
Solving the gas transmission problem with
consideration of the compressors.

Bouchra Bakhouya1 and Daniel De Wolf2

1 Ieseg, Université Catholique de Lille, rue de la digue, 59.800 Lille
b.bakhouya@ieseg.fr

2 Institut des Mers du Nord, Université du Littoral Côte d’Opale,
49 Place du Général de Gaulle, BP 5529, 59 383 Dunkerque Cedex 1

daniel.dewolf@univ-littoral.fr

Résumé In [7], De Wolf and Smeers consider the problem of the gas
distribution through a network of pipelines. The problem was formulated
as a cost minimization subject to nonlinear flow-pressure relations, ma-
terial balances and pressure bounds. This model does not reflect any more
the current situation on the gas market. Today, the transportation and
gas buying functions are separated. This work considers the new situation
for the transportation company. The objective for the transportation com-
pany is to determine the flows in the network that minimize the energy
used for the gas transport. This corresponds to the minimization of the
power used in the compressors.

Mots-Clefs. Optimal dimensionning, Gas transport, non-convex opti-
misation.

1 Introduction

In De Wolf and Smeers [7], the objective for the transportation company is
to satisfy the demand at several points of the network by buying gas at minimal
prize. Today, the transportation function and gas buying function are separated.
For example, on the Belgian gas market, the transport is devoted to Fluxys
company. On the other side, several actors are in charge of gas supplying.

In order to reflect this new situation, a modelization of the compressors is
introduced in the model of De Wolf and Smeers. The introduction of the com-
pressors change the nature of the optimization problem. In fact, the problem
considered by De Wolf and Smeers [7] was a non convex but separable non
linear problem. This problem was solved using successive piecewise linear ap-
proximations of the problem.

In the present case, the relation between the pressure increase and the flow
in the compressor is non separable. See, for example, Jean André et al [3], Babu
et al [5] or Seugwon et al [10].

This non linear non convex problem is solved using a preliminary problem,
namely the problem suggested by Maugis [9], which is a convex problem easy to
solve. We show, on the example of the Belgian gas network that this auxiliary
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problem gives a very good starting point to solve the highly non linear complete
problem.

Future researches are devoted to introduce this model in a dimensioning
model such as [6]. In this case, the gas transmission problem is the second stage
problem of a two stage problem, the first stage being the pipes and compressors
dimensioning problem.

The paper is organized as follows. The formulation of the problem is presented
in section 2, the solution method being discussed next. Section 4 introduces two
test problems based on the Belgian and French gas transmission systems. This
section also illustrates the utility of the first problem to find a good starting
point. Conclusions terminate the paper.

2 Formulation of the problem

The formulation of the problem presented in this section applies thus to a
situation where the gas merchant and transmission functions are separated. The
transportation company must decide the gas flow in each pipe and the level
of compression in each compressor to satisfy fixed demands distributed over
different nodes at some minimal guaranteed pressure, the income of gas being
also given. For the supply, we have preserved a flexibility close that allows to
take gas between 90 % and 110 % of the daily nominal quantity.

The network of a gas transportation company (See Figure ??) consists of
several supply points where the gas is injected into the system, several demand
points where gas flows out of the system and other intermediate nodes where the
gas is simply rerouted. Pipelines or compressors are represented by arcs linking
the nodes.

The following mathematical notation is used. The network is defined as the
pair (N,A) where N is the set of nodes and A ⊆ N×N is the set of arcs connec-
ting these nodes. Since we have preserved the flexibility close, two variables are
associated to each node i of the network : pi represents the gas pressure at this
node and si the net gas supply in node i. A positive si corresponds to a supply
of gas at node i. A negative si implies a gas demand di = −si at node i.

A gas flow fij is associated with each arc (i, j) from i to j. There are two
types of arcs : passive arcs (whose set is noted Ap) correspond to pipelines
and active arcs correspond to compressors (whose set is noted Aa).

The constraints of the model are as follows. At a supply node i, the gas
inflow si must remain within take limitations specified in the contracts. A gas
contract specifies an average daily quantity to be taken by the transmission
company from the producer. Depending on the flexibility of the contract, the
transmission company has the possibility of lifting a quantity ranging between a
lower and an upper fraction (e.g. between 0.90 and 1.1) of the average contracted
quantity. Mathematically :

si ≤ si ≤ si
At a demand node, the gas outflow −si must be greater or equal to di, the
demand at this node.
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The gas transmission company cannot receive gas at a pressure higher than
the one insured by the supplier at the entry point. Conversely, at each exit point,
the demand must be satisfied at a minimal pressure guaranteed to the industrial
user or to the local distribution company. Mathematically :

pi ≤ pi ≤ pi

The flow conservation equation at node i for the flow conservation at a supply
node i) insures the gas balance at node i. Mathematically :∑

j|(i,j)∈A

fij =
∑

j|(j,i)∈A

fji + si

Now, consider the constraints on the arcs. We distinguish between the passive
and active arcs. For a passive arc, the relation between the flow fij in the arc
(i, j) and the pressures at the two ends of the pipe pi and pj is of the following
form (see O’Neill and al.[11]) :

sign(fij)f2
ij = C2

ij(p
2
i − p2

j ), ∀(i, j) ∈ Ap

where Cij is a constant which depends on the length, the diameter and the
absolute rugosity of pipe and on the gas composition. Note that the pipes flow
variables fij are unrestricted in sign. If fij < 0, the flow −fij goes from node j
to node i.

For an active arc corresponding to a compressor, the following expression
of the power used by the compressor can be found, for example, in André et al
[3], Babu et al [5] or Seugwon et al [10]) :

Wij =
1

kηad

100
3600

P0

T0
Ti
Zm
Z0

γ

γ − 1
fij

((
pj
pi

) γ−1
γ

− 1

)
(1)

with the following parameters :
P0 = 1.01325 bar,
T0 = 273.15 K,
γ = 1.309,
Z0 = 1,
k = 0, 95× 0, 97× 0, 98,
Zm = mean compressibility factor of the gas,
ηad = the efficacity factor,
Ti = the gas temperature at the entry of the compressor.

Note also that in (1), the gas flow is expressed in m3 per hour, the dissipated
power in kW, the pressures pi and pj are in bar. Using mean values for theses
factors (Zm = 0,9, Ti = 288,15 K, ηad = 0.75 for a turbo-compressor, 0.8 for a
moto-compressor), the energy dissipated can be written as :

Wij = γ1fij

((
pj
pi

)γ2
− 1
)

(2)
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with γ1 = 0.167 for a turbo-compressor, 0.157 for a moto-compressor and γ2 =
0.236.

The power used in the compressor must be lower than the maximal power,
noted Wij :

Wij ≤Wij

There is also an upper bound on the maximal pressure increase ratio :
pj
pi
≤ γ3

The constant γ3 = 1.6 in most of practical cases.
For active arcs, the direction of the flow is fixed :

fij ≥ 0, ∀(i, j) ∈ Aa
There are also some valves in the network. Note Av the set of arcs corres-

ponding to valves. The role of a valve is to decrease the pressure :

pi ≥ pj ,∀(i, j) ∈ Av
Note also that the direction of the flow is fixed for valves :

fij ≥ 0, ∀(i, j) ∈ Av
The objective function of the gas transmission company is to minimize the

energy used in the compressor. This can be written :

min z = α
∑

(i,j)∈Aa

1
0, 9ηtherm

Wij (3)

where α is the unitary energy price (in Keuro/kW) and ηtherm is the thermic
efficacity of the compression station.

The gas transmission problem can thus be formulated as follows :

min z(f, s, p,W ) = α
∑

(i,j)∈Aa

1
0, 9ηtherm

Wij

s.t.



∑
j|(i,j)∈A

fij =
∑

j|(j,i)∈A

fji + si ∀i ∈ N (4.1)

sign(fij)f2
ij = C2

ij(p
2
i − p2

j ) ∀(i, j) ∈ Ap (4.2)

Wij = γ1fij

((
pj
pi

)γ2
− 1
)
∀(i, j) ∈ Aa (4.3)

si ≤ si ≤ si ∀i ∈ N (4.4)

pi ≤ pi ≤ pi ∀i ∈ N (4.5)

fij ≥ 0 ∀(i, j) ∈ Aa, Av (4.6)
pj
pi
≤ 1.6 ∀(i, j) ∈ Aa (4.7)

Wij ≤Wij ∀(i, j) ∈ Aa (4.8)

pi ≥ pj ∀(i, j) ∈ Av (4.9)

(4)
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It can be seen that the problem (4) is separable for equation (4.2) but not
separable for equation (4.3).

3 Solution Procedure

We now consider the solution of the problem (4). As already seen in De
Wolf and Smeers [7], the formulation of the gas flow-pressure relation in pipes
(4.2) is clearly nonconvex. The problem without the compressors modelization
(4.3) was separable allowing to solve the problem by successive piecewise linear
approximations of the problem. Now the compressors modelization (4.3) renders
the problem non separable.

Some procedure is thus required in general to tackle the nonconvexity of
the problem, if only to find a local solution. The approach proposed here is to
proceed by successively solving two problems, the first one being expected to
produce a good initial point for the second one.

Convergence in nonlinear programming may indeed crucially depend on a
good choice of the starting point and this is especially true when the problem
is nonconvex. Our first problem is obtained by relaxing the pressure constraints
and eliminating all compressors in the full model.

The solution of this problem is conjectured to provide a good starting point
for the second problem which is the complete model with pressure bounds and
compressors. The same procedure was already proposed for solving the problem
of an integrated transmission and merchant gas company by De Wolf and Smeers
[7]. But here, we shall show on examples that the solution of first problem is a
very good starting solution for the complete problem. In fact, we shall prove that
they have similar objective functions (namely to minimize the energy dissipated
in the network to transport the gas).

3.1 First problem : find a good initial point.

Consider the following convex problem which only accounts for pressure losses
along the pipelines :

minh(f, s) =
∑

(i,j)∈A

|fij |f2
ij

3C2
ij

s.t.
∑

j|(i,j)∈A

fij −
∑

j|(j,i)∈A

fji = si ∀i ∈ N

si ≤ si ≤ si ∀i ∈ N

(5)

Since the problem is strictly convex in the flow variables, its optimal solution
is unique. The first constraints of (5) insure that the solution is also unique in
the supply variables. It is easy to prove the following results for problem (5) :

Proposition 1. The unique optimal solution of the problem (5) satisfies the
nonlinear flow pressure relation (4.2).
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Proof : Let πi be the dual variable associated to the gas balance constraint at
node i. The Karush-Kuhn-Tucker necessary conditions (See Bertsekas [4, page
284]) satisfied at the optimum solution of the problem (5) can be written as :

sign(fij)
f2
ij

C2
ij

= πi − πj ∀(i, j) ∈ A

This is exactly the nonlinear flow pressure relation (4.2) if we define :

πi = p2
i , ∀i ∈ N

As remark in De Wolf and Smeers [7], there is no sign constraint on the π
variables since πi is the Lagrange multiplier associated to an equality constraint,
namely the gas balance equation at node i. Thus directly replacing π = p2

i is not
allowed. Let π be the value of the lowest dual variable :

π = min
i∈N
{πi}

Define now
p2
i = πi − π.

We obtain exactly the flow pressure relations (4.2). QED.
The optimal solution of (5) satisfies thus all the constraints of (4) except the

pressure bounds constraints (4.5) and the compressors modelization (4.3), (4.7)
and (4.8).

It can be shown (See De Wolf and Smeers [8]) that problem (5) has a physical
interpretation. Namely, its objective function is the mechanical energy dissipated
per unit of time in the pipes. This implies that the point obtained by minimizing
the mechanical energy dissipated in the pipes should constitute a good starting
point for the complete problem.

Definition 1. The mechanical energy is defined as the energy necessary for
compressing fij from pressure pi to pressure pj.

Extending the work of Maugis for distribution network, we have the following
proposition.

Proposition 2. The objective function of problem (5) corresponds up to a mul-
tiplicative constant to the mechanical energy dissipated per unit of time in the
pipes

Proof : At node i, the power Wi given by a volumetric outflow of Qi units of
gas per second at pressure pi can be calculated in the following manner. The
total energy released by the gas when changing pressure from pi to the reference
pressure po is :

Wi =
∫ pi

p0

Q(p)dp
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By using the perfect gas state relation (p0Q0 = pQ), we can write :

Wi =
∫ pi

p0
p0Q0 dp

p
= p0Q0log(

pi
p0

)

Denote the volumetric flow going though arc (i, j) under standard conditions
by Q0

ij and the pressures at the two ends of the arc by pi and pj . The power lost
in arc (i, j) can be calculated by :

Wij = Wi −Wj = Q0
ijp0log(

pi
pj

) = Q0
ij

p0

2
log(

p2
i

p2
j

)

This power loss can be expressed through the head discharge variable Hij =
p2
i − p2

j as follows. Introducing the mean of square of pressure pM defined by

p2
M =

p2
i + p2

j

2
,

the power discharge can be rewritten as

Wij = Q0
ij

p0

2
log(

p2
M + Hij

2

p2
M −

Hij
2

)

= Q0
ij

p0

2

[
log(1 +

Hij

2p2
M

)− log(1− Hij

2p2
M

)
]

Note that since Hij is small with respect to p2
M , we obtain the following first

order approximation

Wij ≈ Q0
ijp

0 Hij

2p2
M

= Q0
ijp

0
p2
i − p2

j

2p2
M

The power discharge through the whole network is thus (we suppose that pM is
similar for each arc (i, j) and can be factored out in the following sum) :

W ≈ p0

2p2
M

∑
(i,j)∈A

Q0
ij(p

2
i − p2

j ) =
p0

2p2
M

∑
(i,j)∈A

(Q0
ij)

3

C2
ij

sign(Q0
ij)

which corresponds, up to a multiplicative constant, to the first term of the ob-
jective of problem (5). We can thus conclude that the function h corresponds,
up to a multiplicative constant, to the mechanical energy dissipated per
unit time in the network due to the flow of gas in the pipes. QED

This proposition was suggested to us by Mr. Zarea, direction de la recherche
of Gaz de France.

Problem (5), being a convex separable problem, can be solved by any convex
non linear optimization method. We have solve this problem using GAMS/CONOPT.
The resolution with GAMS leads to a solution (f∗, s∗) with associated Lagrange
multipliers π∗ which are used as starting point for the complete problem.
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3.2 Second problem : the complete problem.

The solution to the first problem satisfies all the constraints of problem (4)
except for the pressure bounds and the compressors modelization equations. We
now return to problem (4) and solve it using also GAMS/CONOPT. As we shall
see in the following section, the flow variables founded in the first problem are
the (local) optimal values of the complete problem. Thus the first problem give
a very good starting point for the second problem.

This is not a surprizing since the objective function of problem (5) is the
mechanical energy dissipated in all the network since the objective of the com-
plete problem (4) is to minimize the energy dissipated in the compressors. The
only task for CONOPT for solving the complete problem (4) from the solution
of problem (5) is to restore the bounds on pressure.

4 Application to the Belgium gas network

To illustrate the utility of the first problem (5), we apply our suggested
solution procedure to the schematic description of the Belgium gas network given
in De Wolf and Smeers [7]. Recall that Belgium has no domestic gas resources
and imports all its natural gas from the Netherlands, from Algeria and from
Norway. The Belgium gas transmission network carries two types of gas and is
therefore divided in two parts. The high calorific gas (10 000 kilocalories per
cubic meter), comes from Algeria and Norway. The gas from Algeria comes in
LNG form at the Zeebrugge terminal and the gas from Norway is piped through
the Netherlands and crosses the Belgian border at Voeren. The gas coming from
the Netherlands is a low calorific gas (8 400 kilocalories per cubic meter). We
consider only to the high calorific network.

The reader is referred to De Wolf and Smeers [7] for a more detailed des-
cription of the Belgium network. For each compressor, the maximal power is
given in in Table 1. Note that the compressor in Berneau corresponds to a large

Localization Wij (kW)
Berneau 20 888
Sinsin 3 356

Tab. 1. Compressors description

compression station.

4.1 Optimal solution

The energy used in the compressors founded by GAMS/CONOPT is :

z∗ = 6 393.825 kW
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Arc from to Flow
(106 SCM)

1+2 Zeebrugge Dudzele 11.594
3+4 Dudzele Brugge 19.994

5 Brugge Zomergem 16.076
6 Loenhout Antwerpen 4.800
7 Antwerpen Gent 0.766
8 Gent Zomergem -4.490
9 Zomergem Péronnes 11.586

10 +11 Voeren Berneau 19.344
12 +13 Berneau Liège 19.344
14+15 Liège Warnand 12.979

16 Warnand Namur 10.838
17 Namur Anderlues 8.718
18 Anderlues Péronnes 9.918
19 Péronnes Mons 22.464
20 Mons Blaregnies 15.616
21 Warnand Wanze 2.141
22 Wanze Sinsin 2.141
23 Sinsin Arlon 2.141
24 Arlon Pétange 1.919

Tab. 2. Optimal flows

The optimal flow pattern is given in table 2. Note that we have converted each
couple of two parallel arcs in one equivalent larger pipe (See appendix ??).

The corresponding pressure and supply optimal patterns are given in table 3.
Note that in Voeren, there is one unit of gas that is taken and which remains at
Voeren. This is possible because there is no price associated to the gas taken at
the source nodes.

The two compressors located at Berneau and Sinsin are in use. Table 4 give
the used powers and the compression ratio pj/pi.

4.2 Role of the first problem

Consider now the utility by resorting to the first problem. First of all, we
have asked GAMS/CONOPT to solve directly the complete problem (4) from
scratch. Due to the nonconvexity of the problem, CONOPT can not find a fea-
sible solution to the problem. This fact already justifies the utility of the first
problem.

But if we consider the solution, in term of flows, of the first problem and of
the complete problem, we see that the optimal solution of problem (5) is
the optimal solution of problem (4) !

Note that there is some work for CONOPT to solve the complete problem
(4) starting from the solution of the first problem (5). In fact, if we consider the
pressure computed from the dual variables of the first problem, we can see that
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Node Town Supply Demand Pressure
(106 SCM) (106 SCM) (Bars)

1 Zeebugge 11.594 56.710
2 Dudzele 8.400 56.678
3 Brugge 3.918 56.532
4 Zomergem 54.869
5 Loenhout 4.800 56.174
6 Antwerpen 4.034 54.090
7 Gent 5.256 54.053
8 Voeren 20.344 1. 50.000
9 in Berneau 49.579
9 out Berneau 57.820
10 Liège 6.365 56.126
11 Warnand 55.140
12 Namur 2.120 53.893
13 Anderlues 1.200 53.110
14 Péronnes 0.960 52.982
15 Mons 6.848 51.653
16 Blaregnies 15.616 50.000
17 Wanze 54.326
18 in Sinsin 47.300
18 out Sinsin 58.726
19 Arlon 0.222 27.520
20 Pétange 1.919 25.000

Tab. 3. Optimal supplies and pressures

Localization Wij (kW) Wij (kW) pj/pi pj/pi

Berneau 4 973.991 20 888 1.166 1.6

Sinsin 780.452 3 356 1.242 1.6
Tab. 4. Compressors energy used

they are not feasible (See Table 5). As can be seen, the work of GAMS/CONOPT
is to satisfy the upper bound on pressure variables using the compressors at a
minimum level.

Perhaps this phenomena is due to the arborescent structure of the Belgian
gas network. We have try to apply the same methodology on a a part of the
French gas network which has many cycles . The solution of the first
and second problem are now different but the preprocessing throught the first
problem allow to solve the second problem by CONOPT without difficulty. The
main result of the application of our solution procedure is the fact that the first
problem give the right direction of use of each arc, which is specially important
for the actives arcs.
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Node Town Pressure end Pressure end Maximum
first problem problem (4) pressure

1 Zeebugge 86.664 56.710 77.0
2 Dudzele 86.634 56.678 77.0
3 Brugge 86.500 56.532 80.0
4 Zomergem 84.975 54.869 80.0
5 Loenhout 86.171 56.174 77.0
6 Antwerpen 84.263 54.090 80.0
7 Gent 84.230 54.053 80.0
8 Voeren 88.019 50.000 50.0
9 in Berneau 87.686 49.579 66.2
9 out Berneau 87.686 57.820 66.2
10 Liège 86.127 56.126 66.2
11 Warnand 85.223 55.140 66.2
12 Namur 84.084 53.893 66.2
13 Anderlues 83.370 53.110 66.2
14 Péronnes 83.254 52.982 66.2
15 Mons 82.048 51.653 66.2
16 Blaregnies 80.555 50.000 66.2
17 Wanze 84.479 54.326 66.2
18 in Sinsin 78.139 47.300 63.0
18 out Sinsin 78.139 58.726 66.2
19 Arlon 36.505 27.520 66.2
20 Pétange 25.000 25.000 66.2

Tab. 5. Optimal pressures for first and complete problems

5 Conclusions

In this paper we have updated the gas transmission model of De Wolf and
Smeers [7] to the new situation in several european countries. Namely the fact
that the merchant and the transportation function are now separated. The conse-
quence of this new situation is the necessity of the introduction of the compres-
sors modelization. This is the first objective of the present paper. The second is
to present a procedure to solve this non linear non convex non separable problem.
We have seen, on the example of the Belgium gas network that the preproces-
sing trough the Maugis problem [9] is very efficient in this case. Namely, on the
presented examples, the solution in term of flow variables of the preliminary pro-
blem is the optimal solution of the gas transmission problem. We have given a
physical interpretation to the objective function of the first problem (5), namely
the power used in the network due to the flows in the pipes. This constitutes a
justification to this phenomena.

Futures research are devoted to introduce this model in a dimensioning model
such as [6]. Such a model will consider the trade-off between the minimization of
capital expenditures (as in [2]) and the minimization of operational expenditures.
In other terms, this model could balance any decrease in investment of pipelines
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with an increase of compressor power (and conversely) regarding the costs. In
fact, if we increase the pipe diameters, this leads to minus head loses and perhaps
the use of one compressor can be avoided.
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