

PERINATAL INFECTIONS

The GBS successful practices in prevention

Pierrette Melin

National Reference Centre for GBS Microbiology, University of Liege Medical Microbiology, University Hospital of Liege

Definition Spectrum of infant infections Mechanism of infection

INTRODUCTION

2

Perinatal infections

- Definition
 - Bacterial or viral illnesses
 - Passed from a mother to her baby
 - Usually after rupture of membranes
 - In utero
 - **During delivery process**

PATHOGENS

Mother, symptomatic or not during pregnancy

sbbc pmelin 20.10.2012

Congenital infections

- Growth retardation
- Congenital manifestations
- · Fetal loss stillbirth

Transplacental Hematogenous

Neonatal infections

- Meningitis
- Septicemia
- Conjuctivis
- Pneumonia

Breast milk Person to person **Umbilicus**

Transmission of Infant infections

Perinatal infections

- Meningitis
- Septicemia
- Pneumonia
- Preterm labor

By contact, inhalation (with secretions, blood) Hematogenous

INTERVENTION

MAJOR PATHOGENS

Congenital infections

- Growth retardation
- Congenital manifestations
- Fetal loss stillbirth

Rubella, CMV, HIV. Toxoplasma qondii, Treponema pallidum, Parvovirus B19, HSV, VZV

Major pathogens

Perinatal infections

- Meningitis
- Septicemia
- Pneumonia
- Preterm labor

Neonatal infections

- Meningitis
- Septicemia
- Conjuctivis
- Pneumonia

Breast milk HIV, CMV, HBV Person to person GBS, Listeria, E.coli **Umbilicus** S.aureus, tetanos

N.gonorrhoeae C.trachomatis

Group B streptococci N.gonorrhoeae C.trachomatis E.coli, Listeria, HSV.CMV. HIV. HBV

Chlamydia trachomatis

- Most common bacterial sexually transmitted disease
- No obvious symptoms for majority of women
- Infection of mother
 - → premature rupture of membranes and early labor
 - ophtalmia neonatorum (20-50%) (within 1st month of life)
 - pneumonia (within 1 to 3 months of age)
- PCR (cervix ok, eyes ?); IF; culture
- Screening during pregnancy
 - No consensus

7

INTERVENTION Preconceptional / antenatal or perinatal or postnatal

8

Components of an effective prevention program

- Understanding of biology and epidemiology
- Setting strategic priorities
 - Identify « target » disease and « at risk » populations
 - Conduct cost-effective analysis
 - Burden of disease
 - Incidence, morbidity, mortality, cost of providing care, losss of productivity
 - Cost of preventive intervention
- Investing in material and human resources
- Provide adequate monitoring and evaluation

Is there medical and societal cost-saving?

CONCLUSION

9

Highly effective preventive measures

- **Neonatal tetanus**
 - **Maternal tetanus vaccination** / booster

- Neonatal ophtalmia
 - Topical agents (not efficient against C.trachomatis)
 - Silver nitrate, erythromycin, tetracycline, povidone iodine
- **Hepatitis B**
 - Screening and vaccination

PATHOGENS

HIV

sbbc pmelin 20.10.2012

Anti-retroviral therapy

CONCLUSION

Introduction & burden
Guidelines
Screening
vaccine

GROUP B STREPTOCOCCI Successful practices in prevention

SION 11

Streptococcus agalactiae or GBS

Gram positive cocci

Catalase -

β-hemolytic

CAMP test +

Hippurate +

Esculine-

Orange pigment

10 capsular serotypes (Ia, Ib, II-IX)

GBS

1887, Noccard-Mollereau, bovine mastitis

1933, Group B Antigen

1964, severe neonatal sepsis

▶1970, N°1 in neonatal infections

sbbc pmelin 20.10.2012

Group B streptococcal diseases in neonates

- Since the 1970s, leading cause of lifethreatening infections in newborns
 - Neonatal illness/death
 - Long-term disabilities
- Maternal morbidity
 - Along pregnancy
 - Peripartum

GLOBAL public health major concern!

Also in developing countries

GBS

- Serious diseases among elderly and adults with underlying diseases
 - Significant mortality

GBS Neonatal Infections

A. Schuchat, Clin Microb Rev 1998;11:497-513

Burden of neonatal GBS early onset diseases in European countries

Location	Incidence per 1,000 live- births	Reference
Spain	2 (1996) to 0.45 (2008)	Lopez Sastre et al. Acta Pediatr 2005
Belgium	2	Melin, Indian J Med Res 2004
Eastern Europe	0.2 - 4	Trijbels-Smeulders, Pediatr Infect Dis J 2004
Western Europe	0.3 - 2	
The Netherlands	1.9	
Scandinavia	0.76 - 2	
Southern Europe	0.57 - 2	

- Definition?
- Carriage rate?
- Ethnicity?
- Sub-reporting?
- Systematic diagnostic approach?
- Virulence?

Data assessing more accurately the true burden are needed

GBS EOD vertical transmission

GBS

GBS maternal colonization

Risk factor for early-onset disease (EOD): vaginal GBS colonization at delivery

- GBS carriers
 - 10 35 % of women
 - Clinical signs not predictive
 - Dynamic condition
 - Intestinal reservoir
 - Prenatal cultures late in pregnancy can predict delivery status

GBS

Additional Risk Factors for Early-Onset GBS Disease

- Obstetric factors:
 - Prolonged rupture of membranes,
 - Preterm delivery,
 - Intrapartum fever
- GBS bacteriuria
- Previous infant with GBS disease
- Immunologic:
 - Low specific IgG to GBS capsular polysaccharide

No difference in occurrence either in GBS Positive or Negative women, except intrapartum fever

Lorquet S., Melin P. & al.

J Gynecol Obstet Biol Reprod 2005

GBS EOD - Belgian data

- Incidence
 - 1985 -1990: 3/1000 live births
 - 1999, estimation : 2/1000 live births
 - 2010, estimation : < 1/1000 live births</p>
- Meningitis: 10 %
- Mortality : 5 -10 %
- 60 % EOD (130 cases): WITHOUT any maternal/ obstetric risk factor except colonization
- Prenatal screening
 - Recto-vaginal cultures : 13-35 % GBS Positive

P. Melin - 2001, 2007 - Reference laboratory for GBS.

GBS

Stages in the pathogenesis of GBS neonatal EOD: Bacterial & individual factors

Meningitis

Brain barrier Pili, β-hemolysin, ...

GBS

Colonization: adhesion to epithelial cells different virulence factors (pili, scpB, ...)

Ascendant transmission (amnionitis)

Sepsis

IL1, IL6, TNF α , PGE2, TxA $_2$,

Bacteria
Peptidoglycan
β-hemolysin, ...

- Capsule

pathogenesis

- C5a peptidase
-

Phagocytes cells, Antibodies, Complement

GBS

β-hemolysin, invasins (pneumonia)

- Universal prenatal screening-based strategy
- Risk-based strategy
- No guideline

GUIDELINES FOR PREVENTION OF GBS PERINATAL DISEASE

Which prevention strategy for GBS perinatal diseases?

> 22 CONCLUSION

Stages in the pathogenesis of GBS

neonatal EOD: Bacterial & individual factors

Intrapartum antibioprophylaxis > 4 (2) hours before delivery

INTERVENTION

23 CONCLUSION

sbbc pmelin 20.10.2012

Stages in the pathogenesis of GBS neonatal EOD: Bacterial & individual factors

Prevention of perinatal GBS EOD

- Intrapartum antibiotics
 - Highly effective at preventing EOD in women at risk of transmitting GBS to their newborns ($\geq 4 h$)

(clinical trials in late 80s)

Risk-based strategy **Screening-based strategy**

Who is the women at risk?

sbbc pmelin 20.10.2012

Impact of prevention practices Early- and Late-onset GBS Diseases in the 1990s, U.S.

S. Schrag, New Engl J Med 2000 Schrag S. et al. N Engl J Med 2002; 347:233-9

GBS

Why is Screening more protective than the risk-based approach?

Schrag S. et al. N Engl J Med 2002; 347:233-9

Broader coverage of « at-risk » population

- Captures colonized women without obstetric RF
- High level of compliance with recommendations
- Enhanced compliance with risk-based approach cannot prevent as many cases as universal screening

CTION PATHOGENS INTERVENTION GBS CONCLUSION 27

Impact of prevention practices Early- and Late-onset GBS Diseases, U.S.

Incidence of early- and late-onset invasive group B streptococcal disease in selective Active Bacterial Core surveillance areas, 1989-2008 (CDC 2010)

GBS

sbbc pmelin 20.10.2012

Morbidity and Mortality Weekly Report

www.cdc.gov/mmwr

Recommendations and Reports

November 19, 2010 / Vol. 59 / No. RR-10

Prevention of Perinatal Group B Streptococcal Disease

Revised Guidelines from CDC, 2010

Continuing Education Examination available at http://www.cdc.gov/mmwr/cme/conted.html

DEPARTMENT OF HEALTH AND HUMAN SERVICES
CENTERS FOR DISEASE CONTROL AND PREVENTION

CDC, USA, MMWR, Vol 59 (RR-10) August 2010 Endorsed by

- AAP
- ACOG

SHC, Belgium July 2003 Revision ongoing

Universal screening-based strategy for prevention of GBS perinatal disease

Vagino-rectal GBS screening culture at 35-37 weeks of gestation Unless patient had a previous infant with GBS invasive disease or GBS bacteriuria during current pregnacy For ALL pregnant women or delivery occurs < 37 weeks' gestation if YES Not done, incomplete or **GBS POS GBS Neg** unknown GBS result ! Facultative! Intrapartum rapid GBS test** > 1 Risk factor: - Intrapartum fever ≥ 38°C*** - ROM ≥ 18 hrs if NO if YES Intrapartum prophylaxis **NOT** indicated 30 INTERVENTION CONCLUSION sbbc pmelin 20.10.2012 **INTRODUCTION PATHOGENS GBS**

Remaining burden of GBS EOD Missed opportunities

In spite of universal screening prevention strategy
In spite the great progress

Cases still occur

- Among remaining cases of EOD
 - Some may be preventable cases
 - Missed opportunities for (appropriate) IAP
 - False negative screening

Van Dyke MK, Phares CR, Lynfield R et al. N Engl J Med 2009 CDC revised guidelines 2010 Poyart C, Reglier-Poupet H, Tazi et al. Emerg Infect Dis 2008 DEVANI project, unpublished data 2011

GBS

SCREENING FOR GBS COLONIZATION

Antenatal GBS culture-based screening

Goal of GBS screening

To predict <u>GBS vaginal</u> (rectal) colonization at the time of delivery

- Critical factors influencing accuracy
 - Swabbed anatomic sites
 - Timing of sampling
 - Screening methods
 - Culture
 - Procedure
 - Media
 - Non-culture

GBS

From direct plating on blood agar **Evolution of culture methods**

Use of selective enrichment broth

- To maximize the isolation of GBS
- To avoid overgrowth of other organisms

Which agar or which combination?

+/- Blood agar

Workload - costs - extra-testing - non β-hemolytic GBS detection to be considered

INTERVENTION

36

sbbc pmelin 20.10.2012

Crucial conditions to optimize SCREENING

WHEN 35-37 weeks

WHO ALL the pregnant women

Specimen Vaginal + rectal swab(s)

Collection WITHOUT speculum

Transport
 Transport/collection device/condition

(non nutritive medium: Amies/Stuart

(type of swab)(Length and T°)

Request form To specify prenatal « GBS »

screening

Laboratory procedure

(CDC 2010 - Belgian SCH 2003)

Crucial conditions to optimize SCREENING

WHEN 35-37 weeks

WHO ALL the pregnant women

Specimen Vaginal + rectal swab(s)

Collection WITHOUT speculum

Transport Transport/collection device/condition

(non nutritive medium: Amies/Stuart (type of swab)(Length and T°)

Request form To specify prenatal « GB3 » screening

Laboratory procedure

(CDC 2010 - Belgian SCH 2003)

Crucial conditions to optimize **SCREENING**

Transport-collection system & transport-storage condition Preliminary results (2012, NRC GBS)

- Use of a selective enrichment Lim broth
 - (BD, Copan, bioMérieux)
 - At RT° up to 35°C

Between 4-8°C

- Use of a selective enrichment Granada medium (bioMérieux)
 - At RT° up to 35°C

Between 4-8°C

GBS

sbbc pmelin 20.10.2012

Crucial conditions to optimize **SCREENING**

Transport-collection system & transport-storage condition Preliminary results (2012, NRC GBS)

- Use of a selective enrichment Lim broth (BD, Copan, bioMérieux)
 - At RT° up to 35°C
 - Rapid important amplification of GBS initial inoculum
 - Sustained viability > 4 days
 - Between 4-8°C
 - > 24 hours, continuous decrease of life GBS

- Use of a selective enrichment Granada medium (bioMérieux)
 - At RT° up to 35°C
 - Rapid important amplification of GBS initial inoculum
 - Sustained viability at RT°
 - Abrupt lost of viability at 35°C > 48-72h
 - Between 4-8°C

GBS

> 24 hours, continuous decrease of life GBS

sbbc pmelin 20.10.2012

Prenatal culture-based screening: Limiting factors

- Positive and negative predictive values
 - False-negative results
 - Failure of GBS culture (oral ATB, feminine hygiene, delay before culture) or new acquisition
 - Up to 1/3 of GBS positive women at time of delivery
 - Continuing occurrence of EO GBS cases
 - False-positive
 - Positive prenatal screening /negative at time of delivery
 - **Unnecessary IAP**

Need for more accurate predictor of intrapartum GBS vaginal colonization

Prenatal culture-based screening: Limiting factors

- Positive and negative predictive values
 - **False-negative results**
 - Failure of GBS culture (oral ATB, feminine hygiene, delay before culture) or new acquisition
 - Up to 1/3 of GBS positive women at time of delivery
 - Continuing occurrence of EO GBS cases
 - False-positive
 - Positive prenatal screening /negative at time of delivery
 - Unnecessary IAP

Need for more accurate predictor of intrapartum GBS vaginal colonization

Prenatal culture-based screening combined with illumigene® Group B Streptococcus assay

A loop mediated isothermal amplification (LAMP) assay

by Meridian Bioscience, Inc

- Broth enrichment followed by illumigene® GBS
 - Speed and accuracy
 - DNA detection

43 CONCLUSION

Evaluation of the *illumigene*[®] **GBS**

Cf. Poster M5, Dodemont M., Vanhouteghem K. et al.

Evaluation of the *illumigene*[®] **GBS**

		GBS culture		
		Positive	Negative	
illumigene GBS	Positive	45	2	47
	Negative	5	188	193
		50	190	240

GBS Positive cultures: 20.7%

illumigene GBS vs GBS reference culture (all discrepancies were retested)

Sensitivity	90.0 %
Specificity	98.9 %
PPV	95.7 %
NPV	97.4 %
Efficiency	97.1 %

Evaluation of the *illumigene*[®] **GBS**

		GBS culture		
		Positive	Negative	
illumigene GBS	Positive	45	2: PCR pos	47
	Negative	2 positive 3 very rare GBS	188	193
		50	190	240

GBS Positive cultures: 20.7%

illumigene GBS vs GBS reference culture /GBS DNA

Sensitivity	90.0 %	→ 95.7%
Specificity	98.9 %	→ 100%
PPV	95.7 %	→ 100 %
NPV	97.4 %	→ 99 %
Efficiency	97.1 %	

Evaluation of the *illumigene®* GBS

- Speed and accuracy
- Easy to perform, short hands-on-time
- Good comparison to reference culture method
 - 100% specificity and positive predictive value
 - High sensitivity and negative predictive value
 - Identification of >= 0.8% additional GBS positive specimen
 - Overall cost and logistic to be considered

Prenatal culture-based screening: Limiting factors

- Unknown GBS status at presentation for delivery
 - Screening performed but result not available
 - Women with no prenatal care

Risk based strategy

60% at GBS risk not identified

GBS

> 10% of unnecessary IAP

Need for rapid accurate predictor of intrapartum GBS vaginal colonization

sbbc pmelin 20.10.2012

Alternative to GBS prenatal screening: intrapartum screening Theranostic approach

Turnaround time collect specimen at admission Optimal management of patient

sbbc pmelin 20.10.2012

Specimen Analysis "POCT"?

30-45 minutes, 24 hrs/7 d, robust

Benitz et al. 1999, Pediatrics, Vol 183 (6)

Intrapartum screening theranostic approach: expected advantages

- Inclusion of women without prenatal screening/care
- Identification of women with change of GBS status after 35-37 wks gestation
- Increased accuracy of vaginal GBS colonization status at time of labor & delivery

sbbc pmelin 20.10.2012

Real Time PCR for intrapartum screening

- Advance in PCR techniques & development of platforms
 - BD GeneOhm[™] Strep B Assay (+/- 1 hr) (in laboratory)
 - Xpert GBS, Cepheid (35-45 min) (can be performed as a POCT)

SION 51

Real-time PCR, very promising

- Rapid, robust & accurate technology
- Still an expensive technology (specific equipment)
 - Cost effective?
 - Need for more cost-effective clinical study
- Logistic
 - 24 hours 7 days
 - In the lab?
 - In the obstetrical department as a POCT ?
- In combination with prenatal screening strategy?
 - CDC 2010 : for women with premature delivery or no prenatal care
- No antimicrobial result
 - In the future detection of R genes, but mixed microbiota!

Prevention of GBS EOD and LOD

sbbc pmelin 20.10.2012 INTRODUCTION PATHOGENS INTERVENTION GBS CONCLUSION 53

Vaccine - Background

 Correlate between maternal low level off CPS type Ab at time of delivery and risk for development of GBS EOD

Baker C et Kasper D, 1976, NEJM

GBS

Vaccine for pregnant women: Likely the most effective, sustainable and cost effective approach

GBS Vaccines, since the 1980s Challenges

Capsular polysaccharide vaccines

- 10 serotypes
 - Different distributions
 - EOD, LOD, invasives infections in adults
 - Geographically and along time
- Conjugated vaccines
- Multivalent vaccines la, lb, III, V
- Clinical studies
 - Immunogenicity : ok
 - Safety : ok
 - Efficacy: scheduled/ongoing

GBS Vaccines

GBS Protein-based Vaccine

- Ag = Surface proteins
 - Cross protection against different serotypes
 - **Better immunogenicity**
 - Humoral response T-cell dependent
 - = long lasting immunity

56

CONCLUSION

GBS Vaccines GBS « pilus like structure »

- **Highly immunogenic proteins**
- **Elicit protective and functional antibodies**
- Virulence factor
 - Adhesion
 - **Transcytose through cells**

sbbc pmelin 20.10.2012

58

CONCLUSIONTake home messages

sbbc pmelin 20.10.2012 INTRODUCTION PATHOGENS INTERVENTION GBS CONCLUSION

GBS Summary

- EOD & LOD, a public health concern
 - IAP, an effective prevention
- "Screening" Prevention strategies
 - Improvement of culture-based GBS prenatal screening
 - Culture-LAMP combined GBS prenatal screening
 - Room for a rapid intrapartum screening (POCT)
- Development of a vaccine
 - Against pili proteins and major capsular polysaccharidic serotypes