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Abstract-- This paper proposes an application of a Reinforcement
Learning (RL) method to the control of a dynamic brake aimed
to enhance power system transient stability. The control law of
the resistive brake is in the form of switching strategies. In
particular, the paper focuses on the application of a model based
RL method, known as prioritized sweeping, a method proven to
be suitable in applications in which computation is considered to
be cheap. The curse of dimensionality problem is resolved by the
system state dimensionality reduction based on the One Machine
Infinite Bus (OMIB) transformation. Results obtained by using a
synthetic four-machine power system are given to illustrate the
performances of the proposed methodology.

Index Terms--Reinforcement learning, transient stability, discrete
supplementary control, dynamic braking, optimal policy.

1. INTRODUCTION

ISCRETE supplementary controls in a power system are

designed to enhance some desirable property when
required [1,2]. These controls are characterized by the fact that
they are not designed for continuous use and are meant only to
be supplementary rather than primary. Available discrete
supplementary controls usually include: generator tripping [3],
direct or indirect load shedding [4], dynamic braking [1,2],
steam turbine fast valving [1], FACTS devices [5], mechanical
power modulation [5], and energy storage [5].

In this paper, the use of resistive braking is considered. The
essence of the control is the insertion of a resistance, usually at
a generation bus, upon the clearing of a system disturbance.
This action corrects an imbalance between the mechanical
power input and the electrical power output at each generator.
To date, braking resistors have been applied mainly to
hydraulic generating stations remote from load centers,
because these units can withstand the sudden shock from the
switching in of resistors, while for thermal units the effect on
shaft fatigue life must be carefully examined [1]. The use of
braking resistors to improve transient stability, implemented in
many power systems around the world, is reported in [6]. The
main issue in implementing a resistive brake is so called
“switching times control”. A variety of approaches were
considered and implemented, to decide when to switch on or
off the resistor; all of them are strictly heuristic. The prevailing
approach is to apply only one switch of the brake for a pre-
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specified insertion time (Bonneville Power Administration,
Chubu E.P. Co. Japan, several power systems in China, and
Queensland-Australia). A control scheme with maximum of
two consecutive brake insertions, is implemented in the 500
kV Northeast part of the Brazilian power system. For all of
these control schemes the control initiation is based on the
recognition of pre-specified system variable changes [6].

Nevertheless, the switching times control as presently used
seems rather coarse and could be improved by the use of
advanced control algorithms capable to realize multiple
switching operations. The appropriate approach to solve this
problem is to formulate it as multistage decision problem.
Dynamic programming (DP) provides a formal framework to
solve this problem and has already been applied [2] to
determine optimal switching strategies of a resistive brake, but
the control law obtained was an open-loop control law.
Robustness of the open-loop control rules are not good due to
the fact that they act on a case-based way and do not take into
consideration the real state of the system that is reached after
the fault and a sequence of control actions. We propose in this
paper to use DP to compute a closed-loop control law, the
solution of the DP problem being computed by using a
Reinforcement Learning (RL) algorithm. The application of
RL algorithms to power system control is still in its infancy.
Only a few research results were reported [7-11].

The dynamic brake is aimed to damp large
electromechanical oscillations as well as to avoid the system
loss of synchronism (loss of synchronism and damping of
large electromechanical oscillations are closely linked
phenomena). Improving overall system dynamic performances
rather than an individual power plant, by determining the
optimal closed-loop control rule of a dynamic brake is the
primary topic of this paper. The closed-loop control law of the
braking resistor is in the form of the switching strategies. The
switching strategy is a function of present state measurements
and constraints placed upon the operation of the control. To
determine the switching strategy a model based RL algorithm,
known as prioritized sweeping [12], is used.

Basically, the RL approach proposed in this paper to
control a dynamic brake consists of an adaptive closed-loop
control that tends to maximize a function, image of the quality
of the system performances.

II. REINFORCEMENT LEARNING

RL will be presented here in the framework of discrete
optimal  control of a deterministic non-linear system with



constant sampling period. If x; represents the sampled state
vector of the system at instant ¢, u, the control action taken at

t , then the state vector of the system at instant ¢+/ (the instant
corresponding to the next sampling) is given by,

Xepg = f(xp5uy). (1)

The RL method we use in this paper belongs to the
temporal-difference type of methods that suppose the
existence of a reward r, associated to the transition from x,

to x,,; while taking action u; [13]. We define the discounted
return R(xg,ug,u;,u5,...) which depends on the initial data
xo and on the control u; eU,V¢t >0, where U represents a

finite set of possible values for u;,,

R(xp,u;)= §:7krk- )
k=0

where 7, 0<y <1 , is a parameter, called the discount rate.

The aim of RL methods in the framework of infinite-time
horizon with discounted reward is to find the optimal control

sequence u; €U,Vt>0 that maximizes the discounted

return.
We define the

expression (2) as a function of the initial state at t =0,

value function V(x) the maximum value of

V(x)= max R(x,u,) . 3)

u, (0<t<o)

Using the DP principle (introduced in [14]), one can
prove that the value function satisfies the condition,

V(x)= %(r(x,u)w V(f(xu), )

where r(x,u) and f(x,u) are respectively the reward

observed and the next state reached when taking action u
while being in state x. DP computes the value function in
order to find the optimal control with a feedback control
policy. Indeed, from the value function we deduce the
following optimal feed-back control policy,

u" (x) = argmax(r(x,u) +y V(£ (xu)). 5)
uelU
We define the O function, function of x and u, as,
O(x,u) =r(x,u)+y V(f(x,u) . (6)
Then V(x) can be expressed as a function of Q(x,u),

V(x)=max Q(x,u) . 7
uelU

Equation (5) can be rewritten as,

u’(x)=arg max O(x, ) . (8)

Equation (8) provides a straightforward way to determine
the optimal control law from the knowledge of the Q.

RL algorithms estimate the (@ function by interacting
with the system. From the knowledge of the O function, they
can decide by using equation (8) which value of the control to
associate to a state in order to maximize the discounted
return (2). Unfortunately, RL in a continuous state-space
implies that the Q function has to be approximated [13]. We
have used a discretization technique to approximate it because
it is easy to implement, numerically stable and allows the use
of model learning algorithms.

A discretization technique consists in dividing the state
space into a finite number of regions and then considering that
on each region the QO function depends only on u. Then, in
the RL algorithms, the notion of state used is not the real
state of the system x but rather the region of the state space to
which x belongs. We will use the letter s rather than x to
denote the state of the system in order to stress that we refer
now not to x itself but to a region of the state space.
Moreover, the finite set containing all the discretized states of
the system is denoted by S. The discretization of the state
space introduces some stochastic aspects. While being in one
region of the state space and taking an action, the region of the
state space reached at the next sampling instant is not fully
determined. The stochastic aspects introduced by the
discretisation lead to suppose that Q(s,u) does not obey

anymore to the deterministic equation (6) but rather to,

O(@s,u)=r(s,u)+y z p(s‘|s, u)max Q(s',u), )

s'eS uel

where p(s'|s,u) represents the probability to reach at the

next sampling instant the state s' when being in the state s
while taking action u.
Rewards r(s,u) and probabilities p(s‘|s,u) describe the

model of the discretized system. They associate to each
discretized state and to each value of the command u
transition probabilities to other states and the value of a
reward. Assuming that they describe a Markov Decision
Process (MDP), QO(s,u) can be easily estimated using a

classical DP algorithm like the value iteration or the
policy iteration [14,15]. The optimal control to associate to
a state is the one that maximizes Q for this state.

RL methods either estimate the transition probabilities and
the associated rewards (model based learning methods) and
then compute the Q function, or compute directly the QO
function without learning any model (non-model based
learning methods). For the purpose of this paper we use a
model based algorithm because these algorithms offer some
important advantages in comparison to non-model based, and
those are: more efficient use of data gathered, they find better
policies, and handle changes in the environment more
efficiently [16]. A generic algorithm for model based learning
method is given in Appendix.



III. RESOLVING THE CURSE OF DIMENSIONALITY PROBLEM

A. General procedure

The discretization strategy used to be able to apply RL
algorithms to a continuous state-space control problem makes
sense if the finite MDP learned by interacting with the power
system is able to approximate well the initial control problem.
One can assume that this is indeed satisfied if the
discretization is sufficiently fine. But the number of states that
compose the finite MDP can be too high to expect to match
computer capabilities. If we use for example a/00 state
variables system and discretize each state variable into 10
steps, it would imply to learn the structure of a MDP

composed of 10" states. Rather than using coarse

discretization steps to decrease the MDP size, another
approach consists to "preprocess" the high dimensional
system state vector in order to extract from it a lower
dimensional input signal and to use it as input of the RL
algorithms. Such an approach makes sense if the input signal
is able to catch the system state main features.

B. Input signal chosen

The state variables that capture the best the

electromechanical oscillations phenomena are the machines
angle and speed. One can reasonably suppose that if we limit
the input signal of the RL algorithm to these angle and speed
state variables, the information the algorithm has are
sufficient.
Unfortunately, the use of all the angles and speeds requires in
a n machines power system to handle a 2n dimensional input
signal which is too high to expect convergence in a reasonable
learning time (except of course if you are dealing with a small
size power system).

The procedure we use to reduce the dimensionality of the
input signal assumes that the oscillation phenomena are such
that one group of machines swings against the other and that
the machines swing coherently inside the same group.

OMIB [17] can then be applied to reduce the 2n dimensional
signal to a 2 dimensional signal. If denote by GM1 and GM2
the two groups of machines then the transformation proceeds
as follows:
e Transform the two groups into two equivalent machines,
using their corresponding partial center of angle. For
cluster GM1 this results in,

Som 1) =Mghy; T Mo(0), (10)
keGM 1
w1 =MGhy; T Myap(t) with Mgy = ¥ M (11)

keGM 1 keGM 1

where J; and ®; denote the machines angle and speed,
and M, the

expressions hold for group GM2.

e Reduce the two-machine system into an equivalent
OMIB system whose machine angle and speed are defined
by,

represent machines inertia. Similar

3
O()=86a (1) =OGpr2(t) 5 o(t) = wgps 1 (t) — OGpr(2) - (12)

The angle and the speed of this OMIB are used as input of the
RL algorithm. Of course the amount of information in these 2
variables is less than in the 2n variables but will be sufficient
according to our simulations to obtain, after the learning, a
good quality closed-loop control law. Note that the
transformation is commonly used to analyze transient stability
phenomena except that the identification of the two groups
GM1 and GM?2 is done on-line and not predefined like we
proceed here [3].

IV. DESCRIPTION OF THE POWER SYSTEM UNDER STUDY

To illustrate capabilities of the proposed control this paper
makes use of the four-machine power system, described in
Fig. 1. Its characteristics are mainly inspired from [1]. For the
simulations purpose all the generators are modeled as follows:
detailed machine model with slow direct current exciter,
automatic voltage regulator, and speed regulator. Other
controls were not considered. The loads are modeled as
constant current (active part) and constant impedance (reactive
part).

| 5 6 7 1 109 ¢ 3
Gl Il {1 G3
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GMI GM2

Fig. 1 A four-machine power system

While the system operates in steady-state conditions, the
generators G1, G2 (hydro) and G3, G4 (thermal) produce
approximately the same active powers (700 MW) and the two
loads L7, L10 consume respectively 990 and 1790 MW. The
resistive brake (RB) is located at bus 6 and sized as g =35.0
p.u. mhos on a 100 MV A base (500 MW). This is a reasonable
value in view of the fact that a 1400 MW braking resistor is
presently in use [1,2].

A. State definition

We assume that the angle and speed of each generator are
available (they can be either measured directly or estimated).
The OMIB parameters are inferred using (10,11,12). GM1 is
composed of machines G1 and G2 while GM2 is composed of
machines G3 and G4. The state at time ¢ is represented as,

(13)

s; = (04, 0;).

B. Reward definition

It is critical that the rewards truly indicate what is wanted to
be accomplished, not how it is wanted to be achieved [13]. For
the particular problem considered in this paper the aim of the
RL controller is twofold: to improve damping of rotor angle



oscillations of all generating units in the system and to enlarge
the stability domain. These oscillations are observable in the
magnitudes of OMIB angle and speed, and the aim of the
controller is to limit their magnitudes. The resistive brake
should be switched on only when large oscillations occur. All
this can be accomplished by defining the reward as,

_ _C1|§t+1_5eq
]/'t =
—1000

. term
—Colop|—u i s s
b

. _ term
i Spp=s

(14)

where &, is the OMIB post-fault equilibrium angle, u is the

cost associated with the brake being on. The purpose of
weighting factors ¢; and ¢, is to bias the control efforts

toward damping of the OMIB angle or the OMIB speed. The
higher the cost u, the less the controller will act on small

perturbations. In order to deal with the loss of stability, a

terminal state (""" ) is introduced. This state is reached when

the system has lost stability and a very bad value for the
reward (-1000) is then obtained. We consider that the system

has gone outside of the stability domain when &§, >180°.

C. The values of parameters

The measured (directly or indirectly) quantities are
individual machines angle and speed. The period between two
samplings is chosen equal to 50ms which means that the value
of the control {0,1} could change every 50ms. A large value of
y implies the algorithm will take long-term benefit control
actions. However, a too large value (a value close to 1) can
lead to convergence problems. Simulations carried out have
shown that »=0.98 represents a reasonable tradeoff. The
values of parameters in (14) are chosen as ¢;=0.0, c,=1.0, and
u = 2.0 . These values indicate that the control efforts are fully
biased toward control of the OMIB speed (to avoid difficulties
associated with the estimation of post-fault equilibrium OMIB
angle). &-greedy factor is set to 0./ which means that a random
action will be taken at each 10-th sampling on average. The
factor £1is set to rather high value to encourage the RL
algorithm exploration. The OMIB angle and speed are
uniformly discretized in 100 values within the interval [-
3.15,3.15] rad and [-10,10] rad/s, respectively.

D. Control law learned

The RL algorithm is used to learn the optimal closed-loop
control law (strictly speaking, the closed-loop control law
learned will be different from the optimal one due to the facts
that the input signal of the RL algorithm is discretized and
represents something else than the system real state). But to
each power system configuration corresponds an optimal
control law. The strategy proposed here is to realize the
learning by using always the same configuration and to assess
the control law robustness to justify the use of the control law
in configurations that do not correspond to the one in which
the learning has been done.

V. SIMULATION RESULTS

A. Scenario description

The learning period is partitioned into different scenarios.
Each scenario starts with the power system being at rest and is
such that at /0sa short-circuit at bus 10 occurs. The fault
duration is chosen at random in the interval [0,350ms]. The

scenario stops either when the instability is reached or when
tis greater than 60s. The only reason for realizing a short-
circuit during a scenario is to drive the system far from the
equilibrium point. Otherwise the learning would only happen
in areas close to the equilibrium point. Because we do not
want to learn the optimal closed-loop control law that
corresponds to the fault-on configuration, we do not realize

any learning  during the fault period (the four-
uple (s;,u;,7;,8;41)is never used as input of the RL
algorithm if ¢ and/or ¢+/ correspond to the fault

configuration time interval). The total number of scenarios
equals to 1000, out of which 115 were unstable.

B. Performance index

The learning performance (the quality of the control) is
measured by introducing the discounted return at time ¢

—t
Rt:Zy Tk >
k=t

(15)

where 7, is equal either to 60s, when terminal state (loss of

stability) is not reached, or to the time when terminal state is
reached. This measure indicates two things. The first one is the
distance from the system equilibrium point at time ¢ (one can
reasonably suppose that if at time ¢ we are far from the
equilibrium point, R, will be bad). The second one is the

control quality. Indeed, if the quality of the control law is
“good” one can expect while being in state s at time ¢ better

return R, than if we were using a “bad” control law.

C. Control law performances
Evolutions of R, at different stages of the learning process

are represented in Fig. 2. They all correspond to scenarios for
which the fault duration is equal to 2/5ms . After the first 10

learning scenarios the value of R, is still rather low. The

control law learned is far from the optimal one due to the
rather small learning time. As the number of scenarios
increases the quality of control is improving. As we can
observe it, the value of R; converges to zero for the curves

labeled “70 scenarios” and “100 scenarios”. It means that the
system reaches its equilibrium point and that no control
actions are taken when the system is at rest. Fig. 3 represents
the evolution of the OMIB angle, speed, and actions taken
after convergence of the learning process. To highlight the
control benefit in terms of damping, the OMIB angle of the
uncontrolled system is given in Fig. 3a, and corresponding
OMIB speed in Fig. 3b.



The controller successfully learned to control efficiently the
system using 7 brake switches. These curves have been drawn
with &greedy factor set to 0 what in turn means that the
controller uses only greedy actions to control the system.
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Fig. 3 Evolution of the OMIB angle, speed, and control actions taken (215
ms duration self-clearing fault)

D. Control law robustness

To assess the robustness of the proposed control, the learned
control law is used to control the system when subjected to a
different fault scenario. The system response and actions taken
are illustrated in Fig. 4 together with the controlled system
response to the self-clearing short-circuit. In spite of the
change in system configuration, the controller succeeds to
control efficiently the system being subjected to the “unseen”
scenario. This is due to the high robustness of the
closed-loop control law learned. Note that the uncontrolled
system loses stability for this scenario.
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Fig. 4 Evolution of the OMIB angle, speed, and control actions taken (215
ms duration fault cleared by opening the line 11-10)

E. Enlarging of the stability domain
For the 350ms duration self-clearing fault, the uncontrolled

system loses stability /.75s after the fault clearance, but by
using learned control law the controller stabilizes the system.



The evolution of the OMIB angle is illustrated in Fig. 5 for
both controlled and uncontrolled system.
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Fig. 5 Evolution of the OMIB angle (350 ms duration self-clearing fault)

F. Remarks and discussion

The primary objective of the paper is to highlight the
potential of RL application in controlling a dynamic brake
aimed to enhance power system transient stability as well as
the damping of large oscillations. Some practical limitations
met when using the dynamic brake, such as the maximum
insertion time and the maximum number of consecutive
insertions, were not considered in the simulations. Maximum
number of consecutive brake insertions can be handled by
choosing proper switching costs. Further work is needed to
adopt criteria for choosing proper switching costs to handle
brake insertion constraints and accommodate different brake
technological solutions. Proper use of the domain knowledge
(the knowledge about the physical problem under
consideration, that is the knowledge about power system
dynamics) can resolve the curse of dimensionality problem
and help RL methods to handle complex problems. This is
particularly stressed in the paper by reducing the state-space
dimensionality and defining the proper reward. Observe in
Fig. 3,4, and 5 that the OMIB starts in a backswing
(decelerating) mode. This is due to the fact that the short-
circuit being located at the right part of the power system,
group GM2 accelerates during the fault.

Although the control of particular system mode (inter-area
oscillations) is considered in the paper the idea is much wider.
Observe that the reward in (14) is defined in such a way that
the control efforts can be biased toward slower as well as
faster oscillations through proper choice of parameters ¢, and

¢, . These parameters are introduced having in mind further

extension of the control toward a multi-agent control system (a
number of distributively located brakes controlled by
individual agents) where a coordination agent can be placed
upon local ones and learn appropriate coordination through the
settings of the parameters. However, simulations performed
revealed that one’s good choice is to set parameter ¢, to 0 and

avoid angle estimation in the system post-fault equilibrium.
This is not conclusive and further work is needed to find an
appropriate estimation algorithm with the aim of strengthening
approach flexibility.

6

An issue not considered in this paper is the inclusion of
communication delays. The work is underway to tackle this
issue along recent theoretical results on MDP with delays and
asynchronous cost collection, presented in [21].

VI. RELATED WORK

A similar approach where a resistive brake has been
considered to enhance overall dynamic performance of a
power system rather than individual power plants was
presented in [2]. A classical DP algorithm was used to
determine open-loop control laws for a number of anticipated
fault durations. Time-invariant OMIB was used to resolve
curse of dimensionality problem. Each obtained solution was
then stored in a look-up table for use in real-time. The
approach presented in this paper generalizes over the
methodology from [2] in several ways:

- It determines closed-loop control law,

- The fault durations are not anticipated but rather chosen at

random within a pre-specified interval,

- It uses generalized (time-varying and more accurate)

OMIB to resolve curse of dimensionality problem.

A variety of approaches were considered and implemented,
to decide when to switch ON or OFF the resistor [6], [18],
[19]. All the approaches were implemented with the main aim
of improving dynamic performances of individual power
plants (usually hydraulic) and it is hard to compare them with
the approach advocated in this paper.

Fortunately, one of the attractions of RL approach is the
flexibility this approach provides while designing controllers
for a given problem. Different heuristics as well as domain
specific knowledge can be easily injected into the RL agent.
This can be done by proper reward definition (e.g., additional
penalty can be added into reward if insertion time is longer
than allowed) or by proper initialization of Q function.

For illustration a simple heuristic [18] that the brake should
be ON whenever and as long as the speed is positive is used to
initialize @ function. Comparison of the learning process
improvement is illustrated in Fig. 6 in terms of unstable cases
met during the learning process in first 120 scenarios.
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Fig. 7 Number of unstable cases with and without using heuristic to initialize
O function

Observe that initialization of the O function results in
considerably smaller amount of the unstable cases and thus



increases the learning process reliability.

It is also possible to exploit in RL the information gathered
by observing how an existing controller (e.g., one presented in
[20]) acts and then to use RL to learn starting from that policy.
The resulting policy should, in principle, outperform the
original controller.

VII. CONCLUSIONS

The use of a resistive brake to enhance overall dynamic
performance of the power system has been presented. A model
based RL algorithm, known as prioritized sweeping, has been
proposed to determine the approximation of the optimal
switching strategies of the brake. The domain knowledge has
been used to resolve the curse of dimensionality problem and
to define the reward. Simulations were carried out on a
synthetic four-machine power system. The results observed
qualify the proposed control as effective to handle
the problem considered. Although some practical limitations
in the use of the resistive brake were not considered we
suggest that RL based control, together with a proper use of
the domain knowledge, offers attractive features for practical
applications.

VIII. APPENDIX
GENERIC ALGORITHM FOR MODEL BASED LEARNING METHOD

Initialize Q(s,u)=0, VseS and YueU
Initialize parameters of the model:
N(s'ls,u) =0, Vs,s'eS and YuelU

p(s'ls,u) =0, Vs,s'eS and VYueU

r(s,u)=0, VseS and YueU
Do forever:
Observe current state s

Choose action # from s using knowledge of O (e.g. &— greedy )

Take action u and observe s' and r .
Update model:

N(s'|s,u) < BN(ls.u), ViesS
(s, u)zjes N(jls, u)+r
> s NUls.) +1

N(s'|s,u) <« N(s'|s,u) +1,

r(s,u) <

N(ils,u)
2 s VU0
Compute Q by solving (9)
s <« s'

p(ils,u) “— VieS

The & -greedy method used to choose the action suggests that
there is probability & that the action chosen is not necessary
the one which minimizes @, but an action taken at random.
This provides the algorithm with some exploratory behavior
such that on average each //¢& time a random action is taken.
The N function used in this algorithm does not intervene to
describe the model as such but is necessary for its updating.
The term £ (0< f<1) provides the algorithm with some
adaptive behavior by giving more importance (if § < 1) to the
last data acquired.

[10]
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