the class of stochastic approxi-
mation algorithms.
It computes iteratively the value of

�
that minimizes (A.17). First it initializes

�
arbitrarily. At stage � (

� � � � � ) of the iterative process it draws a value
� � of

the random variable
�

independently according to the probability distribution � �
� � �

and updates
�

as follows :

� � � �
� � � � � ( �

� � � � �
� ( �

�

� �
� ( �

� (A.21)

where � � � �
and where � � ( �

� and
�

� ( �
� denote respectively the value of � � and�

� when
� � � � .

If � � satisfies :
��
� ( %

� � � � (A.22)

��
� ( %

�
� � � � � �

(A.23)

then it can be shown that the iterative process converges with a probability
�

to a
value of

�
that minimizes expression (A.17) (see e.g. [BT96]).



252 APPENDIX A. LINEAR APPROXIMATION FUNCTIONS

A.2.3 LSE and stochastic approximation algorithm

Let
�
% ,

�
� , ����� ,

�
�
�  �

,
� �  �

. Suppose that the random variable
�

takes its
values in the set � � � � � ����� � � � such that � �

� � � � %� � � � � � � � � ����� � � � . Suppose
that

�
� ( ' � � ' and � � ( ' � � � � � . In such conditions, the value of

�
that minimizes

(A.17) also minimizes equation (A.1) in which
� � �

.
Indeed, expression (A.17) can be rewritten as follows :

�
�

��
' ( %
� � � � ' � � � � � � �

(A.24)

which proves the proposition.

A.3 Proofs and additional explanations

A.3.1 Estimation of the transition probabilities of the MDP �

The proposition hereafter is used in sections 3.3.4 and 6.6 to characterize the tran-
sition probabilities of the MDP � structure computed.

Proposition

Let
� ��� � � � � and

� � �  �
be such that

� � � � � � � � �
�

�
� � � � � � ����� � � � and

� �  � such that � � � � � � � � � � � � ����� � � � .
If

� �
is an

� � � real-valued matrix ( � � �
) such that

� � �
is invertible, and

such that  �� ( %
� ' � � � � �

�
� ,

� � � � � � ����� � � � ,
�
� ' �  � ,

� � � � � ��� � � � denote � -vectors such that  �' ( %
� ' � �

� ,

�
� ' �  � � � � � � � � ��� � � such that

� ' is the value of
� �  �

that minimizes� � � � � ' �
,

then  �')( %
� ' � � .

Proof

We can write :

� � � �
� � � � �

�
� � � � � � ����� � � � �

(A.25)



A.3. PROOFS AND ADDITIONAL EXPLANATIONS 253

This implies :

��
� ( %

� � � �
� �

��
� ( %

� � �
�

�
(A.26)

Knowing that  �
� ( %

�
� � �

� , we have :

��
� ( %

� � � �
� � � � � � �

(A.27)

We can write :

� � � � � � � � � � ��
� ( %

� � ' � � � �

� (A.28)

and :

� � � � � � � � � �
��
� ( %

��
� ( %

� � ' � � �

�
��
� ( %

� � '
��
� ( %

� � �

�
��
� ( %

� � ' � � � �

� �
(A.29)

From equations (A.28) and (A.29) we have :

� � � � � � � � � �
(A.30)

From equations (A.27) and (A.30) and since
� � �

is invertible we have  �
� ( %

�
� �

� . QED

A.3.2 MDP structure estimation by solving WLSE problems

In this subsection we provide a deeper insight into the way the MDP structure is
estimated by the algorithm described on figure 5.4 and entitled “Estimation of the
MDP structure : Kalman Filter like algorithm”.



254 APPENDIX A. LINEAR APPROXIMATION FUNCTIONS

Estimation of 
 � � � � �
Let

� ��� � � � be the number of times the particular state-action pair
� � � � � has been

visited during the learning. Let � � � � be the value of the random variable � the � th
time the state-action pair

� � � � � has been visited. Each � � � � is drawn independently
according to � � � � � � � � � .
The value of 
 � � � � � estimated by the algorithm described on figure 5.4 minimizes :

� ��� � � ��
')( %

� � � � � ��� # ' � 
 � � � � � � 
 � � � � ��� � � � � � � �
(A.31)

The minimization is done iteratively by using the algorithm described by equations
(A.6) and (A.7).
In order to highlight that, let us rewrite the minimization problem by using the
notations of section A.1.
We set :

� � � �

�
� � � � � � � �

�
� ' � � � � � � � � � � � � � ����� � � �

�
� � � � � 
 � � � � �

�
� � � � � 
 � � � � ��� � � � � � � � � � � � � ����� � � � .

The minimization problem becomes equivalent to find the value of
�

that minimizes
expression (A.1). We can observe that the minimization problem is indeed solved
in figure 5.4 by using the Kalman filter like algorithm described by equations (A.6)
and (A.7).
If we set :

� � � �
� � �

� � � � � � � � � � � � �
�
�

�
� � � � �

� � � � 
 � � � � ��� �

and use the results of section A.1.4, we see that if
� � �

and
� � �

then
� � � � �

�
�
�

� �
�

or equivalently 
 � � � � � � � � � 
 � � � � ��� � �
.



A.3. PROOFS AND ADDITIONAL EXPLANATIONS 255

Estimation of � ���
�
� � � � �

Let
� ��� � � � be the number of times the particular state-action pair

� � � � � has been
visited. Let � � � � be the value of the random variable � the � th time the state-
action pair

� � � � � has been visited. Each � � � � is drawn independently according to
� � � � � � � � � .
The value of � � �

�
� � � � � estimated by the algorithm described on figure 5.4 mini-

mizes :
� � � � ����
' ( %

� � ��� � � � # ' � � � �
�
� � � � � � ! # � � $ � � � � � � ��� � � � � � � � �

(A.32)

The minimization is done iteratively by using the algorithm described by equations
(A.6) and (A.7).
In order to highlight that, let us rewrite the minimization problem by using the
notations of section A.1.
We set :

� � � �

�
� � � � � � � �

�
� ' � � � � � � � � � � � � � ����� � � �

�
� � � � � � � �

�
� � � � �

�
� � � � � ! # � � $ � � � � � � ��� � � � � � � � � � � � � � ����� � � � .

The minimization problem becomes equivalent to find the value of
�

that minimizes
expression (A.1). We can observe that the minimization problem is indeed solved
in figure 5.4 by using the Kalman filter like algorithm described by equations (A.6)
and (A.7).
If we set :

� � � �
� � �

� � � � � � � � � � � � �
�
�

�
� � � � �

� � � � ! # � � $ � � ��� � � ��� � �

and use the results of section A.1.4, we see that if
� � �

and
� � �

then
� � � � �

�
�
�

� �
�

or equivalently � � �
�
� � � � � � � � � ! # � � $ � � � � � � ��� � �"�

.



256 APPENDIX A. LINEAR APPROXIMATION FUNCTIONS

A.3.3 MDP structure estimation by minimizing an integral of a con-
tinuum of cost functions

In this subsection we provide a deeper insight on the way the MDP structure is
estimated by the algorithm described on figure 5.5 and entitled “Estimation of the
MDP structure : Stochastic Approximation algorithm”.

Estimation of 
 � � � � �
The algorithm described on figure 5.5 aims to find the value of 
 � � � � � that mini-
mizes

� � � � 
 � � � � � � 
 � � � � ��� � � � � �
(A.33)

The minimization is done iteratively by using the algorithm described in section
A.2.
In order to highlight that, let us rewrite the minimization problem by using the
notations of section A.2.
We set :

� � � �

�
� � � � � 
 � � � � �

� � � �
� � �

� � � � � � � � � � � � �
�
�

�
� � � � �

� � � � 
 � � � � ��� �

The minimization problem becomes equivalent to find the value of
�

that mini-
mizes expression (A.17). We can observe that the minimization problem is indeed
solved in figure 5.5 by using the iterative algorithm described by equation (A.21).
It implies

� � � � � �
�
�

� �
�

or equivalently 
 � � � � � � � � � 
 � � � � ��� �"�
.

Estimation of � ���
�
� � � � �

The algorithm described on figure 5.5 aims to find the value of � ���
�
� � � � � that min-

imizes

� � � � � � �
�
� � � � � � ! # � � $ � � � � � � ��� � � � � � �

(A.34)



A.3. PROOFS AND ADDITIONAL EXPLANATIONS 257

The minimization is done iteratively by using the algorithm described in section
A.2.
In order to highlight that, let us rewrite the minimization problem by using the
notations of section A.2.
We set :

� � � �

�
� � � � � � � �

�
� � � � �

� � � �
� � �

� � � � � � � � � � � � �
�
�

�
� � � � �

� � � � ! # � � $ � � ��� � � ��� � �

The minimization problem becomes equivalent to find the value of
�

that mini-
mizes expression (A.17). We can observe that the minimization problem is indeed
solved in figure 5.5 by using the iterative algorithm described by equation (A.21).
It implies

� � � � � �
�
�

� �
�

or equivalently � � �
�
� � � � � � � � � !
# � � $ � � � � � � ��� � �"�

.



258 APPENDIX A. LINEAR APPROXIMATION FUNCTIONS



Appendix B

Triangulation of an � -cube

This appendix is dedicated to the triangulation of an � -cube (or equivalently of
an � -rectangle by noting that a linear change of coordinates can transform the
� -rectangle into an � -cube). We will

� describe an easily implementable method that triangulates the � -cube into
��� simplices

� discuss the triangulation of the � -cube into a minimum number of simplices

� illustrate the influence the triangulation quality can have on the approximate
solution of an infinite state-space optimal control problem computed by using
the representative states technique (see section 3.3).

B.1 Definitions

Let � be a positive integer. An � -simplex is the convex hull of � � �
points in an

� -dimensional Euclidean space (
 �

). For example, a
�
-simplex is a line segment,

a � -simplex is a triangle (with its interior), and a � -simplex is a tetrahedron (with
its interior).
An � -cube is triangulated if it is partitioned into a finite number of � -simplices
with disjoint interiors, subject to the constraint that the vertices of any � -simplex
are also the vertices of the � -cube.
The simplexity � � � � of the � -cube is the minimum number of � -simplices required
to triangulate it.
One basic measure of the triangulation quality is usually the number of � -simplexes
that are needed to partition an � -cube. The higher this number, the lower the quality
of the triangulation [Sal82].

259



260 APPENDIX B. TRIANGULATION OF AN
�

-CUBE

There exists a wide variety of methods that allow the triangulation of an � -cube
[Sal84, Tod84]. Usually, the better the triangulation quality, the higher the compu-
tational burden.

B.2 Triangulation of the � -cube into ��� simplices

The triangulation method used in this thesis consists in partitioning the � -cube into
��� simplices.
This method proceeds as follows. Suppose that the � -cube is the set of points
� � �  � � � � � � � � � � � � � � � � ����� � � � � . Each simplex that partitions the � -cube
corresponds to a permutation

� � % � ����� � � �
�

of
� � � ����� � � � and is defined as follows

([Moo92]) :

� ���  � � � � � � � � � � � � � � # %
� � ����� � � � � %

� � � � �
(B.1)

The ��� possible permutations of
� � � ����� � � � define the ��� simplices that triangulate

the � -cube.
When this method is used to triangulate a � -cube, it yields the � � � �

simplices
represented on figure B.1a.
With such a triangulation method, it is easy to identify the � � �

vertices � % , � � , ����� ,
� �

� % of the simplex to which a point
��� � -cube belongs. Indeed if the permutation� � % � ����� � � �

�
of

� � � ����� � � � is such that
� � � � � � � � � � � � # %

� � ����� � � � � %
� � �

,
then the terms � ' � � � � can be defined as follows :

� ' � � � � �
� �

if � � � � � � �
�

otherwise

� � � � � � ����� � � � � � and � � � � � ����� � � � (B.2)

B.3 Triangulation of an � -cube into ��� ��� simplices

It is obvious that � � � � � �
and � � � � � � . Unfortunately, the determination of � � � �

and the triangulation of the � -cube are problems that require a computing time
which is exponential in � . So, it is already more difficult to prove that � � � � � 

and to find the corresponding triangulation which is represented on figure B.1b.
Only an enormous amount of computation can lead to the determination of the
values of � � � � given in table B.1 ([Smi88]) and to our knowledge, if � � �

then no
value of � � � � has ever been computed.



B.3. TRIANGULATION OF AN
�

-CUBE INTO � � � �
SIMPLICES 261

(a) � � simplices (b) Minimum number of simplices

Figure B.1: Cube triangulation. Taken from [Epp].

� � � � � ���
1 1 1
2 2 2
3 5 6
4 16 24
5 67 120
6 308 720
7 1493 5040

Table B.1: Comparison between the minimum number of � -simplices required to
triangulate the � -cube and ���



262 APPENDIX B. TRIANGULATION OF AN
�

-CUBE

B.4 Triangulation quality and control law quality

In section 4.6 we have treated a control problem whose resolution required to tri-
angulate � -rectangles into tetrahedra. Each � -rectangle was partitioned into � � � �

tetrahedra by using the method described in section B.2. If we partition the � -
rectangle into � � � � � 


tetrahedra by using the triangulation scheme described on
figure B.1b, we obtain the results gathered in table B.2. The second column of this
table corresponds to the third column of table 4.5.

score
�

tetrahedra



tetrahedra� � � �  � -38.6561 -38.3735�
� -6.4278 -6.2277�
� � -2.3210 -2.1843

Table B.2: Score obtained for different triangulations. The OMIB power system
with AVR. � � � � � �
We remark that the scores obtained by the control law are better when the triangu-
lation quality is higher. One plausible physical interpretation of this phenomenon
is that when the cube is partitioned into



simplices the distance of a point of the

cube to a vertice of the simplex it belongs to is at maximum
� � while it can be

equal to
�

� � � � � � when the cube is partitioned into
�

simplices (see figure B.1a
and B.1b). Therefore, when the cube is partitioned into



simplices, a state inherits

from the characteristics of states that are closer and thus more likely to have similar
properties.
This example illustrates the influence the triangulation quality can have on the pol-
icy obtained. Nevertheless, to be able to draw some firm conclusions from such
observations, one should study this influence on a larger number of control prob-
lems.



Appendix C

Algorithms built under
contraction assumptions

In the first section we introduce the notion of contraction mapping and describe its
properties. The second section is dedicated to the description of algorithmic models
that compute the fixed point of a contraction mapping. In the other sections, we use
the properties of these algorithmic models to prove :

� the convergence of dynamic programming algorithms (value iteration, asyn-
chronous value iteration, ����� )

� the convergence of the
�

-learning algorithm

� the convergence of the
�

-learning algorithm used with the aggregation tech-
nique under particular learning conditions or under conditions of equiva-
lence with the initial control problem

� the convergence of the
�

-learning algorithm used with the representative
states technique under particular learning conditions.

C.1 Contraction mapping

Let � � � �
be the set of all bounded real-valued functions defined on an arbitrary set

�
. With every function

� � � � 
that belongs to � � � �

, we associate the scalar :

� � � � � ������ � �

� � � � � ��� (C.1)

263



264APPENDIX C. ALGORITHMS BUILT UNDER CONTRACTION ASSUMPTIONS

A mapping
� � � � � � � � � � �

is said to be a contraction mapping if there exists
a scalar � � �

such that :

� � � � � �
�

� � � � � � � �
�

� � � � � �
�
� � � � � �

(C.2)

�


� � � � �

is said to be a fixed point of a mapping
� � � � � � � � � � �

if :

� � 
 � � 
 � (C.3)

If
� � � � � � � � � � �

is a contraction mapping then there exists a unique fixed
point of

�
. Furthermore if

� � � � � �
, then

������ �	� � � � � � � 

� � � � �

(C.4)

For a proof, see references [LS61] and [Lue69].

C.2 Description of algorithmic models

In this section we suppose that :

� �
is finite and composed of � elements

�
� � � � � � � � � � �

is a contraction mapping whose fixed point is denoted
by

�



� � � � � � �
.

C.2.1 All elements of � are refreshed

Suppose we have the algorithm that updates at stage � ( � � �
)

�
as follows :

� � � � �
(C.5)

The value of
�

computed by this algorithm converges to the fixed point
�

 of

�
.

This is an immediate consequence of equation (C.4).

C.2.2 One element of � is refreshed

Suppose we have the algorithm that selects at each stage � ( � � �
) an element� � �

and updates
� � � � as follows :

� � � ��� � � � � � � � (C.6)



C.2. DESCRIPTION OF ALGORITHMIC MODELS 265

leaving the other components of
�

unchanged. If each element � of
�

is selected an
infinite number of times then the value of

�
computed by this algorithm converges

to the fixed point
�

 .

We now provide the convergence proof of this algorithm (taken from [BT96]). We
denote the value of

�
at stage � by

� � .
Without loss of generality, let us assume that

�

 � �

(this is no loss of generality).
Suppose that we start with

�
� and that

� �
�
� � � � � � � � � �

for some constant
�

(we
can always take

� � � �
�

� � ). In other words,
�

� lies within a “cube” of size � �
along each dimension, centered at the origin. Suppose that

� � lies within that cube
and that at stage � of the algorithm, the element � is selected in the algorithm which
conducts to the following

� �
� % :

� �
� %

� � � � � � � � � � � � and
� �

� %
� � � � � � � � � � �

� � � � � � � � � . Due to the contraction condition, we have
� � �

� %
� � � � � � � � �

,
which shows that given the initial cube, any subsequent update of any element
keeps us within that cube. Furthermore, any component of

�
that corresponds to

an element of � � � � � % � ����� � � � � is at the very most � � in magnitude. It means that
when all the components have been updated at least once, we find ourselves within
a smaller cube, of � � � along each direction. By continuing similarly, and assuming
that each component is updated an infinite number of times, we get progressively
into smaller cubes; convergence to

�
follows.

C.2.3 One element of � is refreshed and noise introduction

Let � � 
be a noise factor and �

� 
. Suppose we have the algorithm that selects

at stage � ( � � �
) an element � � �

and updates
� � � � according to :

� � � � � � � � �
� � � � � � �

� � � � � � � � � � � (C.7)

leaving the other components of
�

unchanged.
We denote by � � the element of

�
selected at stage � , by � � the noise value at stage

� and by
� � the value of

�
at stage � and by � � the value of � at stage � . In order

to ease further notation we set � � � � � � � � if � � � � and � � � � � � �
otherwise.

With this notation equation (C.7) can be rewritten equivalently as follows :

� �
� %

� � � � � � � � � � � � � � � � ��� � � � � � � � � � � � ��� � � � � (C.8)

We define the history � � of the algorithm at stage � as being :

� � � � � � � ����� � � � � � � � ����� � � � � � � � ����� � � � � � � � ����� � � � #&% �
�

(C.9)

We assume moreover that the following conditions are satisfied :



266APPENDIX C. ALGORITHMS BUILT UNDER CONTRACTION ASSUMPTIONS

1. For every � , we have

� � � � � � � � � � �
(C.10)

2. There exist two constants
�

and � such that
� �

� � �
�� � � � � � � � � � � � � �� � (C.11)

3. The � � � � � are nonnegative and satisfy
��
� ( �

� � � � � � � �
��
� ( �

�
�� � � � � � �

(C.12)

Then the algorithm converges with probability
�

to
�

 .

A rigorous proof can be found in [Tsi94] while an informal one is given in [JJS94].
It follows roughly the same lines as the one given in previous subsection except
that in presence of a small stepsize � , it will take several updates before we get into
the next smaller cube; in addition, we need to verify that the presence of the noise
term � cannot have an adverse effect on the convergence.

C.3
�

is a contraction mapping : consequences

We recall the � mapping introduced in section 2.2. � � � � � � � � � � �
:

�
� �

� � � � � � ���
� ���������

� � � 
 � � � � ��� � � � � � � � � � � ��� � � � � ��� �
(C.13)

with �
� � � � �

and suppose that
�

and � are finite.
The � mapping is a contraction mapping. Indeed we have for any functions � � � �
� � � �

:
�

� � � � �
� � � �����

� � � � �����
����� � ���

� � � 
 � � � � ��� ��� � � � � � � � � ��� � � �

� � ���
� � � � ���

� � � 
 ��� � � ��� � � � � � � ��� � � ��� � � � �

� � ������ � � � �����
����� � ���

� � � � � � � � � � � ��� � � � �
� � � � � � ��� � � � � �

� � ������ � � � � � � ������ � � � � � � � � � � �
� �

�
� � � �

� � ������ � � � � ��� � � �
� � � �

� � �
� � �

� � �



C.4. INTRODUCTION OF THE � MAPPING AND CONSEQUENCES 267

The � mapping being a contraction mapping, it has a unique fixed point. This
unique fixed point is the optimal control problem value function.

� being a contraction mapping,

� the convergence of the algorithm described in section C.2.1 implies the con-
vergence of the value iteration algorithm (figure 2.2)

� the convergence of the algorithm described in section C.2.2 implies the con-
vergence of the Gauss-Seidel version of the value iteration algorithm.

C.4 Introduction of the
�

mapping and consequences

We define the � mapping. � ��� � � � � � � � � � � � �
such that

� ��� ��������� �  + � , ' � ��� �����!� � 1 ��� �	
� ��� � � � � � 	 � � � � � � ����������� �!����� � �$. � � ��� � ��
 � ���

(C.14)

with �
� � � � � � �

and suppose that the set
� � �

is finite.
This � mapping is a contraction mapping. Indeed, we have for any functions
� � � � � � � � � �

:
� ��� � � � � *  1 ��� �� � � 	 � ��!�� � � + � , �����	

� ��� � � � � � 	 � � � � � � � � ��� ����� � � � � � �
�����	

� ��� � � � � � 	 � � � � � � ����������� �!� � � � �$. �
� 1 ��� �� � � 	 � ��!�� � � + � , �����	

� ��� � � � � � 	 � � � � � � � ����������� �!� � � � � �
� � ��� ��� ��� �!� � � � �� . �

� 1 ������ ��! �����	 ��� � � � � � � ��� � � � � � ��� � ��
 1 � � � � � *

The � mapping being a contraction mapping, it has a unique fixed point. This
unique fixed point is the optimal control problem

�
-function.

� being a contraction mapping,

� the convergence of the algorithm described in section C.2.1 implies the con-
vergence of algorithm sketched on figure 2.3 and entitled The Value Iteration
algorithm :

�
-function computation

� the convergence of the algorithm described in section C.2.2 implies the con-
vergence of the algorithm sketched on figure 2.4 and entitled The Gauss-
Seidel Value Iteration algorithm :

�
-function computation.



268APPENDIX C. ALGORITHMS BUILT UNDER CONTRACTION ASSUMPTIONS

C.5 Q-learning convergence proof

The
�

-learning algorithm (figure 5.11) updates
�

at stage � in the following way % :

� , 	 � � � , ��� , �  ��( � � , � � , � � , � � , � � � , � ' ��� , ��� , ��� , �� 1 �����	 � � � � � � � � 	 � � � � � � � , � � � � , � � , � � , � � � , � ��� (C.15)

� � representing the estimate of the
�

-function at stage � . � � is drawn indepen-
dently according to � � � �	� � � � � � � .
By using the � mapping definition (equation (C.14)), equation (C.15) can be rewrit-
ten as follows :

� �
� %

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � ��� � � � � ��� � � � (C.16)

with

� � � 
 � � � � � � ��� � � � � �����
������� ����� � � � � � � � � �

� � � � � � � � � � ��� � � � � � � �
�

� � � ��� � � � � �
� 
 � � � � � � ��� � � � � �����

������� ����� � � � � � � � � �
� � � � � � � � � � ��� � � � � � �

� � � 
 � � � � � � ��� ��� � �����
����� ������� � � � � � � � � � � � � ��� � � � � ��� � � � � �

which has exactly the same form as equation (C.8)
�

.
We know that � is a contraction mapping. If the � � � � � � � � � terms satisfy expres-
sion (C.12), we still have to verify that � � satisfies expressions (C.10) and (C.11),
where

� � � � �
� � ����� � � � � ��� � � � �

� � ����� � � � � � � � � � � � � ����� � � � � � � � ����� � � � #&% � � (C.17)

in order to ensure the convergence of the
�

-learning algorithm.
We have :

+ , � , � � , .  +� � , ' � � , � � , � � , � � 1 ��� �	 ��� � � � � � � 	 � � � � � � � , � ����� , � � , ��� , ����� � �
+ � , ' ��� , � � , ��� � � 1 ��� �	 ��� � � � � � � 	 � � � � � � , � ����� , � � , ��� � � � �$. � � , .

 *
�

The four-tuple " � � # � �%# ! �%# � � � � ) used as input of the � -learning algorithm described in figure
5.11 is “replaced” here by " � � # � � # !�" � � # � � #�& � ) # � " � � # � � # & � )') .

�

� � corresponding to
�

� ,
�

to � , " � � # � � ) to � � and � � � to � .



C.6. AGGREGATION TECHNIQUE : CONVERGENCE TO THE MDP � SOLUTION 269

and expression (C.10) is indeed satisfied.
In order to prove that expression (C.11) is satisfied, one can first note that :

� � � � � � � � � � � � ���
��� � ���'� ��� � � � � � � � � (C.18)

where ��� is the bound on the rewards (section 2.1). Therefore we have :

�
�� � � �

�

�
� � �

� � �����
� � � � �'� ��� � � � � � � � � � � � � � � � �����

� � � ��� � ��� � � � ��� � � � (C.19)

By noting that

� � � � �����
��� � � �'� ��� � � � � � � � � � � ��� � � � ��� � � �����

� � � � �'� ��� � � � ��� � � � � �

(C.20)

and by choosing
� � � � � � � � �

�

� and � � � � � � � � �
�

we can write

�
�� � � � � � � � � �� (C.21)

and expression (C.11) is satisfied. QED

C.6 Aggregation technique : convergence to the MDP
�

so-
lution

C.6.1 Convergence conditions

In next the subsection we prove that the algorithm described in figure 6.8 and en-
titled

�
-learning algorithm used with the aggregation technique converges with

probability
�

to the
� � -function corresponding to the MDP � defined by equations

(3.1) and (3.3) if :

� the � � ��� � � � � are non negative and satisfy  �� ( � � � � � � � � � � � and

 �� ( � �
�� � � � � � � � � ,

� � �
� � � � � � � � � �

� at least one of these two conditions is met :

– equations (3.9) and (3.10) are satisfied (conditions of equivalence), that
is :

���	��
������� � + � , ����
 ������� . (C.22)

������
����� 
��� ���� � � �! " !�� �$#%��
 �����&�'�$( (C.23)

� � � � � � � � ����� � � � � � � � �*),+.-�)'�/ � � - �1032
.



270APPENDIX C. ALGORITHMS BUILT UNDER CONTRACTION ASSUMPTIONS

– one-step episodes are used, with
����+.- / given by :

��� ��
 � �
������ �����
��� ��� ��
 � if 

	���
� � � � ��
 � if 

	�� �
...��� ��� ��
 � if 

	����

(C.24)

with
� 2 ��� and ���2���� � 2�� �

, and the probability to select an action��� � ),+.-�)2 / while being in any state of
0 2

is the same (and non zero).

C.6.2 Proof

We define the ! ) mapping. ! )#"%$ + 0 )'& � ) /)( $ + 0 )�& � ) / such that

�+* � � � ��
��� ���� � ���	��
��� ����-, (C.25)

.
�/
021 � � � ��
 �0 � 
 �� ����43�5�67 �98;: ��<>= ��@? � ��
 �0 ��BA � C ��
 �� ���� 	�� �ED
F��

with � � $ + 0 )G& � ) / , H ) + -�)2JI � / and K ) +.-�)LBM -�)2NI � / being defined respectively by
equations (3.1) and (3.3).
By using the same procedure as in section C.4, it can be shown that ! )

is a contrac-
tion mapping and that the O ) -function solution of the MDP

)
defined by equations

(3.1) and (3.3) is the unique fixed point of this contraction mapping.
Hereafter we consider that the action taken while being in a state

-
belongs to� ) + - / .

The algorithm described in figure 6.8 realizes at stage P an update of the O ) -
function of this type Q :R �SUT � ��
 �� � �� S � � �WVYX[Z S � R �S ��
 �� � �� S �-, Z S ������
 S �� S �� S �

, .
�/
0�1 � "]\_^ �$# ��
 S �� S �� S �'�`3�5a67 8b:-c <>= c^ ?

R �S ��
 �0 ����'� (C.26)

with
-ed � 032

� . O ) d represents the estimate of the O ) -function at stage P and f d is
drawn independently according to

�)g +ih M -ed I � d / .
By using the ! ) mapping definition (equation (C.25)), equation (C.26) can be
rewritten as follows :R �SjT � ��
��� � �� S � � �WVkXlZ S � R �S ��
��� � �� S �m, Z S �'�n* � R �S � ��
��� � �� S �m, � S � (C.27)o

The four-tuple p�qbrtsvuwrtsvx�rWsyq;r{zm|~} used as input of the algorithm described in figure 6.8 is “re-
placed” here by p�q � svu � svxJp�q � svu � sy� � }tsy�mp�q � s�u � sv� � }�} .



C.6. AGGREGATION TECHNIQUE : CONVERGENCE TO THE MDP
)

SOLUTION 271

with

� S � ����
 S �� S �� S �m, .
�/
021 � "]\_^ �$#%��
 S �� S �� S �'�`3�5a67 8;:mc <>= c^ ?

R �S���
 �0 ����
X&�n* R �S � ��
 �� � �� S �

� ����
 S �� S �� S �m, .
�/
021 � "]\_^ �$#%��
 S �� S �� S �'�`3�5a67 8;: c <>= c^ ?

R �S ��
��0 ����

X ���	��
��� � �� S � X .
�/
021 � � ����
��0 � 
��� � �� S �`3�5a67 8;: c <>= c^ ?

R �S ��
��0 ����

and
- d � 0 2

� . Equation (C.26) has exactly the same form as equation (C.8)
�
.

! ) being a contraction mapping and � d being nonnegative and satisfying expres-
sion (C.12), we still have to verify that � d satisfies expressions (C.10) and (C.11),
where

� d ��� O )� I������ I O ) d I +.- )2�� I � � / I��	��� I +.- )2�
 I � d / I � � I	����� I � d I � � I��	��� I � d	� �� I (C.28)

in order to ensure the convergence of the algorithm to the fixed point of ! )
.

In order to prove that expression (C.11) is satisfied, one can first note that :

M � d M���� $���� ��� ��������! � "�#%$�&  �('  O
) d + - ) I � / (C.29)

where
$ �

is the bound on the rewards (section 2.1). Expression (C.29) implies that
there exist two constants ) and

$
such that

*,+d � ) � $.- O ) d - +/ (C.30)

and expression (C.11) is satisfied.
It is obvious that if equations (C.23) and (C.22) are satisfied then the condition
(C.10) on the noise, i.e. 0�1� 
 � g 
 #

2 * d M � d!3 � � , is satisfied too.

By using equations (3.3) and (3.1) we can write :

H ) +.- )2 
 I � / � 0��� � g #
2 H + - I � I f / M - � 032 
 I K 2 
 +.- / 3 (C.31)

K ) +.- )L M - )2�
 I � / � 0��� � g #
254 &76 +98 +.- I � I f / / M - � 032�
 I K 2�
 +.- / 3 h (C.32)

:<;  

corresponding to = 
 , >  to � , p�q  ?1@ s�u 
 } to �



and A  CBEDF to � .



272APPENDIX C. ALGORITHMS BUILT UNDER CONTRACTION ASSUMPTIONS

Equations (C.31) and (C.32) allow us to rewrite * d as follows :

� S � ����
 S �� S �� S �m, .
�/
021 � "]\_^ �$#%��
 S �� S �� S �'�`3�5a67 8;:mc <>= c^ ?

R �S ��
 �0 ���� (C.33)

X �<>=�� � ?  ����
 �� S ���� � 
�	
� � @  � � @ ��
 � (
X).
�/
021 � �<>=�� � ?  "]\_^ �$# ��
 �� S ������ � 
�	
� � @  � � @ ��
 � (�3�5�67 8;:mc <>= c^ ?

R �S ��
 �0 ������

We can verify that if one-step episodes are used with a probability distribution on
the initial states given by (C.24) and if the probability to select an action ��� � +.- )2 
 /
while being in any state of

0 2�

is the same then 0 2 * d M � d!3 � � . Indeed with such

conditions we have :

0 2 * d M � d!3 � 0�1� 
 � g 
 #
2 * d M O ) d I � d I � d I - d � 032 
 I K 2 
 + - d / 3 (C.34)

and equation (C.34) used with (C.33) allows us to verify that condition (C.10) is
satisfied. QED

C.7 Aggregation technique : convergence

C.7.1 Convergence conditions

In the next subsection we prove that the algorithm described in figure 6.8 and en-
titled O -learning algorithm used with the aggregation technique converges with
probability

�
to the O ) -function corresponding to the MDP

)
defined by equations :

H ) +.- )2 I � / � 0��� � g #
2 H + - I � I f / M - � 0 2 I � � +.- I � / 3 (C.35)

K ) +.- )L M - )2 I � / � 0��� � g #
254 & 6 + 8 +.- I � I f / / M - � 0 2 I � � +.- I � / 3 (C.36)

if

� the � d + -�) I � / are non negative and satisfy � /d � � � d +.-�) I � / ���
and

� /d � � � +d +.-�) I � /
	 �
, � +.-�) I � / � 0 )#& � )

� one-step episodes are used and if each state-action pair
+.-�� I � � / is drawn

independently according to the probability distribution
� ��+.- I � / .



C.8. REPRESENTATIVE STATES TECHNIQUE : CONVERGENCE 273

C.7.2 Proof

The proof follows the same lines as the one carried out in the previous section. We
define a ! ) mapping by using equation (C.25) where H ) +.- )2 I � / and K ) +.- )L M - )2 I � / are
this time defined by equations (C.35) and (C.36) and we prove that the O -learning
algorithm used with the aggregation technique converges with probability

�
to the

fixed point of ! ) when the learning conditions specified in the previous subsection
are met.
By following exactly the same procedure as the one carried out in the previous
section, we obtain a noise factor defined this time by equation :

� S � ����
 S �� S �� S �m, .
�/
021 � "]\_^ �$#%��
 S �� S �� S �'�`3�5a67 8;:mc <>= c^ ?

R �S ��
 �0 ���� (C.37)

X �<>=�� � ?  ����
 �� S ���� � 
�	
� � @  ��� ��
 �� S �$(
X).
�/
021 � �<>=�� � ?  "]\_^ �$# ��
 �� S ������ � 
�	
� � @  ��� ��
 �� S �$( 3�5a67 8;:mc <>= c^ ?

R �S ��
 �0 ����

that has to satisfy conditions (C.10) and (C.11).
One can immediately see that condition (C.11) on the noise is satisfied. It can be
seen that condition (C.10) is satisfied by noting that :

0 2 * d M � d	3 � 0��� 
 � g 
 #
2 * d M O ) d I � d I � d I - d � 032�
 I � ��+ - d I � d / 3 h (C.38)

Expression (C.38) combined with equation (C.37) allows us to verify that condition
(C.10) is indeed satisfied.

C.8 Representative states technique : convergence

C.8.1 Convergence conditions

In the next subsection we prove that the algorithm described in figure 6.14 and
entitled O -learning algorithm used with the representative states technique con-
verges with probability

�
to the O ) -function corresponding to the MDP

)
defined

by equations (3.14) and (3.15) if :

� one-step episodes starting from an element of
0 )

are used
� condition of equivalence (3.21) is satisfied, that is if � - � 0

3�5�67 8;:mc <>= ?
/
= c 8 \ c

� ��
  
 � � R � ��
 � ���� � /
= c 8 \ c

� ��
  
 � ��3�5a67 8b:-c <>= ? R � ��
 � ���� (C.39)



274APPENDIX C. ALGORITHMS BUILT UNDER CONTRACTION ASSUMPTIONS

� the � d + - ) I � / are non negative and satisfy � /d � � � d�+.- ) I � / ���
and

� /d � � � +d +.-�) I � /
	 �
, � +.-�) I � / � 0 )#& � )

where � d +.-�) I � / � � d if at the P th stage of the algorithm
+.- � I � � / (figure 6.14)

coincides with
+ -�) I � / and � otherwise.

C.8.2 Proof

We define the
� )

mapping.
� )#"%$ + 0 )'& � ) /k( $ + 0 )�& � ) / such that

��� ��� � ��
 �� ���� � � � ��
 �� ����m, (C.40). 3�5a67�� 8;:mc <	��
�����N<>= c � � 7 ? ?
/
= c^ 8 \ c

� ����
��0 � 
��� ���� � ��
��0 �� A � C ��
��� ���� 	��3� D F �

with � � $ + 0 ) & � ) / , H ) + - )2 I � / and K ) +.- )L M - )2 I � / being defined respectively by
equations (3.14) and (3.15) and ��������� +.- )2 I � / denotes an element of

0
that can be

reached when taking action � in state
- )2

.
It can be shown that

� )
is a contraction mapping.

We consider hereafter that :

� one-step episodes starting from an element of
0 )

are used

� the action taken while being in a state
-

belongs to � ) +.- / .
In such conditions the algorithm described in figure 6.14 updates at stage P O ) as
follows � :

R �SjT � ��
 S �� S � � �tV X[Z S � R �S ��
 S �� S �-, Z S ������
 S �� S �� S � (C.41), . 3�5a67 8;: c <	��<>= @ � 7 @ � � @ ? ?
/
= c � 8 \ c

� �$#%��
 S �� S �� S �� 
�� A � R �S ��
�� A �������

O ) d representing the estimate of the O ) -function at stage P and f d being drawn
independently according to

��g!+ih M - d I � d / .
By using the

� )
mapping definition (equation (C.40)), equation (C.41) can be

rewritten as follows :

R �SUT � ��
 S �� S � � �tVkX[Z S � R �S ��
 S �� S �-, Z S ����� � R �S � ��
 S �� S �-, � S � (C.42)
�
The four-tuple p�qbrtsvuwrts�x�rtsyq;r{zm|~} used as input of the algorithm described in figure 6.14 is “re-

placed” here by p�q 
 svu 
 svxJp�q 
 svu 
 sy� 
 }tsy�mp�q 
 s�u 
 sv� 
 }�} .



C.8. REPRESENTATIVE STATES TECHNIQUE : CONVERGENCE 275

with * d given by :

� S � ����
 S �� S �� S �
, . 3�5a67 8;:mc <	��<>= @ � 7 @ � � @ ? ?

/
= c � 8 \ c

� �$#%��
 S �� S �� S �� 
 � A � R �S���
 � A ����
X  � � ��
 S �� S �m, . 3�5�67 8;: c <	�a<>= @ � 7 @ � � @ ? ?

/
= c � 8 \ c

� � ��
 � A � 
 S �� S � R �S ��
 � A ����$(

which has exactly the same form as equation (C.8)
�
.� )

being a contraction mapping and � d being nonnegative and satisfying expres-
sion (C.12), we still have to verify that * d satisfies expressions (C.10) and (C.11),
where

� d � � O )� I����	� I O ) d I + - � I � � / I��	��� I +.- d I � d / I � � I����	� I � d I * � I�������I * d!� �  I (C.43)

in order to ensure the convergence of the algorithm to the fixed point of
� )

.
By using equations (3.14) and (3.15) we can write :

H ) +.- d I � d / � 0 g 2 H +.- d I � d I f / 3 (C.44)

K ) +.- )�� M - d I � d / � 0 g 2�� + 8 +.- d I � d I f / I - )�� / 3 h (C.45)

Equations (C.44) and (C.45) allow us to rewrite * d as follows :

� S � ���
	 S���-S�� � S �
, . 3�5a67 8;:mc <	��<>= @ � 7 @ � � @ ? ?

/
= c � 8 \ c

� � # ��	 S �� S � � S � � 	�� A � R �S �
	�� A �� �
X � �  ����	 S���-S�� ���$( X . 3�5a67 8;: c <	��<>= @ � 7 @ � � @ ? ?

/
= c � 8 \ c

� �  � � # �
	 S���-S�� �&� � 	 � A �$( R �S �
	 � A �� �$( �

Written under this form, it can easily be verified that 0g 
 2 * d M � d 3 � � ( * d satisfies

expression (C.10)).
In order to prove that expression (C.11) is satisfied, one can first note that :

M * d M���� $���� ��� ��������! �� "�#%$�&  �� '  O
) d + - ) I � / (C.46)

� ;  

corresponding to = 
 , �  to � , p�q 
 svu 
 } to �



and A  B DF to � .



276APPENDIX C. ALGORITHMS BUILT UNDER CONTRACTION ASSUMPTIONS

where
$ �

is the bound on the rewards (section 2.1). Expression (C.46) implies that
there exist two constants ) and

$
such that

* +d � ) � $.- O ) d - +/ (C.47)

and expression (C.11) is satisfied.
Therefore convergence to the fixed point of the

� )
mapping is ensured. It can be

shown that if equation (C.39) is satisfied then the fixed point of the
� )

mapping
coincides with the O ) -function solution of the MDP

)
which structure is defined by

equations (3.14) and (3.15). QED



Bibliography

[38.01] Task Force 38.02.19. System Protection Schemes in Power Net-
works. Technical report, CIGRE, June 2001.

[ACBF02] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time Analysis of the
Multiarmed Bandit Problem. Machine Learning, 47:235–256, 2002.

[ARS02] T.P.I. Ahamed, P.S.N. Rao, and P.S. Sastry. A reinforcement learning
approach to automatic generation control. Electric Power Systems
Research, 63:9–26, August 2002.

[AS97] C.G. Atkeson and J.C. Santamaria. A Comparison of Direct and
Model-Based Reinforcement Learning. International Conference on
Robotics and Automation, 1997.

[Ast65] K.J. Astrom. Optimal control of Markov decision processes with
incomplete state estimation. J. Math. Anl. Appl., 10, 1965.

[Bai95] L.C. Baird. Residual Algorithms : Reinforcement Learning with
Function Approximation. In Machine Learning : Proceedings of the
Twelfth International Conference, San Francisco, CA, 1995. Morgan
Kaufmann.

[BD94] A.G. Barto and M. Duff. Monte-Carlo matrix inversion and rein-
forcement learning. In J.D. Cohen, G. Tesauro, and J. Alspector,
editors, Advances in Neural Information Processing Systems : Pro-
ceedings of the 1993 Conference, pages 687–694, San Francisco,
1994. Morgan Kaufmann.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press,
1957.

277



278 BIBLIOGRAPHY

[Ber75] D.P. Bertsekas. Convergence of Discretization Procedures in Dy-
namic Programming. IEEE Trans. on Automatic Control, AC-
20:415–419, 1975.

[Ber81] D.P. Bertsekas. Distributed Dynamic Programming. IEEE Trans. on
Automatic Control, 27:610–616, 1981.

[Ber95] D.P. Bertsekas. Dynamic Programming and Optimal Control, vol-
ume II. Athena Scientific, Belmont, MA, 1995.

[Ber00] D.P. Bertsekas. Dynamic Programming and Optimal Control, vol-
ume I. Athena Scientific, Belmont, MA, 2nd edition, 2000.

[BEW03] O. Bilenne, D. Ernst, and L. Wehenkel. Adaptive Discretization for
Model Based Reinforcement Learning. In preparation, to be submit-
ted to ICML’03. 2003.

[BP90] G. Barles and B. Perthame. Comparison principle for dirichlet-type
hamilton-jacobi equations and singular perturbations of degenerated
elliptic equations. Applied Mathematics and Optimization, 21:21–
44, 1990.

[BT89] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Compu-
tation : Numerical Methods. Prentice Hall, Englewood Cliffs, N.J.,
1989.

[BT96] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA, 1996.

[CCPBS98] W.S. Cook, W.H. Cunningham, W.R. Pulley Blank, and A. Schrijver.
Combinatorial Optimization. Wiley-Interscience, 1998.

[CKL94] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Acting optimally
in partially observable stochastic domains. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, 1994.

[DeM98] C.L. DeMarco. The Threat of Predatory Generation Control : Can
ISO Police Fast Time Scale Misbehavior ? In Proceedings of Bulk
Power System Dynamics and Control IV-Restructuring (IREP 1998),
pages 281–289, Santorini, Greece, August 1998.

[DEW00] C. Druet, D. Ernst, and L. Wehenkel. Application of reinforcement
learning to electrical power system closed-loop emergency control.
In Proceedings of PKDD 2000, pages 86–95, September 2000.



BIBLIOGRAPHY 279

[DH01] R.O. Duda and P.E. Hart. Pattern Classification. John Wiley & Sons,
Inc., second edition, 2001.

[Die00] T. G. Dietterich. Ensemble Methods in Machine Learning. In Pro-
ceedings of the first International Workshop on Multiple Classifier
Systems, 2000.

[EBZ
�

98] D. Ernst, A.L. Bettiol, Y. Zhang, L. Wehenkel, and M. Pavella. Real-
Time Transient Stability Emergency Control of the South-Southeast
Brazilian System. In Proceedings of the VI Symposium of Specialists
in Electric Operational and Expansion Planning (SEPOPE 1998),
Salvador, Brazil, May 1998.

[EGW03] D. Ernst, M. Glavic, and L. Wehenkel. Power System Stability Con-
trol : Reinforcement Learning Framework. In preparation, to be sub-
mitted to IEEE Transactions on Power Systems. 2003.

[Epp] D. Eppstein. Cube Triangulation and How Many Tetrahedra ?
http://www.ics.uci.edu/ � eppstein/junkyard/triangulation.html.

[Ern01] D. Ernst. Reinforcement Learning Applied to Power System Os-
cillations Damping. In Proceedings of 40th IEEE Conference on
Decision and Control, Orlando, USA, December 2001.

[EW02] D. Ernst and L. Wehenkel. FACTS devices controlled by means of
reinforcement learning algorithms. In Proceedings of PSCC 2002,
Sevilla, Spain, June 2002.

[FS02] E.A. Feinberg and A. Shwartz, editors. Handbook of Markov De-
cision Processes. Methods and Applications. International series
in Operations Research & Management Science. Kluwer Academic
Publisher, 2002.

[GAPE01] M. Ghandhari, G. Andersson, M. Pavella, and D. Ernst. A Control
Strategy for Controllable Series Capacitor. Automatica, 37(2):1575–
1583, 2001.

[Geu02] P. Geurts. Contributions to decision tree induction: bias/variance
tradeoff and time series classification. PhD thesis, University of
Liège, Dept. of Electrical Engineering & Computer Science, Bel-
gium, May 2002.



280 BIBLIOGRAPHY

[GEW02] M. Glavic, D. Ernst, and L. Wehenkel. A Reinforcement Learning
Based Discrete Supplementary Control for Power System Transient
Stability Enhancement. Submitted to ISAP 2003. 2002.

[Gha00] M. Ghandhari. Control Lyapunov Functions: A Control Strategy for
Damping of Power Oscillations in Large Power Systems. PhD thesis,
Royal Instituate of Technology, Dept. of Electric Power Engineering,
Electric Power Systems, 2000.

[HBWS00] S.A. Harp, S. Brignone, B.F. Wollenberg, and T. Samad. SEPIA. A
Simulator for Electric Power Industry Agents. IEEE Control Systems
Magazine, 20(4):53–59, August 2000.

[HG00] N.G. Hingorani and L. Gyugyi. Understanding FACTS. IEEE press,
2000.

[HL86] A. Haurie and P. L’Ecuyer. Approximation and Bounds in Discrete
Event Dynamic Programming. IEEE Trans. on Automatic Control,
AC-31:227–235, 1986.

[HLL96] O. Hernández-Lerma and B. Lasserre. Discrete-Time Markov Con-
trol Processes. Springer, New-York, 1996.

[HLL99] O. Hernández-Lerma and B. Lasserre. Further Topics on Discrete-
Time Markov Control Processes. Springer, New-York, 1999.

[JJS94] T. Jaakkola, M.I. Jordan, and S.P. Singh. On the convergence of
the stochastic iterative dynamic programming algorithms. Neural
Computation, 6:1185–1201, 1994.

[Kal60] R.E. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Trans. ASME Ser. D. J. Basic Engrg., 82:35–45, 1960.

[KD92] H.J. Kushner and Dupuis. Numerical Methods for Stochastic Con-
trol Problems in Continuous Time. Applications of Mathematics.
Springer-Verlag, 1992.

[KLC98] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial Intelli-
gence, 101, 1998.

[Kun94] P. Kundur. Power System Stability and Control. McGraw-Hill, 1994.



BIBLIOGRAPHY 281

[Kun00] P. Kundur. Future Directions in Power Systems. In Proceedings of
the VII Symposium of Specialists in Electric Operational and Expan-
sion Planning (SEPOPE 2000), Curitiba, Brazil, May 2000.

[Kus90] H.J. Kushner. Numerical Methods for Stochastic Control Problems
in Continuous Time. SIAM J. Control and Optimization, 28:999–
1048, 1990.

[Lit94] M.L. Littman. The Witness Algorithm : Solving Partially Observ-
able Markov Decision Processes. Technical report, Brown Univer-
sity, December 1994.

[LS61] L. Liusternik and V. Sobolev. Elements of Functional Analysis. Un-
gar, N.Y., 1961.

[Lue69] D.G. Luenberger. Optimization by Vector Space Methods. Wiley,
N.Y., 1969.

[MA93] A.W. Moore and C.G. Atkeson. Prioritized Sweeping: Reinforce-
ment Learning with Less Data and Less Real Time. Machine Learn-
ing, 13:103–130, 1993.

[Mat] The MathWorks, Inc. Simulink, version 6.2.

[May79] P.S. Maybeck. Stochastic models, estimation, and control, volume
141 of Mathematics in Science and Engineering. Academic Press,
Inc., 1979.

[Meu96] N. Meuleau. Le dilemme Exploration/Exploitation dans les systèmes
d’apprentissage par renforcement. PhD thesis, University of Caen,
1996.

[Meu99] N. Meuleau. Exploration of Multi-State Environments: Local Mea-
sures and Back-Propagation of Uncertainty. Machine Learning,
35:117–154, 1999.

[Moo92] D.W. Moore. Simplical Mesh Generation with Applications. PhD
thesis, Cornell University, 1992.

[Mun97] R. Munos. Apprentissage par renforcement, étude du cas continu.
PhD thesis, Ecole des Hautes Etudes en Sciences Sociales, 1997.



282 BIBLIOGRAPHY

[Mun00] R. Munos. A study of reinforcement learning in the continuous case
by the means of viscosity solutions. Machine Learning, 40:265–299,
2000.

[oAGoSC97] Task Force 13 of Advisory Group 02 of Study Committee 38. New
Trends and Requirements for Dynamic Security Assessment. Tech-
nical report, CIGRE, December 1997.

[oAGoSC00] Task Force 16 of Advisory Group 02 of Study Committee 38. Impact
of the Interaction Among Power System Controls. Technical report,
CIGRE, 2000.

[Oga95] K. Ogata. Discrete-Time Control Systems. Prentice Hall, second
edition, 1995.

[Pai89] M.A. Pai. Energy Function Analysis for Power System Stability.
Power Electronics and Power Systems. Kluwer Academic Publish-
ers, 1989.

[PBGM62] L. Pontryagin, V. Boltyanskii, R. Gamkriledze, and E. Mischenko.
Mathematical Theory of Optimal Processes. Interscience, New-
York, 1962.

[PERV00] M. Pavella, D. Ernst, and D. Ruiz-Vega. Transient Stability of Power
System. A Unified Approach to Assessment and Control. Power Elec-
tronics and Power Systems. Kluwer Academic Publishers, 2000.

[Pha93] A.G. Phadke. Synchronized Phasor Measurements in Power. IEEE
Computer Applications in Power, 6(2):10–15, April 1993.

[PS78] M.L. Puterman and M.C. Shin. Modified Policy Iteration Algo-
rithm for Discounted Problems. Management Science, 24:1127–
1137, 1978.

[PS82] M.L. Puterman and M.C. Shin. Action Elimination Procedures
for Modified Policy Iteration Algorithms. Operations Research,
30:301–318, 1982.

[PS02] J. Persson and L. S
�

oder. Validity of a Linear Model of Thyristor-
Controlled Series Capacitor for Dynamic Simulations. In Proceed-
ings of PSCC 2002, Sevilla, Spain, June 2002.



BIBLIOGRAPHY 283

[PT88] A.G. Phadke and J.S. Thorp. Computer Relaying for Power Systems.
Research Studies Press LTD., Taunton, Somerset, England, 1988.

[Rub81] R.Y. Rubinstein. Simulation and the Monte-Carlo Method. Wiley,
New-York, 1981.

[Sal82] J.F. Sallee. A triangulation of the � -cube. Discrete Math., 40:81–86,
1982.

[Sal84] J.F. Sallee. Middle-Cut Triangulations of the � -cube. SIAM J. Alge-
braic and Discrete Methods, 5:407–418, 1984.

[SB98] R.S. Sutton and A.G. Barto. Reinforcement Learning, an Introduc-
tion. MIT Press, 1998.

[SK00] W.D. Smart and L.P. Kaelbling. Practical Reinforcement Learning
in Continuous Spaces. In Proceedings of the Sixteenth International
Conference on Machine Learning, 2000.

[Smi88] W.D. Smith. Studies in computational geometry motivated by mesh
generation. PhD thesis, Princeton University, 1988.

[SS85] P.J. Schweitzer and A. Seidman. Generalized Polynomial Approxi-
mations in Markovian Decision Processes. Journal of Mathematical
Analysis and Applications, 110:568–582, 1985.

[SS96] S.P. Singh and R.S. Sutton. Reinforcement learning with replacing
eligibility traces. Machine Learning, 22:123–158, 1996.

[Tod84] M.J. Todd.
� � : A New Triangulation of ��� . SIAM J. Algebraic and

Discrete Methods, 5:244–254, 1984.

[Tsi94] J.N. Tsitsiklis. Asynchronous Stochastic Approximation and O -
learning. Machine Learning, 16:185–202, 1994.

[Wat89] C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis,
Cambridge University, Cambridge, England, 1989.

[WD92] C.J.C.H. Watkins and P. Dayan. O -learning. Machine learning,
8:279–292, 1992.

[Whi78] W. Whitt. Approximations of Dynamic Programs I. Math. Opera-
tions Research, 3:231–243, 1978.



284 BIBLIOGRAPHY

[Whi79] W. Whitt. Approximations of Dynamic Programs II. Math. Opera-
tions Research, 4:179–185, 1979.

[Wil97] A.M. Wildberger. Complex Adaptive Systems : Concepts and Power
Industry Applications. IEEE Control Systems, 17(6):77–88, 1997.


